File size: 3,855 Bytes
5be7361
 
 
aee55f3
ccc18a7
 
5be7361
 
 
 
 
ccc18a7
5be7361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eadedc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be7361
 
 
 
 
 
 
 
 
 
b420ebd
5be7361
 
 
 
 
 
 
 
 
 
9eadedc
 
 
 
 
 
 
5be7361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import io
from PIL import Image
import base64
import os
import uuid
from typing import List

from fastapi import FastAPI, APIRouter, HTTPException
from inference import Inference
import uvicorn
import logging
from typing import Optional

from types_io import ClassificationRequest, ImageData


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
log = logging.getLogger(__name__)


def decode_base64_image(base64_str: str) -> Optional[Image.Image]:
    """
    Decode a base64 encoded string into a PIL Image object.

    Args:
        base64_str (str): Base64 encoded image string

    Returns:
        Optional[Image.Image]: PIL Image object if successful, None if decoding fails

    Raises:
        Exception: Logged and caught internally, returns None on any error
    """
    try:
        image_data = base64.b64decode(base64_str)
        image = Image.open(io.BytesIO(image_data))
        return image
    except Exception as e:
        log.error(f"Error processing image: {str(e)}")
        return None


def save_images_to_disk(images: List[Image.Image], output_dir: str = "temp_images") -> List[str]:
    """
    Save PIL Image objects to disk and return their file paths.
    
    Args:
        images (List[Image.Image]): List of PIL Image objects to save
        output_dir (str): Directory where images will be saved (default: "temp_images")
    
    Returns:
        List[str]: List of file paths where images were saved
    
    Raises:
        Exception: If there's an error saving images to disk
    """
    try:
        # Create output directory if it doesn't exist
        os.makedirs(output_dir, exist_ok=True)
        
        saved_paths = []
        for i, image in enumerate(images):
            if image is None:
                log.warning(f"Skipping None image at index {i}")
                continue
                
            # Generate unique filename
            filename = f"image_{uuid.uuid4().hex}.png"
            file_path = os.path.join(output_dir, filename)
            
            # Save image to disk
            image.save(file_path, "PNG")
            saved_paths.append(file_path)
            log.info(f"Saved image to: {file_path}")
        
        return saved_paths
        
    except Exception as e:
        log.error(f"Error saving images to disk: {str(e)}")
        raise

app = FastAPI(title="Kimi Service", version="1.5.0")
inference = Inference()
router = APIRouter()


@app.get("/")
async def home():
    return {"message": "Welcome to Kimi Service!"}


@router.post("/classify", response_model=dict)
async def classify(request: ClassificationRequest):
    try:
        log.info(f"Processing {len(request.images)} images")
        # Decode images from base64 or load from file paths
        images = []
        for img_str in request.images:
            img = decode_base64_image(img_str)
            images.append(img)
        log.info(f"Decoded {len(images)} images successfully")

        # Save images and get their paths using a helper method
        output_dir = os.environ.get("IMAGE_OUTPUT_DIR", "/tmp/temp_images")
        saved_image_paths = save_images_to_disk(images, output_dir)

        # Send images to inference
        res = inference.classify_building(images, saved_image_paths)

        if res is None:
            raise HTTPException(status_code=500, detail="Classification failed")
        return res

    except ValueError as ve:
        log.error(f"Validation error: {str(ve)}")
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        log.error(f"Error during classification: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))


app.include_router(router)

if __name__ == "__main__":
    uvicorn.run("app:app", reload=True, port=7860, host="0.0.0.0")