Spaces:
Runtime error
Runtime error
| import torch, os | |
| from safetensors import safe_open | |
| from typing_extensions import Literal, TypeAlias | |
| from typing import List | |
| from .downloader import download_from_huggingface, download_from_modelscope | |
| from .sd_text_encoder import SDTextEncoder | |
| from .sd_unet import SDUNet | |
| from .sd_vae_encoder import SDVAEEncoder | |
| from .sd_vae_decoder import SDVAEDecoder | |
| from .sd_lora import SDLoRA | |
| from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 | |
| from .sdxl_unet import SDXLUNet | |
| from .sdxl_vae_decoder import SDXLVAEDecoder | |
| from .sdxl_vae_encoder import SDXLVAEEncoder | |
| from .sd_controlnet import SDControlNet | |
| from .sd_motion import SDMotionModel | |
| from .sdxl_motion import SDXLMotionModel | |
| from .svd_image_encoder import SVDImageEncoder | |
| from .svd_unet import SVDUNet | |
| from .svd_vae_decoder import SVDVAEDecoder | |
| from .svd_vae_encoder import SVDVAEEncoder | |
| from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder | |
| from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder | |
| from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder | |
| from .hunyuan_dit import HunyuanDiT | |
| preset_models_on_huggingface = { | |
| "HunyuanDiT": [ | |
| ("Tencent-Hunyuan/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"), | |
| ("Tencent-Hunyuan/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"), | |
| ("Tencent-Hunyuan/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"), | |
| ("Tencent-Hunyuan/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"), | |
| ], | |
| "stable-video-diffusion-img2vid-xt": [ | |
| ("stabilityai/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"), | |
| ], | |
| "ExVideo-SVD-128f-v1": [ | |
| ("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"), | |
| ], | |
| } | |
| preset_models_on_modelscope = { | |
| "HunyuanDiT": [ | |
| ("modelscope/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"), | |
| ("modelscope/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"), | |
| ("modelscope/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"), | |
| ("modelscope/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"), | |
| ], | |
| "stable-video-diffusion-img2vid-xt": [ | |
| ("AI-ModelScope/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"), | |
| ], | |
| "ExVideo-SVD-128f-v1": [ | |
| ("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"), | |
| ], | |
| } | |
| Preset_model_id: TypeAlias = Literal[ | |
| "HunyuanDiT", | |
| "stable-video-diffusion-img2vid-xt", | |
| "ExVideo-SVD-128f-v1" | |
| ] | |
| Preset_model_website: TypeAlias = Literal[ | |
| "HuggingFace", | |
| "ModelScope", | |
| ] | |
| website_to_preset_models = { | |
| "HuggingFace": preset_models_on_huggingface, | |
| "ModelScope": preset_models_on_modelscope, | |
| } | |
| website_to_download_fn = { | |
| "HuggingFace": download_from_huggingface, | |
| "ModelScope": download_from_modelscope, | |
| } | |
| class ModelManager: | |
| def __init__( | |
| self, | |
| torch_dtype=torch.float16, | |
| device="cuda", | |
| model_id_list: List[Preset_model_id] = [], | |
| downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], | |
| file_path_list: List[str] = [], | |
| ): | |
| self.torch_dtype = torch_dtype | |
| self.device = device | |
| self.model = {} | |
| self.model_path = {} | |
| self.textual_inversion_dict = {} | |
| downloaded_files = self.download_models(model_id_list, downloading_priority) | |
| self.load_models(downloaded_files + file_path_list) | |
| def download_models( | |
| self, | |
| model_id_list: List[Preset_model_id] = [], | |
| downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], | |
| ): | |
| downloaded_files = [] | |
| for model_id in model_id_list: | |
| for website in downloading_priority: | |
| if model_id in website_to_preset_models[website]: | |
| for model_id, origin_file_path, local_dir in website_to_preset_models[website][model_id]: | |
| # Check if the file is downloaded. | |
| file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path)) | |
| if file_to_download in downloaded_files: | |
| continue | |
| # Download | |
| website_to_download_fn[website](model_id, origin_file_path, local_dir) | |
| if os.path.basename(origin_file_path) in os.listdir(local_dir): | |
| downloaded_files.append(file_to_download) | |
| return downloaded_files | |
| def is_stable_video_diffusion(self, state_dict): | |
| param_name = "model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.weight" | |
| return param_name in state_dict | |
| def is_RIFE(self, state_dict): | |
| param_name = "block_tea.convblock3.0.1.weight" | |
| return param_name in state_dict or ("module." + param_name) in state_dict | |
| def is_beautiful_prompt(self, state_dict): | |
| param_name = "transformer.h.9.self_attention.query_key_value.weight" | |
| return param_name in state_dict | |
| def is_stabe_diffusion_xl(self, state_dict): | |
| param_name = "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight" | |
| return param_name in state_dict | |
| def is_stable_diffusion(self, state_dict): | |
| if self.is_stabe_diffusion_xl(state_dict): | |
| return False | |
| param_name = "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight" | |
| return param_name in state_dict | |
| def is_controlnet(self, state_dict): | |
| param_name = "control_model.time_embed.0.weight" | |
| param_name_2 = "mid_block.resnets.1.time_emb_proj.weight" # For controlnets in diffusers format | |
| return param_name in state_dict or param_name_2 in state_dict | |
| def is_animatediff(self, state_dict): | |
| param_name = "mid_block.motion_modules.0.temporal_transformer.proj_out.weight" | |
| return param_name in state_dict | |
| def is_animatediff_xl(self, state_dict): | |
| param_name = "up_blocks.2.motion_modules.2.temporal_transformer.transformer_blocks.0.ff_norm.weight" | |
| return param_name in state_dict | |
| def is_sd_lora(self, state_dict): | |
| param_name = "lora_unet_up_blocks_3_attentions_2_transformer_blocks_0_ff_net_2.lora_up.weight" | |
| return param_name in state_dict | |
| def is_translator(self, state_dict): | |
| param_name = "model.encoder.layers.5.self_attn_layer_norm.weight" | |
| return param_name in state_dict and len(state_dict) == 254 | |
| def is_ipadapter(self, state_dict): | |
| return "image_proj" in state_dict and "ip_adapter" in state_dict and state_dict["image_proj"]["proj.weight"].shape == torch.Size([3072, 1024]) | |
| def is_ipadapter_image_encoder(self, state_dict): | |
| param_name = "vision_model.encoder.layers.31.self_attn.v_proj.weight" | |
| return param_name in state_dict and len(state_dict) == 521 | |
| def is_ipadapter_xl(self, state_dict): | |
| return "image_proj" in state_dict and "ip_adapter" in state_dict and state_dict["image_proj"]["proj.weight"].shape == torch.Size([8192, 1280]) | |
| def is_ipadapter_xl_image_encoder(self, state_dict): | |
| param_name = "vision_model.encoder.layers.47.self_attn.v_proj.weight" | |
| return param_name in state_dict and len(state_dict) == 777 | |
| def is_hunyuan_dit_clip_text_encoder(self, state_dict): | |
| param_name = "bert.encoder.layer.23.attention.output.dense.weight" | |
| return param_name in state_dict | |
| def is_hunyuan_dit_t5_text_encoder(self, state_dict): | |
| param_name = "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight" | |
| return param_name in state_dict | |
| def is_hunyuan_dit(self, state_dict): | |
| param_name = "final_layer.adaLN_modulation.1.weight" | |
| return param_name in state_dict | |
| def is_diffusers_vae(self, state_dict): | |
| param_name = "quant_conv.weight" | |
| return param_name in state_dict | |
| def is_ExVideo_StableVideoDiffusion(self, state_dict): | |
| param_name = "blocks.185.positional_embedding.embeddings" | |
| return param_name in state_dict | |
| def load_stable_video_diffusion(self, state_dict, components=None, file_path="", add_positional_conv=None): | |
| component_dict = { | |
| "image_encoder": SVDImageEncoder, | |
| "unet": SVDUNet, | |
| "vae_decoder": SVDVAEDecoder, | |
| "vae_encoder": SVDVAEEncoder, | |
| } | |
| if components is None: | |
| components = ["image_encoder", "unet", "vae_decoder", "vae_encoder"] | |
| for component in components: | |
| if component == "unet": | |
| self.model[component] = component_dict[component](add_positional_conv=add_positional_conv) | |
| self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict, add_positional_conv=add_positional_conv), strict=False) | |
| else: | |
| self.model[component] = component_dict[component]() | |
| self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) | |
| self.model[component].to(self.torch_dtype).to(self.device) | |
| self.model_path[component] = file_path | |
| def load_stable_diffusion(self, state_dict, components=None, file_path=""): | |
| component_dict = { | |
| "text_encoder": SDTextEncoder, | |
| "unet": SDUNet, | |
| "vae_decoder": SDVAEDecoder, | |
| "vae_encoder": SDVAEEncoder, | |
| "refiner": SDXLUNet, | |
| } | |
| if components is None: | |
| components = ["text_encoder", "unet", "vae_decoder", "vae_encoder"] | |
| for component in components: | |
| if component == "text_encoder": | |
| # Add additional token embeddings to text encoder | |
| token_embeddings = [state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"]] | |
| for keyword in self.textual_inversion_dict: | |
| _, embeddings = self.textual_inversion_dict[keyword] | |
| token_embeddings.append(embeddings.to(dtype=token_embeddings[0].dtype)) | |
| token_embeddings = torch.concat(token_embeddings, dim=0) | |
| state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"] = token_embeddings | |
| self.model[component] = component_dict[component](vocab_size=token_embeddings.shape[0]) | |
| self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) | |
| self.model[component].to(self.torch_dtype).to(self.device) | |
| else: | |
| self.model[component] = component_dict[component]() | |
| self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) | |
| self.model[component].to(self.torch_dtype).to(self.device) | |
| self.model_path[component] = file_path | |
| def load_stable_diffusion_xl(self, state_dict, components=None, file_path=""): | |
| component_dict = { | |
| "text_encoder": SDXLTextEncoder, | |
| "text_encoder_2": SDXLTextEncoder2, | |
| "unet": SDXLUNet, | |
| "vae_decoder": SDXLVAEDecoder, | |
| "vae_encoder": SDXLVAEEncoder, | |
| } | |
| if components is None: | |
| components = ["text_encoder", "text_encoder_2", "unet", "vae_decoder", "vae_encoder"] | |
| for component in components: | |
| self.model[component] = component_dict[component]() | |
| self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict)) | |
| if component in ["vae_decoder", "vae_encoder"]: | |
| # These two model will output nan when float16 is enabled. | |
| # The precision problem happens in the last three resnet blocks. | |
| # I do not know how to solve this problem. | |
| self.model[component].to(torch.float32).to(self.device) | |
| else: | |
| self.model[component].to(self.torch_dtype).to(self.device) | |
| self.model_path[component] = file_path | |
| def load_controlnet(self, state_dict, file_path=""): | |
| component = "controlnet" | |
| if component not in self.model: | |
| self.model[component] = [] | |
| self.model_path[component] = [] | |
| model = SDControlNet() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component].append(model) | |
| self.model_path[component].append(file_path) | |
| def load_animatediff(self, state_dict, file_path=""): | |
| component = "motion_modules" | |
| model = SDMotionModel() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_animatediff_xl(self, state_dict, file_path=""): | |
| component = "motion_modules_xl" | |
| model = SDXLMotionModel() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_beautiful_prompt(self, state_dict, file_path=""): | |
| component = "beautiful_prompt" | |
| from transformers import AutoModelForCausalLM | |
| model_folder = os.path.dirname(file_path) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_folder, state_dict=state_dict, local_files_only=True, torch_dtype=self.torch_dtype | |
| ).to(self.device).eval() | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_RIFE(self, state_dict, file_path=""): | |
| component = "RIFE" | |
| from ..extensions.RIFE import IFNet | |
| model = IFNet().eval() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(torch.float32).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_sd_lora(self, state_dict, alpha): | |
| SDLoRA().add_lora_to_text_encoder(self.model["text_encoder"], state_dict, alpha=alpha, device=self.device) | |
| SDLoRA().add_lora_to_unet(self.model["unet"], state_dict, alpha=alpha, device=self.device) | |
| def load_translator(self, state_dict, file_path=""): | |
| # This model is lightweight, we do not place it on GPU. | |
| component = "translator" | |
| from transformers import AutoModelForSeq2SeqLM | |
| model_folder = os.path.dirname(file_path) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_folder).eval() | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_ipadapter(self, state_dict, file_path=""): | |
| component = "ipadapter" | |
| model = SDIpAdapter() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_ipadapter_image_encoder(self, state_dict, file_path=""): | |
| component = "ipadapter_image_encoder" | |
| model = IpAdapterCLIPImageEmbedder() | |
| model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_ipadapter_xl(self, state_dict, file_path=""): | |
| component = "ipadapter_xl" | |
| model = SDXLIpAdapter() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_ipadapter_xl_image_encoder(self, state_dict, file_path=""): | |
| component = "ipadapter_xl_image_encoder" | |
| model = IpAdapterXLCLIPImageEmbedder() | |
| model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_hunyuan_dit_clip_text_encoder(self, state_dict, file_path=""): | |
| component = "hunyuan_dit_clip_text_encoder" | |
| model = HunyuanDiTCLIPTextEncoder() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_hunyuan_dit_t5_text_encoder(self, state_dict, file_path=""): | |
| component = "hunyuan_dit_t5_text_encoder" | |
| model = HunyuanDiTT5TextEncoder() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_hunyuan_dit(self, state_dict, file_path=""): | |
| component = "hunyuan_dit" | |
| model = HunyuanDiT() | |
| model.load_state_dict(model.state_dict_converter().from_civitai(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_diffusers_vae(self, state_dict, file_path=""): | |
| # TODO: detect SD and SDXL | |
| component = "vae_encoder" | |
| model = SDXLVAEEncoder() | |
| model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| component = "vae_decoder" | |
| model = SDXLVAEDecoder() | |
| model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict)) | |
| model.to(self.torch_dtype).to(self.device) | |
| self.model[component] = model | |
| self.model_path[component] = file_path | |
| def load_ExVideo_StableVideoDiffusion(self, state_dict, file_path=""): | |
| unet_state_dict = self.model["unet"].state_dict() | |
| self.model["unet"].to("cpu") | |
| del self.model["unet"] | |
| add_positional_conv = state_dict["blocks.185.positional_embedding.embeddings"].shape[0] | |
| self.model["unet"] = SVDUNet(add_positional_conv=add_positional_conv) | |
| self.model["unet"].load_state_dict(unet_state_dict, strict=False) | |
| self.model["unet"].load_state_dict(state_dict, strict=False) | |
| self.model["unet"].to(self.torch_dtype).to(self.device) | |
| def search_for_embeddings(self, state_dict): | |
| embeddings = [] | |
| for k in state_dict: | |
| if isinstance(state_dict[k], torch.Tensor): | |
| embeddings.append(state_dict[k]) | |
| elif isinstance(state_dict[k], dict): | |
| embeddings += self.search_for_embeddings(state_dict[k]) | |
| return embeddings | |
| def load_textual_inversions(self, folder): | |
| # Store additional tokens here | |
| self.textual_inversion_dict = {} | |
| # Load every textual inversion file | |
| for file_name in os.listdir(folder): | |
| if file_name.endswith(".txt"): | |
| continue | |
| keyword = os.path.splitext(file_name)[0] | |
| state_dict = load_state_dict(os.path.join(folder, file_name)) | |
| # Search for embeddings | |
| for embeddings in self.search_for_embeddings(state_dict): | |
| if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: | |
| tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] | |
| self.textual_inversion_dict[keyword] = (tokens, embeddings) | |
| break | |
| def load_model(self, file_path, components=None, lora_alphas=[]): | |
| state_dict = load_state_dict(file_path, torch_dtype=self.torch_dtype) | |
| if self.is_stable_video_diffusion(state_dict): | |
| self.load_stable_video_diffusion(state_dict, file_path=file_path) | |
| elif self.is_animatediff(state_dict): | |
| self.load_animatediff(state_dict, file_path=file_path) | |
| elif self.is_animatediff_xl(state_dict): | |
| self.load_animatediff_xl(state_dict, file_path=file_path) | |
| elif self.is_controlnet(state_dict): | |
| self.load_controlnet(state_dict, file_path=file_path) | |
| elif self.is_stabe_diffusion_xl(state_dict): | |
| self.load_stable_diffusion_xl(state_dict, components=components, file_path=file_path) | |
| elif self.is_stable_diffusion(state_dict): | |
| self.load_stable_diffusion(state_dict, components=components, file_path=file_path) | |
| elif self.is_sd_lora(state_dict): | |
| self.load_sd_lora(state_dict, alpha=lora_alphas.pop(0)) | |
| elif self.is_beautiful_prompt(state_dict): | |
| self.load_beautiful_prompt(state_dict, file_path=file_path) | |
| elif self.is_RIFE(state_dict): | |
| self.load_RIFE(state_dict, file_path=file_path) | |
| elif self.is_translator(state_dict): | |
| self.load_translator(state_dict, file_path=file_path) | |
| elif self.is_ipadapter(state_dict): | |
| self.load_ipadapter(state_dict, file_path=file_path) | |
| elif self.is_ipadapter_image_encoder(state_dict): | |
| self.load_ipadapter_image_encoder(state_dict, file_path=file_path) | |
| elif self.is_ipadapter_xl(state_dict): | |
| self.load_ipadapter_xl(state_dict, file_path=file_path) | |
| elif self.is_ipadapter_xl_image_encoder(state_dict): | |
| self.load_ipadapter_xl_image_encoder(state_dict, file_path=file_path) | |
| elif self.is_hunyuan_dit_clip_text_encoder(state_dict): | |
| self.load_hunyuan_dit_clip_text_encoder(state_dict, file_path=file_path) | |
| elif self.is_hunyuan_dit_t5_text_encoder(state_dict): | |
| self.load_hunyuan_dit_t5_text_encoder(state_dict, file_path=file_path) | |
| elif self.is_hunyuan_dit(state_dict): | |
| self.load_hunyuan_dit(state_dict, file_path=file_path) | |
| elif self.is_diffusers_vae(state_dict): | |
| self.load_diffusers_vae(state_dict, file_path=file_path) | |
| elif self.is_ExVideo_StableVideoDiffusion(state_dict): | |
| self.load_ExVideo_StableVideoDiffusion(state_dict, file_path=file_path) | |
| def load_models(self, file_path_list, lora_alphas=[]): | |
| for file_path in file_path_list: | |
| self.load_model(file_path, lora_alphas=lora_alphas) | |
| def to(self, device): | |
| for component in self.model: | |
| if isinstance(self.model[component], list): | |
| for model in self.model[component]: | |
| model.to(device) | |
| else: | |
| self.model[component].to(device) | |
| torch.cuda.empty_cache() | |
| def get_model_with_model_path(self, model_path): | |
| for component in self.model_path: | |
| if isinstance(self.model_path[component], str): | |
| if os.path.samefile(self.model_path[component], model_path): | |
| return self.model[component] | |
| elif isinstance(self.model_path[component], list): | |
| for i, model_path_ in enumerate(self.model_path[component]): | |
| if os.path.samefile(model_path_, model_path): | |
| return self.model[component][i] | |
| raise ValueError(f"Please load model {model_path} before you use it.") | |
| def __getattr__(self, __name): | |
| if __name in self.model: | |
| return self.model[__name] | |
| else: | |
| return super.__getattribute__(__name) | |
| def load_state_dict(file_path, torch_dtype=None): | |
| if file_path.endswith(".safetensors"): | |
| return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype) | |
| else: | |
| return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype) | |
| def load_state_dict_from_safetensors(file_path, torch_dtype=None): | |
| state_dict = {} | |
| with safe_open(file_path, framework="pt", device="cpu") as f: | |
| for k in f.keys(): | |
| state_dict[k] = f.get_tensor(k) | |
| if torch_dtype is not None: | |
| state_dict[k] = state_dict[k].to(torch_dtype) | |
| return state_dict | |
| def load_state_dict_from_bin(file_path, torch_dtype=None): | |
| state_dict = torch.load(file_path, map_location="cpu") | |
| if torch_dtype is not None: | |
| for i in state_dict: | |
| if isinstance(state_dict[i], torch.Tensor): | |
| state_dict[i] = state_dict[i].to(torch_dtype) | |
| return state_dict | |
| def search_parameter(param, state_dict): | |
| for name, param_ in state_dict.items(): | |
| if param.numel() == param_.numel(): | |
| if param.shape == param_.shape: | |
| if torch.dist(param, param_) < 1e-6: | |
| return name | |
| else: | |
| if torch.dist(param.flatten(), param_.flatten()) < 1e-6: | |
| return name | |
| return None | |
| def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False): | |
| matched_keys = set() | |
| with torch.no_grad(): | |
| for name in source_state_dict: | |
| rename = search_parameter(source_state_dict[name], target_state_dict) | |
| if rename is not None: | |
| print(f'"{name}": "{rename}",') | |
| matched_keys.add(rename) | |
| elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0: | |
| length = source_state_dict[name].shape[0] // 3 | |
| rename = [] | |
| for i in range(3): | |
| rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict)) | |
| if None not in rename: | |
| print(f'"{name}": {rename},') | |
| for rename_ in rename: | |
| matched_keys.add(rename_) | |
| for name in target_state_dict: | |
| if name not in matched_keys: | |
| print("Cannot find", name, target_state_dict[name].shape) | |