Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,16 @@ from PIL import Image
|
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
import torch
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 13 |
torch.backends.cudnn.allow_tf32 = True
|
| 14 |
|
|
@@ -17,14 +23,16 @@ if torch.cuda.is_available():
|
|
| 17 |
torch.set_default_tensor_type('torch.cuda.FloatTensor')
|
| 18 |
|
| 19 |
|
| 20 |
-
|
| 21 |
def load_model():
|
| 22 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
try:
|
|
|
|
|
|
|
|
|
|
| 24 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 25 |
"Qwen/Qwen2-VL-2B-Instruct",
|
| 26 |
-
torch_dtype=torch.float16
|
| 27 |
-
device_map="auto"
|
|
|
|
| 28 |
)
|
| 29 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 30 |
return model, processor, device
|
|
|
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
import os
|
|
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 11 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
print(f"CUDA version: {torch.version.cuda}")
|
| 14 |
+
print(f"Device count: {torch.cuda.device_count()}")
|
| 15 |
+
print(f"Current device: {torch.cuda.current_device()}")
|
| 16 |
+
print(f"Device name: {torch.cuda.get_device_name()}")
|
| 17 |
+
|
| 18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
torch.backends.cudnn.allow_tf32 = True
|
| 20 |
|
|
|
|
| 23 |
torch.set_default_tensor_type('torch.cuda.FloatTensor')
|
| 24 |
|
| 25 |
|
|
|
|
| 26 |
def load_model():
|
|
|
|
| 27 |
try:
|
| 28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
print(f"Using device: {device}")
|
| 30 |
+
|
| 31 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 32 |
"Qwen/Qwen2-VL-2B-Instruct",
|
| 33 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 34 |
+
device_map="auto",
|
| 35 |
+
low_cpu_mem_usage=True
|
| 36 |
)
|
| 37 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 38 |
return model, processor, device
|