Spaces:
Running
on
Zero
Running
on
Zero
| from email.mime import image | |
| import inspect | |
| from turtle import update | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| T5EncoderModel, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.image_processor import (VaeImageProcessor, PipelineImageInput) | |
| from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin, FluxIPAdapterMixin | |
| from diffusers.models.autoencoders import AutoencoderKL | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from torchvision.transforms.functional import pad | |
| from .transformer_flux import FluxTransformer2DModel | |
| from .detail_encoder import DetailEncoder | |
| PREFERRED_KONTEXT_RESOLUTIONS = [ | |
| (672, 1568), | |
| (688, 1504), | |
| (720, 1456), | |
| (752, 1392), | |
| (800, 1328), | |
| (832, 1248), | |
| (880, 1184), | |
| (944, 1104), | |
| (1024, 1024), | |
| (1104, 944), | |
| (1184, 880), | |
| (1248, 832), | |
| (1328, 800), | |
| (1392, 752), | |
| (1456, 720), | |
| (1504, 688), | |
| (1568, 672), | |
| ] | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def prepare_latent_image_ids_2(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y坐标 | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x坐标 | |
| return latent_image_ids | |
| def prepare_latent_subject_ids(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype): | |
| latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype) | |
| scale_h = original_height / target_height | |
| scale_w = original_width / target_width | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| #spatial进行PE插值 | |
| latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype) | |
| for i in range(target_height//2): | |
| for j in range(target_width//2): | |
| latent_image_ids_resized[i, j, 1] = i*scale_h | |
| latent_image_ids_resized[i, j, 2] = j*scale_w | |
| cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape | |
| cond_latent_image_ids = latent_image_ids_resized.reshape( | |
| cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels | |
| ) | |
| # latent_image_ids_ = torch.concat([latent_image_ids, cond_latent_image_ids], dim=0) | |
| return latent_image_ids, cond_latent_image_ids #, latent_image_ids_ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class FluxKontextPipeline( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| FluxIPAdapterMixin, | |
| ): | |
| r""" | |
| The Flux Kontext pipeline for text-to-image generation. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| detail_encoder: DetailEncoder = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.detail_encoder = detail_encoder | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 128 | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| image_embeds = [] | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_ip_adapter_image in ip_adapter_image: | |
| single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| else: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| ip_adapter_image_embeds = [ip_adapter_image_embeds] | |
| if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| image_embeds.append(single_image_embeds) | |
| ip_adapter_image_embeds = [] | |
| for single_image_embeds in image_embeds: | |
| single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids_1(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] + height | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] + width | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax") | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax") | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| image_A: Optional[torch.Tensor], | |
| image_B: Optional[torch.Tensor], | |
| batch_size: int, | |
| num_channels_latents: int, | |
| height: int, | |
| width: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ): | |
| if image_B.shape != image_A.shape: | |
| raise ValueError( | |
| f"Image A and Image B must have the same shape, but got {image_A.shape} and {image_B.shape}." | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| image_latents = image_ids = None | |
| if image_A is not None and image_B is not None: | |
| image_A = image_A.to(device=device, dtype=dtype) | |
| image_B = image_B.to(device=device, dtype=dtype) | |
| if image_A.shape[1] != self.latent_channels: | |
| image_latents_A = self._encode_vae_image(image=image_A, generator=generator) | |
| else: | |
| image_latents_A = image_A | |
| if image_B.shape[1] != self.latent_channels: | |
| image_latents_B = self._encode_vae_image(image=image_B, generator=generator) | |
| else: | |
| image_latents_B = image_B | |
| if batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_A.shape[0] | |
| image_latents_A = torch.cat([image_latents_A] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_A` of batch size {image_latents_A.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_A = torch.cat([image_latents_A], dim=0) | |
| if batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_B.shape[0] | |
| image_latents_B = torch.cat([image_latents_B] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_B` of batch size {image_latents_B.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_B = torch.cat([image_latents_B], dim=0) | |
| image_latent_height, image_latent_width = image_latents_A.shape[2:] | |
| image_latents_A = self._pack_latents( | |
| image_latents_A, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents_B = self._pack_latents( | |
| image_latents_B, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents = torch.cat([image_latents_A, image_latents_B], dim=1) | |
| image_ids_A = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_B = self._prepare_latent_image_ids_1( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_A[..., 0] = 1 # set first dimension to 0 for image A | |
| image_ids_B[..., 0] = 1 # set first dimension to 1 for image B | |
| image_ids = torch.cat([image_ids_A, image_ids_B], dim=0) | |
| latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| else: | |
| latents = latents.to(device=device, dtype=dtype) | |
| return latents, image_latents, latent_ids, image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image_A: Optional[PipelineImageInput] = None, | |
| image_B: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 1024**2, | |
| _auto_resize: bool = True, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_height, original_width = height, width | |
| aspect_ratio = width / height | |
| width = round((max_area * aspect_ratio) ** 0.5) | |
| height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = self.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| if height != original_height or width != original_width: | |
| logger.warning( | |
| f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| if image_A is not None and image_B is not None and not (isinstance(image_A, torch.Tensor) and image_A.size(1) == self.latent_channels) and not (isinstance(image_B, torch.Tensor) and image_B.size(1) == self.latent_channels): | |
| # reshape image_A as the same size as image_B | |
| img = image_B[0] if isinstance(image_B, list) else image_B | |
| image_height, image_width = self.image_processor.get_default_height_width(img) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| image_A = self.image_processor.resize(image_A, image_height, image_width) | |
| image_A = self.image_processor.preprocess(image_A, image_height, image_width) | |
| image_B = self.image_processor.resize(image_B, image_height, image_width) | |
| image_B = self.image_processor.preprocess(image_B, image_height, image_width) | |
| else: | |
| raise ValueError("Image input is not supported for costom kontext pipeline.") | |
| # add step. use the detail_encoder to encoder the image to the prompt_embeds | |
| if self.detail_encoder is not None: | |
| model_dtype = next(self.detail_encoder.parameters()).dtype | |
| model_device = next(self.detail_encoder.parameters()).device | |
| class_token_A_index = 2 | |
| class_token_B_index = 14 | |
| class_tokens_A_mask = [True if class_token_A_index <= i < class_token_A_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_B_mask = [True if class_token_B_index <= i < class_token_B_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_A_mask = torch.tensor(class_tokens_A_mask, dtype=torch.bool).unsqueeze(0) | |
| class_tokens_B_mask = torch.tensor(class_tokens_B_mask, dtype=torch.bool).unsqueeze(0) | |
| A_pixel_values = image_A | |
| B_pixel_values = image_B | |
| A_pixel_values = A_pixel_values.to(device=device, dtype=model_dtype) | |
| A_pixel_values = A_pixel_values.unsqueeze(0) | |
| B_pixel_values = B_pixel_values.to(device=device, dtype=model_dtype) | |
| B_pixel_values = B_pixel_values.unsqueeze(0) | |
| updated_prompt = self.detail_encoder(A_pixel_values, prompt_embeds, class_tokens_A_mask) | |
| updated_prompt = self.detail_encoder(B_pixel_values, updated_prompt, class_tokens_B_mask) | |
| prompt_embeds = updated_prompt | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = self.prepare_latents( | |
| image_A, | |
| image_B, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| # We set the index here to remove DtoH sync, helpful especially during compilation. | |
| # Check out more details here: https://github.com/huggingface/diffusers/pull/11696 | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| class FluxKontextPipelineWithPhotoEncoderAddTokens( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| FluxIPAdapterMixin, | |
| ): | |
| r""" | |
| The Flux Kontext pipeline for text-to-image generation. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| detail_encoder: DetailEncoder = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.detail_encoder = detail_encoder | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 128 | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds, text_input_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds, text_input_ids = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids, text_input_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| image_embeds = [] | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_ip_adapter_image in ip_adapter_image: | |
| single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| else: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| ip_adapter_image_embeds = [ip_adapter_image_embeds] | |
| if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| image_embeds.append(single_image_embeds) | |
| ip_adapter_image_embeds = [] | |
| for single_image_embeds in image_embeds: | |
| single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax") | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax") | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| image_A: Optional[torch.Tensor], | |
| image_B: Optional[torch.Tensor], | |
| batch_size: int, | |
| num_channels_latents: int, | |
| height: int, | |
| width: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ): | |
| if image_B.shape != image_A.shape: | |
| raise ValueError( | |
| f"Image A and Image B must have the same shape, but got {image_A.shape} and {image_B.shape}." | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| image_latents = image_ids = None | |
| if image_A is not None and image_B is not None: | |
| image_A = image_A.to(device=device, dtype=dtype) | |
| image_B = image_B.to(device=device, dtype=dtype) | |
| if image_A.shape[1] != self.latent_channels: | |
| image_latents_A = self._encode_vae_image(image=image_A, generator=generator) | |
| else: | |
| image_latents_A = image_A | |
| if image_B.shape[1] != self.latent_channels: | |
| image_latents_B = self._encode_vae_image(image=image_B, generator=generator) | |
| else: | |
| image_latents_B = image_B | |
| if batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_A.shape[0] | |
| image_latents_A = torch.cat([image_latents_A] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_A` of batch size {image_latents_A.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_A = torch.cat([image_latents_A], dim=0) | |
| if batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_B.shape[0] | |
| image_latents_B = torch.cat([image_latents_B] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_B` of batch size {image_latents_B.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_B = torch.cat([image_latents_B], dim=0) | |
| image_latent_height, image_latent_width = image_latents_A.shape[2:] | |
| image_latents_A = self._pack_latents( | |
| image_latents_A, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents_B = self._pack_latents( | |
| image_latents_B, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents = torch.cat([image_latents_A, image_latents_B], dim=1) | |
| image_ids_A = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_B = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_A[..., 0] = 1 # set first dimension to 0 for image A | |
| image_ids_B[..., 0] = 2 # set first dimension to 1 for image B | |
| image_ids = torch.cat([image_ids_A, image_ids_B], dim=0) | |
| latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| else: | |
| latents = latents.to(device=device, dtype=dtype) | |
| return latents, image_latents, latent_ids, image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image_A: Optional[PipelineImageInput] = None, | |
| image_B: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 1024**2, | |
| _auto_resize: bool = True, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # original_height, original_width = height, width | |
| # aspect_ratio = width / height | |
| # width = round((max_area * aspect_ratio) ** 0.5) | |
| # height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = self.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| # if height != original_height or width != original_width: | |
| # logger.warning( | |
| # f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| # ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| trigger_word = ['IMG1', 'IMG2'] | |
| self.tokenizer_2.add_tokens(trigger_word, special_tokens=True) | |
| image_A_token_id = self.tokenizer_2.convert_tokens_to_ids(trigger_word[0]) | |
| image_B_token_id = self.tokenizer_2.convert_tokens_to_ids(trigger_word[1]) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| text_input_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| text_input_ids, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| if image_A is not None and image_B is not None and not (isinstance(image_A, torch.Tensor) and image_A.size(1) == self.latent_channels) and not (isinstance(image_B, torch.Tensor) and image_B.size(1) == self.latent_channels): | |
| # reshape image_A as the same size as image_B | |
| img = image_B[0] if isinstance(image_B, list) else image_B | |
| image_height, image_width = self.image_processor.get_default_height_width(img) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| image_A = self.image_processor.resize(image_A, image_height, image_width) | |
| image_A = self.image_processor.preprocess(image_A, image_height, image_width) | |
| image_B = self.image_processor.resize(image_B, image_height, image_width) | |
| image_B = self.image_processor.preprocess(image_B, image_height, image_width) | |
| else: | |
| raise ValueError("Image input is not supported for costom kontext pipeline.") | |
| # add step. use the detail_encoder to encoder the image to the prompt_embeds | |
| if self.detail_encoder is not None: | |
| input_ids = text_input_ids[0] | |
| model_dtype = next(self.detail_encoder.parameters()).dtype | |
| model_device = next(self.detail_encoder.parameters()).device | |
| class_token_A_index = -1 | |
| class_token_B_index = -1 | |
| for index, token_id in enumerate(input_ids.tolist()): | |
| if token_id == image_A_token_id: | |
| class_token_A_index = index | |
| break | |
| for index, token_id in enumerate(input_ids.tolist()): | |
| if token_id == image_B_token_id: | |
| class_token_B_index = index | |
| break | |
| class_tokens_A_mask = [True if class_token_A_index <= i < class_token_A_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_B_mask = [True if class_token_B_index <= i < class_token_B_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_A_mask = torch.tensor(class_tokens_A_mask, dtype=torch.bool).unsqueeze(0) | |
| class_tokens_B_mask = torch.tensor(class_tokens_B_mask, dtype=torch.bool).unsqueeze(0) | |
| A_pixel_values = image_A | |
| B_pixel_values = image_B | |
| A_pixel_values = A_pixel_values.to(device=device, dtype=model_dtype) | |
| A_pixel_values = A_pixel_values.unsqueeze(0) | |
| B_pixel_values = B_pixel_values.to(device=device, dtype=model_dtype) | |
| B_pixel_values = B_pixel_values.unsqueeze(0) | |
| updated_prompt = self.detail_encoder(A_pixel_values, prompt_embeds, class_tokens_A_mask) | |
| updated_prompt = self.detail_encoder(B_pixel_values, updated_prompt, class_tokens_B_mask) | |
| prompt_embeds = updated_prompt | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = self.prepare_latents( | |
| image_A, | |
| image_B, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| # We set the index here to remove DtoH sync, helpful especially during compilation. | |
| # Check out more details here: https://github.com/huggingface/diffusers/pull/11696 | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| class FluxKontextPipelineWithPhotoEncoderPEeditAddTokens( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| FluxIPAdapterMixin, | |
| ): | |
| r""" | |
| The Flux Kontext pipeline for text-to-image generation. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| detail_encoder: DetailEncoder = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.detail_encoder = detail_encoder | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 128 | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| image_embeds = [] | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_ip_adapter_image in ip_adapter_image: | |
| single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| else: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| ip_adapter_image_embeds = [ip_adapter_image_embeds] | |
| if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| image_embeds.append(single_image_embeds) | |
| ip_adapter_image_embeds = [] | |
| for single_image_embeds in image_embeds: | |
| single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def _prepare_latent_image_ids_with_bbox(batch_size, height, width, device, dtype, bboxes=None): | |
| """ | |
| bboxes: Tensor or list with shape (B, 4) where B = batch_size | |
| Each bbox = (x_min, y_min, x_max, y_max) in latent space | |
| """ | |
| assert batch_size == 1 # Currently only supports single batch size | |
| latent_image_ids = torch.zeros(batch_size, height, width, 3, device=device, dtype=dtype) | |
| y_coords = torch.arange(height, device=device, dtype=dtype).view(1, height, 1) | |
| x_coords = torch.arange(width, device=device, dtype=dtype).view(1, 1, width) | |
| latent_image_ids[..., 1] = y_coords | |
| latent_image_ids[..., 2] = x_coords | |
| if bboxes is not None: | |
| if isinstance(bboxes, torch.Tensor): | |
| bboxes = bboxes.tolist() # Convert to list of boxes | |
| if not isinstance(bboxes, list): | |
| bbox_new = [] | |
| bbox_new.append(([bboxes[0], bboxes[1], bboxes[2], bboxes[3]])) | |
| bboxes = bbox_new | |
| # assert len(bboxes) == batch_size, "bboxes should have shape (B, 4)" | |
| for b, bbox in enumerate(bboxes): | |
| if len(bbox) != 4: | |
| raise ValueError(f"bbox[{b}] must have 4 elements, got {len(bbox)}") | |
| x_min, y_min, x_max, y_max = map(int, bbox) | |
| latent_image_ids[b, y_min:y_max, x_min:x_max, 0] = 1.0 | |
| bbox_h = y_max - y_min | |
| bbox_w = x_max - x_min | |
| # y/x in bbox region | |
| y = y_coords[0, y_min:y_max, 0] | |
| x = x_coords[0, 0, x_min:x_max] | |
| y_scaled = (y - y_min) * (height - 1) / max(bbox_h - 1, 1) | |
| x_scaled = (x - x_min) * (width - 1) / max(bbox_w - 1, 1) | |
| latent_image_ids[b, y_min:y_max, x_min:x_max, 1] = y_scaled.unsqueeze(1) | |
| latent_image_ids[b, y_min:y_max, x_min:x_max, 2] = x_scaled.unsqueeze(0) | |
| # Flatten per image to shape (B, H*W, 3) | |
| latent_image_ids = latent_image_ids.view(-1, 3) | |
| return latent_image_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax") | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax") | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| image_A: Optional[torch.Tensor], | |
| image_B: Optional[torch.Tensor], | |
| batch_size: int, | |
| num_channels_latents: int, | |
| height: int, | |
| width: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| bbox = None, | |
| ): | |
| if image_B.shape != image_A.shape: | |
| raise ValueError( | |
| f"Image A and Image B must have the same shape, but got {image_A.shape} and {image_B.shape}." | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| image_latents = image_ids = None | |
| if image_A is not None and image_B is not None: | |
| image_A = image_A.to(device=device, dtype=dtype) | |
| image_B = image_B.to(device=device, dtype=dtype) | |
| if image_A.shape[1] != self.latent_channels: | |
| image_latents_A = self._encode_vae_image(image=image_A, generator=generator) | |
| else: | |
| image_latents_A = image_A | |
| if image_B.shape[1] != self.latent_channels: | |
| image_latents_B = self._encode_vae_image(image=image_B, generator=generator) | |
| else: | |
| image_latents_B = image_B | |
| if batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_A.shape[0] | |
| image_latents_A = torch.cat([image_latents_A] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_A` of batch size {image_latents_A.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_A = torch.cat([image_latents_A], dim=0) | |
| if batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_B.shape[0] | |
| image_latents_B = torch.cat([image_latents_B] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_B` of batch size {image_latents_B.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_B = torch.cat([image_latents_B], dim=0) | |
| image_latent_height, image_latent_width = image_latents_A.shape[2:] | |
| image_latents_A = self._pack_latents( | |
| image_latents_A, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents_B = self._pack_latents( | |
| image_latents_B, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents = torch.cat([image_latents_A, image_latents_B], dim=1) | |
| image_ids_A = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_B = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_A[..., 0] = 1 | |
| image_ids_B[..., 0] = 0 | |
| image_ids = torch.cat([image_ids_A, image_ids_B], dim=0) | |
| latent_ids = self._prepare_latent_image_ids_with_bbox(batch_size, height // 2, width // 2, device, dtype, bbox) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| else: | |
| latents = latents.to(device=device, dtype=dtype) | |
| return latents, image_latents, latent_ids, image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image_A: Optional[PipelineImageInput] = None, | |
| image_B: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 1024**2, | |
| _auto_resize: bool = True, | |
| bbox = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_height, original_width = height, width | |
| aspect_ratio = width / height | |
| width = round((max_area * aspect_ratio) ** 0.5) | |
| height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = self.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| if height != original_height or width != original_width: | |
| logger.warning( | |
| f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| if image_A is not None and image_B is not None and not (isinstance(image_A, torch.Tensor) and image_A.size(1) == self.latent_channels) and not (isinstance(image_B, torch.Tensor) and image_B.size(1) == self.latent_channels): | |
| # reshape image_A as the same size as image_B | |
| img = image_B[0] if isinstance(image_B, list) else image_B | |
| image_height, image_width = self.image_processor.get_default_height_width(img) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| image_A = self.image_processor.resize(image_A, image_height, image_width) | |
| image_A = self.image_processor.preprocess(image_A, image_height, image_width) | |
| ratio_height = image_height / image_B.size[0] | |
| ratio_width = image_width / image_B.size[1] | |
| bbox = [ | |
| int(bbox[0] * ratio_width), | |
| int(bbox[1] * ratio_height), | |
| int(bbox[2] * ratio_width), | |
| int(bbox[3] * ratio_height) | |
| ] | |
| image_B = self.image_processor.resize(image_B, image_height, image_width) | |
| image_B = self.image_processor.preprocess(image_B, image_height, image_width) | |
| else: | |
| raise ValueError("Image input is not supported for costom kontext pipeline.") | |
| # add step. use the detail_encoder to encoder the image to the prompt_embeds | |
| if self.detail_encoder is not None: | |
| model_dtype = next(self.detail_encoder.parameters()).dtype | |
| model_device = next(self.detail_encoder.parameters()).device | |
| class_token_A_index = 2 | |
| class_token_B_index = 14 | |
| class_tokens_A_mask = [True if class_token_A_index <= i < class_token_A_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_B_mask = [True if class_token_B_index <= i < class_token_B_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_A_mask = torch.tensor(class_tokens_A_mask, dtype=torch.bool).unsqueeze(0) | |
| class_tokens_B_mask = torch.tensor(class_tokens_B_mask, dtype=torch.bool).unsqueeze(0) | |
| A_pixel_values = image_A | |
| B_pixel_values = image_B | |
| A_pixel_values = A_pixel_values.to(device=device, dtype=model_dtype) | |
| A_pixel_values = A_pixel_values.unsqueeze(0) | |
| B_pixel_values = B_pixel_values.to(device=device, dtype=model_dtype) | |
| B_pixel_values = B_pixel_values.unsqueeze(0) | |
| updated_prompt = self.detail_encoder(A_pixel_values, prompt_embeds, class_tokens_A_mask) | |
| updated_prompt = self.detail_encoder(B_pixel_values, updated_prompt, class_tokens_B_mask) | |
| prompt_embeds = updated_prompt | |
| # 4. Prepare latent variables | |
| bbox = [ | |
| bbox[0] // 8, | |
| bbox[1] // 8, | |
| bbox[2] // 8, | |
| bbox[3] // 8, | |
| ] | |
| bbox = torch.tensor(bbox).unsqueeze(0).to(device) | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = self.prepare_latents( | |
| image_A, | |
| image_B, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| bbox=bbox, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| # We set the index here to remove DtoH sync, helpful especially during compilation. | |
| # Check out more details here: https://github.com/huggingface/diffusers/pull/11696 | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| class FluxKontextPipelineWithPhotoEncoderAddTokensVisualization( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| FluxIPAdapterMixin, | |
| ): | |
| r""" | |
| The Flux Kontext pipeline for text-to-image generation. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| detail_encoder: DetailEncoder = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.detail_encoder = detail_encoder | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 128 | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds, text_input_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds, text_input_ids = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids, text_input_ids | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| image_embeds = [] | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_ip_adapter_image in ip_adapter_image: | |
| single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| else: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| ip_adapter_image_embeds = [ip_adapter_image_embeds] | |
| if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| image_embeds.append(single_image_embeds) | |
| ip_adapter_image_embeds = [] | |
| for single_image_embeds in image_embeds: | |
| single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax") | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax") | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| image_A: Optional[torch.Tensor], | |
| image_B: Optional[torch.Tensor], | |
| batch_size: int, | |
| num_channels_latents: int, | |
| height: int, | |
| width: int, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ): | |
| if image_B.shape != image_A.shape: | |
| raise ValueError( | |
| f"Image A and Image B must have the same shape, but got {image_A.shape} and {image_B.shape}." | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| image_latents = image_ids = None | |
| if image_A is not None and image_B is not None: | |
| image_A = image_A.to(device=device, dtype=dtype) | |
| image_B = image_B.to(device=device, dtype=dtype) | |
| if image_A.shape[1] != self.latent_channels: | |
| image_latents_A = self._encode_vae_image(image=image_A, generator=generator) | |
| else: | |
| image_latents_A = image_A | |
| if image_B.shape[1] != self.latent_channels: | |
| image_latents_B = self._encode_vae_image(image=image_B, generator=generator) | |
| else: | |
| image_latents_B = image_B | |
| if batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_A.shape[0] | |
| image_latents_A = torch.cat([image_latents_A] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_A.shape[0] and batch_size % image_latents_A.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_A` of batch size {image_latents_A.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_A = torch.cat([image_latents_A], dim=0) | |
| if batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents_B.shape[0] | |
| image_latents_B = torch.cat([image_latents_B] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents_B.shape[0] and batch_size % image_latents_B.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image_B` of batch size {image_latents_B.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents_B = torch.cat([image_latents_B], dim=0) | |
| image_latent_height, image_latent_width = image_latents_A.shape[2:] | |
| image_latents_A = self._pack_latents( | |
| image_latents_A, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents_B = self._pack_latents( | |
| image_latents_B, batch_size, num_channels_latents, image_latent_height, image_latent_width | |
| ) | |
| image_latents = torch.cat([image_latents_A, image_latents_B], dim=1) | |
| image_ids_A = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_B = self._prepare_latent_image_ids( | |
| batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype | |
| ) | |
| image_ids_A[..., 0] = 1 # set first dimension to 0 for image A | |
| image_ids_B[..., 0] = 2 # set first dimension to 1 for image B | |
| image_ids = torch.cat([image_ids_A, image_ids_B], dim=0) | |
| latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| else: | |
| latents = latents.to(device=device, dtype=dtype) | |
| return latents, image_latents, latent_ids, image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| image_A: Optional[PipelineImageInput] = None, | |
| image_B: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 1024**2, | |
| _auto_resize: bool = True, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_height, original_width = height, width | |
| aspect_ratio = width / height | |
| width = round((max_area * aspect_ratio) ** 0.5) | |
| height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = self.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| if height != original_height or width != original_width: | |
| logger.warning( | |
| f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| trigger_word = ['IMG1', 'IMG2'] | |
| self.tokenizer_2.add_tokens(trigger_word, special_tokens=True) | |
| image_A_token_id = self.tokenizer_2.convert_tokens_to_ids(trigger_word[0]) | |
| image_B_token_id = self.tokenizer_2.convert_tokens_to_ids(trigger_word[1]) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| text_input_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| text_input_ids, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| if image_A is not None and image_B is not None and not (isinstance(image_A, torch.Tensor) and image_A.size(1) == self.latent_channels) and not (isinstance(image_B, torch.Tensor) and image_B.size(1) == self.latent_channels): | |
| # reshape image_A as the same size as image_B | |
| img = image_B[0] if isinstance(image_B, list) else image_B | |
| image_height, image_width = self.image_processor.get_default_height_width(img) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| # Kontext is trained on specific resolutions, using one of them is recommended | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| image_A = self.image_processor.resize(image_A, image_height, image_width) | |
| image_A = self.image_processor.preprocess(image_A, image_height, image_width) | |
| image_B = self.image_processor.resize(image_B, image_height, image_width) | |
| image_B = self.image_processor.preprocess(image_B, image_height, image_width) | |
| else: | |
| raise ValueError("Image input is not supported for costom kontext pipeline.") | |
| # add step. use the detail_encoder to encoder the image to the prompt_embeds | |
| if self.detail_encoder is not None: | |
| input_ids = text_input_ids[0] | |
| model_dtype = next(self.detail_encoder.parameters()).dtype | |
| model_device = next(self.detail_encoder.parameters()).device | |
| class_token_A_index = -1 | |
| class_token_B_index = -1 | |
| for index, token_id in enumerate(input_ids.tolist()): | |
| if token_id == image_A_token_id: | |
| class_token_A_index = index | |
| break | |
| for index, token_id in enumerate(input_ids.tolist()): | |
| if token_id == image_B_token_id: | |
| class_token_B_index = index | |
| break | |
| class_tokens_A_mask = [True if class_token_A_index <= i < class_token_A_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_B_mask = [True if class_token_B_index <= i < class_token_B_index+1 else False for i in range(prompt_embeds.shape[1])] | |
| class_tokens_A_mask = torch.tensor(class_tokens_A_mask, dtype=torch.bool).unsqueeze(0) | |
| class_tokens_B_mask = torch.tensor(class_tokens_B_mask, dtype=torch.bool).unsqueeze(0) | |
| A_pixel_values = image_A | |
| B_pixel_values = image_B | |
| A_pixel_values = A_pixel_values.to(device=device, dtype=model_dtype) | |
| A_pixel_values = A_pixel_values.unsqueeze(0) | |
| B_pixel_values = B_pixel_values.to(device=device, dtype=model_dtype) | |
| B_pixel_values = B_pixel_values.unsqueeze(0) | |
| updated_prompt = self.detail_encoder(A_pixel_values, prompt_embeds, class_tokens_A_mask) | |
| updated_prompt = self.detail_encoder(B_pixel_values, updated_prompt, class_tokens_B_mask) | |
| prompt_embeds = updated_prompt | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = self.prepare_latents( | |
| image_A, | |
| image_B, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| # We set the index here to remove DtoH sync, helpful especially during compilation. | |
| # Check out more details here: https://github.com/huggingface/diffusers/pull/11696 | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |