Spaces:
Runtime error
Runtime error
| # Last modified: 2025-01-14 | |
| # | |
| # Copyright 2025 Ziyang Song, USTC. All rights reserved. | |
| # | |
| # This file has been modified from the original version. | |
| # Original copyright (c) 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # -------------------------------------------------------------------------- | |
| # If you find this code useful, we kindly ask you to cite our paper in your work. | |
| # Please find bibtex at: https://github.com/indu1ge/DepthMaster#-citation | |
| # More information about the method can be found at https://indu1ge.github.io/DepthMaster_page | |
| # -------------------------------------------------------------------------- | |
| from typing import Dict, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DiffusionPipeline, | |
| # UNet2DConditionModel, | |
| ) | |
| from depthmaster.modules.unet_2d_condition import UNet2DConditionModel | |
| from diffusers.utils import BaseOutput | |
| from PIL import Image | |
| from torch.utils.data import DataLoader, TensorDataset | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.transforms.functional import pil_to_tensor, resize | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from .util.image_util import ( | |
| chw2hwc, | |
| colorize_depth_maps, | |
| get_tv_resample_method, | |
| resize_max_res, | |
| ) | |
| class DepthMasterDepthOutput(BaseOutput): | |
| """ | |
| Output class for monocular depth prediction pipeline. | |
| Args: | |
| depth_np (`np.ndarray`): | |
| Predicted depth map, with depth values in the range of [0, 1]. | |
| depth_colored (`PIL.Image.Image`): | |
| Colorized depth map, with the shape of [3, H, W] and values in [0, 1]. | |
| uncertainty (`None` or `np.ndarray`): | |
| Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling. | |
| """ | |
| depth_np: np.ndarray | |
| depth_colored: Union[None, Image.Image] | |
| uncertainty: Union[None, np.ndarray] | |
| class DepthMasterPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for monocular depth estimation using DepthMaster. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| unet (`UNet2DConditionModel`): | |
| Conditional U-Net to denoise the depth latent, conditioned on image latent. | |
| vae (`AutoencoderKL`): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps | |
| to and from latent representations. | |
| scheduler (`DDIMScheduler`): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| text_encoder (`CLIPTextModel`): | |
| Text-encoder, for empty text embedding. | |
| tokenizer (`CLIPTokenizer`): | |
| CLIP tokenizer. | |
| scale_invariant (`bool`, *optional*): | |
| A model property specifying whether the predicted depth maps are scale-invariant. This value must be set in | |
| the model config. When used together with the `shift_invariant=True` flag, the model is also called | |
| "affine-invariant". NB: overriding this value is not supported. | |
| shift_invariant (`bool`, *optional*): | |
| A model property specifying whether the predicted depth maps are shift-invariant. This value must be set in | |
| the model config. When used together with the `scale_invariant=True` flag, the model is also called | |
| "affine-invariant". NB: overriding this value is not supported. | |
| default_denoising_steps (`int`, *optional*): | |
| The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable | |
| quality with the given model. This value must be set in the model config. When the pipeline is called | |
| without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure | |
| reasonable results with various model flavors compatible with the pipeline, such as those relying on very | |
| short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`). | |
| default_processing_resolution (`int`, *optional*): | |
| The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in | |
| the model config. When the pipeline is called without explicitly setting `processing_resolution`, the | |
| default value is used. This is required to ensure reasonable results with various model flavors trained | |
| with varying optimal processing resolution values. | |
| """ | |
| rgb_latent_scale_factor = 0.18215 | |
| depth_latent_scale_factor = 0.18215 | |
| def __init__( | |
| self, | |
| unet: UNet2DConditionModel, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| scale_invariant: Optional[bool] = True, | |
| shift_invariant: Optional[bool] = True, | |
| default_processing_resolution: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| # unet = UNet2DConditionModel.from_pretrained('/zssd/szy/Marigold_rgb2d/ckpt/eval/unet') | |
| self.register_modules( | |
| unet=unet, | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| ) | |
| self.register_to_config( | |
| scale_invariant=scale_invariant, | |
| shift_invariant=shift_invariant, | |
| default_processing_resolution=default_processing_resolution, | |
| ) | |
| self.scale_invariant = scale_invariant | |
| self.shift_invariant = shift_invariant | |
| self.default_processing_resolution = default_processing_resolution | |
| self.empty_text_embed = None | |
| def __call__( | |
| self, | |
| input_image: Union[Image.Image, torch.Tensor], | |
| processing_res: Optional[int] = None, | |
| match_input_res: bool = True, | |
| resample_method: str = "bilinear", | |
| batch_size: int = 0, | |
| color_map: str = "Spectral", | |
| show_progress_bar: bool = True, | |
| ) -> DepthMasterDepthOutput: | |
| """ | |
| Function invoked when calling the pipeline. | |
| Args: | |
| input_image (`Image`): | |
| Input RGB (or gray-scale) image. | |
| processing_res (`int`, *optional*, defaults to `None`): | |
| Effective processing resolution. When set to `0`, processes at the original image resolution. This | |
| produces crisper predictions, but may also lead to the overall loss of global context. The default | |
| value `None` resolves to the optimal value from the model config. | |
| match_input_res (`bool`, *optional*, defaults to `True`): | |
| Resize depth prediction to match input resolution. | |
| Only valid if `processing_res` > 0. | |
| resample_method: (`str`, *optional*, defaults to `bilinear`): | |
| Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`. | |
| batch_size (`int`, *optional*, defaults to `0`): | |
| Inference batch size, no bigger than `num_ensemble`. | |
| If set to 0, the script will automatically decide the proper batch size. | |
| show_progress_bar (`bool`, *optional*, defaults to `True`): | |
| Display a progress bar of diffusion denoising. | |
| color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation): | |
| Colormap used to colorize the depth map. | |
| Returns: | |
| `DepthMasterDepthOutput`: Output class for DepthMaster monocular depth prediction pipeline, including: | |
| - **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1] | |
| - **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None` | |
| """ | |
| # Model-specific optimal default values leading to fast and reasonable results. | |
| if processing_res is None: | |
| processing_res = self.default_processing_resolution | |
| assert processing_res >= 0 | |
| resample_method: InterpolationMode = get_tv_resample_method(resample_method) | |
| # ----------------- Image Preprocess ----------------- | |
| # Convert to torch tensor | |
| if isinstance(input_image, Image.Image): | |
| input_image = input_image.convert("RGB") | |
| # convert to torch tensor [H, W, rgb] -> [rgb, H, W] | |
| rgb = pil_to_tensor(input_image) | |
| rgb = rgb.unsqueeze(0) # [1, rgb, H, W] | |
| elif isinstance(input_image, torch.Tensor): | |
| rgb = input_image | |
| else: | |
| raise TypeError(f"Unknown input type: {type(input_image) = }") | |
| input_size = rgb.shape | |
| assert ( | |
| 4 == rgb.dim() and 3 == input_size[-3] | |
| ), f"Wrong input shape {input_size}, expected [1, rgb, H, W]" | |
| # --------------- Image Processing ------------------------ | |
| # Resize image | |
| if processing_res > 0: | |
| rgb = resize_max_res( | |
| rgb, | |
| max_edge_resolution=processing_res, | |
| resample_method=resample_method, | |
| ) | |
| # Normalize rgb values | |
| rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1] | |
| rgb_norm = rgb_norm.to(self.dtype) | |
| assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0 | |
| # ----------------- Predicting depth ----------------- | |
| # Batch repeated input image | |
| duplicated_rgb = rgb_norm.expand(1, -1, -1, -1) | |
| single_rgb_dataset = TensorDataset(duplicated_rgb) | |
| # find the batch size | |
| if batch_size > 0: | |
| _bs = batch_size | |
| else: | |
| _bs = 1 | |
| single_rgb_loader = DataLoader( | |
| single_rgb_dataset, batch_size=_bs, shuffle=False | |
| ) | |
| # Predict depth maps (batched) | |
| depth_pred_ls = [] | |
| if show_progress_bar: | |
| iterable = tqdm( | |
| single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False | |
| ) | |
| else: | |
| iterable = single_rgb_loader | |
| for batch in iterable: | |
| (batched_img,) = batch # here the image is still around 0-1 | |
| depth_pred_raw = self.single_infer( | |
| rgb_in=batched_img, | |
| ) | |
| depth_pred_ls.append(depth_pred_raw.detach()) | |
| depth_preds = torch.concat(depth_pred_ls, dim=0) | |
| torch.cuda.empty_cache() # clear vram cache for ensembling | |
| depth_pred = depth_preds | |
| pred_uncert = None | |
| # Resize back to original resolution | |
| if match_input_res: | |
| depth_pred = resize( | |
| depth_pred, | |
| input_size[-2:], | |
| interpolation=resample_method, | |
| antialias=True, | |
| ) | |
| # Convert to numpy | |
| depth_pred = depth_pred.squeeze() | |
| depth_pred = depth_pred.cpu().numpy() | |
| if pred_uncert is not None: | |
| pred_uncert = pred_uncert.squeeze().cpu().numpy() | |
| # Clip output range | |
| depth_pred = depth_pred.clip(0, 1) | |
| # Colorize | |
| if color_map is not None: | |
| depth_colored = colorize_depth_maps( | |
| depth_pred, 0, 1, cmap=color_map | |
| ).squeeze() # [3, H, W], value in (0, 1) | |
| depth_colored = (depth_colored * 255).astype(np.uint8) | |
| depth_colored_hwc = chw2hwc(depth_colored) | |
| depth_colored_img = Image.fromarray(depth_colored_hwc) | |
| else: | |
| depth_colored_img = None | |
| return DepthMasterDepthOutput( | |
| depth_np=depth_pred, | |
| depth_colored=depth_colored_img, | |
| uncertainty=pred_uncert, | |
| ) | |
| def encode_empty_text(self): | |
| """ | |
| Encode text embedding for empty prompt | |
| """ | |
| prompt = "" | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="do_not_pad", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2] | |
| self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024] | |
| def single_infer( | |
| self, | |
| rgb_in: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Perform an individual depth prediction without ensembling. | |
| Args: | |
| rgb_in (`torch.Tensor`): | |
| Input RGB image. | |
| Returns: | |
| `torch.Tensor`: Predicted depth map. | |
| """ | |
| device = self.device | |
| rgb_in = rgb_in.to(device) | |
| # Encode image | |
| rgb_latent = self.encode_rgb(rgb_in) # 1/8 Resolution with a channel nums of 4. | |
| # Batched empty text embedding | |
| if self.empty_text_embed is None: | |
| self.encode_empty_text() | |
| batch_empty_text_embed = self.empty_text_embed.repeat( | |
| (rgb_latent.shape[0], 1, 1) | |
| ).to(device) # [B, 2, 1024] | |
| unet_output = self.unet( | |
| rgb_latent, | |
| 1, | |
| encoder_hidden_states=batch_empty_text_embed, | |
| ).sample # [B, 4, h, w] | |
| torch.cuda.empty_cache() | |
| depth = self.decode_depth(unet_output) # [B, 1, h, w] | |
| # clip prediction | |
| depth = torch.clip(depth, -1.0, 1.0) | |
| # shift to [0, 1] | |
| depth = (depth + 1.0) / 2.0 | |
| return depth | |
| def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Encode RGB image into latent. | |
| Args: | |
| rgb_in (`torch.Tensor`): | |
| Input RGB image to be encoded. | |
| Returns: | |
| `torch.Tensor`: Image latent. | |
| """ | |
| # encode | |
| h = self.vae.encoder(rgb_in) | |
| moments = self.vae.quant_conv(h) | |
| mean, logvar = torch.chunk(moments, 2, dim=1) | |
| # scale latent | |
| rgb_latent = mean * self.rgb_latent_scale_factor | |
| return rgb_latent | |
| def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Decode depth latent into depth map. | |
| Args: | |
| depth_latent (`torch.Tensor`): | |
| Depth latent to be decoded. | |
| Returns: | |
| `torch.Tensor`: Decoded depth map. | |
| """ | |
| # scale latent | |
| depth_latent = depth_latent / self.depth_latent_scale_factor | |
| # decode | |
| z = self.vae.post_quant_conv(depth_latent) | |
| stacked = self.vae.decoder(z) | |
| # mean of output channels | |
| depth_mean = stacked.mean(dim=1, keepdim=True) | |
| return depth_mean | |