--- language: bbc language_name: Batak Toba language_family: austronesian_batak tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-austronesian_batak license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.662 - name: best_isotropy type: isotropy value: 0.8133 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Batak Toba - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Batak Toba** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.300x | 3.30 | 0.2266% | 1,666,856 | | **16k** | 3.529x | 3.53 | 0.2423% | 1,558,753 | | **32k** | 3.662x 🏆 | 3.66 | 0.2515% | 1,502,009 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Janji i ma sada huta (desa) na adong di Kecamatan Siempat Nempu Hilir, Kabupaten...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 | | 16k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 | | 32k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 | **Sample 2:** `Siboras i ma sada huta (desa) na adong di Kecamatan Silima Pungga Pungga, Kabupa...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁sib oras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ... (+16 more)` | 26 | | 16k | `▁siboras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+15 more)` | 25 | | 32k | `▁siboras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+15 more)` | 25 | **Sample 3:** `Sukorejo i ma sada huta na adong di Kecamatan Ulujami, Kabupaten Pemalang, Propi...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁suk orejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ... (+11 more)` | 21 | | 16k | `▁sukorejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ▁ulujami ... (+10 more)` | 20 | | 32k | `▁sukorejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ▁ulujami ... (+10 more)` | 20 | ### Key Findings - **Best Compression:** 32k achieves 3.662x compression - **Lowest UNK Rate:** 8k with 0.2266% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 8,503 | 13.05 | 26,404 | 17.5% | 42.9% | | **2-gram** | Subword | 185 🏆 | 7.53 | 3,447 | 77.7% | 99.2% | | **3-gram** | Word | 22,449 | 14.45 | 43,137 | 8.4% | 25.3% | | **3-gram** | Subword | 1,216 | 10.25 | 18,046 | 38.1% | 83.2% | | **4-gram** | Word | 44,360 | 15.44 | 67,584 | 5.9% | 16.2% | | **4-gram** | Subword | 5,587 | 12.45 | 70,061 | 19.7% | 54.7% | | **5-gram** | Word | 29,774 | 14.86 | 42,910 | 7.1% | 18.6% | | **5-gram** | Subword | 17,403 | 14.09 | 153,430 | 12.1% | 36.7% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `angka na` | 4,424 | | 2 | `dung i` | 4,327 | | 3 | `ni si` | 4,060 | | 4 | `i ma` | 3,682 | | 5 | `ni jahowa` | 2,892 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `anak ni si` | 1,613 | | 2 | `i ma sada` | 784 | | 3 | `na adong di` | 741 | | 4 | `dung i ninna` | 735 | | 5 | `hata ni jahowa` | 703 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `on do hata ni` | 423 | | 2 | `i ma sada huta` | 417 | | 3 | `songon on do hata` | 408 | | 4 | `na adong di kecamatan` | 353 | | 5 | `angka anak ni si` | 336 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `songon on do hata ni` | 406 | | 2 | `on do hata ni jahowa` | 250 | | 3 | `i ma sada huta na` | 215 | | 4 | `desa na adong di kecamatan` | 191 | | 5 | `km jala godang ni ruasna` | 175 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 206,965 | | 2 | `a n` | 205,323 | | 3 | `n g` | 154,062 | | 4 | `i _` | 142,882 | | 5 | `n a` | 122,548 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n g` | 81,918 | | 2 | `_ m a` | 76,355 | | 3 | `n a _` | 58,981 | | 4 | `_ n a` | 53,557 | | 5 | `a n _` | 51,287 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ n i _` | 34,904 | | 2 | `_ n a _` | 33,621 | | 3 | `_ d i _` | 25,919 | | 4 | `a n g k` | 24,948 | | 5 | `_ m a _` | 23,827 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n g k a` | 19,235 | | 2 | `_ a n g k` | 17,946 | | 3 | `n g k a _` | 17,765 | | 4 | `_ j a l a` | 14,671 | | 5 | `j a l a _` | 14,594 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 185 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~37% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.9199 | 1.892 | 6.44 | 50,491 | 8.0% | | **1** | Subword | 0.9288 | 1.904 | 7.09 | 1,431 | 7.1% | | **2** | Word | 0.3746 | 1.296 | 2.02 | 324,952 | 62.5% | | **2** | Subword | 0.7034 | 1.628 | 4.04 | 10,144 | 29.7% | | **3** | Word | 0.1537 | 1.112 | 1.28 | 656,964 | 84.6% | | **3** | Subword | 0.6472 | 1.566 | 3.17 | 40,950 | 35.3% | | **4** | Word | 0.0591 🏆 | 1.042 | 1.09 | 838,369 | 94.1% | | **4** | Subword | 0.5206 | 1.435 | 2.40 | 129,601 | 47.9% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `ni tano naung leleng on marupaya maningkathon kesadaran masarakat na pauli pintu ni si hannas dohot` 2. `na talup do angka naposongku alai anggo raoanna nang jahudi tubu ni halak batak di tongatongamu` 3. `i si arni anak ni harangan na mengatur istimewa dok gumodang sian saluhut na nidabuna i` **Context Size 2:** 1. `angka na di ginjang ni angka ompunami umbahen manjadi angka i tu ahu do jahowa molo ahu` 2. `dung i ro di salelenglelengna psalmen 94 94 1 ale anaha sai parateatehon hamu panariason ni bibirhon` 3. `ni si jakkob anak ni si rehabeam di jerusalem 7 17 dua lombu lima birubiru tunggal sada` **Context Size 3:** 1. `anak ni si aron hahanasida i marhalado di joro ni jahowa tungkan jolo ni rimberimbe i 40 27` 2. `i ma sada nagara na maringanan di lobu panjang` 3. `na adong di halak batak toba tombur tarbahen sian sibuk ni manuk na dibumbui` **Context Size 4:** 1. `on do hata ni tuhan jahowa nunga pola hupatoltol tanganku maruari ingkon lehononku do i tu ompumuna ...` 2. `i ma sada huta na adong di kecamatan silima pungga pungga kabupaten dairi propinsi sumatera utara in...` 3. `songon on do hata ni tuhan jahowa hape so tutu jahowa mandok 22 29 ia situan na torop isi` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_man_i_sa_nina_s` 2. `amai_palalaseu_n` 3. `ndi_ᯔ_no_pa_de_d` **Context Size 2:** 1. `a_lamar_na._jalut` 2. `ani_ni_ahit_bando` 3. `ng_dongkop_hot_ad` **Context Size 3:** 1. `angitlawa_rajai,_d` 2. `_marhalahite_hite_` 3. `na_sapangku_imbolo` **Context Size 4:** 1. `_ni_jahowa_hamu_ang` 2. `_na_marsaro_mameuth` 3. `_di_jeremia_7_novem` ### Key Findings - **Best Predictability:** Context-4 (word) with 94.1% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (129,601 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 24,923 | | Total Tokens | 971,594 | | Mean Frequency | 38.98 | | Median Frequency | 4 | | Frequency Std Dev | 557.86 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | ni | 34,971 | | 2 | na | 33,958 | | 3 | i | 32,913 | | 4 | ma | 26,658 | | 5 | di | 25,940 | | 6 | tu | 20,429 | | 7 | do | 19,116 | | 8 | angka | 17,411 | | 9 | jala | 14,584 | | 10 | dohot | 13,515 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | ᯇᯔᯒᯪᯉ᯲ᯖ | 2 | | 2 | kayo | 2 | | 3 | uttar | 2 | | 4 | ltr | 2 | | 5 | font | 2 | | 6 | ebrima | 2 | | 7 | border | 2 | | 8 | cellpadding | 2 | | 9 | td | 2 | | 10 | align | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1806 | | R² (Goodness of Fit) | 0.997033 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 53.7% | | Top 1,000 | 78.5% | | Top 5,000 | 91.4% | | Top 10,000 | 95.7% | ### Key Findings - **Zipf Compliance:** R²=0.9970 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 53.7% of corpus - **Long Tail:** 14,923 words needed for remaining 4.3% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8133 | 0.3464 | N/A | N/A | | **mono_64d** | 64 | 0.7715 | 0.2725 | N/A | N/A | | **mono_128d** | 128 | 0.4709 | 0.2523 | N/A | N/A | | **aligned_32d** | 32 | 0.8133 🏆 | 0.3386 | 0.0140 | 0.1240 | | **aligned_64d** | 64 | 0.7715 | 0.2780 | 0.0560 | 0.2460 | | **aligned_128d** | 128 | 0.4709 | 0.2525 | 0.1340 | 0.3160 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8133 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2900. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 13.4% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.493** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ma` | mangain, manuhati, mamingkiri | | `-pa` | pangir, pahosing, parsonduk | | `-di` | disiorhon, didege, diri | | `-man` | mangain, manuhati, mangkasiholi | | `-mar` | marilah, marhabanhaban, marnioli | | `-ha` | hapistaranmuna, harajaon, hanna | | `-par` | parsonduk, partalianta, parnidaan | | `-si` | sitorus, sitalutuk, sinimpan | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-n` | disiorhon, mangain, getasan | | `-a` | acara, opatsa, hapistaranmuna | | `-on` | disiorhon, harajaon, mandaon | | `-an` | getasan, nangkohan, bulanan | | `-na` | hapistaranmuna, etonganna, utamana | | `-hon` | disiorhon, hinungkuphon, ditoishon | | `-ng` | humosing, pahosing, taretong | | `-nna` | etonganna, hanna, salpuanna | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `anga` | 1.61x | 127 contexts | angan, langa, sanga | | `angk` | 1.53x | 157 contexts | angka, bangko, angkal | | `ngka` | 1.56x | 89 contexts | angka, bungka, engkau | | `mang` | 1.64x | 61 contexts | amang, mangan, memang | | `ngko` | 1.70x | 42 contexts | bangko, ingkon, angkot | | `bang` | 1.45x | 72 contexts | bange, abang, bangis | | `ingk` | 1.48x | 60 contexts | lingka, ingkau, ingkon | | `onga` | 1.68x | 36 contexts | tonga, longa, bongal | | `bahe` | 1.79x | 26 contexts | bahen, dibahe, ibahen | | `ngan` | 1.40x | 65 contexts | angan, ingan, mangan | | `ongo` | 1.62x | 36 contexts | longo, kongo, rongom | | `angg` | 1.31x | 78 contexts | anggi, anggo, angguk | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-pa` | `-n` | 358 words | parsapataan, partingkian | | `-ma` | `-n` | 206 words | marpadanpadan, marharajaon | | `-pa` | `-on` | 200 words | patoltolhon, paimbarhon | | `-pa` | `-a` | 184 words | pallawa, pasalihonsa | | `-pa` | `-an` | 157 words | parsapataan, partingkian | | `-di` | `-n` | 156 words | disiaphon, dilembagahon | | `-di` | `-on` | 134 words | disiaphon, dilembagahon | | `-ha` | `-n` | 128 words | hasundatan, hasusaan | | `-pa` | `-na` | 119 words | parsuhatonmuna, pabalionna | | `-ma` | `-on` | 116 words | marharajaon, mangaluhon | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | pabotohononku | **`pa-boto-hon-on-ku`** | 9.0 | `boto` | | paradiananku | **`par-adian-an-ku`** | 7.5 | `adian` | | sipasahaton | **`si-pa-sahat-on`** | 7.5 | `sahat` | | marparmangsian | **`mar-par-mang-sian`** | 7.5 | `sian` | | panailingku | **`pan-aili-ng-ku`** | 7.5 | `aili` | | pardonganan | **`par-dong-an-an`** | 7.5 | `dong` | | marhamuliaon | **`mar-ha-mulia-on`** | 7.5 | `mulia` | | diparsiajari | **`di-par-si-ajari`** | 7.5 | `ajari` | | sipaingotna | **`si-pa-ingot-na`** | 7.5 | `ingot` | | sipatudoson | **`si-pa-tudos-on`** | 7.5 | `tudos` | | dipangasahon | **`di-pan-gasa-hon`** | 7.5 | `gasa` | | situtungon | **`si-tutu-ng-on`** | 7.5 | `tutu` | | pasahaton | **`pa-sahat-on`** | 6.0 | `sahat` | | parbungkason | **`par-bungkas-on`** | 6.0 | `bungkas` | | dipajomba | **`di-pa-jomba`** | 6.0 | `jomba` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Batak Toba shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **32k BPE** | Best compression (3.66x) | | N-gram | **2-gram** | Lowest perplexity (185) | | Markov | **Context-4** | Highest predictability (94.1%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 18:37:11*