Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,69 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- he
|
| 6 |
+
library_name: transformers
|
| 7 |
---
|
| 8 |
+
# Hebrew-Mixtral-8x22B
|
| 9 |
+
|
| 10 |
+
Hebrew-Mixtral-8x22B is an open-source Large Language Model (LLM) pretrained in hebrew and english pretrained with 141 billion parameters, based on Mixtral-8x22B from Mistral.
|
| 11 |
+
|
| 12 |
+
It is continuesly pretrained from Mixtral-8x22B on tokens in both English and Hebrew.
|
| 13 |
+
|
| 14 |
+
The resulting model is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.
|
| 15 |
+
|
| 16 |
+
### Usage
|
| 17 |
+
|
| 18 |
+
Below are some code snippets on how to get quickly started with running the model.
|
| 19 |
+
|
| 20 |
+
First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
|
| 21 |
+
|
| 22 |
+
### Running on CPU
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 26 |
+
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
|
| 29 |
+
|
| 30 |
+
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
|
| 31 |
+
input_ids = tokenizer(input_text, return_tensors="pt")
|
| 32 |
+
|
| 33 |
+
outputs = model.generate(**input_ids)
|
| 34 |
+
print(tokenizer.decode(outputs[0]))
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Running on GPU
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 41 |
+
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B", device_map="auto")
|
| 44 |
+
|
| 45 |
+
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
|
| 46 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 47 |
+
|
| 48 |
+
outputs = model.generate(**input_ids)
|
| 49 |
+
print(tokenizer.decode(outputs[0]))
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Running with 4-Bit precision
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 56 |
+
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
|
| 58 |
+
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))
|
| 59 |
+
|
| 60 |
+
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
|
| 61 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 62 |
+
|
| 63 |
+
outputs = model.generate(**input_ids)
|
| 64 |
+
print(tokenizer.decode(outputs[0])
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Notice
|
| 68 |
+
|
| 69 |
+
Hebrew-Mixtral-8x22B is a pretrained base model and therefore does not have any moderation mechanisms.
|