|
|
from torch import nn |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
SequenceClassifierOutputWithPast, |
|
|
) |
|
|
from transformers.utils import auto_docstring |
|
|
from transformers.utils.generic import TransformersKwargs, can_return_tuple |
|
|
|
|
|
from typing import Optional, Union |
|
|
|
|
|
from transformers.processing_utils import Unpack |
|
|
import torch |
|
|
from transformers import Cache, Qwen3Config |
|
|
from transformers.models.qwen3.modeling_qwen3 import Qwen3PreTrainedModel, Qwen3Model |
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
|
|
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class ZeroEntropyTokenizer(PreTrainedTokenizerFast): |
|
|
def __init__(self, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
def __call__(self, pairs, *args, **kwargs): |
|
|
input_texts: list[str] = [] |
|
|
for query, document in pairs: |
|
|
messages = [ |
|
|
{"role": "system", "content": query.strip()}, |
|
|
{"role": "user", "content": document.strip()}, |
|
|
] |
|
|
input_text = self.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
assert isinstance(input_text, str) |
|
|
input_texts.append(input_text) |
|
|
|
|
|
batch_inputs = super().__call__(input_texts, *args, **kwargs) |
|
|
return batch_inputs |
|
|
|
|
|
|
|
|
class ZeroEntropyConfig(Qwen3Config): |
|
|
model_type = "zeroentropy" |
|
|
|
|
|
def __init__(self, yes_token_id: int = 9454, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.yes_token_id = yes_token_id |
|
|
|
|
|
|
|
|
class ZeroEntropyForSequenceClassification(Qwen3PreTrainedModel): |
|
|
config: ZeroEntropyConfig |
|
|
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = Qwen3Model(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> CausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM |
|
|
|
|
|
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
slice_indices = ( |
|
|
slice(-logits_to_keep, None) |
|
|
if isinstance(logits_to_keep, int) |
|
|
else logits_to_keep |
|
|
) |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
last_positions = attention_mask.sum(dim=1) - 1 |
|
|
batch_size = logits.shape[0] |
|
|
batch_indices = torch.arange(batch_size, device=logits.device) |
|
|
yes_logits = logits[batch_indices, last_positions, self.config.yes_token_id] |
|
|
yes_logits = yes_logits / 5.0 |
|
|
yes_logits = yes_logits.unsqueeze(-1) |
|
|
|
|
|
return SequenceClassifierOutputWithPast( |
|
|
loss=None, |
|
|
logits=yes_logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|