Arabic End-of-Utterance (EOU) Detection Model
Model Description
Fine-tuned model for Arabic End-of-Utterance detection, optimized for Saudi dialect conversations. Designed for real-time integration with LiveKit voice agents.
Performance Metrics (Step 2400)
| Metric | Value |
|---|---|
| F1 Score | 0.534 |
| Precision | 0.431 |
| Recall | 0.702 |
| FPR | 0.150 |
Intended Use
- Real-time voice agent turn detection
- Arabic conversational AI systems
- Saudi dialect speech processing
Training Details
- Base Model: [specify your base model]
- Training Steps: 2400
- Validation Loss: 0.462
- Training Date: December 2024
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("{username}/{repo_name}")
tokenizer = AutoTokenizer.from_pretrained("{username}/{repo_name}")
# Example inference
text = "نعم، أنا أفهم ما تقصد"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
eou_probability = torch.softmax(outputs.logits, dim=-1)[0][1].item()
Limitations
- Optimized for Saudi dialect
- May require threshold tuning for specific use cases
- Designed for conversational contexts
Citation
@misc{arabic-eou-2024,
author = {Your Name},
title = {Arabic EOU Detection Model},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/{username}/{repo_name}}
}