|
|
import os |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from PIL import Image |
|
|
|
|
|
import cv2 |
|
|
from utils.EdgeTAM_image_predictor import ImagePredictor |
|
|
import argparse |
|
|
|
|
|
np.random.seed(3) |
|
|
|
|
|
def show_mask(mask, ax, random_color=False, borders = True): |
|
|
if random_color: |
|
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
|
else: |
|
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
|
h, w = mask.shape[-2:] |
|
|
mask = mask.astype(np.uint8) |
|
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
|
if borders: |
|
|
import cv2 |
|
|
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
|
|
|
|
|
|
|
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] |
|
|
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) |
|
|
|
|
|
ax.imshow(mask_image) |
|
|
|
|
|
def show_points(coords, labels, ax, marker_size=375): |
|
|
pos_points = coords[labels==1] |
|
|
neg_points = coords[labels==0] |
|
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
|
|
def show_box(box, ax): |
|
|
x0, y0 = box[0], box[1] |
|
|
w, h = box[2] - box[0], box[3] - box[1] |
|
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) |
|
|
|
|
|
def show_masks( |
|
|
image, |
|
|
masks, |
|
|
scores, |
|
|
point_coords=None, |
|
|
box_coords=None, |
|
|
input_labels=None, |
|
|
borders=True, |
|
|
save_dir="./results", |
|
|
base_name="mask" |
|
|
): |
|
|
""" |
|
|
保存分割结果图像到文件,不再显示。 |
|
|
|
|
|
Args: |
|
|
save_dir: 保存目录(会自动创建) |
|
|
base_name: 文件名前缀,如 "mask" → "mask_1.png" |
|
|
""" |
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
for i, (mask, score) in enumerate(zip(masks, scores)): |
|
|
plt.figure(figsize=(10, 10)) |
|
|
plt.imshow(image) |
|
|
show_mask(mask, plt.gca(), borders=borders) |
|
|
|
|
|
if point_coords is not None: |
|
|
assert input_labels is not None |
|
|
show_points(point_coords, input_labels, plt.gca()) |
|
|
|
|
|
if box_coords is not None: |
|
|
show_box(box_coords, plt.gca()) |
|
|
|
|
|
if len(scores) > 1: |
|
|
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) |
|
|
|
|
|
plt.axis('off') |
|
|
|
|
|
|
|
|
save_path = os.path.join(save_dir, f"{base_name}_{i+1}.png") |
|
|
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=150) |
|
|
plt.close() |
|
|
print(f"✅ Saved: {save_path}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
argparser = argparse.ArgumentParser() |
|
|
argparser.add_argument("--image_path", type=str, default="./examples/images/truck.jpg", help="Path to the input image.") |
|
|
argparser.add_argument("--model_path", type=str, default="./axmodel", help="Path to the ImagePredictor model.") |
|
|
argparser.add_argument("--save_dir", type=str, default="./results", help="Directory to save the output images.") |
|
|
argparser.add_argument("--input_box", type=str, default=None, help="Input box coordinates as x1,y1,x2,y2") |
|
|
argparser.add_argument("--input_mask", type=str, default=None, help="Path to the input mask numpy file.") |
|
|
argparser.add_argument("--input_point_coords", type=str, default=None, help="Input point coordinates as x1,y1 or x1,y1:x2,y2") |
|
|
argparser.add_argument("--input_point_labels", type=str, default=None, help="Input point labels as 1 or 0 or 1:0") |
|
|
|
|
|
args = argparser.parse_args() |
|
|
|
|
|
|
|
|
image = np.array(Image.open(args.image_path).convert("RGB")) |
|
|
|
|
|
predictor = ImagePredictor(args.model_path) |
|
|
|
|
|
predictor.set_image(image) |
|
|
|
|
|
|
|
|
if args.input_mask is not None: |
|
|
input_mask = np.load(args.input_mask) |
|
|
else: |
|
|
input_mask = np.zeros((1, 256, 256), dtype=np.float32) |
|
|
|
|
|
if args.input_box is not None: |
|
|
input_box = np.array([int(x) for x in args.input_box.split(",")]) |
|
|
else: |
|
|
input_box = None |
|
|
|
|
|
if args.input_point_coords is not None: |
|
|
input_point_coords = np.array([[int(coord) for coord in point.split(",")] for point in args.input_point_coords.split(":")]) |
|
|
else: |
|
|
input_point_coords = None |
|
|
|
|
|
if args.input_point_labels is not None: |
|
|
input_point_labels = np.array([int(label) for label in args.input_point_labels.split(":")]) |
|
|
else: |
|
|
input_point_labels = None |
|
|
|
|
|
if input_box is None and input_point_coords is None: |
|
|
raise ValueError("At least one of input_box or input_point_coords must be provided.") |
|
|
|
|
|
print("Get prompts: ") |
|
|
print(f" input_box: {input_box}") |
|
|
print(f" input_point_coords: {input_point_coords}") |
|
|
print(f" input_point_labels: {input_point_labels}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
masks, scores, logits = predictor.predict( |
|
|
point_coords=input_point_coords, |
|
|
point_labels=input_point_labels, |
|
|
box=input_box, |
|
|
mask_input=input_mask, |
|
|
multimask_output=False, |
|
|
) |
|
|
|
|
|
sorted_ind = np.argsort(scores)[::-1] |
|
|
masks = masks[sorted_ind] |
|
|
scores = scores[sorted_ind] |
|
|
logits = logits[sorted_ind] |
|
|
print(scores) |
|
|
|
|
|
|
|
|
show_masks( |
|
|
image, |
|
|
masks, |
|
|
scores, |
|
|
point_coords=input_point_coords, |
|
|
box_coords=input_box, |
|
|
input_labels=input_point_labels, |
|
|
borders=True, |
|
|
) |
|
|
|