EdgeTAM / image_prediction_ax.py
wli1995's picture
Upload 5 files
ff5b345 verified
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
# import onnxruntime as ort
import cv2
from utils.EdgeTAM_image_predictor import ImagePredictor
import argparse
np.random.seed(3)
def show_mask(mask, ax, random_color=False, borders = True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# print(contours)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
# cv2.imwrite('./mask_image.jpg', mask_image)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(
image,
masks,
scores,
point_coords=None,
box_coords=None,
input_labels=None,
borders=True,
save_dir="./results", # 新增:保存目录
base_name="mask" # 新增:基础文件名
):
"""
保存分割结果图像到文件,不再显示。
Args:
save_dir: 保存目录(会自动创建)
base_name: 文件名前缀,如 "mask" → "mask_1.png"
"""
os.makedirs(save_dir, exist_ok=True)
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
if point_coords is not None:
assert input_labels is not None
show_points(point_coords, input_labels, plt.gca())
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# 保存图像(不再 plt.show())
save_path = os.path.join(save_dir, f"{base_name}_{i+1}.png")
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=150)
plt.close() # 释放内存
print(f"✅ Saved: {save_path}")
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument("--image_path", type=str, default="./examples/images/truck.jpg", help="Path to the input image.")
argparser.add_argument("--model_path", type=str, default="./axmodel", help="Path to the ImagePredictor model.")
argparser.add_argument("--save_dir", type=str, default="./results", help="Directory to save the output images.")
argparser.add_argument("--input_box", type=str, default=None, help="Input box coordinates as x1,y1,x2,y2")
argparser.add_argument("--input_mask", type=str, default=None, help="Path to the input mask numpy file.")
argparser.add_argument("--input_point_coords", type=str, default=None, help="Input point coordinates as x1,y1 or x1,y1:x2,y2")
argparser.add_argument("--input_point_labels", type=str, default=None, help="Input point labels as 1 or 0 or 1:0")
args = argparser.parse_args()
# load image
image = np.array(Image.open(args.image_path).convert("RGB"))
predictor = ImagePredictor(args.model_path)
predictor.set_image(image)
# define input prompts
if args.input_mask is not None:
input_mask = np.load(args.input_mask)
else:
input_mask = np.zeros((1, 256, 256), dtype=np.float32)
if args.input_box is not None:
input_box = np.array([int(x) for x in args.input_box.split(",")])
else:
input_box = None
if args.input_point_coords is not None:
input_point_coords = np.array([[int(coord) for coord in point.split(",")] for point in args.input_point_coords.split(":")])
else:
input_point_coords = None
if args.input_point_labels is not None:
input_point_labels = np.array([int(label) for label in args.input_point_labels.split(":")])
else:
input_point_labels = None
if input_box is None and input_point_coords is None:
raise ValueError("At least one of input_box or input_point_coords must be provided.")
print("Get prompts: ")
print(f" input_box: {input_box}")
print(f" input_point_coords: {input_point_coords}")
print(f" input_point_labels: {input_point_labels}")
#only box
# input_box = np.array([75, 275, 1725, 850])
# input_point_coords = None
# input_point_labels = None
# input_box = np.array([1375, 550, 1650, 800])
# input_point_coords = None
# input_point_labels = None
#only point
# input_box = None
# input_point_coords = np.array([[500, 375], [1125, 625]])
# input_point_labels = np.array([1, 1])
# input_box = None
# input_point_coords = np.array([[500, 375], [1125, 625]])
# input_point_labels = np.array([1, 0])
#point + box
# input_box = np.array([425, 600, 700, 875])
# input_point_coords = np.array([[575, 750]])
# input_point_labels = np.array([0])
# input_mask = np.load("./axmodel/logits.npy")
# predict masks
masks, scores, logits = predictor.predict(
point_coords=input_point_coords,
point_labels=input_point_labels,
box=input_box,
mask_input=input_mask,
multimask_output=False,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
logits = logits[sorted_ind]
print(scores)
# visualize results
show_masks(
image,
masks,
scores,
point_coords=input_point_coords,
box_coords=input_box,
input_labels=input_point_labels,
borders=True,
)