SeRL Training Checkpoints
Compressed checkpoints from SeRL (Self-Evolving Reinforcement Learning) experiments. Files use ZipNN lossless compression (~33% smaller, transparent loading).
Quick Start
pip install zipnn huggingface_hub transformers
# Enable ZipNN transparent loading
from zipnn import zipnn_hf
zipnn_hf()
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer
# Download specific checkpoint
path = snapshot_download(
"AshwinKM2005/serl-checkpoints",
allow_patterns="serl_arce_qwen25_1_5b/huggingface/*"
)
# Load model (auto-decompresses .znn files)
model = AutoModelForCausalLM.from_pretrained(
f"{path}/serl_arce_qwen25_1_5b/huggingface/global_step200_hf"
)
Experiments
| Experiment | Base Model | Dataset |
|---|---|---|
| serl_arcc_qwen25_0_5b | Qwen2.5-0.5B | ARC-Challenge |
| serl_ARC-c_qwen25_1_5b | Qwen2.5-1.5B | ARC-Challenge |
| serl_arce_qwen25_0_5b | Qwen2.5-0.5B | ARC-Easy |
| serl_arce_qwen25_1_5b | Qwen2.5-1.5B | ARC-Easy |
Structure
serl-checkpoints/
βββ serl_arcc_qwen25_0_5b/
β βββ huggingface/global_step100_hf/
β βββ deepspeed/global_step100/
βββ serl_ARC-c_qwen25_1_5b/
β βββ ...
βββ ...
Compression
Files ending in .safetensors.znn are ZipNN compressed.
The zipnn_hf() hook enables transparent loading.