SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test
This is a sentence-transformers model finetuned from CocoRoF/mobert_retry_SimCSE_test. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/mobert_retry_SimCSE_test
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-retry")
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7886 |
| spearman_cosine |
0.789 |
| pearson_euclidean |
0.721 |
| spearman_euclidean |
0.7133 |
| pearson_manhattan |
0.7228 |
| spearman_manhattan |
0.7161 |
| pearson_dot |
0.712 |
| spearman_dot |
0.7059 |
| pearson_max |
0.7886 |
| spearman_max |
0.789 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: True
eval_strategy: steps
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
gradient_accumulation_steps: 16
learning_rate: 8e-05
num_train_epochs: 10.0
warmup_ratio: 0.2
push_to_hub: True
hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
hub_strategy: checkpoint
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: True
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 8e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10.0
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.2
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
hub_strategy: checkpoint
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts_dev_spearman_max |
| 0.1114 |
5 |
- |
0.0377 |
0.7471 |
| 0.2228 |
10 |
0.6923 |
0.0377 |
0.7471 |
| 0.3343 |
15 |
- |
0.0376 |
0.7473 |
| 0.4457 |
20 |
0.6832 |
0.0376 |
0.7475 |
| 0.5571 |
25 |
- |
0.0375 |
0.7479 |
| 0.6685 |
30 |
0.6787 |
0.0375 |
0.7484 |
| 0.7799 |
35 |
- |
0.0374 |
0.7488 |
| 0.8914 |
40 |
0.6154 |
0.0373 |
0.7494 |
| 1.0223 |
45 |
- |
0.0372 |
0.7500 |
| 1.1337 |
50 |
0.6231 |
0.0371 |
0.7506 |
| 1.2451 |
55 |
- |
0.0370 |
0.7512 |
| 1.3565 |
60 |
0.6562 |
0.0369 |
0.7519 |
| 1.4680 |
65 |
- |
0.0368 |
0.7526 |
| 1.5794 |
70 |
0.6578 |
0.0366 |
0.7534 |
| 1.6908 |
75 |
- |
0.0365 |
0.7541 |
| 1.8022 |
80 |
0.6669 |
0.0364 |
0.7549 |
| 1.9136 |
85 |
- |
0.0363 |
0.7559 |
| 2.0446 |
90 |
0.6428 |
0.0361 |
0.7568 |
| 2.1560 |
95 |
- |
0.0360 |
0.7577 |
| 2.2674 |
100 |
0.5854 |
0.0358 |
0.7586 |
| 2.3788 |
105 |
- |
0.0357 |
0.7597 |
| 2.4903 |
110 |
0.6027 |
0.0356 |
0.7607 |
| 2.6017 |
115 |
- |
0.0354 |
0.7618 |
| 2.7131 |
120 |
0.6375 |
0.0353 |
0.7627 |
| 2.8245 |
125 |
- |
0.0351 |
0.7635 |
| 2.9359 |
130 |
0.6204 |
0.0350 |
0.7643 |
| 3.0669 |
135 |
- |
0.0348 |
0.7653 |
| 3.1783 |
140 |
0.6077 |
0.0347 |
0.7663 |
| 3.2897 |
145 |
- |
0.0346 |
0.7672 |
| 3.4011 |
150 |
0.5772 |
0.0344 |
0.7681 |
| 3.5125 |
155 |
- |
0.0343 |
0.7690 |
| 3.6240 |
160 |
0.5793 |
0.0341 |
0.7698 |
| 3.7354 |
165 |
- |
0.0340 |
0.7705 |
| 3.8468 |
170 |
0.5807 |
0.0338 |
0.7712 |
| 3.9582 |
175 |
- |
0.0337 |
0.7721 |
| 4.0891 |
180 |
0.5576 |
0.0336 |
0.7729 |
| 4.2006 |
185 |
- |
0.0334 |
0.7734 |
| 4.3120 |
190 |
0.5244 |
0.0333 |
0.7740 |
| 4.4234 |
195 |
- |
0.0332 |
0.7748 |
| 4.5348 |
200 |
0.539 |
0.0331 |
0.7754 |
| 4.6462 |
205 |
- |
0.0330 |
0.7760 |
| 4.7577 |
210 |
0.5517 |
0.0329 |
0.7765 |
| 4.8691 |
215 |
- |
0.0328 |
0.7769 |
| 4.9805 |
220 |
0.5265 |
0.0327 |
0.7776 |
| 5.1114 |
225 |
- |
0.0326 |
0.7780 |
| 5.2228 |
230 |
0.5285 |
0.0325 |
0.7783 |
| 5.3343 |
235 |
- |
0.0324 |
0.7789 |
| 5.4457 |
240 |
0.4697 |
0.0323 |
0.7793 |
| 5.5571 |
245 |
- |
0.0323 |
0.7798 |
| 5.6685 |
250 |
0.4913 |
0.0322 |
0.7804 |
| 5.7799 |
255 |
- |
0.0321 |
0.7809 |
| 5.8914 |
260 |
0.5253 |
0.0320 |
0.7813 |
| 6.0223 |
265 |
- |
0.0320 |
0.7817 |
| 6.1337 |
270 |
0.4924 |
0.0319 |
0.7819 |
| 6.2451 |
275 |
- |
0.0318 |
0.7820 |
| 6.3565 |
280 |
0.4844 |
0.0317 |
0.7822 |
| 6.4680 |
285 |
- |
0.0317 |
0.7825 |
| 6.5794 |
290 |
0.442 |
0.0316 |
0.7827 |
| 6.6908 |
295 |
- |
0.0315 |
0.7830 |
| 6.8022 |
300 |
0.4665 |
0.0314 |
0.7834 |
| 6.9136 |
305 |
- |
0.0314 |
0.7839 |
| 7.0446 |
310 |
0.4672 |
0.0314 |
0.7843 |
| 7.1560 |
315 |
- |
0.0314 |
0.7851 |
| 7.2674 |
320 |
0.4131 |
0.0314 |
0.7850 |
| 7.3788 |
325 |
- |
0.0313 |
0.7849 |
| 7.4903 |
330 |
0.4221 |
0.0312 |
0.7848 |
| 7.6017 |
335 |
- |
0.0311 |
0.7854 |
| 7.7131 |
340 |
0.4268 |
0.0310 |
0.7857 |
| 7.8245 |
345 |
- |
0.0309 |
0.7861 |
| 7.9359 |
350 |
0.4316 |
0.0309 |
0.7866 |
| 8.0669 |
355 |
- |
0.0309 |
0.7872 |
| 8.1783 |
360 |
0.4277 |
0.0309 |
0.7873 |
| 8.2897 |
365 |
- |
0.0308 |
0.7870 |
| 8.4011 |
370 |
0.3925 |
0.0308 |
0.7868 |
| 8.5125 |
375 |
- |
0.0308 |
0.7866 |
| 8.6240 |
380 |
0.4049 |
0.0308 |
0.7869 |
| 8.7354 |
385 |
- |
0.0308 |
0.7875 |
| 8.8468 |
390 |
0.3742 |
0.0308 |
0.7883 |
| 8.9582 |
395 |
- |
0.0307 |
0.7885 |
| 9.0891 |
400 |
0.3498 |
0.0307 |
0.7886 |
| 9.2006 |
405 |
- |
0.0307 |
0.7881 |
| 9.3120 |
410 |
0.3569 |
0.0307 |
0.7878 |
| 9.4234 |
415 |
- |
0.0307 |
0.7876 |
| 9.5348 |
420 |
0.3312 |
0.0306 |
0.7877 |
| 9.6462 |
425 |
- |
0.0305 |
0.7881 |
| 9.7577 |
430 |
0.3848 |
0.0304 |
0.7885 |
| 9.8691 |
435 |
- |
0.0304 |
0.7889 |
| 9.9805 |
440 |
0.332 |
0.0305 |
0.7890 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}