layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6656
  • Answer: {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809}
  • Header: {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119}
  • Question: {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065}
  • Overall Precision: 0.7315
  • Overall Recall: 0.7958
  • Overall F1: 0.7623
  • Overall Accuracy: 0.8127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8138 1.0 10 1.6087 {'precision': 0.03215434083601286, 'recall': 0.037082818294190356, 'f1': 0.03444316877152698, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20825335892514396, 'recall': 0.20375586854460093, 'f1': 0.2059800664451827, 'number': 1065} 0.1251 0.1239 0.1245 0.3836
1.4355 2.0 20 1.2532 {'precision': 0.22752043596730245, 'recall': 0.20642768850432633, 'f1': 0.21646143875567075, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4494296577946768, 'recall': 0.5549295774647888, 'f1': 0.49663865546218483, 'number': 1065} 0.3699 0.3803 0.3751 0.5848
1.106 3.0 30 0.9895 {'precision': 0.49122807017543857, 'recall': 0.553770086526576, 'f1': 0.5206275421266705, 'number': 809} {'precision': 0.038461538461538464, 'recall': 0.008403361344537815, 'f1': 0.013793103448275862, 'number': 119} {'precision': 0.57109375, 'recall': 0.6863849765258216, 'f1': 0.623454157782516, 'number': 1065} 0.5320 0.5921 0.5604 0.6946
0.8611 4.0 40 0.8055 {'precision': 0.6096807415036045, 'recall': 0.7317676143386898, 'f1': 0.6651685393258427, 'number': 809} {'precision': 0.19148936170212766, 'recall': 0.07563025210084033, 'f1': 0.10843373493975902, 'number': 119} {'precision': 0.663527397260274, 'recall': 0.7276995305164319, 'f1': 0.6941334527541425, 'number': 1065} 0.6295 0.6904 0.6585 0.7575
0.684 5.0 50 0.7200 {'precision': 0.6620021528525296, 'recall': 0.7601977750309024, 'f1': 0.70771001150748, 'number': 809} {'precision': 0.23529411764705882, 'recall': 0.16806722689075632, 'f1': 0.19607843137254902, 'number': 119} {'precision': 0.6933010492332526, 'recall': 0.8065727699530516, 'f1': 0.7456597222222223, 'number': 1065} 0.6631 0.7496 0.7037 0.7868
0.5693 6.0 60 0.6933 {'precision': 0.6771488469601677, 'recall': 0.7985166872682324, 'f1': 0.7328417470221215, 'number': 809} {'precision': 0.20202020202020202, 'recall': 0.16806722689075632, 'f1': 0.1834862385321101, 'number': 119} {'precision': 0.7029787234042553, 'recall': 0.7755868544600939, 'f1': 0.7375, 'number': 1065} 0.6697 0.7486 0.7069 0.7882
0.4931 7.0 70 0.6542 {'precision': 0.6927138331573389, 'recall': 0.8108776266996292, 'f1': 0.7471526195899771, 'number': 809} {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119} {'precision': 0.729043183742591, 'recall': 0.8084507042253521, 'f1': 0.7666963490650045, 'number': 1065} 0.6894 0.7772 0.7307 0.8042
0.4267 8.0 80 0.6503 {'precision': 0.7034700315457413, 'recall': 0.826946847960445, 'f1': 0.7602272727272728, 'number': 809} {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} {'precision': 0.7510656436487638, 'recall': 0.8272300469483568, 'f1': 0.7873100983020554, 'number': 1065} 0.7054 0.7943 0.7472 0.8070
0.3872 9.0 90 0.6552 {'precision': 0.7311111111111112, 'recall': 0.8133498145859085, 'f1': 0.770040959625512, 'number': 809} {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} {'precision': 0.7558239861949957, 'recall': 0.8225352112676056, 'f1': 0.787769784172662, 'number': 1065} 0.7230 0.7858 0.7531 0.8113
0.3651 10.0 100 0.6531 {'precision': 0.7281659388646288, 'recall': 0.8244746600741656, 'f1': 0.7733333333333332, 'number': 809} {'precision': 0.29838709677419356, 'recall': 0.31092436974789917, 'f1': 0.3045267489711935, 'number': 119} {'precision': 0.756872852233677, 'recall': 0.8272300469483568, 'f1': 0.7904890085240016, 'number': 1065} 0.7191 0.7953 0.7553 0.8144
0.3186 11.0 110 0.6525 {'precision': 0.7268770402611534, 'recall': 0.8257107540173053, 'f1': 0.773148148148148, 'number': 809} {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} {'precision': 0.7627705627705628, 'recall': 0.8272300469483568, 'f1': 0.7936936936936936, 'number': 1065} 0.7221 0.7968 0.7576 0.8131
0.303 12.0 120 0.6564 {'precision': 0.7306843267108167, 'recall': 0.8182941903584673, 'f1': 0.7720116618075801, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.31932773109243695, 'f1': 0.3261802575107296, 'number': 119} {'precision': 0.7755102040816326, 'recall': 0.8206572769953052, 'f1': 0.7974452554744526, 'number': 1065} 0.7331 0.7898 0.7604 0.8127
0.2847 13.0 130 0.6678 {'precision': 0.7435320584926884, 'recall': 0.8170580964153276, 'f1': 0.7785630153121318, 'number': 809} {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119} {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} 0.7300 0.7923 0.7599 0.8106
0.2689 14.0 140 0.6648 {'precision': 0.7398015435501654, 'recall': 0.8294190358467244, 'f1': 0.782051282051282, 'number': 809} {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} {'precision': 0.7748460861917327, 'recall': 0.8272300469483568, 'f1': 0.8001816530426885, 'number': 1065} 0.7325 0.7983 0.7640 0.8123
0.2642 15.0 150 0.6656 {'precision': 0.7408637873754153, 'recall': 0.826946847960445, 'f1': 0.7815420560747665, 'number': 809} {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} {'precision': 0.7724077328646749, 'recall': 0.8253521126760563, 'f1': 0.7980027235587837, 'number': 1065} 0.7315 0.7958 0.7623 0.8127

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
52
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for EdBergJr/layoutlm-funsd

Finetuned
(182)
this model

Evaluation results