Qwen3-14B-Base-Uzbek-Cyrillic 🇺🇿
This model is a fine-tuned variant of Qwen3-14B-Base, adapted for the Uzbek language (Cyrillic script) using LoRA and Unsloth.
It retains Qwen3’s powerful reasoning, comprehension, and multilingual understanding — while specializing in Uzbek Cyrillic vocabulary, syntax, and cultural nuance.
🚀 Model Overview
| Property | Value |
|---|---|
| Base model | Qwen/Qwen3-14B-Base |
| Architecture | Transformer Decoder (Causal LM) |
| Parameters | 14.8B |
| Context length | 32,768 tokens |
| Finetuning method | LoRA (r=16, α=32, dropout=0.0) |
| Training framework | Unsloth |
| Precision | bfloat16 |
| Languages | Uzbek (Cyrillic), multilingual |
🧠 Purpose
This model is designed to:
- Generate natural and grammatically correct Uzbek Cyrillic text
- Support content generation, chat, and summarization in Uzbek
- Serve as a strong multilingual foundation for Central Asian applications
🧩 Usage
You can load and run it directly using transformers or vLLM.
Transformers Example
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "Just-Bax/Qwen3-14B-Base-Uzbek-Cyrillic"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "Ассалому алайкум! Бугунги кун ҳақида маълумот беринг."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 10
Model tree for Just-Bax/Qwen3-14B-Base-Uzbek-Cyrillic
Base model
Qwen/Qwen3-14B-Base