Fin.AI V3
WORK IN PROGRESS – EXPERIMENTAL RESEARCH PROJECT
A continuously learning transformer language model that trains automatically every ~1.5 hours on diverse datasets using GitHub Actions.
Important Notice
Fin.AI is an experimental research prototype and work in progress.
The model is under continuous training and may produce inaccurate, inappropriate, biased, or nonsensical outputs.
Do NOT use for production applications, critical systems, or high-stakes decisions.
Use at your own risk.
Model Architecture (V3)
This is Fin.AI V3, featuring a modern transformer architecture:
- Architecture: GPT-style decoder-only transformer
- Attention: Grouped Query Attention (GQA) with Flash Attention support
- Position Encoding: Rotary Position Embeddings (RoPE)
- Activation: SwiGLU
- Normalization: RMSNorm
- Framework: Built on HuggingFace Transformers
Model Sizes
| Preset | Parameters | Layers | Heads | KV Heads | Hidden Dim |
|---|---|---|---|---|---|
| tiny | ~15M | 6 | 4 | 2 | 256 |
| small | ~40M | 8 | 8 | 4 | 512 |
| medium | ~120M | 12 | 12 | 4 | 768 |
| large | ~350M | 24 | 16 | 8 | 1024 |
Current deployment: Small (40M parameters)
Training
- Continuous Training: Automated training runs every ~1.5 hours
- Curriculum: 24 diverse dataset families (news, math, code, dialogue, science, instructions...)
- Dataset Rotation: Focus rotates hourly for targeted capability improvement
- Monitoring: Full metrics on Weights & Biases
Usage
Installation
pip install transformers torch
Basic Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("MeridianAlgo/Fin.AI", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("gpt2") # Uses GPT-2 tokenizer
# Generate text
prompt = "The future of artificial intelligence is"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100,
temperature=0.8,
top_p=0.95,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Advanced Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model = AutoModelForCausalLM.from_pretrained("MeridianAlgo/Fin.AI", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Custom generation config
generation_config = GenerationConfig(
max_new_tokens=200,
temperature=0.7,
top_k=50,
top_p=0.95,
repetition_penalty=1.1,
do_sample=True
)
prompt = "Explain machine learning in simple terms:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Curriculum
The model trains on a rotating 24-hour curriculum covering:
- Encyclopedia: WikiText
- Creative Writing: TinyStories
- News: CNN, AG News, CC News
- Math & Reasoning: GSM8K, CommonsenseQA
- Open Web: OpenWebText, C4
- Q&A: SQuAD
- Instructions: Alpaca, Dolly
- Reviews: IMDB, Amazon, Yelp
- Scientific: PubMed
- Dialogue: UltraChat
Limitations
- Experimental: This is a research project, not production-ready
- Accuracy: May produce factual errors or hallucinations
- Bias: May reflect biases present in training data
- Safety: No safety alignment or RLHF applied
- Context: Limited to 1024 tokens
- Scale: Relatively small (40M parameters)
License
MIT License - See LICENSE
Links
- GitHub: MeridianAlgo/FinAI
- Training Metrics: Weights & Biases
- Issues: GitHub Issues
Citation
@software{finai2026,
author = {Fin.AI Team},
title = {Fin.AI: A Continuously Learning Transformer Language Model},
year = {2026},
url = {https://github.com/MeridianAlgo/FinAI}
}
Last Updated: Auto-updated with each training run
- Downloads last month
- 867