bert-eou-classifier_teacher

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1555
  • Accuracy: 0.791
  • Auc: 0.865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc
0.5875 1.0 622 0.4866 0.75 0.845
0.4703 2.0 1244 0.5337 0.76 0.855
0.4097 3.0 1866 0.5273 0.785 0.869
0.3598 4.0 2488 0.5383 0.795 0.868
0.3278 5.0 3110 0.6127 0.803 0.878
0.3019 6.0 3732 0.6487 0.804 0.878
0.2616 7.0 4354 0.7659 0.801 0.874
0.2451 8.0 4976 0.8012 0.793 0.871
0.2241 9.0 5598 0.8936 0.802 0.87
0.2044 10.0 6220 0.9513 0.8 0.869
0.2015 11.0 6842 0.9689 0.802 0.869
0.1834 12.0 7464 0.9756 0.799 0.869
0.1731 13.0 8086 0.9917 0.796 0.866
0.1455 14.0 8708 1.0958 0.794 0.863
0.1557 15.0 9330 1.0042 0.796 0.869
0.1316 16.0 9952 1.0996 0.796 0.865
0.1335 17.0 10574 1.2024 0.794 0.863
0.1201 18.0 11196 1.1508 0.791 0.865
0.1204 19.0 11818 1.1580 0.798 0.865
0.1137 20.0 12440 1.1555 0.791 0.865

Framework versions

  • PEFT 0.18.0
  • Transformers 4.57.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.22.1
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MoNafea01/bert-eou-classifier

Adapter
(5)
this model

Evaluation results