SOLAR-10.7B-Korean-QLora (checkpoint-600)

SOLAR-10.7B-Instruct-v1.0 기반의 ν•œκ΅­μ–΄ νŠΉν™” LoRA μ–΄λŒ‘ν„° λͺ¨λΈμž…λ‹ˆλ‹€. ν•œκ΅­μ–΄ instruction-following λŠ₯λ ₯ ν–₯상을 μœ„ν•΄ QLoRA κΈ°λ²•μœΌλ‘œ νŒŒμΈνŠœλ‹λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

Model Details

Model Description

이 λͺ¨λΈμ€ Upstage의 SOLAR-10.7B-Instruct-v1.0을 베이슀둜 ν•˜μ—¬ ν•œκ΅­μ–΄ λ°μ΄ν„°μ…‹μœΌλ‘œ QLoRA νŒŒμΈνŠœλ‹ν•œ μ–΄λŒ‘ν„° λͺ¨λΈμž…λ‹ˆλ‹€.

  • Developed by: MyeongHo0621
  • Model type: LoRA Adapter
  • Language(s): Korean, English
  • License: Apache 2.0
  • Finetuned from model: upstage/SOLAR-10.7B-Instruct-v1.0

Benchmark Results

Korean Benchmarks (KoBEST)

Task Score Metric
kobest_boolq 52.64% accuracy
kobest_copa 65.20% accuracy
kobest_hellaswag 53.00% acc_norm
kobest_sentineg 59.45% accuracy

English Benchmarks

Task Score Metric
ARC Challenge 58.96% acc_norm
ARC Easy 82.07% acc_norm
GSM8K 57.09% exact_match
HellaSwag 83.66% acc_norm
MMLU 60.76% accuracy

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load base model
base_model_name = "upstage/SOLAR-10.7B-Instruct-v1.0"
adapter_model_name = "MyeongHo0621/SOLAR-10.7B-Korean-QLora"

# Load model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    load_in_4bit=True,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
)

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, adapter_model_name)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(adapter_model_name)

# Generate text
prompt = "ν•œκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μΈκ°€μš”?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Using with lm-evaluation-harness

lm_eval --model hf \
  --model_args pretrained=upstage/SOLAR-10.7B-Instruct-v1.0,peft=MyeongHo0621/SOLAR-10.7B-Korean-QLora,load_in_4bit=True \
  --tasks kobest_copa,kobest_sentineg \
  --device cuda:0 \
  --batch_size 4

Training Details

Training Configuration

  • Base Model: upstage/SOLAR-10.7B-Instruct-v1.0
  • LoRA Rank (r): 64
  • LoRA Alpha: 128
  • LoRA Dropout: 0.05
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
  • Training Precision: 4-bit quantization (QLoRA)
  • Checkpoint: 600

Training Data

ν•œκ΅­μ–΄ instruction-following λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

Limitations

  • 이 λͺ¨λΈμ€ ν•œκ΅­μ–΄ instruction-following λŠ₯λ ₯ ν–₯상에 μ΄ˆμ μ„ 맞좘 LoRA μ–΄λŒ‘ν„°μž…λ‹ˆλ‹€
  • 베이슀 λͺ¨λΈμ˜ ν•œκ³„λ₯Ό κ·ΈλŒ€λ‘œ μƒμ†ν•©λ‹ˆλ‹€
  • 4-bit quantization을 μ‚¬μš©ν•˜μ—¬ 일뢀 μ„±λŠ₯ μ €ν•˜κ°€ μžˆμ„ 수 μžˆμŠ΅λ‹ˆλ‹€

Framework Versions

  • PEFT 0.14.0
  • Transformers 4.57.1
  • PyTorch 2.8.0+cu128

Citation

If you use this model, please cite:

@misc{solar-10.7b-korean-qlora,
  author = {MyeongHo0621},
  title = {SOLAR-10.7B-Korean-QLora},
  year = {2025},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/MyeongHo0621/SOLAR-10.7B-Korean-QLora}}
}
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for MyeongHo0621/SOLAR-10.7B-Korean-QLora

Adapter
(199)
this model