SOLAR-10.7B-Korean-QLora (checkpoint-600)
SOLAR-10.7B-Instruct-v1.0 κΈ°λ°μ νκ΅μ΄ νΉν LoRA μ΄λν° λͺ¨λΈμ λλ€. νκ΅μ΄ instruction-following λ₯λ ₯ ν₯μμ μν΄ QLoRA κΈ°λ²μΌλ‘ νμΈνλλμμ΅λλ€.
Model Details
Model Description
μ΄ λͺ¨λΈμ Upstageμ SOLAR-10.7B-Instruct-v1.0μ λ² μ΄μ€λ‘ νμ¬ νκ΅μ΄ λ°μ΄ν°μ μΌλ‘ QLoRA νμΈνλν μ΄λν° λͺ¨λΈμ λλ€.
- Developed by: MyeongHo0621
- Model type: LoRA Adapter
- Language(s): Korean, English
- License: Apache 2.0
- Finetuned from model: upstage/SOLAR-10.7B-Instruct-v1.0
Benchmark Results
Korean Benchmarks (KoBEST)
| Task | Score | Metric |
|---|---|---|
| kobest_boolq | 52.64% | accuracy |
| kobest_copa | 65.20% | accuracy |
| kobest_hellaswag | 53.00% | acc_norm |
| kobest_sentineg | 59.45% | accuracy |
English Benchmarks
| Task | Score | Metric |
|---|---|---|
| ARC Challenge | 58.96% | acc_norm |
| ARC Easy | 82.07% | acc_norm |
| GSM8K | 57.09% | exact_match |
| HellaSwag | 83.66% | acc_norm |
| MMLU | 60.76% | accuracy |
How to Use
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Load base model
base_model_name = "upstage/SOLAR-10.7B-Instruct-v1.0"
adapter_model_name = "MyeongHo0621/SOLAR-10.7B-Korean-QLora"
# Load model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, adapter_model_name)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(adapter_model_name)
# Generate text
prompt = "νκ΅μ μλλ μ΄λμΈκ°μ?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Using with lm-evaluation-harness
lm_eval --model hf \
--model_args pretrained=upstage/SOLAR-10.7B-Instruct-v1.0,peft=MyeongHo0621/SOLAR-10.7B-Korean-QLora,load_in_4bit=True \
--tasks kobest_copa,kobest_sentineg \
--device cuda:0 \
--batch_size 4
Training Details
Training Configuration
- Base Model: upstage/SOLAR-10.7B-Instruct-v1.0
- LoRA Rank (r): 64
- LoRA Alpha: 128
- LoRA Dropout: 0.05
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Training Precision: 4-bit quantization (QLoRA)
- Checkpoint: 600
Training Data
νκ΅μ΄ instruction-following λ°μ΄ν°μ μΌλ‘ νμ΅λμμ΅λλ€.
Limitations
- μ΄ λͺ¨λΈμ νκ΅μ΄ instruction-following λ₯λ ₯ ν₯μμ μ΄μ μ λ§μΆ LoRA μ΄λν°μ λλ€
- λ² μ΄μ€ λͺ¨λΈμ νκ³λ₯Ό κ·Έλλ‘ μμν©λλ€
- 4-bit quantizationμ μ¬μ©νμ¬ μΌλΆ μ±λ₯ μ νκ° μμ μ μμ΅λλ€
Framework Versions
- PEFT 0.14.0
- Transformers 4.57.1
- PyTorch 2.8.0+cu128
Citation
If you use this model, please cite:
@misc{solar-10.7b-korean-qlora,
author = {MyeongHo0621},
title = {SOLAR-10.7B-Korean-QLora},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/MyeongHo0621/SOLAR-10.7B-Korean-QLora}}
}
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for MyeongHo0621/SOLAR-10.7B-Korean-QLora
Base model
upstage/SOLAR-10.7B-v1.0
Finetuned
upstage/SOLAR-10.7B-Instruct-v1.0