Fruit Quality Classifier (MobileNetV3-Large)

Model ini adalah hasil fine-tuning dari MobileNetV3-Large (pretrained ImageNet) untuk klasifikasi kualitas / kondisi buah pisang, jeruk dan apel (fresh atau rotten) menggunakan dataset kustom.

Ringkasan

  • Arsitektur: MobileNetV3-Large (torchvision)
  • Jumlah kelas: 6 (['freshapples', 'freshbanana', 'freshoranges', 'rottenapples', 'rottenbanana', 'rottenoranges'])
  • Input: gambar RGB, ukuran 224ร—224
  • Preprocessing: Resize โ†’ ToTensor โ†’ Normalize (mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225])
  • Augmentasi (saat training): RandomHorizontalFlip, RandomRotation, RandomColorJitter, RandomPerspective, Dropout pada classifier

Hyperparameter

Parameter Nilai
Model Backbone MobileNetV3-Large (IMAGENET1K_V1 pretrained)
Optimizer Adam
Learning Rate 1e-4
Weight Decay 1e-5
Loss Function CrossEntropyLoss
Epochs 10
Batch Size 32

Hasil Evaluasi

Akurasi = 95% Loss = 0,169

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support