Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. A SVC instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("SOUMYADEEPSAR/Setfit_random_sample_svm_head")
# Run inference
preds = model("What could possibly go wrong?")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 3 | 23.4159 | 68 |
| Label | Training Sample Count |
|---|---|
| 0 | 136 |
| 1 | 78 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.3597 | - |
| 0.0161 | 50 | 0.2693 | - |
| 0.0323 | 100 | 0.2501 | - |
| 0.0484 | 150 | 0.2691 | - |
| 0.0645 | 200 | 0.063 | - |
| 0.0806 | 250 | 0.0179 | - |
| 0.0968 | 300 | 0.0044 | - |
| 0.1129 | 350 | 0.0003 | - |
| 0.1290 | 400 | 0.0005 | - |
| 0.1452 | 450 | 0.0002 | - |
| 0.1613 | 500 | 0.0003 | - |
| 0.1774 | 550 | 0.0001 | - |
| 0.1935 | 600 | 0.0001 | - |
| 0.2097 | 650 | 0.0001 | - |
| 0.2258 | 700 | 0.0001 | - |
| 0.2419 | 750 | 0.0001 | - |
| 0.2581 | 800 | 0.0 | - |
| 0.2742 | 850 | 0.0001 | - |
| 0.2903 | 900 | 0.0002 | - |
| 0.3065 | 950 | 0.0 | - |
| 0.3226 | 1000 | 0.0 | - |
| 0.3387 | 1050 | 0.0002 | - |
| 0.3548 | 1100 | 0.0 | - |
| 0.3710 | 1150 | 0.0001 | - |
| 0.3871 | 1200 | 0.0001 | - |
| 0.4032 | 1250 | 0.0 | - |
| 0.4194 | 1300 | 0.0 | - |
| 0.4355 | 1350 | 0.0 | - |
| 0.4516 | 1400 | 0.0001 | - |
| 0.4677 | 1450 | 0.0 | - |
| 0.4839 | 1500 | 0.0 | - |
| 0.5 | 1550 | 0.0001 | - |
| 0.5161 | 1600 | 0.0001 | - |
| 0.5323 | 1650 | 0.0 | - |
| 0.5484 | 1700 | 0.0 | - |
| 0.5645 | 1750 | 0.0 | - |
| 0.5806 | 1800 | 0.0 | - |
| 0.5968 | 1850 | 0.0 | - |
| 0.6129 | 1900 | 0.0 | - |
| 0.6290 | 1950 | 0.0001 | - |
| 0.6452 | 2000 | 0.0 | - |
| 0.6613 | 2050 | 0.0 | - |
| 0.6774 | 2100 | 0.0 | - |
| 0.6935 | 2150 | 0.0001 | - |
| 0.7097 | 2200 | 0.0 | - |
| 0.7258 | 2250 | 0.0 | - |
| 0.7419 | 2300 | 0.0001 | - |
| 0.7581 | 2350 | 0.0001 | - |
| 0.7742 | 2400 | 0.0001 | - |
| 0.7903 | 2450 | 0.0 | - |
| 0.8065 | 2500 | 0.0 | - |
| 0.8226 | 2550 | 0.0 | - |
| 0.8387 | 2600 | 0.0 | - |
| 0.8548 | 2650 | 0.0001 | - |
| 0.8710 | 2700 | 0.0001 | - |
| 0.8871 | 2750 | 0.0 | - |
| 0.9032 | 2800 | 0.0 | - |
| 0.9194 | 2850 | 0.0 | - |
| 0.9355 | 2900 | 0.0001 | - |
| 0.9516 | 2950 | 0.0 | - |
| 0.9677 | 3000 | 0.0001 | - |
| 0.9839 | 3050 | 0.0 | - |
| 1.0 | 3100 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}