Improve model card: Add `library_name` metadata and comprehensive sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,18 +1,85 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
  - zh
 
6
  pipeline_tag: text-generation
 
7
  ---
8
 
9
  # BlockFFN-XLarge
10
 
11
  This is the original 1.2B BlockFFN checkpoint used in the paper *BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity* for acceleration tests.
12
- You can load and use this model simply by using `AutoTokenizer` and `AutoModelForCausalLM`.
13
 
14
  Links: [[Paper](https://arxiv.org/pdf/2507.08771)] [[Codes](https://github.com/thunlp/BlockFFN)]
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ### Citation
17
 
18
  If you find our work useful for your research, please kindly cite our paper as follows:
@@ -25,4 +92,4 @@ If you find our work useful for your research, please kindly cite our paper as f
25
  year={2025},
26
  url={https://arxiv.org/pdf/2507.08771},
27
  }
28
- ```
 
1
  ---
 
2
  language:
3
  - en
4
  - zh
5
+ license: apache-2.0
6
  pipeline_tag: text-generation
7
+ library_name: transformers
8
  ---
9
 
10
  # BlockFFN-XLarge
11
 
12
  This is the original 1.2B BlockFFN checkpoint used in the paper *BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity* for acceleration tests.
 
13
 
14
  Links: [[Paper](https://arxiv.org/pdf/2507.08771)] [[Codes](https://github.com/thunlp/BlockFFN)]
15
 
16
+ ### Introduction
17
+
18
+ **BlockFFN** presents a novel Mixture-of-Experts (MoE) architecture designed to enhance activation sparsity at both token and chunk levels, making LLMs more acceleration-friendly, especially for end-side devices. This approach integrates a new router for differentiable and flexible routing and is optimized with CLS-aware training objectives. The model achieves superior performance and significant speedup on end-side devices.
19
+
20
+ ### How to Use
21
+
22
+ You can explore the core implementation of **BlockFFN** in the [GitHub repository](https://github.com/thunlp/BlockFFN). You can load and use this model simply by using `AutoTokenizer` and `AutoModelForCausalLM`.
23
+
24
+ #### Text Generation
25
+
26
+ ```python
27
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
28
+ import torch
29
+
30
+ model_name = "SparseLLM/BlockFFN-XLarge" # Or other BlockFFN models like SparseLLM/BlockFFN-XLarge-sft
31
+
32
+ pipe = pipeline(
33
+ "text-generation",
34
+ model_name,
35
+ tokenizer=AutoTokenizer.from_pretrained(model_name),
36
+ torch_dtype=torch.bfloat16,
37
+ device_map="auto",
38
+ trust_remote_code=True,
39
+ )
40
+ print(pipe("The key to life is", max_new_tokens=20, do_sample=True)[0]["generated_text"])
41
+ ```
42
+
43
+ #### Get Expert Routing Probabilities
44
+
45
+ Based on expert routing probabilities, **BlockFFN** enables mechanistic interpretability by understanding which sparse features are activated to which token. Following the standard MoE approach, you can obtain expert routing probabilities for all layers by setting `output_router_probs=True`. The example below demonstrates how to compute and analyze the expert activation patterns:
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+
51
+ model = AutoModelForCausalLM.from_pretrained(
52
+ "SparseLLM/BlockFFN-XLarge",
53
+ torch_dtype=torch.bfloat16,
54
+ device_map="auto",
55
+ trust_remote_code=True,
56
+ )
57
+ tokenizer = AutoTokenizer.from_pretrained("SparseLLM/BlockFFN-XLarge")
58
+
59
+ inputs = tokenizer("City and County of San Francisco", return_tensors="pt")
60
+ outputs = model(**inputs.to(model.device), output_router_probs=True)
61
+
62
+ # Get full expert routing probabilities: [batch_size, seq_len, moe_heads, moe_experts**2]
63
+ # Note: The output format for router_probs might vary based on the specific BlockFFN implementation details.
64
+ # This example assumes a common structure for illustration.
65
+ if hasattr(outputs, 'router_probs') and outputs.router_probs is not None:
66
+ for layer_idx, layer_router_probs in enumerate(outputs.router_probs):
67
+ print(f"Layer {layer_idx} Router Probs Shape: {layer_router_probs.shape}")
68
+ # Example: Analyze first token's expert activation in the first layer
69
+ if layer_router_probs.shape[1] > 0: # Check if there are tokens
70
+ first_token_probs = layer_router_probs[0, 0] # batch_idx, token_idx
71
+ # Assuming first_token_probs is [num_heads, num_experts]
72
+ # Sum across heads to get overall expert importance
73
+ expert_activations = first_token_probs.sum(dim=0)
74
+ activated_experts = (expert_activations > 1e-2).nonzero(as_tuple=True)[0]
75
+ decoded_token = tokenizer.decode(inputs.input_ids[0, 0])
76
+ print(f"Token: '{decoded_token}' (Layer {layer_idx}) Activated Experts Count: {len(activated_experts)}")
77
+ # print(f"Activated Expert Indices: {activated_experts.tolist()}")
78
+ else:
79
+ print("Model output does not contain 'router_probs'.")
80
+
81
+ ```
82
+
83
  ### Citation
84
 
85
  If you find our work useful for your research, please kindly cite our paper as follows:
 
92
  year={2025},
93
  url={https://arxiv.org/pdf/2507.08771},
94
  }
95
+ ```