Add metadata, paper and GitHub links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +26 -9
README.md CHANGED
@@ -1,34 +1,51 @@
1
  ---
2
- license: mit
3
- language:
4
- - en
5
  base_model:
6
  - meta-llama/Llama-3.1-8B-Instruct
 
 
 
 
 
7
  ---
8
 
9
  # Model Card
10
 
11
- This is a **simulator model** used to score candidate natural-language explanations of internal features in Llama-3.1-8B. Given:
12
 
 
13
  - an input text sequence `x` (tokenized),
14
  - a candidate explanation `E` (e.g., “encodes city names”),
15
 
16
- the simulator predicts **where the described feature should activate** in the sequence (token-level activation scores). These simulated activations can then be compared to a target feature’s *true* activations, enabling scoring of the explanations by computing correlation (the "simulator score" / correlation objective described in [the paper](https://arxiv.org/abs/2511.08579)).
 
 
 
17
 
18
  ---
19
  ## Usage
20
 
21
- **Note:** This simulator is not usable via standard `transformers` APIs alone. You must first **clone and install [our repository](https://github.com/TransluceAI/introspective-interp/tree/main#)**, which provides the custom simulator wrapper and scoring utilities.
22
-
23
 
24
  ```python
25
  from observatory_utils.simulator import FinetunedSimulator
26
  simulator = FinetunedSimulator.setup(
27
  model_path="Transluce/features_explain_llama3.1_8b_simulator",
28
  add_special_tokens=True,
29
- gpu_idx=simulator_device_idx, # e.g. 0
30
  tokenizer_path="meta-llama/Llama-3.1-8B",
31
- cache_dir=config.get("cache_dir", None),
32
  )
33
  ```
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - meta-llama/Llama-3.1-8B-Instruct
4
+ language:
5
+ - en
6
+ license: mit
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
  ---
10
 
11
  # Model Card
12
 
13
+ This is a **simulator model** used to score candidate natural-language explanations of internal features in Llama-3.1-8B. It was introduced in the paper [Training Language Models to Explain Their Own Computations](https://huggingface.co/papers/2511.08579).
14
 
15
+ Given:
16
  - an input text sequence `x` (tokenized),
17
  - a candidate explanation `E` (e.g., “encodes city names”),
18
 
19
+ the simulator predicts **where the described feature should activate** in the sequence (token-level activation scores). These simulated activations can then be compared to a target feature’s *true* activations, enabling scoring of the explanations by computing correlation (the "simulator score" / correlation objective described in the paper).
20
+
21
+ - **Code:** [https://github.com/TransluceAI/introspective-interp](https://github.com/TransluceAI/introspective-interp)
22
+ - **Paper:** [Training Language Models to Explain Their Own Computations](https://huggingface.co/papers/2511.08579)
23
 
24
  ---
25
  ## Usage
26
 
27
+ **Note:** This simulator is not usable via standard `transformers` APIs alone. You must first **clone and install [the repository](https://github.com/TransluceAI/introspective-interp/tree/main#)**, which provides the custom simulator wrapper and scoring utilities.
 
28
 
29
  ```python
30
  from observatory_utils.simulator import FinetunedSimulator
31
  simulator = FinetunedSimulator.setup(
32
  model_path="Transluce/features_explain_llama3.1_8b_simulator",
33
  add_special_tokens=True,
34
+ gpu_idx=0, # e.g. 0
35
  tokenizer_path="meta-llama/Llama-3.1-8B",
 
36
  )
37
  ```
38
 
39
+ ## Citation
40
+
41
+ ```bibtex
42
+ @misc{li2025traininglanguagemodelsexplain,
43
+ title={Training Language Models to Explain Their Own Computations},
44
+ author={Belinda Z. Li and Zifan Carl Guo and Vincent Huang and Jacob Steinhardt and Jacob Andreas},
45
+ year={2025},
46
+ eprint={2511.08579},
47
+ archivePrefix={arXiv},
48
+ primaryClass={cs.CL},
49
+ url={https://arxiv.org/abs/2511.08579},
50
+ }
51
+ ```