Multilingual base soil embedding model (quantized)
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: multilingual
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
sentences = [
'U-205200',
'올레핀 송유/동력 Nitrogen Section',
'차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.2442 |
| cosine_accuracy@3 |
0.3101 |
| cosine_accuracy@5 |
0.3643 |
| cosine_accuracy@10 |
0.4109 |
| cosine_precision@1 |
0.2442 |
| cosine_precision@3 |
0.1034 |
| cosine_precision@5 |
0.0729 |
| cosine_precision@10 |
0.0411 |
| cosine_recall@1 |
0.2442 |
| cosine_recall@3 |
0.3101 |
| cosine_recall@5 |
0.3643 |
| cosine_recall@10 |
0.4109 |
| cosine_ndcg@10 |
0.3172 |
| cosine_mrr@10 |
0.2884 |
| cosine_map@100 |
0.3003 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.2054 |
| cosine_accuracy@3 |
0.2829 |
| cosine_accuracy@5 |
0.3178 |
| cosine_accuracy@10 |
0.3837 |
| cosine_precision@1 |
0.2054 |
| cosine_precision@3 |
0.0943 |
| cosine_precision@5 |
0.0636 |
| cosine_precision@10 |
0.0384 |
| cosine_recall@1 |
0.2054 |
| cosine_recall@3 |
0.2829 |
| cosine_recall@5 |
0.3178 |
| cosine_recall@10 |
0.3837 |
| cosine_ndcg@10 |
0.2851 |
| cosine_mrr@10 |
0.2547 |
| cosine_map@100 |
0.2653 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1938 |
| cosine_accuracy@3 |
0.2713 |
| cosine_accuracy@5 |
0.2984 |
| cosine_accuracy@10 |
0.3488 |
| cosine_precision@1 |
0.1938 |
| cosine_precision@3 |
0.0904 |
| cosine_precision@5 |
0.0597 |
| cosine_precision@10 |
0.0349 |
| cosine_recall@1 |
0.1938 |
| cosine_recall@3 |
0.2713 |
| cosine_recall@5 |
0.2984 |
| cosine_recall@10 |
0.3488 |
| cosine_ndcg@10 |
0.2647 |
| cosine_mrr@10 |
0.2385 |
| cosine_map@100 |
0.2482 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,320 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 6.72 tokens
- max: 16 tokens
|
- min: 3 tokens
- mean: 35.77 tokens
- max: 408 tokens
|
- Samples:
| anchor |
positive |
Deionizer |
탈이온장치 ; Demineralizer와 동일 |
Sub-CC; sub-contracting committee |
외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원 장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀 장이 한다. |
In-line Sampler |
원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은 시료채취기 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 10
lr_scheduler_type: cosine
warmup_ratio: 0.1
tf32: False
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_64_cosine_map@100 |
| 0.8767 |
4 |
- |
0.2156 |
0.2448 |
0.1831 |
| 1.9726 |
9 |
- |
0.2511 |
0.2765 |
0.2154 |
| 2.1918 |
10 |
7.6309 |
- |
- |
- |
| 2.8493 |
13 |
- |
0.2531 |
0.2852 |
0.2345 |
| 3.9452 |
18 |
- |
0.2617 |
0.2914 |
0.2353 |
| 4.3836 |
20 |
5.3042 |
- |
- |
- |
| 4.8219 |
22 |
- |
0.2626 |
0.2946 |
0.2422 |
| 5.9178 |
27 |
- |
0.2629 |
0.2987 |
0.2481 |
| 6.5753 |
30 |
4.2433 |
- |
- |
- |
| 6.7945 |
31 |
- |
0.2684 |
0.2988 |
0.2495 |
| 7.8904 |
36 |
- |
0.2652 |
0.3003 |
0.2488 |
| 8.7671 |
40 |
3.9117 |
0.2653 |
0.3003 |
0.2482 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}