ZENT AGENTIC Model πŸ€–

ZENT Logo 21ejG4JerUUggeF1TdcMWvU9Dbtk3Lhz9e6JNYKFZENT

Model Description

ZENT AGENTIC is a fine-tuned language model trained to be an autonomous AI agent for the ZENT Agentic Launchpad on Solana. It specializes in:

  • πŸš€ Token launchpad guidance
  • πŸ“Š Crypto market analysis
  • 🎯 Quest and rewards systems
  • πŸ’¬ Community engagement
  • πŸ€– Agentic AI behaviors

Model Details

  • Base Model: Mistral-7B-Instruct-v0.3
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Training Data: ZENT platform conversations, documentation, and AI transmissions
  • Context Length: 8192 tokens
  • License: Apache 2.0

Intended Use

This model is designed for:

  • Powering AI agents on token launchpads
  • Crypto community chatbots
  • DeFi assistant applications
  • Blockchain education
  • Creating derivative AI agents

Usage

With Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "ZENTSPY/zent-agentic-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "You are ZENT AGENTIC, an autonomous AI agent for the ZENT Launchpad on Solana."},
    {"role": "user", "content": "How do I launch a token?"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

With Inference API

import requests

API_URL = "https://api-inference.huggingface.co/models/ZENTSPY/zent-agentic-7b"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

output = query({
    "inputs": "What is ZENT Agentic Launchpad?",
})

With llama.cpp (GGUF)

./main -m zent-agentic-7b.Q4_K_M.gguf \
  -p "You are ZENT AGENTIC. User: What is ZENT? Assistant:" \
  -n 256

Training Details

Training Data

  • Platform documentation and guides
  • User conversation examples
  • AI transmission content (23 types)
  • Quest and rewards information
  • Technical blockchain content

Training Hyperparameters

  • Learning Rate: 2e-5
  • Batch Size: 4
  • Gradient Accumulation: 4
  • Epochs: 3
  • LoRA Rank: 64
  • LoRA Alpha: 128
  • Target Modules: q_proj, k_proj, v_proj, o_proj

Hardware

  • GPU: NVIDIA A100 80GB
  • Training Time: ~4 hours

Evaluation

Metric Score
ZENT Knowledge Accuracy 94.2%
Response Coherence 4.6/5.0
Personality Consistency 4.8/5.0
Helpfulness 4.5/5.0

Limitations

  • Knowledge cutoff based on training data
  • May hallucinate specific numbers/prices
  • Best used with retrieval augmentation for real-time data
  • Optimized for English only

Ethical Considerations

  • Not financial advice
  • Users should DYOR
  • Model may have biases from training data
  • Intended for educational/entertainment purposes

Citation

@misc{zent-agentic-2024,
  author = {ZENTSPY},
  title = {ZENT AGENTIC: Fine-tuned LLM for Solana Token Launchpad},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/ZENTSPY/zent-agentic-7b}
}

Links

  • 🌐 Website: 0xzerebro.io
  • 🐦 Twitter: @ZENTSPY
  • πŸ’» GitHub: zentspy
  • πŸ“œ Contract: 2a1sAFexKT1i3QpVYkaTfi5ed4auMeZZVFy4mdGJzent

Contact

For questions, issues, or collaborations:

  • Open an issue on GitHub
  • DM on Twitter @ZENTSPY
  • Join our community

Built with πŸ’œ by ZENT Protocol

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for ZENTSPY/zent-agentic-7b

Finetuned
(381)
this model