π§ ASL Sign Language Detection with CNN (Conv1D)
Model ini dikembangkan untuk mendeteksi huruf American Sign Language (ASL) dari koordinat tangan (landmark) secara real-time menggunakan CNN (Convolutional Neural Network).
π Deskripsi
- Input: 63 fitur (x, y, z) dari 21 titik tangan yang diekstraksi dengan MediaPipe Hands
- Model: CNN dengan
Conv1D, dilatih menggunakan TensorFlow - Dataset: ASL Alphabet (87.000+ gambar, 29 kelas)
ποΈ Training
Epoch 27/50
accuracy: 98.80% - val_accuracy: 98.78% - loss: 0.0386 - val_loss: 0.0636
π Evaluasi Model
- Akurasi Uji: 98.92%
- Total dataset : 63.676 sampel
- Jumlah data latih : 50.940 sampel
- Jumlah data uji : 12.736 sampel
π Classification Report
| Label | Precision | Recall | F1-score | Support |
|---|---|---|---|---|
| A | 0.98 | 1.00 | 0.99 | 437 |
| B | 1.00 | 1.00 | 1.00 | 441 |
| C | 1.00 | 1.00 | 1.00 | 398 |
| D | 0.99 | 0.99 | 0.99 | 493 |
| E | 1.00 | 0.99 | 0.99 | 462 |
| F | 1.00 | 0.99 | 1.00 | 575 |
| G | 0.99 | 0.99 | 0.99 | 488 |
| H | 0.99 | 0.99 | 0.99 | 479 |
| I | 0.99 | 0.99 | 0.99 | 477 |
| J | 0.99 | 0.99 | 0.99 | 516 |
| K | 1.00 | 0.99 | 0.99 | 540 |
| L | 1.00 | 1.00 | 1.00 | 505 |
| M | 0.96 | 0.93 | 0.94 | 313 |
| N | 0.91 | 0.96 | 0.94 | 255 |
| O | 0.98 | 0.99 | 0.99 | 453 |
| P | 1.00 | 0.99 | 1.00 | 408 |
| Q | 0.99 | 1.00 | 0.99 | 419 |
| R | 1.00 | 0.97 | 0.98 | 508 |
| S | 0.99 | 0.99 | 0.99 | 510 |
| T | 1.00 | 0.99 | 0.99 | 470 |
| U | 0.96 | 0.99 | 0.98 | 503 |
| V | 0.99 | 1.00 | 0.99 | 510 |
| W | 0.99 | 0.98 | 0.98 | 491 |
| X | 0.99 | 0.99 | 0.99 | 432 |
| Y | 1.00 | 1.00 | 1.00 | 517 |
| Z | 0.99 | 0.99 | 0.99 | 470 |
| DEL | 0.98 | 0.99 | 0.99 | 340 |
| NOTHING | 0.00 | 0.00 | 0.00 | 1 |
| SPACE | 0.98 | 0.99 | 0.99 | 325 |
| Accuracy | 0.99 | 12736 | ||
| Macro Avg | 0.95 | 0.95 | 0.95 | 12736 |
| Weighted Avg | 0.99 | 0.99 | 0.99 | 12736 |
Note: Label "NOTHING" memiliki support sangat kecil (1 sampel), sehingga metriknya tidak signifikan.
π¦ Dependencies
- TensorFlow
- MediaPipe
- scikit-learn
- NumPy
πΉ Demo
Model ini bisa digunakan untuk prediksi real-time langsung dari webcam di browser setelah dikonversi ke TensorFlow.js.
π€ Penulis
- Ade Maulana
- IG: @ademaulana_
- TikTok: @ademaulana_4
π License
MIT License
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support