Multi-Agent Router (Fine-tuned FunctionGemma 270M)
📋 Model Description
This model is a fine-tuned version of Google's FunctionGemma 270M specifically trained for intelligent routing in multi-agent customer support systems. It learns to:
- Classify user intent from natural language queries
- Route to the appropriate specialist agent
- Extract relevant parameters (priority, urgency, category)
🤖 Supported Agents
The model routes queries to three specialized agents:
| Agent | Handles | Parameters |
|---|---|---|
| 🔧 Technical Support | Crashes, bugs, API errors, authentication issues | issue_type, priority |
| 💰 Billing | Payments, refunds, subscriptions, invoices | request_type, urgency |
| 📊 Product Info | Features, integrations, plans, compliance | query_type, category |
🎯 Training Details
Base Model
- Model:
google/functiongemma-270m-it - Parameters: 270 Million
- Architecture: Gemma with function calling capabilities
Fine-tuning Configuration
- Training Samples: 92
- Test Samples: 23
- Epochs: 15
- Batch Size: 4
- Learning Rate: 5e-05
- GPU: NVIDIA T4 (Google Colab Free Tier)
- Training Time: ~5-8 minutes
Dataset
Fine-tuned on bhaiyahnsingh45/multiagent-router-finetuning containing 85 realistic customer support queries across three categories.
📊 Performance
| Metric | Before Training | After Training | Improvement |
|---|---|---|---|
| Accuracy | 4.3% | 82.6% | +78.3% |
| Correct Predictions | 1/23 | 19/23 | +18 |
Per-Agent Performance
- Technical Support: High accuracy on crash reports, API errors, authentication issues
- Billing: Excellent routing for refunds, payments, subscription management
- Product Info: Strong performance on feature queries, integrations, compliance questions
🚀 Quick Start
Installation
pip install transformers torch
Basic Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import json
# Load model and tokenizer
model_name = "bhaiyahnsingh45/functiongemma-multiagent-router"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype="auto"
)
# Define your agent tools
from transformers.utils import get_json_schema
def technical_support_agent(issue_type: str, priority: str) -> str:
"""
Routes technical issues to specialized support team.
Args:
issue_type: Type of technical issue (crash, authentication, performance, api_error, etc.)
priority: Priority level (low, medium, high)
"""
return f"Routing to Technical Support: {issue_type} with {priority} priority"
def billing_agent(request_type: str, urgency: str) -> str:
"""
Routes billing and payment queries.
Args:
request_type: Type of request (refund, invoice, upgrade, cancellation, etc.)
urgency: How urgent (low, medium, high)
"""
return f"Routing to Billing: {request_type} with {urgency} urgency"
def product_info_agent(query_type: str, category: str) -> str:
"""
Routes product information queries.
Args:
query_type: Type of query (features, comparison, integrations, limits, etc.)
category: Category (plans, storage, mobile, security, etc.)
"""
return f"Routing to Product Info: {query_type} about {category}"
# Get tool schemas
AGENT_TOOLS = [
get_json_schema(technical_support_agent),
get_json_schema(billing_agent),
get_json_schema(product_info_agent)
]
# System message
SYSTEM_MSG = "You are an intelligent routing agent that directs customer queries to the appropriate specialized agent."
# Function to route queries
def route_query(user_query: str):
"""Route a user query to the appropriate agent"""
messages = [
{"role": "developer", "content": SYSTEM_MSG},
{"role": "user", "content": user_query}
]
# Format prompt
inputs = tokenizer.apply_chat_template(
messages,
tools=AGENT_TOOLS,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
# Generate
outputs = model.generate(
**inputs.to(model.device),
max_new_tokens=128,
pad_token_id=tokenizer.eos_token_id
)
# Decode
result = tokenizer.decode(
outputs[0][len(inputs["input_ids"][0]):],
skip_special_tokens=False
)
return result
# Example usage
query = "My app crashes when I try to upload large files"
result = route_query(query)
print(f"Query: {query}")
print(f"Routing: {result}")
Expected Output Format
<start_function_call>call:technical_support_agent{issue_type:crash,priority:high}<end_function_call>
💡 Usage Examples
Example 1: Technical Issue
query = "I'm getting a 500 error when calling the API"
result = route_query(query)
# Output: technical_support_agent(issue_type="api_error", priority="high")
Example 2: Billing Request
query = "I need a refund for my annual subscription"
result = route_query(query)
# Output: billing_agent(request_type="refund", urgency="medium")
Example 3: Product Question
query = "What integrations do you support for project management?"
result = route_query(query)
# Output: product_info_agent(query_type="integrations", category="project_management")
🔧 Advanced Usage: Parse Function Calls
def parse_function_call(output: str) -> dict:
"""Extract function name and arguments from model output"""
pattern = r'<start_function_call>call:(\w+)\{([^}]+)\}<end_function_call>'
match = re.search(pattern, output)
if match:
func_name = match.group(1)
params_str = match.group(2)
# Parse parameters
params = {}
param_pattern = r'(\w+):(?:<escape>(.*?)<escape>|([^,{}]+))'
for p_match in re.finditer(param_pattern, params_str):
key = p_match.group(1)
val = p_match.group(2) or p_match.group(3).strip()
params[key] = val
return {
"agent": func_name,
"parameters": params
}
return {"agent": "unknown", "parameters": {}}
# Use it
query = "I was charged twice this month"
result = route_query(query)
parsed = parse_function_call(result)
print(parsed)
# Output: {'agent': 'billing_agent', 'parameters': {'request_type': 'dispute', 'urgency': 'high'}}
🏗️ Integration Example
class MultiAgentRouter:
def __init__(self, model_name: str):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype="auto"
)
self.system_msg = "You are an intelligent routing agent..."
def route(self, query: str) -> dict:
"""Route query and return agent + parameters"""
messages = [
{"role": "developer", "content": self.system_msg},
{"role": "user", "content": query}
]
inputs = self.tokenizer.apply_chat_template(
messages,
tools=AGENT_TOOLS,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
outputs = self.model.generate(
**inputs.to(self.model.device),
max_new_tokens=128,
pad_token_id=self.tokenizer.eos_token_id
)
result = self.tokenizer.decode(
outputs[0][len(inputs["input_ids"][0]):],
skip_special_tokens=False
)
return parse_function_call(result)
# Usage
router = MultiAgentRouter("bhaiyahnsingh45/functiongemma-multiagent-router")
routing = router.route("My payment failed but I don't know why")
print(f"Route to: {routing['agent']}")
print(f"Parameters: {routing['parameters']}")
📈 Evaluation
The model was evaluated on a held-out test set of 23 queries:
- Routing Accuracy: 82.6%
- False Positive Rate: 17.4%
- Average Inference Time: ~50ms on T4 GPU
⚠️ Limitations
- Language: Currently supports English only
- Domain: Optimized for customer support; may need fine-tuning for other domains
- Agents: Limited to 3 agent types (can be extended with additional training)
- Context: Works best with single-turn queries; multi-turn conversations may need context handling
- Edge Cases: Ambiguous queries may require fallback logic
🔮 Future Improvements
- Add support for more languages
- Expand to 5+ agent types (sales, feedback, onboarding)
- Handle multi-turn conversations
- Add confidence scores for routing decisions
- Support for compound queries requiring multiple agents
📝 Citation
@misc{functiongemma_multiagent_router,
author = {Bhaiya Singh},
title = {Multi-Agent Router: Fine-tuned FunctionGemma for Customer Support},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/bhaiyahnsingh45/functiongemma-multiagent-router}}
}
📄 License
This model inherits the Gemma License from the base model.
🙏 Acknowledgments
- Base model: google/functiongemma-270m-it
- Training framework: Hugging Face TRL
- Dataset: bhaiyahnsingh45/multiagent-router-finetuning
📧 Contact
For questions, issues, or collaboration opportunities:
- Open an issue on the model repository
- Dataset issues: dataset repository
Built with ❤️ using FunctionGemma and Hugging Face Transformers
- Downloads last month
- 104
Model tree for bhaiyahnsingh45/functiongemma-multiagent-router
Base model
google/functiongemma-270m-it