DEIMv2 - Real-Time Object Detection Meets DINOv3

Pre-trained DEIMv2 models with PyTorch checkpoints, ONNX exports, and TensorRT FP16 engines.

Model Zoo

Model AP Params GFLOPs Checkpoint ONNX TensorRT
Atto 23.8 0.5M 0.8 βœ… βœ… βœ…
Femto 31.0 1.0M 1.7 βœ… βœ… βœ…
Pico 38.5 1.5M 5.2 βœ… βœ… βœ…
N 43.0 3.6M 6.8 βœ… βœ… βœ…
S 50.9 9.7M 25.6 βœ… βœ… βœ…
M 53.0 18.1M 52.2 βœ… βœ… βœ…
L 56.0 32.2M 96.7 βœ… βœ… βœ…
X 57.8 50.3M 151.6 βœ… βœ… βœ…

Files

  • *.pth - PyTorch checkpoints (EMA weights)
  • *.onnx - ONNX models (opset 17, dynamic batch)
  • *.engine - TensorRT FP16 engines (built on RTX 4090, TensorRT 10.14)

Input Shapes

Model Input Size
Atto 320x320
Femto 416x416
Pico, N, S, M, L, X 640x640

Usage

PyTorch

from huggingface_hub import hf_hub_download
import torch

# Download checkpoint
ckpt_path = hf_hub_download("carpedm20/DEIMv2", "deimv2_dinov3_s_coco.pth")
checkpoint = torch.load(ckpt_path, map_location='cpu')
state_dict = checkpoint['ema']['module']

ONNX Runtime

import onnxruntime as ort
from huggingface_hub import hf_hub_download

onnx_path = hf_hub_download("carpedm20/DEIMv2", "deimv2_dinov3_s_coco.onnx")
session = ort.InferenceSession(onnx_path)

TensorRT

import tensorrt as trt
from huggingface_hub import hf_hub_download

engine_path = hf_hub_download("carpedm20/DEIMv2", "deimv2_dinov3_s_coco.engine")
# Load engine with TensorRT runtime

Citation

@article{huang2025deimv2,
  title={Real-Time Object Detection Meets DINOv3},
  author={Huang, Shihua and Hou, Yongjie and Liu, Longfei and Yu, Xuanlong and Shen, Xi},
  journal={arXiv},
  year={2025}
}

License

Apache 2.0 - See DEIMv2 GitHub for details.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support