image
imagewidth (px) 768
768
| mask
imagewidth (px) 768
768
| image_id
stringlengths 11
11
|
|---|---|---|
IR_Case_011
|
||
IR_Case_017
|
||
IR_Case_019
|
||
IR_Case_020
|
||
IR_Case_021
|
||
IR_Case_022
|
||
IR_Case_023
|
||
IR_Case_026
|
||
IR_Case_034
|
||
IR_Case_035
|
||
IR_Case_036
|
||
IR_Case_038
|
||
IR_Case_040
|
||
IR_Case_041
|
||
IR_Case_043
|
||
IR_Case_044
|
||
IR_Case_049
|
||
IR_Case_051
|
||
IR_Case_052
|
||
IR_Case_053
|
||
IR_Case_055
|
||
IR_Case_056
|
||
IR_Case_058
|
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
RAVIR Dataset
RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging.
Dataset Information
- Modality: Infrared (815nm) Scanning Laser Ophthalmoscopy (SLO)
- Image Size: 768×768 pixels
- Format: PNG
- Camera: Heidelberg Spectralis with 30° FOV
- Pixel Resolution: 12.5 microns per pixel
Classes
- 0: Background
- 128: Arteries
- 256: Veins (stored as 255 in uint8)
Splits
- Train: 23 images with segmentation masks
- Test: 19 images (masks withheld for challenge evaluation)
Citation
@article{hatamizadeh2022ravir,
title={RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging},
author={Hatamizadeh, Ali and Hosseini, Hamid and Patel, Niraj and Choi, Jinseo and Pole, Cameron and Hoeferlin, Cory and Schwartz, Steven and Terzopoulos, Demetri},
journal={IEEE Journal of Biomedical and Health Informatics},
year={2022},
publisher={IEEE}
}
License
CC BY-NC-SA 4.0 (Non-commercial use only)
Links
- Downloads last month
- 8