image
imagewidth (px) 85
4k
| label
class label 18
classes |
|---|---|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
|
0advertisement
|
π§ͺ Multimodal Benchmark
This repository provides a benchmark suite for evaluating Multimodal Large Language Models (MLLMs) across a variety of visual-language tasks.
π Directory Structure
/data
This folder contains all benchmark images and task-specific JSON files. Each JSON file defines the input and expected output format for a given task.
/run
This folder includes example scripts that demonstrate how to run different MLLMs on the benchmark tasks.
π Result Collection
After inference, all task JSON outputs should be merged into a single file named result.json.
Each entry in result.json includes a response field that stores the model's prediction.
π Evaluation
The predictions stored in result.json can be evaluated using metric.py.
This script computes performance metrics by comparing the predicted responses with the reference answers.
π‘ Ad Understanding Task
The Ad Understanding task requires an additional LLM-based preprocessing step before evaluation.
An example of deploying a language model for this purpose is provided in gpt_judge.py.
- Downloads last month
- 1,626