Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
The dataset viewer is not available for this split.
The number of columns (30166) exceeds the maximum supported number of columns (1000). This is a current limitation of the datasets viewer. You can reduce the number of columns if you want the viewer to work.
Error code:   TooManyColumnsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

GSE208154 – Complete Cell Atlas of Aging C. elegans

πŸ“„ Description

This dataset provides a comprehensive single-cell RNA sequencing (scRNA-seq) profile of C. elegans across six adult time points. It is a highly curated developmental and aging atlas, useful for longevity, developmental biology, and transcriptomic studies.

πŸ“Š Dataset Summary

  • Species: Caenorhabditis elegans
  • Type: Single-cell RNA-seq (scRNA-seq)
  • Samples: 11 GSM samples from GEO
  • Format:
    • GSE208154_expression_sparse.parquet: Sparse gene expression matrix
    • GSE208154_metadata.parquet: Cell metadata

πŸ“ Files Included

  • GSE208154_expression_sparse.parquet
  • GSE208154_metadata.parquet

πŸ“₯ How to Load

import scipy.sparse
import pandas as pd

# Load expression matrix
X = scipy.sparse.load_npz("GSE208154_expression_sparse.parquet")

# Load metadata
metadata = pd.read_parquet("GSE208154_metadata.parquet")

πŸ’‘ Use Cases

  • Aging research in model organisms
  • Cell type classification and developmental biology
  • Benchmarking unsupervised and supervised learning on scRNA-seq data
  • Pseudotime or trajectory inference studies

πŸ“š Citation

If you use this dataset, please cite:

Lipinszki, Z., et al. (2022). A complete single-cell transcriptomic atlas of aging C. elegans. Nature Aging, DOI: 10.1038/s43587-022-00217-x

πŸ™ Acknowledgments

We thank Calico Life Sciences for generating and sharing this valuable resource and NCBI GEO for providing public access.

Curated and converted by Iris Lee-participant of the Longevity Hackathon 2025.

Downloads last month
6