danceability
float64 | energy
float64 | key
int64 | loudness
float64 | mode
int64 | speechiness
float64 | acousticness
float64 | instrumentalness
float64 | liveness
float64 | valence
float64 | tempo
float64 | duration_ms
int64 | time_signature
int64 | liked
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.803
| 0.624
| 7
| -6.764
| 0
| 0.0477
| 0.451
| 0.000734
| 0.1
| 0.628
| 95.968
| 304,524
| 4
| 0
|
0.762
| 0.703
| 10
| -7.951
| 0
| 0.306
| 0.206
| 0
| 0.0912
| 0.519
| 151.329
| 247,178
| 4
| 1
|
0.261
| 0.0149
| 1
| -27.528
| 1
| 0.0419
| 0.992
| 0.897
| 0.102
| 0.0382
| 75.296
| 286,987
| 4
| 0
|
0.722
| 0.736
| 3
| -6.994
| 0
| 0.0585
| 0.431
| 0.000001
| 0.123
| 0.582
| 89.86
| 208,920
| 4
| 1
|
0.787
| 0.572
| 1
| -7.516
| 1
| 0.222
| 0.145
| 0
| 0.0753
| 0.647
| 155.117
| 179,413
| 4
| 1
|
0.778
| 0.632
| 8
| -6.415
| 1
| 0.125
| 0.0404
| 0
| 0.0912
| 0.827
| 140.951
| 224,029
| 4
| 1
|
0.666
| 0.589
| 0
| -8.405
| 0
| 0.324
| 0.555
| 0
| 0.114
| 0.776
| 74.974
| 146,053
| 4
| 1
|
0.922
| 0.712
| 7
| -6.024
| 1
| 0.171
| 0.0779
| 0.00004
| 0.175
| 0.904
| 104.964
| 161,800
| 4
| 1
|
0.794
| 0.659
| 7
| -7.063
| 0
| 0.0498
| 0.143
| 0.00224
| 0.0944
| 0.308
| 112.019
| 247,460
| 4
| 0
|
0.853
| 0.668
| 3
| -6.995
| 1
| 0.447
| 0.263
| 0
| 0.104
| 0.745
| 157.995
| 165,363
| 4
| 1
|
0.297
| 0.993
| 9
| -7.173
| 1
| 0.118
| 0.000057
| 0.77
| 0.0766
| 0.178
| 127.693
| 182,427
| 4
| 0
|
0.816
| 0.433
| 1
| -9.19
| 1
| 0.241
| 0.00471
| 0
| 0.132
| 0.676
| 147.942
| 225,000
| 4
| 1
|
0.297
| 0.973
| 1
| -4.505
| 1
| 0.151
| 0.00146
| 0.918
| 0.139
| 0.234
| 102.757
| 170,520
| 4
| 0
|
0.564
| 0.743
| 6
| -5.782
| 1
| 0.22
| 0.584
| 0
| 0.101
| 0.191
| 168.849
| 185,667
| 4
| 1
|
0.64
| 0.957
| 8
| -2.336
| 1
| 0.0741
| 0.0431
| 0
| 0.0789
| 0.692
| 134.992
| 178,013
| 4
| 1
|
0.684
| 0.64
| 5
| -9.906
| 0
| 0.0309
| 0.221
| 0.0102
| 0.179
| 0.777
| 106.023
| 234,267
| 4
| 0
|
0.85
| 0.853
| 8
| -5.65
| 1
| 0.123
| 0.0155
| 0
| 0.105
| 0.734
| 142.03
| 136,901
| 4
| 1
|
0.745
| 0.456
| 8
| -9.482
| 1
| 0.0874
| 0.44
| 0
| 0.072
| 0.124
| 94.032
| 314,367
| 4
| 0
|
0.754
| 0.475
| 1
| -10.889
| 1
| 0.154
| 0.523
| 0
| 0.113
| 0.235
| 117.006
| 201,384
| 4
| 1
|
0.797
| 0.852
| 8
| -5.202
| 1
| 0.241
| 0.0555
| 0.000025
| 0.0536
| 0.48
| 136.035
| 102,353
| 4
| 1
|
0.798
| 0.835
| 9
| -3.832
| 1
| 0.202
| 0.165
| 0
| 0.112
| 0.609
| 150.04
| 139,240
| 4
| 1
|
0.438
| 0.0825
| 9
| -21.686
| 0
| 0.0695
| 0.983
| 0.0749
| 0.0461
| 0.37
| 106.275
| 270,000
| 5
| 0
|
0.802
| 0.549
| 5
| -8.6
| 0
| 0.0631
| 0.268
| 0.00496
| 0.0984
| 0.498
| 138.984
| 184,627
| 4
| 1
|
0.6
| 0.535
| 4
| -12.028
| 1
| 0.376
| 0.274
| 0
| 0.0984
| 0.205
| 180.036
| 176,000
| 3
| 1
|
0.729
| 0.533
| 9
| -10.104
| 0
| 0.444
| 0.747
| 0.000005
| 0.0848
| 0.422
| 155.999
| 225,953
| 4
| 0
|
0.867
| 0.457
| 1
| -7.908
| 1
| 0.237
| 0.0987
| 0
| 0.0967
| 0.193
| 101.052
| 210,733
| 4
| 1
|
0.65
| 0.545
| 4
| -7.712
| 0
| 0.0514
| 0.271
| 0.000007
| 0.102
| 0.113
| 76.503
| 240,924
| 4
| 1
|
0.809
| 0.574
| 5
| -8.546
| 0
| 0.385
| 0.4
| 0
| 0.105
| 0.756
| 151.974
| 185,493
| 4
| 1
|
0.749
| 0.839
| 6
| -4.847
| 1
| 0.297
| 0.0867
| 0
| 0.204
| 0.804
| 172.068
| 111,000
| 4
| 1
|
0.657
| 0.333
| 8
| -13.553
| 1
| 0.526
| 0.0608
| 0
| 0.157
| 0.313
| 148.168
| 98,615
| 4
| 1
|
0.689
| 0.68
| 7
| -6.551
| 0
| 0.0774
| 0.392
| 0.000001
| 0.107
| 0.567
| 75.445
| 168,574
| 4
| 1
|
0.668
| 0.459
| 6
| -12.072
| 0
| 0.118
| 0.0499
| 0.000001
| 0.408
| 0.525
| 159.021
| 186,415
| 4
| 1
|
0.291
| 0.98
| 1
| -5.138
| 1
| 0.153
| 0.00127
| 0.091
| 0.102
| 0.257
| 79.792
| 270,920
| 4
| 0
|
0.573
| 0.581
| 10
| -9.026
| 0
| 0.339
| 0.753
| 0.000001
| 0.13
| 0.351
| 76.506
| 169,347
| 4
| 1
|
0.608
| 0.471
| 0
| -8.664
| 1
| 0.0945
| 0.446
| 0.000004
| 0.369
| 0.682
| 70.702
| 165,800
| 3
| 0
|
0.307
| 0.0515
| 4
| -28.493
| 0
| 0.0324
| 0.708
| 0.631
| 0.42
| 0.154
| 128.056
| 125,533
| 4
| 0
|
0.784
| 0.7
| 7
| -7.649
| 0
| 0.108
| 0.491
| 0
| 0.108
| 0.769
| 82.028
| 190,067
| 4
| 0
|
0.448
| 0.97
| 1
| -4.197
| 1
| 0.105
| 0.000428
| 0.912
| 0.376
| 0.381
| 119.215
| 123,880
| 4
| 0
|
0.648
| 0.751
| 8
| -8.582
| 1
| 0.0806
| 0.0182
| 0.000401
| 0.0418
| 0.863
| 100.437
| 244,827
| 4
| 0
|
0.895
| 0.479
| 11
| -9.071
| 0
| 0.273
| 0.208
| 0
| 0.0902
| 0.719
| 146.049
| 134,554
| 4
| 1
|
0.358
| 0.977
| 8
| -8.179
| 0
| 0.0727
| 0.000082
| 0.924
| 0.103
| 0.449
| 137.681
| 194,160
| 4
| 0
|
0.742
| 0.423
| 1
| -9.795
| 0
| 0.108
| 0.832
| 0.00001
| 0.0644
| 0.712
| 75.026
| 194,000
| 4
| 1
|
0.603
| 0.886
| 5
| -3.777
| 0
| 0.0837
| 0.00045
| 0
| 0.26
| 0.395
| 126.025
| 229,933
| 4
| 1
|
0.839
| 0.629
| 3
| -5.663
| 0
| 0.147
| 0.241
| 0
| 0.108
| 0.724
| 94.008
| 207,772
| 4
| 1
|
0.184
| 0.974
| 8
| -6.237
| 0
| 0.106
| 0.000023
| 0.886
| 0.241
| 0.33
| 93.771
| 257,390
| 3
| 0
|
0.373
| 0.98
| 1
| -5.016
| 0
| 0.122
| 0.000319
| 0.906
| 0.105
| 0.34
| 97.346
| 211,947
| 4
| 0
|
0.826
| 0.76
| 11
| -6.382
| 0
| 0.117
| 0.392
| 0
| 0.132
| 0.813
| 99.974
| 216,285
| 4
| 0
|
0.924
| 0.748
| 2
| -3.645
| 1
| 0.188
| 0.174
| 0
| 0.207
| 0.381
| 121.063
| 209,667
| 4
| 1
|
0.267
| 0.0024
| 1
| -42.261
| 0
| 0.0531
| 0.995
| 0.897
| 0.0942
| 0.267
| 71.428
| 397,773
| 4
| 0
|
0.462
| 0.974
| 1
| -5.82
| 1
| 0.0816
| 0.000029
| 0.723
| 0.0751
| 0.399
| 107.877
| 186,576
| 3
| 0
|
0.616
| 0.534
| 10
| -10.264
| 0
| 0.483
| 0.639
| 0
| 0.0844
| 0.556
| 170.054
| 146,480
| 4
| 1
|
0.878
| 0.622
| 2
| -6.995
| 1
| 0.405
| 0.153
| 0
| 0.0917
| 0.638
| 84.991
| 163,765
| 4
| 1
|
0.581
| 0.85
| 5
| -3.45
| 0
| 0.0734
| 0.185
| 0.00046
| 0.149
| 0.357
| 152.018
| 178,809
| 4
| 1
|
0.656
| 0.381
| 0
| -8.757
| 0
| 0.0802
| 0.653
| 0
| 0.116
| 0.166
| 84.907
| 325,556
| 4
| 0
|
0.363
| 0.994
| 8
| -5.781
| 1
| 0.131
| 0.000037
| 0.582
| 0.207
| 0.139
| 108.017
| 247,564
| 4
| 0
|
0.568
| 0.788
| 2
| -7.654
| 1
| 0.069
| 0.191
| 0.000176
| 0.0774
| 0.328
| 139.959
| 219,077
| 4
| 1
|
0.809
| 0.653
| 0
| -7.178
| 0
| 0.306
| 0.335
| 0
| 0.11
| 0.639
| 139.981
| 199,093
| 4
| 1
|
0.757
| 0.451
| 2
| -11.121
| 1
| 0.292
| 0.0485
| 0.000002
| 0.337
| 0.506
| 150.035
| 167,062
| 4
| 1
|
0.364
| 0.00799
| 8
| -33.09
| 1
| 0.0395
| 0.978
| 0.894
| 0.109
| 0.0674
| 101.226
| 216,093
| 4
| 0
|
0.247
| 0.992
| 8
| -7.766
| 0
| 0.0772
| 0.000029
| 0.799
| 0.0808
| 0.318
| 142.891
| 237,093
| 4
| 0
|
0.598
| 0.673
| 2
| -10.431
| 1
| 0.0693
| 0.0422
| 0.000068
| 0.289
| 0.59
| 102.035
| 197,693
| 4
| 0
|
0.826
| 0.556
| 5
| -8.516
| 0
| 0.191
| 0.684
| 0
| 0.119
| 0.591
| 150.067
| 187,006
| 4
| 1
|
0.318
| 0.0633
| 6
| -23.869
| 1
| 0.0507
| 0.992
| 0.871
| 0.0831
| 0.0384
| 129.466
| 199,133
| 3
| 0
|
0.506
| 0.881
| 5
| -5.491
| 0
| 0.108
| 0.000163
| 0.00143
| 0.23
| 0.556
| 148.084
| 187,322
| 4
| 1
|
0.138
| 0.991
| 8
| -5.661
| 1
| 0.175
| 0.000015
| 0.831
| 0.337
| 0.0718
| 94.443
| 244,239
| 1
| 0
|
0.531
| 0.803
| 8
| -3.929
| 0
| 0.339
| 0.325
| 0
| 0.368
| 0.414
| 97.51
| 191,133
| 5
| 1
|
0.791
| 0.5
| 1
| -9.805
| 0
| 0.42
| 0.603
| 0
| 0.0993
| 0.492
| 130.027
| 170,582
| 4
| 1
|
0.68
| 0.877
| 5
| -10.241
| 0
| 0.0353
| 0.191
| 0.000656
| 0.349
| 0.922
| 108.674
| 185,107
| 4
| 0
|
0.752
| 0.468
| 0
| -9.966
| 1
| 0.333
| 0.805
| 0
| 0.136
| 0.716
| 82.795
| 179,253
| 4
| 1
|
0.797
| 0.654
| 8
| -7.373
| 1
| 0.245
| 0.633
| 0
| 0.106
| 0.64
| 145.121
| 172,520
| 4
| 1
|
0.774
| 0.853
| 1
| -6.933
| 1
| 0.246
| 0.0275
| 0
| 0.0876
| 0.619
| 123.041
| 106,000
| 4
| 1
|
0.851
| 0.686
| 11
| -8.143
| 1
| 0.222
| 0.597
| 0.000001
| 0.111
| 0.752
| 154.986
| 195,344
| 4
| 1
|
0.75
| 0.772
| 10
| -8.706
| 0
| 0.157
| 0.206
| 0
| 0.0748
| 0.561
| 139.98
| 224,496
| 4
| 1
|
0.843
| 0.656
| 1
| -11.184
| 1
| 0.0595
| 0.0466
| 0.0187
| 0.169
| 0.931
| 121.112
| 215,653
| 4
| 0
|
0.539
| 0.487
| 1
| -9.653
| 1
| 0.202
| 0.309
| 0
| 0.097
| 0.375
| 169.985
| 186,353
| 4
| 0
|
0.454
| 0.968
| 6
| -6.289
| 1
| 0.0787
| 0.000017
| 0.338
| 0.0472
| 0.535
| 103.965
| 250,262
| 4
| 0
|
0.446
| 0.977
| 10
| -5.036
| 0
| 0.0781
| 0.000535
| 0.472
| 0.105
| 0.339
| 172.059
| 284,400
| 4
| 0
|
0.827
| 0.804
| 9
| -5.846
| 1
| 0.128
| 0.455
| 0.000001
| 0.272
| 0.566
| 146.079
| 178,588
| 4
| 1
|
0.74
| 0.403
| 6
| -9.311
| 0
| 0.0635
| 0.509
| 0.0247
| 0.104
| 0.331
| 138.013
| 173,120
| 4
| 1
|
0.833
| 0.813
| 4
| -5.708
| 0
| 0.29
| 0.244
| 0
| 0.128
| 0.705
| 154.062
| 217,760
| 4
| 1
|
0.789
| 0.84
| 9
| -5.29
| 1
| 0.097
| 0.0309
| 0
| 0.0916
| 0.494
| 136.059
| 84,000
| 4
| 1
|
0.62
| 0.573
| 0
| -11.893
| 1
| 0.0423
| 0.271
| 0
| 0.0607
| 0.897
| 81.548
| 231,333
| 4
| 0
|
0.752
| 0.905
| 11
| -7.015
| 0
| 0.181
| 0.0931
| 0.000739
| 0.355
| 0.521
| 150.991
| 179,107
| 4
| 1
|
0.701
| 0.341
| 1
| -12.26
| 0
| 0.0418
| 0.499
| 0.903
| 0.359
| 0.163
| 105.513
| 151,507
| 3
| 0
|
0.83
| 0.707
| 2
| -5.777
| 1
| 0.277
| 0.167
| 0
| 0.0797
| 0.682
| 146.154
| 190,685
| 4
| 1
|
0.779
| 0.705
| 4
| -7.834
| 0
| 0.0827
| 0.277
| 0
| 0.0804
| 0.228
| 103.048
| 233,597
| 4
| 0
|
0.263
| 0.202
| 1
| -17.687
| 1
| 0.0408
| 0.984
| 0.905
| 0.089
| 0.12
| 71.462
| 545,747
| 4
| 0
|
0.338
| 0.988
| 8
| -7.29
| 0
| 0.0865
| 0.000084
| 0.833
| 0.0377
| 0.449
| 99.046
| 221,960
| 4
| 0
|
0.814
| 0.672
| 9
| -12.068
| 1
| 0.0619
| 0.0435
| 0
| 0.061
| 0.933
| 109.394
| 300,000
| 4
| 0
|
0.78
| 0.551
| 5
| -13.038
| 0
| 0.0625
| 0.0613
| 0.104
| 0.0331
| 0.969
| 126.009
| 491,933
| 4
| 0
|
0.567
| 0.797
| 1
| -3.071
| 0
| 0.2
| 0.392
| 0
| 0.116
| 0.654
| 110.882
| 218,732
| 3
| 1
|
0.651
| 0.811
| 10
| -13.87
| 1
| 0.0318
| 0.0648
| 0.0293
| 0.1
| 0.962
| 112.126
| 186,573
| 4
| 0
|
0.798
| 0.564
| 2
| -5.98
| 1
| 0.047
| 0.23
| 0.000018
| 0.183
| 0.394
| 108.004
| 254,218
| 4
| 0
|
0.798
| 0.746
| 10
| -8.639
| 1
| 0.0313
| 0.0304
| 0.361
| 0.0703
| 0.965
| 128.553
| 655,213
| 4
| 0
|
0.908
| 0.61
| 9
| -5.735
| 1
| 0.271
| 0.213
| 0.000034
| 0.241
| 0.443
| 140.006
| 197,613
| 4
| 1
|
0.783
| 0.836
| 0
| -9.223
| 0
| 0.0486
| 0.396
| 0.0236
| 0.135
| 0.831
| 108.966
| 222,667
| 4
| 0
|
0.83
| 0.612
| 10
| -7.446
| 0
| 0.079
| 0.112
| 0
| 0.0892
| 0.252
| 97.989
| 243,956
| 4
| 1
|
0.832
| 0.553
| 7
| -13.705
| 1
| 0.0487
| 0.0422
| 0.00356
| 0.249
| 0.89
| 119.825
| 215,693
| 4
| 0
|
0.764
| 0.812
| 7
| -4.946
| 1
| 0.179
| 0.202
| 0
| 0.126
| 0.742
| 139.961
| 194,973
| 4
| 1
|
0.901
| 0.939
| 6
| -2.762
| 1
| 0.274
| 0.117
| 0
| 0.0643
| 0.805
| 142.948
| 356,347
| 4
| 1
|
π΅ Music Feature Dataset Analysis
This repository contains a comprehensive exploratory data analysis (EDA) on a music features dataset. The primary objective is to understand the patterns in audio features and analyze how they relate to user preferences, providing insights for music recommendation systems and user profiling.
π₯ Dataset Overview
The dataset (data.csv) contains audio features extracted from music tracks along with user preference scores. This rich collection of acoustic and musical attributes enables deep analysis of what makes music appealing to listeners.
Total songs: 195
Format: CSV (data.csv)
Source: Spotify API
Target column: liked (1 = liked, 0 = disliked)
Data type: Tabular
Licensing: For academic and personal research use (derived from Spotify API)
πΌ Features Description
| Feature | Description | Data Type | Range/Values |
|---|---|---|---|
danceability |
Measures how suitable a track is for dancing based on rhythm, tempo, and beat strength | Float | 0.0 - 1.0 |
energy |
Intensity and activity level representing loudness, dynamic range, and general entropy | Float | 0.0 - 1.0 |
key |
Musical key using standard Pitch Class notation | Integer | 0 - 11 |
loudness |
Overall loudness measured in decibels (dB) | Float | Typically -60 to 0 |
mode |
Modality of the track (Major = 1, Minor = 0) | Integer | 0, 1 |
speechiness |
Presence of spoken words in a track | Float | 0.0 - 1.0 |
acousticness |
Confidence measure of whether the track is acoustic | Float | 0.0 - 1.0 |
instrumentalness |
Predicts whether a track contains no vocals | Float | 0.0 - 1.0 |
liveness |
Detects the presence of an audience in the recording | Float | 0.0 - 1.0 |
valence |
Musical positiveness conveyed by a track | Float | 0.0 - 1.0 |
tempo |
Overall estimated tempo in beats per minute (BPM) | Float | Usually 50-200+ |
duration_ms |
Track duration in milliseconds | Integer | Positive integers |
time_signature |
Estimated overall time signature | Integer | 3, 4, 5, 7 |
liked |
Target Variable: User preference score | Float | Continuous values |
π EDA Overview: Music Preference Dataset
1οΈβ£ Null Values Check
β The dataset is complete β no missing entries detected.
2οΈβ£ Target Class Breakdown
Liked Tracks (1): 100 entries
Disliked Tracks (0): 95 entries
Total_Liked_and_Disliked_Songs
π’ The class distribution is fairly even β no need for balancing.
3οΈβ£ Feature Types
All input variables are numeric.
The target label liked is a binary flag (0 = dislike, 1 = like).
4οΈβ£ Key Statistical Insights
Higher average values for energy, danceability, and valence are seen in liked songs.
In contrast, acousticness and instrumentalness are more prominent in disliked tracks.
5οΈβ£ Correlation Patterns
π Positive: energy strongly correlates with loudness.
π» Negative: acousticness shows inverse correlation with energy and valence.
6οΈβ£ Recommended Visual Explorations
π Try the following plots to gain deeper insights:
π¦ Boxplots comparing liked vs energy, danceability
π Bar chart for distribution of likes/dislikes
π‘οΈ Heatmap of all feature correlations
π― Scatter plot: energy vs valence, with points colored by liked status
Required Libraries
pandas>=1.3.0
numpy>=1.21.0
matplotlib>=3.4.0
seaborn>=0.11.0
scikit-learn>=1.0.0
π§Ό Data Preprocessing
Our comprehensive preprocessing pipeline includes:
1. Data Quality Assessment
- β Missing value detection and handling
- β Duplicate record identification and removal
- β Data type validation and conversion
- β Outlier detection using statistical methods
π€ ML Use Cases
You can use this dataset to train:
Logistic Regression
Random Forest
K-Nearest Neighbors.
Support Vector Machine.
Artificial Neural Network.
Naive Bayes
Decision Tree.
π Analysis & Visualizations
Pairplot_features_liked
Model_Accuracy_Comparison
Loudness_Distribution_by_Liked_Status
correlation_heatmap
Acousticness_vs_Danceability
π Key Findings
π― Primary Insights
Feature Distributions
- Most audio features follow approximately normal distributions
valenceanddanceabilityshow interesting bimodal patternstempoexhibits a wide range with multiple peaks
Correlation Patterns
- Strong positive correlation between
energy,valence, and user preference (liked) - Moderate correlation between
danceabilityandlikedscores - Weak correlation for categorical features like
keyandmode
- Strong positive correlation between
User Preference Drivers
- Higher
danceabilityβ Higher user preference - Higher
valence(positivity) β Better ratings - Optimal
energylevels correlate with user satisfaction acousticnessshows inverse relationship with preferences
- Higher
π Results
Model Performance Insights
- Features most predictive of user preference:
energy,valence,danceability - Optimal feature ranges for high user satisfaction identified
- Recommendations for music recommendation system development
π Technologies Used
Core Libraries
- Data Manipulation:
pandas,numpy - Visualization:
matplotlib,seaborn,plotly - Statistical Analysis:
scipy,statsmodels - Machine Learning:
scikit-learn
Development Tools
- Environment: Jupyter Lab/Notebook
- Version Control: Git
- Package Management: pip/conda
- Documentation: Markdown
- Downloads last month
- 24





