Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
danceability
float64
energy
float64
key
int64
loudness
float64
mode
int64
speechiness
float64
acousticness
float64
instrumentalness
float64
liveness
float64
valence
float64
tempo
float64
duration_ms
int64
time_signature
int64
liked
int64
0.803
0.624
7
-6.764
0
0.0477
0.451
0.000734
0.1
0.628
95.968
304,524
4
0
0.762
0.703
10
-7.951
0
0.306
0.206
0
0.0912
0.519
151.329
247,178
4
1
0.261
0.0149
1
-27.528
1
0.0419
0.992
0.897
0.102
0.0382
75.296
286,987
4
0
0.722
0.736
3
-6.994
0
0.0585
0.431
0.000001
0.123
0.582
89.86
208,920
4
1
0.787
0.572
1
-7.516
1
0.222
0.145
0
0.0753
0.647
155.117
179,413
4
1
0.778
0.632
8
-6.415
1
0.125
0.0404
0
0.0912
0.827
140.951
224,029
4
1
0.666
0.589
0
-8.405
0
0.324
0.555
0
0.114
0.776
74.974
146,053
4
1
0.922
0.712
7
-6.024
1
0.171
0.0779
0.00004
0.175
0.904
104.964
161,800
4
1
0.794
0.659
7
-7.063
0
0.0498
0.143
0.00224
0.0944
0.308
112.019
247,460
4
0
0.853
0.668
3
-6.995
1
0.447
0.263
0
0.104
0.745
157.995
165,363
4
1
0.297
0.993
9
-7.173
1
0.118
0.000057
0.77
0.0766
0.178
127.693
182,427
4
0
0.816
0.433
1
-9.19
1
0.241
0.00471
0
0.132
0.676
147.942
225,000
4
1
0.297
0.973
1
-4.505
1
0.151
0.00146
0.918
0.139
0.234
102.757
170,520
4
0
0.564
0.743
6
-5.782
1
0.22
0.584
0
0.101
0.191
168.849
185,667
4
1
0.64
0.957
8
-2.336
1
0.0741
0.0431
0
0.0789
0.692
134.992
178,013
4
1
0.684
0.64
5
-9.906
0
0.0309
0.221
0.0102
0.179
0.777
106.023
234,267
4
0
0.85
0.853
8
-5.65
1
0.123
0.0155
0
0.105
0.734
142.03
136,901
4
1
0.745
0.456
8
-9.482
1
0.0874
0.44
0
0.072
0.124
94.032
314,367
4
0
0.754
0.475
1
-10.889
1
0.154
0.523
0
0.113
0.235
117.006
201,384
4
1
0.797
0.852
8
-5.202
1
0.241
0.0555
0.000025
0.0536
0.48
136.035
102,353
4
1
0.798
0.835
9
-3.832
1
0.202
0.165
0
0.112
0.609
150.04
139,240
4
1
0.438
0.0825
9
-21.686
0
0.0695
0.983
0.0749
0.0461
0.37
106.275
270,000
5
0
0.802
0.549
5
-8.6
0
0.0631
0.268
0.00496
0.0984
0.498
138.984
184,627
4
1
0.6
0.535
4
-12.028
1
0.376
0.274
0
0.0984
0.205
180.036
176,000
3
1
0.729
0.533
9
-10.104
0
0.444
0.747
0.000005
0.0848
0.422
155.999
225,953
4
0
0.867
0.457
1
-7.908
1
0.237
0.0987
0
0.0967
0.193
101.052
210,733
4
1
0.65
0.545
4
-7.712
0
0.0514
0.271
0.000007
0.102
0.113
76.503
240,924
4
1
0.809
0.574
5
-8.546
0
0.385
0.4
0
0.105
0.756
151.974
185,493
4
1
0.749
0.839
6
-4.847
1
0.297
0.0867
0
0.204
0.804
172.068
111,000
4
1
0.657
0.333
8
-13.553
1
0.526
0.0608
0
0.157
0.313
148.168
98,615
4
1
0.689
0.68
7
-6.551
0
0.0774
0.392
0.000001
0.107
0.567
75.445
168,574
4
1
0.668
0.459
6
-12.072
0
0.118
0.0499
0.000001
0.408
0.525
159.021
186,415
4
1
0.291
0.98
1
-5.138
1
0.153
0.00127
0.091
0.102
0.257
79.792
270,920
4
0
0.573
0.581
10
-9.026
0
0.339
0.753
0.000001
0.13
0.351
76.506
169,347
4
1
0.608
0.471
0
-8.664
1
0.0945
0.446
0.000004
0.369
0.682
70.702
165,800
3
0
0.307
0.0515
4
-28.493
0
0.0324
0.708
0.631
0.42
0.154
128.056
125,533
4
0
0.784
0.7
7
-7.649
0
0.108
0.491
0
0.108
0.769
82.028
190,067
4
0
0.448
0.97
1
-4.197
1
0.105
0.000428
0.912
0.376
0.381
119.215
123,880
4
0
0.648
0.751
8
-8.582
1
0.0806
0.0182
0.000401
0.0418
0.863
100.437
244,827
4
0
0.895
0.479
11
-9.071
0
0.273
0.208
0
0.0902
0.719
146.049
134,554
4
1
0.358
0.977
8
-8.179
0
0.0727
0.000082
0.924
0.103
0.449
137.681
194,160
4
0
0.742
0.423
1
-9.795
0
0.108
0.832
0.00001
0.0644
0.712
75.026
194,000
4
1
0.603
0.886
5
-3.777
0
0.0837
0.00045
0
0.26
0.395
126.025
229,933
4
1
0.839
0.629
3
-5.663
0
0.147
0.241
0
0.108
0.724
94.008
207,772
4
1
0.184
0.974
8
-6.237
0
0.106
0.000023
0.886
0.241
0.33
93.771
257,390
3
0
0.373
0.98
1
-5.016
0
0.122
0.000319
0.906
0.105
0.34
97.346
211,947
4
0
0.826
0.76
11
-6.382
0
0.117
0.392
0
0.132
0.813
99.974
216,285
4
0
0.924
0.748
2
-3.645
1
0.188
0.174
0
0.207
0.381
121.063
209,667
4
1
0.267
0.0024
1
-42.261
0
0.0531
0.995
0.897
0.0942
0.267
71.428
397,773
4
0
0.462
0.974
1
-5.82
1
0.0816
0.000029
0.723
0.0751
0.399
107.877
186,576
3
0
0.616
0.534
10
-10.264
0
0.483
0.639
0
0.0844
0.556
170.054
146,480
4
1
0.878
0.622
2
-6.995
1
0.405
0.153
0
0.0917
0.638
84.991
163,765
4
1
0.581
0.85
5
-3.45
0
0.0734
0.185
0.00046
0.149
0.357
152.018
178,809
4
1
0.656
0.381
0
-8.757
0
0.0802
0.653
0
0.116
0.166
84.907
325,556
4
0
0.363
0.994
8
-5.781
1
0.131
0.000037
0.582
0.207
0.139
108.017
247,564
4
0
0.568
0.788
2
-7.654
1
0.069
0.191
0.000176
0.0774
0.328
139.959
219,077
4
1
0.809
0.653
0
-7.178
0
0.306
0.335
0
0.11
0.639
139.981
199,093
4
1
0.757
0.451
2
-11.121
1
0.292
0.0485
0.000002
0.337
0.506
150.035
167,062
4
1
0.364
0.00799
8
-33.09
1
0.0395
0.978
0.894
0.109
0.0674
101.226
216,093
4
0
0.247
0.992
8
-7.766
0
0.0772
0.000029
0.799
0.0808
0.318
142.891
237,093
4
0
0.598
0.673
2
-10.431
1
0.0693
0.0422
0.000068
0.289
0.59
102.035
197,693
4
0
0.826
0.556
5
-8.516
0
0.191
0.684
0
0.119
0.591
150.067
187,006
4
1
0.318
0.0633
6
-23.869
1
0.0507
0.992
0.871
0.0831
0.0384
129.466
199,133
3
0
0.506
0.881
5
-5.491
0
0.108
0.000163
0.00143
0.23
0.556
148.084
187,322
4
1
0.138
0.991
8
-5.661
1
0.175
0.000015
0.831
0.337
0.0718
94.443
244,239
1
0
0.531
0.803
8
-3.929
0
0.339
0.325
0
0.368
0.414
97.51
191,133
5
1
0.791
0.5
1
-9.805
0
0.42
0.603
0
0.0993
0.492
130.027
170,582
4
1
0.68
0.877
5
-10.241
0
0.0353
0.191
0.000656
0.349
0.922
108.674
185,107
4
0
0.752
0.468
0
-9.966
1
0.333
0.805
0
0.136
0.716
82.795
179,253
4
1
0.797
0.654
8
-7.373
1
0.245
0.633
0
0.106
0.64
145.121
172,520
4
1
0.774
0.853
1
-6.933
1
0.246
0.0275
0
0.0876
0.619
123.041
106,000
4
1
0.851
0.686
11
-8.143
1
0.222
0.597
0.000001
0.111
0.752
154.986
195,344
4
1
0.75
0.772
10
-8.706
0
0.157
0.206
0
0.0748
0.561
139.98
224,496
4
1
0.843
0.656
1
-11.184
1
0.0595
0.0466
0.0187
0.169
0.931
121.112
215,653
4
0
0.539
0.487
1
-9.653
1
0.202
0.309
0
0.097
0.375
169.985
186,353
4
0
0.454
0.968
6
-6.289
1
0.0787
0.000017
0.338
0.0472
0.535
103.965
250,262
4
0
0.446
0.977
10
-5.036
0
0.0781
0.000535
0.472
0.105
0.339
172.059
284,400
4
0
0.827
0.804
9
-5.846
1
0.128
0.455
0.000001
0.272
0.566
146.079
178,588
4
1
0.74
0.403
6
-9.311
0
0.0635
0.509
0.0247
0.104
0.331
138.013
173,120
4
1
0.833
0.813
4
-5.708
0
0.29
0.244
0
0.128
0.705
154.062
217,760
4
1
0.789
0.84
9
-5.29
1
0.097
0.0309
0
0.0916
0.494
136.059
84,000
4
1
0.62
0.573
0
-11.893
1
0.0423
0.271
0
0.0607
0.897
81.548
231,333
4
0
0.752
0.905
11
-7.015
0
0.181
0.0931
0.000739
0.355
0.521
150.991
179,107
4
1
0.701
0.341
1
-12.26
0
0.0418
0.499
0.903
0.359
0.163
105.513
151,507
3
0
0.83
0.707
2
-5.777
1
0.277
0.167
0
0.0797
0.682
146.154
190,685
4
1
0.779
0.705
4
-7.834
0
0.0827
0.277
0
0.0804
0.228
103.048
233,597
4
0
0.263
0.202
1
-17.687
1
0.0408
0.984
0.905
0.089
0.12
71.462
545,747
4
0
0.338
0.988
8
-7.29
0
0.0865
0.000084
0.833
0.0377
0.449
99.046
221,960
4
0
0.814
0.672
9
-12.068
1
0.0619
0.0435
0
0.061
0.933
109.394
300,000
4
0
0.78
0.551
5
-13.038
0
0.0625
0.0613
0.104
0.0331
0.969
126.009
491,933
4
0
0.567
0.797
1
-3.071
0
0.2
0.392
0
0.116
0.654
110.882
218,732
3
1
0.651
0.811
10
-13.87
1
0.0318
0.0648
0.0293
0.1
0.962
112.126
186,573
4
0
0.798
0.564
2
-5.98
1
0.047
0.23
0.000018
0.183
0.394
108.004
254,218
4
0
0.798
0.746
10
-8.639
1
0.0313
0.0304
0.361
0.0703
0.965
128.553
655,213
4
0
0.908
0.61
9
-5.735
1
0.271
0.213
0.000034
0.241
0.443
140.006
197,613
4
1
0.783
0.836
0
-9.223
0
0.0486
0.396
0.0236
0.135
0.831
108.966
222,667
4
0
0.83
0.612
10
-7.446
0
0.079
0.112
0
0.0892
0.252
97.989
243,956
4
1
0.832
0.553
7
-13.705
1
0.0487
0.0422
0.00356
0.249
0.89
119.825
215,693
4
0
0.764
0.812
7
-4.946
1
0.179
0.202
0
0.126
0.742
139.961
194,973
4
1
0.901
0.939
6
-2.762
1
0.274
0.117
0
0.0643
0.805
142.948
356,347
4
1
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🎡 Music Feature Dataset Analysis

Python Pandas Scikit-learn License

This repository contains a comprehensive exploratory data analysis (EDA) on a music features dataset. The primary objective is to understand the patterns in audio features and analyze how they relate to user preferences, providing insights for music recommendation systems and user profiling.

πŸ“₯ Dataset Overview

The dataset (data.csv) contains audio features extracted from music tracks along with user preference scores. This rich collection of acoustic and musical attributes enables deep analysis of what makes music appealing to listeners.

Total songs: 195

Format: CSV (data.csv)

Source: Spotify API

Target column: liked (1 = liked, 0 = disliked)

Data type: Tabular

Licensing: For academic and personal research use (derived from Spotify API)

🎼 Features Description

Feature Description Data Type Range/Values
danceability Measures how suitable a track is for dancing based on rhythm, tempo, and beat strength Float 0.0 - 1.0
energy Intensity and activity level representing loudness, dynamic range, and general entropy Float 0.0 - 1.0
key Musical key using standard Pitch Class notation Integer 0 - 11
loudness Overall loudness measured in decibels (dB) Float Typically -60 to 0
mode Modality of the track (Major = 1, Minor = 0) Integer 0, 1
speechiness Presence of spoken words in a track Float 0.0 - 1.0
acousticness Confidence measure of whether the track is acoustic Float 0.0 - 1.0
instrumentalness Predicts whether a track contains no vocals Float 0.0 - 1.0
liveness Detects the presence of an audience in the recording Float 0.0 - 1.0
valence Musical positiveness conveyed by a track Float 0.0 - 1.0
tempo Overall estimated tempo in beats per minute (BPM) Float Usually 50-200+
duration_ms Track duration in milliseconds Integer Positive integers
time_signature Estimated overall time signature Integer 3, 4, 5, 7
liked Target Variable: User preference score Float Continuous values

πŸ“Š EDA Overview: Music Preference Dataset

1️⃣ Null Values Check

βœ” The dataset is complete β€” no missing entries detected.

2️⃣ Target Class Breakdown

Liked Tracks (1): 100 entries

Disliked Tracks (0): 95 entries

Total_Liked_and_Disliked_Songs

Total_Liked_and_Disliked_Songs

🟒 The class distribution is fairly even β€” no need for balancing.

3️⃣ Feature Types

All input variables are numeric.

The target label liked is a binary flag (0 = dislike, 1 = like).

4️⃣ Key Statistical Insights

Higher average values for energy, danceability, and valence are seen in liked songs.

In contrast, acousticness and instrumentalness are more prominent in disliked tracks.

5️⃣ Correlation Patterns

πŸ”— Positive: energy strongly correlates with loudness.

πŸ”» Negative: acousticness shows inverse correlation with energy and valence.

6️⃣ Recommended Visual Explorations

πŸ“Œ Try the following plots to gain deeper insights:

πŸ“¦ Boxplots comparing liked vs energy, danceability

πŸ“Š Bar chart for distribution of likes/dislikes

🌑️ Heatmap of all feature correlations

🎯 Scatter plot: energy vs valence, with points colored by liked status

Required Libraries

pandas>=1.3.0
numpy>=1.21.0
matplotlib>=3.4.0
seaborn>=0.11.0
scikit-learn>=1.0.0

🧼 Data Preprocessing

Our comprehensive preprocessing pipeline includes:

1. Data Quality Assessment

  • βœ… Missing value detection and handling
  • βœ… Duplicate record identification and removal
  • βœ… Data type validation and conversion
  • βœ… Outlier detection using statistical methods

πŸ€– ML Use Cases

You can use this dataset to train:

  1. Logistic Regression

  2. Random Forest

  3. K-Nearest Neighbors.

  4. Support Vector Machine.

  5. Artificial Neural Network.

  6. Naive Bayes

  7. Decision Tree.

πŸ“ˆ Analysis & Visualizations

Pairplot_features_liked

Pairplot_features_liked

Model_Accuracy_Comparison

Model_Accuracy_Comparison

Loudness_Distribution_by_Liked_Status

Loudness_Distribution_by_Liked_Status

correlation_heatmap

correlation_heatmap

Acousticness_vs_Danceability

Acousticness_vs_Danceability

πŸ” Key Findings

🎯 Primary Insights

  1. Feature Distributions

    • Most audio features follow approximately normal distributions
    • valence and danceability show interesting bimodal patterns
    • tempo exhibits a wide range with multiple peaks
  2. Correlation Patterns

    • Strong positive correlation between energy, valence, and user preference (liked)
    • Moderate correlation between danceability and liked scores
    • Weak correlation for categorical features like key and mode
  3. User Preference Drivers

    • Higher danceability β†’ Higher user preference
    • Higher valence (positivity) β†’ Better ratings
    • Optimal energy levels correlate with user satisfaction
    • acousticness shows inverse relationship with preferences

πŸ“Š Results

Model Performance Insights

  • Features most predictive of user preference: energy, valence, danceability
  • Optimal feature ranges for high user satisfaction identified
  • Recommendations for music recommendation system development

πŸ›  Technologies Used

Core Libraries

  • Data Manipulation: pandas, numpy
  • Visualization: matplotlib, seaborn, plotly
  • Statistical Analysis: scipy, statsmodels
  • Machine Learning: scikit-learn

Development Tools

  • Environment: Jupyter Lab/Notebook
  • Version Control: Git
  • Package Management: pip/conda
  • Documentation: Markdown
Downloads last month
24