text
stringlengths 7
28.6k
| source
stringlengths 2
131
|
|---|---|
Golden Gate Cloning or Golden Gate assembly is a molecular cloning method that allows a researcher to simultaneously and directionally assemble multiple DNA fragments into a single piece using Type IIS restriction enzymes and T4 DNA ligase. This assembly is performed in vitro. Most commonly used Type IIS enzymes include BsaI, BsmBI, and BbsI
|
Golden Gate Cloning
|
In molecular biology, a guanine tetrad (also known as a G-tetrad or G-quartet) is a structure composed of four guanine bases in a square planar array. They most prominently contribute to the structure of G-quadruplexes, where their hydrogen bonding stabilizes the structure. Usually, there are at least two guanine tetrads in a G-quadruplex, and they often feature Hoogsteen-style hydrogen bonding
|
Guanine tetrad
|
GUIDE-Seq (Genome-wide, Unbiased Identification of DSBs Enabled by Sequencing) is a molecular biology technique that allows for the unbiased in vitro detection of off-target genome editing events in DNA caused by CRISPR/Cas9 as well as other RNA-guided nucleases in living cells. Similar to LAM-PCR, it employs multiple PCRs to amplify regions of interest that contain a specific insert that preferentially integrates into double-stranded breaks. As gene therapy is an emerging field, GUIDE-Seq has gained traction as a cheap method to detect the off-target effects of potential therapeutics without needing whole genome sequencing
|
GUIDE-Seq
|
The GUS reporter system (GUS: β-glucuronidase) is a reporter gene system, particularly useful in plant molecular biology and microbiology. Several kinds of GUS reporter gene assay are available, depending on the substrate used. The term GUS staining refers to the most common of these, a histochemical technique
|
GUS reporter system
|
HaeIII is one of many restriction enzymes (endonucleases) a type of prokaryotic DNA that protects organisms from unknown, foreign DNA. It is a restriction enzyme used in molecular biology laboratories. It was the third endonuclease to be isolated from the Haemophilus aegyptius bacteria
|
HaeIII
|
Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops. During RHR, these hairpin loops repeatedly unfold and refold to change the direction of DNA replication so that replication progresses in a continuous manner back and forth across the genome
|
Rolling hairpin replication
|
Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops. During RHR, these hairpin loops repeatedly unfold and refold to change the direction of DNA replication so that replication progresses in a continuous manner back and forth across the genome
|
Rolling hairpin replication
|
The Henderson limit is the X-ray dose (energy per unit mass) a cryo-cooled crystal can absorb before the diffraction pattern decays to half of its original intensity. Its value is defined as 2 × 107 Gy (J/kg).
Decay of diffraction patterns with increasing X-ray dose
Although the process is still not fully understood, diffraction patterns of crystals typically decay with X-ray exposure due to a number of processes which non-uniformly and irreversibly modify molecules that compose the crystal
|
Henderson limit
|
Heteroduplex analysis (HDA) is a method in biochemistry used to detect point mutations in DNA (Deoxyribonucleic acid) since 1992. Heteroduplexes are dsDNA molecules that have one or more mismatched pairs, on the other hand homoduplexes are dsDNA which are perfectly paired. This method of analysis depend up on the fact that heteroduplexes shows reduced mobility relative to the homoduplex DNA
|
Heteroduplex analysis
|
The Hfq protein (also known as HF-I protein) encoded by the hfq gene was discovered in 1968 as an Escherichia coli host factor that was essential for replication of the bacteriophage Qβ. It is now clear that Hfq is an abundant bacterial RNA binding protein which has many important physiological roles that are usually mediated by interacting with Hfq binding sRNA.
In E
|
Hfq protein
|
The High-performance Integrated Virtual Environment (HIVE) is a distributed computing environment used for healthcare-IT and biological research, including analysis of Next Generation Sequencing (NGS) data, preclinical, clinical and post market data, adverse events, metagenomic data, etc. Currently it is supported and continuously developed by US Food and Drug Administration (government domain), George Washington University (academic domain), and by DNA-HIVE, WHISE-Global and Embleema (commercial domain). HIVE currently operates fully functionally within the US FDA supporting wide variety (+60) of regulatory research and regulatory review projects as well as for supporting MDEpiNet medical device postmarket registries
|
High-performance Integrated Virtual Environment
|
High Resolution Melt (HRM) analysis is a powerful technique in molecular biology for the detection of mutations, polymorphisms and epigenetic differences in double-stranded DNA samples. It was discovered and developed by Idaho Technology and the University of Utah. It has advantages over other genotyping technologies, namely:
It is cost-effective vs
|
High-resolution melting analysis
|
Hin recombinase is a 21kD protein composed of 198 amino acids that is found in the bacteria Salmonella. Hin belongs to the serine recombinase family (B2) of DNA invertases in which it relies on the active site serine to initiate DNA cleavage and recombination. The related protein, gamma-delta resolvase shares high similarity to Hin, of which much structural work has been done, including structures bound to DNA and reaction intermediates
|
Hin recombinase
|
HindIII (pronounced "Hin D Three") is a type II site-specific deoxyribonuclease restriction enzyme isolated from Haemophilus influenzae that cleaves the DNA palindromic sequence AAGCTT in the presence of the cofactor Mg2+ via hydrolysis.
The cleavage of this sequence between the AA's results in 5' overhangs on the DNA called sticky ends:
5'-A |A G C T T-3'
3'-T T C G A| A-5'
Restriction endonucleases are used as defense mechanisms in prokaryotic organisms in the restriction modification system. Their primary function is to protect the host genome against invasion by foreign DNA, primarily bacteriophage DNA
|
HindIII
|
A histone fold is a structurally conserved motif found near the C-terminus in every core histone sequence in a histone octamer responsible for the binding of histones into heterodimers.
The histone fold averages about 70 amino acids and consists of three alpha helices connected by two short, unstructured loops. When not in the presence of DNA, the core histones assemble into head-to-tail intermediates (H3 and H4 first assemble into heterodimers then fuse two heterodimers to form a tetramer, while H2A and H2B form heterodimers) via extensive hydrophobic interactions between each histone fold domain in a "handshake motif"
|
Histone fold
|
In molecular biology, a histone octamer is the eight-protein complex found at the center of a nucleosome core particle. It consists of two copies of each of the four core histone proteins (H2A, H2B, H3, and H4). The octamer assembles when a tetramer, containing two copies of H3 and two of H4, complexes with two H2A/H2B dimers
|
Histone octamer
|
The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthesize them, but do so at very few, or even singular, locations. Repair of the hydrolyzed DNA by the host cell frequently results in the gene encoding the homing endonuclease having been copied into the cleavage site, hence the term 'homing' to describe the movement of these genes
|
Homing endonuclease
|
In genetics, the term horizontal resistance was first used by J. E. Vanderplank to describe many-gene resistance, which is sometimes also called generalized resistance
|
Horizontal resistance
|
The term host cell reactivation or HCR was first used to describe the survival of UV-irradiated bacteriophages, that were transfected to UV-pretreated cells. This phenomenon was first thought to be the result of homologous recombination between both bacteria and phage, but later recognized as enzymatic repair. Modifications of the assay were later developed, using transient expression plasmid DNA vectors on immortalized fibroblasts, and lately on human lymphocytes
|
Host-cell reactivation
|
Hox genes play a massive role in some amphibians and reptiles in their ability to regenerate lost limbs, especially HoxA and HoxD genes. If the processes involved in forming new tissue can be reverse-engineered into humans, it may be possible to heal injuries of the spinal cord or brain, repair damaged organs and reduce scarring and fibrosis after surgery. Despite the large conservation of the Hox genes through evolution, mammals and humans specifically cannot regenerate any of their limbs
|
Hox genes in amphibians and reptiles
|
A human artificial chromosome (HAC) is a microchromosome that can act as a new chromosome in a population of human cells. That is, instead of 46 chromosomes, the cell could have 47 with the 47th being very small, roughly 6–10 megabases (Mb) in size instead of 50–250 Mb for natural chromosomes, and able to carry new genes introduced by human researchers. Ideally, researchers could integrate different genes that perform a variety of functions, including disease defense
|
Human artificial chromosome
|
Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence.
These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community)
|
Human genetic enhancement
|
The human interactome is the set of protein–protein interactions (the interactome) that occur in human cells. The sequencing of reference genomes, in particular the Human Genome Project, has revolutionized human genetics, molecular biology, and clinical medicine. Genome-wide association study results have led to the association of genes with most Mendelian disorders, and over 140 000 germline mutations have been associated with at least one genetic disease
|
Human interactome
|
A hybridization assay comprises any form of quantifiable hybridization i. e. the quantitative annealing of two complementary strands of nucleic acids, known as nucleic acid hybridization
|
Hybridization assay
|
In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA of usually 15–10000 nucleotide long which can be radioactively or fluorescently labeled. HP can be used to detect the presence of nucleotide sequences in analyzed RNA or DNA that are complementary to the sequence in the probe. The labeled probe is first denatured (by heating or under alkaline conditions such as exposure to sodium hydroxide) into single stranded DNA (ssDNA) and then hybridized to the target ssDNA (Southern blotting) or RNA (northern blotting) immobilized on a membrane or in situ
|
Hybridization probe
|
Hydrophilic interaction chromatography (or hydrophilic interaction liquid chromatography, HILIC) is a variant of normal phase liquid chromatography that partly overlaps with other chromatographic applications such as ion chromatography and reversed phase liquid chromatography. HILIC uses hydrophilic stationary phases with reversed-phase type eluents. The name was suggested by Andrew Alpert in his 1990 paper on the subject
|
Hydrophilic interaction chromatography
|
In genetics a hypersensitive site is a short region of chromatin and is detected by its super sensitivity to cleavage by DNase I and other various nucleases (DNase II and micrococcal nucleases). In a hypersensitive site, the nucleosomal structure is less compacted, increasing the availability of the DNA to binding by proteins, such as transcription factors and DNase I. These sites account for many inherited tendencies
|
Hypersensitive site
|
I-CreI is a homing endonuclease whose gene was first discovered in the chloroplast genome of Chlamydomonas reinhardtii, a species of unicellular green algae. It is named for the facts that: it resides in an Intron; it was isolated from Clamydomonas reinhardtii; it was the first (I) such gene isolated from C. reinhardtii
|
I-CreI
|
In systematics, an ideotype is a specimen identified as belonging to a specific taxon by the author of that taxon, but collected from somewhere other than the type locality.
The concept of ideotype in plant breeding was introduced by Donald in 1968 to describe the idealized appearance of a plant variety. It literally means 'a form denoting an idea'
|
Ideotype
|
IMAGE cDNA clones are a collection of DNA vectors containing cDNAs from various organisms including human, mouse, rat, non-human primates, zebrafish, pufferfish, Xenopus (frogs), and cow. Together they represent a more or less complete set of expressed genes from these organisms. IMAGE stands for integrated molecular analysis of genomes and their expression
|
IMAGE cDNA clones
|
Immunoelectrophoresis is a general name for a number of biochemical methods for separation and characterization of proteins based on electrophoresis and reaction with antibodies. All variants of immunoelectrophoresis require immunoglobulins, also known as antibodies, reacting with the proteins to be separated or characterized. The methods were developed and used extensively during the second half of the 20th century
|
Immunoelectrophoresis
|
Immunomagnetic separation (IMS) is a laboratory tool that can efficiently isolate cells out of body fluid or cultured cells. It can also be used as a method of quantifying the pathogenicity of food, blood or feces. DNA analysis have supported the combined use of both this technique and Polymerase Chain Reaction (PCR)
|
Immunomagnetic separation
|
Immunosequencing, sometimes referred to as repertoire sequencing or Rep-Seq, is a method for analyzing the genetic makeup of an individual's immune system.
Background
In most areas of biology a single gene codes for one or a few possible proteins. Through V(D)J recombination a number of organisms take a relatively small number of genes coding for antibodies and T-cell receptors (TCRs) and produce a huge diversity of slightly different antibodies and TCRs
|
Immunosequencing
|
Indel (insertion-deletion) is a molecular biology term for an insertion or deletion of bases in the genome of an organism. Indels ≥ 50 bases in length are classified as structural variants. In coding regions of the genome, unless the length of an indel is a multiple of 3, it will produce a frameshift mutation
|
Indel
|
Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis. Initiation factors can interact with repressors to slow down or prevent translation. They have the ability to interact with activators to help them start or increase the rate of translation
|
Initiation factor
|
In Molecular biology, an insert is a piece of DNA that is inserted into a larger DNA vector by a recombinant DNA technique, such as ligation or recombination. This allows it to be multiplied, selected, further manipulated or expressed in a host organism. Inserts can range from physical nucleotide additions using a technique system or the addition of artificial structures on a molecule via mutagenic chemicals, such as ethidium bromide or crystals
|
Insert (molecular biology)
|
Insertion element (also known as an IS, an insertion sequence element, or an IS element) is a short DNA sequence that acts as a simple transposable element. Insertion sequences have two major characteristics: they are small relative to other transposable elements (generally around 700 to 2500 bp in length) and only code for proteins implicated in the transposition activity (they are thus different from other transposons, which also carry accessory genes such as antibiotic resistance genes). These proteins are usually the transposase which catalyses the enzymatic reaction allowing the IS to move, and also one regulatory protein which either stimulates or inhibits the transposition activity
|
Insertion sequence
|
The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones. When carbohydrates are consumed, digested, and absorbed the pancreas senses the subsequent rise in blood glucose concentration and releases insulin to promote uptake of glucose from the bloodstream
|
Insulin signal transduction pathway
|
In molecular biology, an interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, PPIs; or between small molecules and proteins) but can also describe sets of indirect interactions among genes (genetic interactions). The word "interactome" was originally coined in 1999 by a group of French scientists headed by Bernard Jacq
|
Interactome
|
An intergenic region is a stretch of DNA sequences located between genes. Intergenic regions may contain functional elements and junk DNA. Intergenic regions should not be confused with intragenic regions (or introns), which are non-coding regions that are found within genes, especially within the genes of eukaryotic organisms
|
Intergenic region
|
An internal control region is a sequence of DNA located with the coding region of eukaryotic genes that binds regulatory elements such as activators or repressors. This region can recruit RNA Polymerase or contribute to splicing.
See also
DNA
Gene expression
Gene family
References
Dawkins, Richard (1990)
|
Internal control region
|
The International Molecular Exchange Consortium (IMEx) is a group of the major public providers of molecular interaction data to provide a single, non-redundant set of molecular interactions. Data is captured using a detailed curation model and made available in the PSI-MI standard formats. Participating databases include DIP, IntAct, the Molecular Interaction Database (MINT), MatrixDB, InnateDB, IID, HPIDB, UCL Cardiovascular Gene Annotation, MBInfo, Molecular Connections and UniProt
|
International Molecular Exchange Consortium
|
The International Nucleotide Sequence Database Collaboration (INSDC) consists of a joint effort to collect and disseminate databases containing DNA and RNA sequences. It involves the following computerized databases: NIG's DNA Data Bank of Japan (Japan), NCBI's GenBank (USA) and the EMBL-EBI's European Nucleotide Archive (UK). New and updated data on nucleotide sequences contributed by research teams to each of the three databases are synchronized on a daily basis through continuous interaction between the staff at each the collaborating organizations
|
International Nucleotide Sequence Database Collaboration
|
An interrupted gene (also called a split gene) is a gene that contains expressed regions of DNA called exons, split with unexpressed regions called introns (also called intervening regions). Exons provide instructions for coding proteins, which create mRNA necessary for the synthesis of proteins. Introns are removed by recognition of the donor site (5' end) and the splice acceptor site (3' end)
|
Interrupted gene
|
Intrinsic, or rho-independent termination, is a process in prokaryotes to signal the end of transcription and release the newly constructed RNA molecule. In prokaryotes such as E. coli, transcription is terminated either by a rho-dependent process or rho-independent process
|
Intrinsic termination
|
Intron-encoded endonuclease I-Sce I is a homing endonuclease. The enzyme is used in biotechnology as a meganuclease. It recognises an 18-base pair sequence TAGGGATAACAGGGTAAT and leaves a 4 base pair 3' hydroxyl overhang
|
Intron-encoded endonuclease I-SceI
|
Inverse polymerase chain reaction (Inverse PCR) is a variant of the polymerase chain reaction that is used to amplify DNA with only one known sequence. One limitation of conventional PCR is that it requires primers complementary to both termini of the target DNA, but this method allows PCR to be carried out even if only one sequence is available from which primers may be designed.
Inverse PCR is especially useful for the determination of insert locations
|
Inverse polymerase chain reaction
|
An inverted repeat (or IR) is a single stranded sequence of nucleotides followed downstream by its reverse complement. The intervening sequence of nucleotides between the initial sequence and the reverse complement can be any length including zero. For example, 5'---TTACGnnnnnnCGTAA---3' is an inverted repeat sequence
|
Inverted repeat
|
Ion semiconductor sequencing is a method of DNA sequencing based on the detection of hydrogen ions that are released during the polymerization of DNA. This is a method of "sequencing by synthesis", during which a complementary strand is built based on the sequence of a template strand.
A microwell containing a template DNA strand to be sequenced is flooded with a single species of deoxyribonucleotide triphosphate (dNTP)
|
Ion semiconductor sequencing
|
In genetics, an isochore is a large region of genomic DNA (greater than 300 kilobases) with a high degree of uniformity in GC content; that is, guanine (G) and cytosine (C) bases. The distribution of bases within a genome is non-random: different regions of the genome have different amounts of G-C base pairs, such that regions can be classified and identified by the proportion of G-C base pairs they contain.
Bernardi and colleagues first noticed the compositional non-uniformity of vertebrate genomes using thermal melting and density gradient centrifugation
|
Isochore (genetics)
|
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also used
|
Isoelectric point
|
Isopropyl β-d-1-thiogalactopyranoside (IPTG) is a molecular biology reagent. This compound is a molecular mimic of allolactose, a lactose metabolite that triggers transcription of the lac operon, and it is therefore used to induce protein expression where the gene is under the control of the lac operator.
Mechanism of action
Like allolactose, IPTG binds to the lac repressor and releases the tetrameric repressor from the lac operator in an allosteric manner, thereby allowing the transcription of genes in the lac operon, such as the gene coding for beta-galactosidase, a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides
|
Isopropyl β-D-1-thiogalactopyranoside
|
Isoschizomers are pairs of restriction enzymes specific to the same recognition sequence. For example, SphI (CGTAC/G) and BbuI (CGTAC/G) are isoschizomers of each other. The first enzyme discovered which recognizes a given sequence is known as the prototype; all subsequently identified enzymes that recognize that sequence are isoschizomers
|
Isoschizomer
|
Iterons are directly repeated DNA sequences which play an important role in regulation of plasmid copy number in bacterial cells. It is one among the three negative regulatory elements found in plasmids which control its copy number. The others include antisense RNAs and ctRNAs
|
Iteron
|
John Michael Jumper is a senior research scientist at DeepMind Technologies. Jumper and his colleagues created AlphaFold, an artificial intelligence (AI) model to predict protein structures from their amino acid sequence with high accuracy. Jumper has stated that the AlphaFold team plans to release 100 million protein structures
|
John M. Jumper
|
Jumping libraries or junction-fragment libraries are collections of genomic DNA fragments generated by chromosome jumping. These libraries allow the analysis of large areas of the genome and overcome distance limitations in common cloning techniques.
A jumping library clone is composed of two stretches of DNA that are usually located many kilobases away from each other
|
Jumping library
|
Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops. During RHR, these hairpin loops repeatedly unfold and refold to change the direction of DNA replication so that replication progresses in a continuous manner back and forth across the genome
|
Rolling hairpin replication
|
Kinesin-like protein KIF1C is a protein that in humans is encoded by the KIF1C gene.
Kif1C is a fast, plus-end directed microtubule motor. It takes processive 8nm steps along microtubules and can generate forces of up to 5 pN
|
KIF1C
|
A knockout moss is one kind of genetically modified moss, which are GM plants. One or more of the moss's specific genes are deleted or inactivated ("knocked out"), for example by gene targeting or other methods. After the deletion of a gene, the knockout moss has lost the trait encoded by this gene
|
Knockout moss
|
A lateral flow test (LFT), is an assay also known as a lateral flow device (LFD), lateral flow immunochromatographic assay, or rapid test. It is a simple device intended to detect the presence of a target substance in a liquid sample without the need for specialized and costly equipment. LFTs are widely used in medical diagnostics in the home, at the point of care, and in the laboratory
|
Lateral flow test
|
Lattice models in biophysics represent a class of statistical-mechanical models which consider a biological macromacromolecule (such as DNA, protein, actin, etc. ) as a lattice of units, each unit being in different states or conformations.
For example, DNA in chromatin can be represented as a one-dimensional lattice, whose elementary units are the nucleotide, base pair or nucleosome
|
Lattice model (biophysics)
|
Lexitropsins are members of a family of semi-synthetic DNA-binding ligands. They are structural analogs of the natural antibiotics netropsin and distamycin. Antibiotics of this group can bind in the minor groove of DNA with different sequence-selectivity
|
Lexitropsin
|
In molecular biology, a library is a collection of DNA fragments that is stored and propagated in a population of micro-organisms through the process of molecular cloning. There are different types of DNA libraries, including cDNA libraries (formed from reverse-transcribed RNA), genomic libraries (formed from genomic DNA) and randomized mutant libraries (formed by de novo gene synthesis where alternative nucleotides or codons are incorporated). DNA library technology is a mainstay of current molecular biology, genetic engineering, and protein engineering, and the applications of these libraries depend on the source of the original DNA fragments
|
Library (biology)
|
A Light-oxygen-voltage-sensing domain (LOV domain) is a protein sensor used by a large variety of higher plants, microalgae, fungi and bacteria to sense environmental conditions. In higher plants, they are used to control phototropism, chloroplast relocation, and stomatal opening, whereas in fungal organisms, they are used for adjusting the circadian temporal organization of the cells to the daily and seasonal periods. They are a subset of PAS domains
|
Light-oxygen-voltage-sensing domain
|
LINE1 (also L1 and LINE-1) is a family of related class I transposable elements in the DNA of some organisms, classified with the long interspersed nuclear elements (LINEs). L1 transposons comprise approximately 17% of the human genome. These active L1s can interrupt the genome through insertions, deletions, rearrangements, and copy number variations
|
LINE1
|
Linked-read sequencing, a type of DNA sequencing technology, uses specialized technique that tags DNA molecules with unique barcodes before fragmenting them. Unlike traditional sequencing technology, where DNA is broken into small fragments and then sequenced individually, resulting in short read lengths that has difficulties in accurately reconstructing the original DNA sequence, the unique barcodes of linked-read sequencing allows scientists to link together DNA fragments that come from the same DNA molecule. A pivotal benefit of this technology lies in the small quantities of DNA required for large genome information output, effectively combining the advantages of long-read and short-read technologies
|
Linked-read sequencing
|
Lipofectamine or Lipofectamine 2000 is a common transfection reagent, produced and sold by Invitrogen, used in molecular and cellular biology. It is used to increase the transfection efficiency of RNA (including mRNA and siRNA) or plasmid DNA into in vitro cell cultures by lipofection. Lipofectamine contains lipid subunits that can form liposomes in an aqueous environment, which entrap the transfection payload, e
|
Lipofectamine
|
Long interspersed nuclear elements (LINEs) (also known as long interspersed nucleotide elements or long interspersed elements) are a group of non-LTR (long terminal repeat) retrotransposons that are widespread in the genome of many eukaryotes. LINEs contain an internal Pol II promoter to initiate transcription into mRNA, and encode one or two proteins, ORF1 and ORF2. The functional domains present within ORF1 vary greatly among LINEs, but often exhibit RNA/DNA binding activity
|
Long interspersed nuclear element
|
Loop-mediated isothermal amplification (LAMP) is a single-tube technique for the amplification of DNA and a low-cost alternative to detect certain diseases. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.
LAMP is an isothermal nucleic acid amplification technique
|
Loop-mediated isothermal amplification
|
The term macromolecular assembly (MA) refers to massive chemical structures such as viruses and non-biologic nanoparticles, cellular organelles and membranes and ribosomes, etc. that are complex mixtures of polypeptide, polynucleotide, polysaccharide or other polymeric macromolecules. They are generally of more than one of these types, and the mixtures are defined spatially (i
|
Macromolecular assembly
|
Magnetic-activated cell sorting (MACS) is a method for separation of various cell populations depending on their surface antigens (CD molecules) invented by Miltenyi Biotec. The name MACS is a registered trademark of the company.
The method was developed with Miltenyi Biotec's MACS system, which uses superparamagnetic nanoparticles and columns
|
Magnetic-activated cell sorting
|
Magnetofection is a transfection method that uses magnetic fields to concentrate particles containing vectors to target cells in the body. Magnetofection has been adapted to a variety of vectors, including nucleic acids, non-viral transfection systems, and viruses. This method offers advantages such as high transfection efficiency and biocompatibility which are balanced with limitations
|
Magnetofection
|
In bacterial genetics, the mal regulon is a regulon - or group of genes under common regulation - associated with the catabolism of maltose and maltodextrins. The system is especially well characterized in the model organism Escherichia coli, where it is classically described as a group of ten genes in multiple operons whose expression is regulated by a single regulatory protein, malT. MalT binds to maltose or maltodextrin and undergoes a conformational change that allows it to bind DNA at sequences near the promoters of genes required for uptake and catabolism of these sugars
|
Mal regulon
|
Mammalian-wide interspersed repeats (MIRs) are transposable elements in the genomes of some organisms and belong to the group of Short interspersed nuclear elements (SINEs).
Incidence
MIRs are found in all mammals (including marsupials).
In human
It is estimated that there are around 368,000 MIRs in the human genome
|
Mammalian-wide interspersed repeat
|
MAPseq or Multiplexed Analysis of Projections by Sequencing is a RNA-Seq based method for high-throughput mapping of neuronal projections. It was developed by Anthony M. Zador and his team at Cold Spring Harbor Laboratory and published in Neuron, a Cell Press magazine
|
MAP-Seq
|
Massive parallel signature sequencing (MPSS) is a procedure that is used to identify and quantify mRNA transcripts, resulting in data similar to serial analysis of gene expression (SAGE), although it employs a series of biochemical and sequencing steps that are substantially different.
How it works
MPSS is a method for determining expression levels of mRNA by counting the number of individual mRNA molecules produced by each gene. It is "open ended" in the sense that the identity of the RNAs to be measured are not pre-determined as they are with gene expression microarrays
|
Massively parallel signature sequencing
|
The yeast Saccharomyces cerevisiae is a simple single-celled eukaryote with both a diploid and haploid mode of existence. The mating of yeast only occurs between haploids, which can be either the a or α (alpha) mating type and thus display simple sexual differentiation. Mating type is determined by a single locus, MAT, which in turn governs the sexual behaviour of both haploid and diploid cells
|
Mating of yeast
|
MEGAN ("MEtaGenome ANalyzer") is a computer program that allows optimized analysis of large metagenomic datasets. Metagenomics is the analysis of the genomic sequences from a usually uncultured environmental sample. A large term goal of most metagenomics is to inventory and measure the extent and the role of microbial biodiversity in the ecosystem due to discoveries that the diversity of microbial organisms and viral agents in the environment is far greater than previously estimated
|
MEGAN
|
Methylated DNA immunoprecipitation (MeDIP or mDIP) is a large-scale (chromosome- or genome-wide) purification technique in molecular biology that is used to enrich for methylated DNA sequences. It consists of isolating methylated DNA fragments via an antibody raised against 5-methylcytosine (5mC). This technique was first described by Weber M
|
Methylated DNA immunoprecipitation
|
In molecular biology, methylation induced premeiotically (MIP) is a process by which cytosines within repeated DNA sequences are de novo methylated prior to the sexual cycle. This process was first described in the ascomycete Ascobolus immersens. MIP is dependent upon the gene masc1 which encodes a cytosine methyltransferase-like protein
|
Methylation induced premeiotically
|
The methylcitrate cycle, or the MCC, is the mechanism by which propionyl-CoA is formed, generated by β-oxidation of odd-chain fatty acids, and broken down to its final products, succinate and pyruvate. The methylcitrate cycle is closely related to both the citric acid cycle and the glyoxylate cycle, in that they share substrates, enzymes and products. The methylcitrate cycle functions overall to detoxify bacteria of toxic propionyl-CoA, and plays an essential role in propionate metabolism in bacteria
|
Methylcitrate cycle
|
MG-RAST is an open-source web application server that suggests automatic phylogenetic and functional analysis of metagenomes. It is also one of the biggest repositories for metagenomic data. The name is an abbreviation of Metagenomic Rapid Annotations using Subsystems Technology
|
MG-RAST
|
The Molecular Imaging and Contrast Agent Database or MICAD is a freely accessible online source of information on in vivo molecular imaging agents. It was established as a key component of the "Molecular Libraries and Imaging" program of the NIH Roadmap, a set of major inter-agency initiatives accelerating medical research and the development of new, more specific therapies for a wide range of diseases.
Content
MICAD includes agents developed for imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound, computed tomography, optical imaging, and planar gamma imaging
|
MICAD
|
Microbial dark matter comprises the vast majority of microbial organisms (usually bacteria and archaea) that microbiologists are unable to culture in the laboratory, due to lack of knowledge or ability to supply the required growth conditions. Microbial dark matter is unrelated to the dark matter of physics and cosmology, but is so-called for the difficulty in effectively studying it as a result of its inability to be cultured by current methods. It is difficult to estimate its relative magnitude, but the accepted gross estimate is that as little as one percent of microbial species in a given ecological niche are culturable
|
Microbial dark matter
|
Micrococcal nuclease (EC 3. 1. 31
|
Micrococcal nuclease
|
Microscale thermophoresis (MST) is a technology for the biophysical analysis of interactions between biomolecules. Microscale thermophoresis is based on the detection of a temperature-induced change in fluorescence of a target as a function of the concentration of a non-fluorescent ligand. The observed change in fluorescence is based on two distinct effects
|
Microscale thermophoresis
|
In cell biology, microtubule-associated proteins (MAPs) are proteins that interact with the microtubules of the cellular cytoskeleton. MAPs are integral to the stability of the cell and its internal structures and the transport of components within the cell.
Function
MAPs bind to the tubulin subunits that make up microtubules to regulate their stability
|
Microtubule-associated protein
|
The midbody is a transient structure found in mammalian cells and is present near the end of cytokinesis just prior to the complete separation of the dividing cells. The structure was first described by Walther Flemming in 1891.
Structure
The midbody structure contains bundles of microtubules derived from the mitotic spindle which compacts during the final stages of cell division
|
Midbody (cell biology)
|
Milk fat globule membrane (MFGM) is a complex and unique structure composed primarily of lipids and proteins that surrounds milk fat globule secreted from the milk producing cells of humans and other mammals. It is a source of multiple bioactive compounds, including phospholipids, glycolipids, glycoproteins, and carbohydrates that have important functional roles within the brain and gut.
Preclinical studies have demonstrated effects of MFGM-derived bioactive components on brain structure and function, intestinal development, and immune defense
|
Milk fat globule membrane
|
The Min System is a mechanism composed of three proteins MinC, MinD, and MinE used by E. coli as a means of properly localizing the septum prior to cell division. Each component participates in generating a dynamic oscillation of FtsZ protein inhibition between the two bacterial poles to precisely specify the mid-zone of the cell, allowing the cell to accurately divide in two
|
Min System
|
A minigene is a minimal gene fragment that includes an exon and the control regions necessary for the gene to express itself in the same way as a wild type gene fragment. This is a minigene in its most basic sense. More complex minigenes can be constructed containing multiple exons and intron(s)
|
Minigene
|
Minimotif Miner is a program and database designed to identify minimotifs in any protein. Minimotifs are short, contiguous peptide sequences that are known to have a function in at least one protein. Minimotifs are also called sequence motifs or short linear motifs or SLiMs
|
Minimotif Miner
|
The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines are a set of protocols for conducting and reporting quantitative real-time PCR experiments and data, as devised by Bustin et al. in 2009. They were devised after a paper was published in 2002 that claimed to detect measles virus in children with autism through the use of RT-qPCR, but the results proved to be completely unreproducible by other scientists
|
MIQE
|
Missense mRNA is a messenger RNA bearing one or more mutated codons that yield polypeptides with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is mutated and an altered amino acid sequence is coded for.
Biogenesis
A missense mRNA arises from a missense mutation, in the event of which a DNA nucleotide base pair in the coding region of a gene is changed such that it results in the substitution of one amino acid for another
|
Missense mRNA
|
Mitochondrial disease is a group of disorders caused by mitochondrial dysfunction. Mitochondria are the organelles that generate energy for the cell and are found in every cell of the human body except red blood cells. They convert the energy of food molecules into the ATP that powers most cell functions
|
Mitochondrial disease
|
Mitochondrial replacement therapy (MRT), sometimes called mitochondrial donation, is the replacement of mitochondria in one or more cells to prevent or ameliorate disease. MRT originated as a special form of in vitro fertilisation in which some or all of the future baby's mitochondrial DNA (mtDNA) comes from a third party. This technique is used in cases when mothers carry genes for mitochondrial diseases
|
Mitochondrial replacement therapy
|
The mitochondrial unfolded protein response (UPRmt) is a cellular stress response related to the mitochondria. The UPRmt results from unfolded or misfolded proteins in mitochondria beyond the capacity of chaperone proteins to handle them. The UPRmt can occur either in the mitochondrial matrix or in the mitochondrial inner membrane
|
Mitochondrial unfolded protein response
|
A mitotoxin is a cytotoxic molecule targeted to specific cells by a mitogen. Generally found in snake venom. Mitotoxins are responsible for mediating cell death by interfering with protein or DNA synthesis
|
Mitotoxin
|
Molecular Biology of the Cell is a cellular and molecular biology textbook published by W. W. Norton & Co and currently authored by Bruce Alberts, Rebecca Heald, David Morgan, Martin Raff, Keith Roberts and Peter Walter
|
Molecular Biology of the Cell (book)
|
Molecular breeding is the application of molecular biology tools, often in plant breeding and animal breeding. In the broad sense, molecular breeding can be defined as the use of genetic manipulation performed at the level of DNA to improve traits of interest in plants and animals, and it may also include genetic engineering or gene manipulation, molecular marker-assisted selection, and genomic selection. More often, however, molecular breeding implies molecular marker-assisted breeding (MAB) and is defined as the application of molecular biotechnologies, specifically molecular markers, in combination with linkage maps and genomics, to alter and improve plant or animal traits on the basis of genotypic assays
|
Molecular breeding
|
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- 1