blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
256741b442524fa1904d7f954f22a9152b7b0f5e
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/algebra/module/basic.lean
420af75d6a8f2f3f32a6195eb9cdb0b006af2758
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
19,538
lean
/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro -/ import algebra.big_operators.basic import algebra.group.hom import group_theory.group_action.group import algebra.smul_with_zero /-! # Modules over a ring In this file we define * `module R M` : an additive commutative monoid `M` is a `module` over a `semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and the operation `•` satisfies some natural associativity and distributivity axioms similar to those on a ring. ## Implementation notes In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`. If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space. Since those assumptions can be made by changing the typeclasses applied to `R` and `M`, without changing the axioms in `module`, mathlib calls everything a `module`. In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations. This caused inference issues in some cases, while not providing any real advantages, so we decided to use a canonical `module` typeclass throughout. ## Tags semimodule, module, vector space -/ open function open_locale big_operators universes u u' v w x y z variables {R : Type u} {k : Type u'} {S : Type v} {M : Type w} {M₂ : Type x} {M₃ : Type y} {ι : Type z} /-- A module is a generalization of vector spaces to a scalar semiring. It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`, connected by a "scalar multiplication" operation `r • x : M` (where `r : R` and `x : M`) with some natural associativity and distributivity axioms similar to those on a ring. -/ @[protect_proj] class module (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M] extends distrib_mul_action R M := (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (zero_smul : ∀x : M, (0 : R) • x = 0) section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M) /-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/ @[priority 100] -- see Note [lower instance priority] instance module.to_mul_action_with_zero : mul_action_with_zero R M := { smul_zero := smul_zero, zero_smul := module.zero_smul, ..(infer_instance : mul_action R M) } instance add_comm_monoid.nat_module : module ℕ M := { one_smul := one_nsmul, mul_smul := λ m n a, mul_nsmul a m n, smul_add := λ n a b, nsmul_add a b n, smul_zero := nsmul_zero, zero_smul := zero_nsmul, add_smul := λ r s x, add_nsmul x r s } theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x variables (R) theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul] theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x /-- Pullback a `module` structure along an injective additive monoid homomorphism. -/ protected def function.injective.module [add_comm_monoid M₂] [has_scalar R M₂] (f : M₂ →+ M) (hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul], zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero], .. hf.distrib_mul_action f smul } /-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/ protected def function.surjective.module [add_comm_monoid M₂] [has_scalar R M₂] (f : M →+ M₂) (hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩, simp only [add_smul, ← smul, ← f.map_add] }, zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] }, .. hf.distrib_mul_action f smul } variables {R} (M) /-- Compose a `module` with a `ring_hom`, with action `f s • m` -/ def module.comp_hom [semiring S] (f : S →+* R) : module S M := { smul := (•) ∘ f, add_smul := λ r s x, by simp [add_smul], .. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom, .. distrib_mul_action.comp_hom M (f : S →* R) } variables (R) (M) /-- `(•)` as an `add_monoid_hom`. -/ def smul_add_hom : R →+ M →+ M := { to_fun := const_smul_hom M, map_zero' := add_monoid_hom.ext $ λ r, by simp, map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul] } variables {R M} @[simp] lemma smul_add_hom_apply (r : R) (x : M) : smul_add_hom R M r x = r • x := rfl @[simp] lemma smul_add_hom_one {R M : Type*} [semiring R] [add_comm_monoid M] [module R M] : smul_add_hom R M 1 = add_monoid_hom.id _ := const_smul_hom_one lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 := by rw [←one_smul R x, ←zero_eq_one, zero_smul] lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_list_sum l lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_multiset_sum l lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} : (∑ i in s, f i) • x = (∑ i in s, (f i) • x) := ((smul_add_hom R M).flip x).map_sum f s end add_comm_monoid variables (R) /-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group` structure. -/ def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] : add_comm_group M := { neg := λ a, (-1 : R) • a, add_left_neg := λ a, show (-1 : R) • a + a = 0, by { nth_rewrite 1 ← one_smul _ a, rw [← add_smul, add_left_neg, zero_smul] }, ..(infer_instance : add_comm_monoid M), } variables {R} section add_comm_group variables (R M) [semiring R] [add_comm_group M] instance add_comm_group.int_module : module ℤ M := { one_smul := one_gsmul, mul_smul := λ m n a, mul_gsmul a m n, smul_add := λ n a b, gsmul_add a b n, smul_zero := gsmul_zero, zero_smul := zero_gsmul, add_smul := λ r s x, add_gsmul x r s } /-- A structure containing most informations as in a module, except the fields `zero_smul` and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`, this provides a way to construct a module structure by checking less properties, in `module.of_core`. -/ @[nolint has_inhabited_instance] structure module.core extends has_scalar R M := (smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y) (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x) (one_smul : ∀x : M, (1 : R) • x = x) variables {R M} /-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary structure `module.core`, when the underlying space is an `add_comm_group`. -/ def module.of_core (H : module.core R M) : module R M := by letI := H.to_has_scalar; exact { zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero, smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero, ..H } end add_comm_group /-- To prove two module structures on a fixed `add_comm_monoid` agree, it suffices to check the scalar multiplications agree. -/ -- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons. @[ext] lemma module_ext {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M) (w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) : P = Q := begin unfreezingI { rcases P with ⟨⟨⟨⟨P⟩⟩⟩⟩, rcases Q with ⟨⟨⟨⟨Q⟩⟩⟩⟩ }, congr, funext r m, exact w r m, all_goals { apply proof_irrel_heq }, end section module variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M) @[simp] theorem neg_smul : -r • x = - (r • x) := eq_neg_of_add_eq_zero (by rw [← add_smul, add_left_neg, zero_smul]) @[simp] theorem units.neg_smul (u : units R) (x : M) : -u • x = - (u • x) := by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def] variables (R) theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp variables {R} theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y := by simp [add_smul, sub_eq_add_neg] end module /-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this as an instance because Lean has no way to guess `R`. -/ protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R] [add_comm_monoid M] [module R M] : subsingleton M := ⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩ @[priority 910] -- see Note [lower instance priority] instance semiring.to_module [semiring R] : module R R := { smul_add := mul_add, add_smul := add_mul, zero_smul := zero_mul, smul_zero := mul_zero } /-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/ def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S := { smul := λ r x, f r * x, smul_add := λ r x y, by unfold has_scalar.smul; rw [mul_add], add_smul := λ r s x, by unfold has_scalar.smul; rw [f.map_add, add_mul], mul_smul := λ r s x, by unfold has_scalar.smul; rw [f.map_mul, mul_assoc], one_smul := λ x, show f 1 * x = _, by rw [f.map_one, one_mul], zero_smul := λ x, show f 0 * x = 0, by rw [f.map_zero, zero_mul], smul_zero := λ r, mul_zero (f r) } section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] section variables (R) /-- `nsmul` is equal to any other module structure via a cast. -/ lemma nsmul_eq_smul_cast (n : ℕ) (b : M) : n • b = (n : R) • b := begin induction n with n ih, { rw [nat.cast_zero, zero_smul, zero_smul] }, { rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], } end end /-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design. -/ lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) : @has_scalar.smul ℕ M h.to_has_scalar n x = n • x := by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id] /-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid` should normally have exactly one `ℕ`-module structure by design. -/ def add_comm_monoid.nat_module.unique : unique (module ℕ M) := { default := by apply_instance, uniq := λ P, module_ext P _ $ λ n, nat_smul_eq_nsmul P n } instance add_comm_monoid.nat_is_scalar_tower : is_scalar_tower ℕ R M := { smul_assoc := λ n x y, nat.rec_on n (by simp only [zero_smul]) (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) } instance add_comm_monoid.nat_smul_comm_class : smul_comm_class ℕ R M := { smul_comm := λ n r m, nat.rec_on n (by simp only [zero_smul, smul_zero]) (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ←ih, smul_add]) } -- `smul_comm_class.symm` is not registered as an instance, as it would cause a loop instance add_comm_monoid.nat_smul_comm_class' : smul_comm_class R ℕ M := smul_comm_class.symm _ _ _ end add_comm_monoid section add_comm_group variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M] section variables (R) /-- `gsmul` is equal to any other module structure via a cast. -/ lemma gsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b := begin induction n using int.induction_on with p hp n hn, { rw [int.cast_zero, zero_smul, zero_smul] }, { rw [int.cast_add, int.cast_one, add_smul, add_smul, one_smul, one_smul, hp] }, { rw [int.cast_sub, int.cast_one, sub_smul, sub_smul, one_smul, one_smul, hn] }, end end /-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/ lemma int_smul_eq_gsmul (h : module ℤ M) (n : ℤ) (x : M) : @has_scalar.smul ℤ M h.to_has_scalar n x = n • x := by rw [gsmul_eq_smul_cast ℤ n x, int.cast_id] /-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group` should normally have exactly one `ℤ`-module structure by design. -/ def add_comm_group.int_module.unique : unique (module ℤ M) := { default := by apply_instance, uniq := λ P, module_ext P _ $ λ n, int_smul_eq_gsmul P n } instance add_comm_group.int_is_scalar_tower : is_scalar_tower ℤ R M := { smul_assoc := λ n x y, int.induction_on n (by simp only [zero_smul]) (λ n ih, by simp only [one_smul, add_smul, ih]) (λ n ih, by simp only [one_smul, sub_smul, ih]) } instance add_comm_group.int_smul_comm_class : smul_comm_class ℤ S M := { smul_comm := λ n x y, int.induction_on n (by simp only [zero_smul, smul_zero]) (λ n ih, by simp only [one_smul, add_smul, smul_add, ih]) (λ n ih, by simp only [one_smul, sub_smul, smul_sub, ih]) } -- `smul_comm_class.symm` is not registered as an instance, as it would cause a loop instance add_comm_group.int_smul_comm_class' : smul_comm_class S ℤ M := smul_comm_class.symm _ _ _ end add_comm_group namespace add_monoid_hom lemma map_nat_module_smul [add_comm_monoid M] [add_comm_monoid M₂] (f : M →+ M₂) (x : ℕ) (a : M) : f (x • a) = x • f a := by simp only [f.map_nsmul] lemma map_int_module_smul [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) (x : ℤ) (a : M) : f (x • a) = x • f a := by simp only [f.map_gsmul] lemma map_int_cast_smul [ring R] [add_comm_group M] [add_comm_group M₂] [module R M] [module R M₂] (f : M →+ M₂) (x : ℤ) (a : M) : f ((x : R) • a) = (x : R) • f a := by simp only [←gsmul_eq_smul_cast, f.map_gsmul] lemma map_nat_cast_smul [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M →+ M₂) (x : ℕ) (a : M) : f ((x : R) • a) = (x : R) • f a := by simp only [←nsmul_eq_smul_cast, f.map_nsmul] lemma map_rat_cast_smul {R : Type*} [division_ring R] [char_zero R] {E : Type*} [add_comm_group E] [module R E] {F : Type*} [add_comm_group F] [module R F] (f : E →+ F) (c : ℚ) (x : E) : f ((c : R) • x) = (c : R) • f x := begin have : ∀ (x : E) (n : ℕ), 0 < n → f (((n⁻¹ : ℚ) : R) • x) = ((n⁻¹ : ℚ) : R) • f x, { intros x n hn, replace hn : (n : R) ≠ 0 := nat.cast_ne_zero.2 (ne_of_gt hn), conv_rhs { congr, skip, rw [← one_smul R x, ← mul_inv_cancel hn, mul_smul] }, rw [f.map_nat_cast_smul, smul_smul, rat.cast_inv, rat.cast_coe_nat, inv_mul_cancel hn, one_smul] }, refine c.num_denom_cases_on (λ m n hn hmn, _), rw [rat.mk_eq_div, div_eq_mul_inv, rat.cast_mul, int.cast_coe_nat, mul_smul, mul_smul, rat.cast_coe_int, f.map_int_cast_smul, this _ n hn] end lemma map_rat_module_smul {E : Type*} [add_comm_group E] [module ℚ E] {F : Type*} [add_comm_group F] [module ℚ F] (f : E →+ F) (c : ℚ) (x : E) : f (c • x) = c • f x := rat.cast_id c ▸ f.map_rat_cast_smul c x end add_monoid_hom section no_zero_smul_divisors /-! ### `no_zero_smul_divisors` This section defines the `no_zero_smul_divisors` class, and includes some tests for the vanishing of elements (especially in modules over division rings). -/ /-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`. This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free. The main application of `no_zero_smul_divisors R M`, when `M` is a module, is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`. It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication. -/ class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_scalar R M] : Prop := (eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0) export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero) section module variables [semiring R] [add_comm_monoid M] [module R M] instance no_zero_smul_divisors.of_no_zero_divisors [no_zero_divisors R] : no_zero_smul_divisors R R := ⟨λ c x, no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero⟩ @[simp] theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x = 0 ↔ c = 0 ∨ x = 0 := ⟨eq_zero_or_eq_zero_of_smul_eq_zero, λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩ theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 := by simp only [ne.def, smul_eq_zero, not_or_distrib] section nat variables (R) (M) [no_zero_smul_divisors R M] [char_zero R] include R lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M := ⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩ variables {M} lemma eq_zero_of_smul_two_eq_zero {v : M} (hv : 2 • v = 0) : v = 0 := by haveI := nat.no_zero_smul_divisors R M; exact (smul_eq_zero.mp hv).resolve_left (by norm_num) end nat end module section add_comm_group -- `R` can still be a semiring here variables [semiring R] [add_comm_group M] [module R M] section smul_injective variables (M) lemma smul_left_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) : function.injective (λ (x : M), c • x) := λ x y h, sub_eq_zero.mp ((smul_eq_zero.mp (calc c • (x - y) = c • x - c • y : smul_sub c x y ... = 0 : sub_eq_zero.mpr h)).resolve_left hc) end smul_injective section nat variables (R) [no_zero_smul_divisors R M] [char_zero R] include R lemma eq_zero_of_eq_neg {v : M} (hv : v = - v) : v = 0 := begin haveI := nat.no_zero_smul_divisors R M, refine eq_zero_of_smul_two_eq_zero R _, rw two_smul, exact add_eq_zero_iff_eq_neg.mpr hv end end nat end add_comm_group section module variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] section smul_injective variables (R) lemma smul_right_injective {x : M} (hx : x ≠ 0) : function.injective (λ (c : R), c • x) := λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp (calc (c - d) • x = c • x - d • x : sub_smul c d x ... = 0 : sub_eq_zero.mpr h)).resolve_right hx) end smul_injective section nat variables [char_zero R] lemma ne_neg_of_ne_zero [no_zero_divisors R] {v : R} (hv : v ≠ 0) : v ≠ -v := λ h, hv (eq_zero_of_eq_neg R h) end nat end module section division_ring variables [division_ring R] [add_comm_group M] [module R M] @[priority 100] -- see note [lower instance priority] instance no_zero_smul_divisors.of_division_ring : no_zero_smul_divisors R M := ⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩ end division_ring end no_zero_smul_divisors @[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) : m • (1 : R) = ↑m := by rw [nsmul_eq_mul, mul_one] @[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) : m • (1 : R) = ↑m := by rw [gsmul_eq_mul, mul_one]
ea8390c7adb9ca681bac341ad61a57137814039f
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/interactive/complete.lean
a45eedff1966a409fbdb55fe19597867b48fb5bf
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
498
lean
prelude inductive foo example := foo --^ "command": "complete" -- should not complete empty declaration completion example := foo --^ "command": "complete" @[reducible] --^ "command": "complete", "skip_completions": true example := foo set_option trace.simplify true --^ "command": "complete", "skip_completions": true #print foo --^ "command": "complete", "skip_completions": true section foo end foo --^ "command": "complete", "skip_completions": true
06c2a3b5aaebbfaca2488e20acbf64141f76e792
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/topology/basic.lean
5273b659085013740ae19dec70b6a9624a3c0788
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
68,830
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad -/ import order.filter.ultrafilter import order.filter.partial import algebra.support /-! # Basic theory of topological spaces. The main definition is the type class `topological space α` which endows a type `α` with a topology. Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and `frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. A filter `F` on `α` has `x` as a cluster point if `cluster_pt x F : 𝓝 x ⊓ F ≠ ⊥`. A map `f : ι → α` clusters at `x` along `F : filter ι` if `map_cluster_pt x F f : cluster_pt x (map f F)`. In particular the notion of cluster point of a sequence `u` is `map_cluster_pt x at_top u`. This file also defines locally finite families of subsets of `α`. For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`, `continuous_at f a` means `f` is continuous at `a`, and global continuity is `continuous f`. There is also a version of continuity `pcontinuous` for partially defined functions. ## Notation * `𝓝 x`: the filter of neighborhoods of a point `x`; * `𝓟 s`: the principal filter of a set `s`; * `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`. ## Implementation notes Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in <https://leanprover-community.github.io/theories/topology.html>. ## References * [N. Bourbaki, *General Topology*][bourbaki1966] * [I. M. James, *Topologies and Uniformities*][james1999] ## Tags topological space, interior, closure, frontier, neighborhood, continuity, continuous function -/ noncomputable theory open set filter classical open_locale classical filter universes u v w /-! ### Topological spaces -/ /-- A topology on `α`. -/ @[protect_proj] structure topological_space (α : Type u) := (is_open : set α → Prop) (is_open_univ : is_open univ) (is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t)) (is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s)) attribute [class] topological_space /-- A constructor for topologies by specifying the closed sets, and showing that they satisfy the appropriate conditions. -/ def topological_space.of_closed {α : Type u} (T : set (set α)) (empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) : topological_space α := { is_open := λ X, Xᶜ ∈ T, is_open_univ := by simp [empty_mem], is_open_inter := λ s t hs ht, by simpa [set.compl_inter] using union_mem sᶜ tᶜ hs ht, is_open_sUnion := λ s hs, by rw set.compl_sUnion; exact sInter_mem (set.compl '' s) (λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) } section topological_space variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ : set α} {p p₁ p₂ : α → Prop} @[ext] lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g | ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl section variables [t : topological_space α] include t /-- `is_open s` means that `s` is open in the ambient topological space on `α` -/ def is_open (s : set α) : Prop := topological_space.is_open t s @[simp] lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ t lemma is_open.inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) := topological_space.is_open_inter t s₁ s₂ h₁ h₂ lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) := topological_space.is_open_sUnion t s h end lemma topological_space_eq_iff {t t' : topological_space α} : t = t' ↔ ∀ s, @is_open α t s ↔ @is_open α t' s := ⟨λ h s, h ▸ iff.rfl, λ h, by { ext, exact h _ }⟩ lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s := rfl variables [topological_space α] lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) := is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) : is_open (⋃i∈s, f i) := is_open_Union $ assume i, is_open_Union $ assume hi, h i hi lemma is_open.union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) := by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩) @[simp] lemma is_open_empty : is_open (∅ : set α) := by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim) lemma is_open_sInter {s : set (set α)} (hs : finite s) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) := finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $ λ a s has hs ih h, by rw sInter_insert; exact is_open.inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _) lemma is_open_bInter {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) := finite.induction_on hs (λ _, by rw bInter_empty; exact is_open_univ) (λ a s has hs ih h, by rw bInter_insert; exact is_open.inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_open_Inter [fintype β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) := suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa, is_open_bInter finite_univ (λ i _, h i) lemma is_open_Inter_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_open (s h)) : is_open (Inter s) := by by_cases p; simp * lemma is_open_const {p : Prop} : is_open {a : α | p} := by_cases (assume : p, begin simp only [this]; exact is_open_univ end) (assume : ¬ p, begin simp only [this]; exact is_open_empty end) lemma is_open.and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} := is_open.inter /-- A set is closed if its complement is open -/ class is_closed (s : set α) : Prop := (is_open_compl : is_open sᶜ) @[simp] lemma is_open_compl_iff {s : set α} : is_open sᶜ ↔ is_closed s := ⟨λ h, ⟨h⟩, λ h, h.is_open_compl⟩ @[simp] lemma is_closed_empty : is_closed (∅ : set α) := by { rw [← is_open_compl_iff, compl_empty], exact is_open_univ } @[simp] lemma is_closed_univ : is_closed (univ : set α) := by { rw [← is_open_compl_iff, compl_univ], exact is_open_empty } lemma is_closed.union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) := λ h₁ h₂, by { rw [← is_open_compl_iff] at *, rw compl_union, exact is_open.inter h₁ h₂ } lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) := by simpa only [← is_open_compl_iff, compl_sInter, sUnion_image] using is_open_bUnion lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) := is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i lemma is_closed_bInter {s : set β} {f : β → set α} (h : ∀ i ∈ s, is_closed (f i)) : is_closed (⋂ i ∈ s, f i) := is_closed_Inter $ λ i, is_closed_Inter $ h i @[simp] lemma is_closed_compl_iff {s : set α} : is_closed sᶜ ↔ is_open s := by rw [←is_open_compl_iff, compl_compl] lemma is_open.is_closed_compl {s : set α} (hs : is_open s) : is_closed sᶜ := is_closed_compl_iff.2 hs lemma is_open.sdiff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) := is_open.inter h₁ $ is_open_compl_iff.mpr h₂ lemma is_closed.inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) := by { rw [← is_open_compl_iff] at *, rw compl_inter, exact is_open.union h₁ h₂ } lemma is_closed.sdiff {s t : set α} (h₁ : is_closed s) (h₂ : is_open t) : is_closed (s \ t) := is_closed.inter h₁ (is_closed_compl_iff.mpr h₂) lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) := finite.induction_on hs (λ _, by rw bUnion_empty; exact is_closed_empty) (λ a s has hs ih h, by rw bUnion_insert; exact is_closed.union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_closed_Union [fintype β] {s : β → set α} (h : ∀ i, is_closed (s i)) : is_closed (Union s) := suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i), by convert this; simp [set.ext_iff], is_closed_bUnion finite_univ (λ i _, h i) lemma is_closed_Union_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_closed (s h)) : is_closed (Union s) := by by_cases p; simp * lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x}) (hq : is_closed {x | q x}) : is_closed {x | p x → q x} := have {x | p x → q x} = {x | p x}ᶜ ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or, by rw [this]; exact is_closed.union (is_closed_compl_iff.mpr hp) hq lemma is_closed.not : is_closed {a | p a} → is_open {a | ¬ p a} := is_open_compl_iff.mpr /-! ### Interior of a set -/ /-- The interior of a set `s` is the largest open subset of `s`. -/ def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s} lemma mem_interior {s : set α} {x : α} : x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t := by simp only [interior, mem_set_of_eq, exists_prop, and_assoc, and.left_comm] @[simp] lemma is_open_interior {s : set α} : is_open (interior s) := is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁ lemma interior_subset {s : set α} : interior s ⊆ s := sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂ lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s := subset_sUnion_of_mem ⟨h₂, h₁⟩ lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s := subset.antisymm interior_subset (interior_maximal (subset.refl s) h) lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s := ⟨assume h, h ▸ is_open_interior, is_open.interior_eq⟩ lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s := by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and] lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) : s ⊆ interior t ↔ s ⊆ t := ⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩ @[mono] lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t := interior_maximal (subset.trans interior_subset h) is_open_interior @[simp] lemma interior_empty : interior (∅ : set α) = ∅ := is_open_empty.interior_eq @[simp] lemma interior_univ : interior (univ : set α) = univ := is_open_univ.interior_eq @[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s := is_open_interior.interior_eq @[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t := subset.antisymm (subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t)) (interior_maximal (inter_subset_inter interior_subset interior_subset) $ is_open.inter is_open_interior is_open_interior) @[simp] lemma finset.interior_Inter {ι : Type*} (s : finset ι) (f : ι → set α) : interior (⋂ i ∈ s, f i) = ⋂ i ∈ s, interior (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma interior_Inter_of_fintype {ι : Type*} [fintype ι] (f : ι → set α) : interior (⋂ i, f i) = ⋂ i, interior (f i) := by { convert finset.univ.interior_Inter f; simp, } lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) (h₂ : interior t = ∅) : interior (s ∪ t) = interior s := have interior (s ∪ t) ⊆ s, from assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩, classical.by_contradiction $ assume hx₂ : x ∉ s, have u \ s ⊆ t, from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂, have u \ s ⊆ interior t, by rwa subset_interior_iff_subset_of_open (is_open.sdiff hu₁ h₁), have u \ s ⊆ ∅, by rwa h₂ at this, this ⟨hx₁, hx₂⟩, subset.antisymm (interior_maximal this is_open_interior) (interior_mono $ subset_union_left _ _) lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t := by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior] lemma interior_Inter_subset (s : ι → set α) : interior (⋂ i, s i) ⊆ ⋂ i, interior (s i) := subset_Inter $ λ i, interior_mono $ Inter_subset _ _ lemma interior_bInter_subset (p : ι → Sort*) (s : Π i, p i → set α) : interior (⋂ i (hi : p i), s i hi) ⊆ ⋂ i (hi : p i), interior (s i hi) := (interior_Inter_subset _).trans $ Inter_subset_Inter $ λ i, interior_Inter_subset _ lemma interior_sInter_subset (S : set (set α)) : interior (⋂₀ S) ⊆ ⋂ s ∈ S, interior s := calc interior (⋂₀ S) = interior (⋂ s ∈ S, s) : by rw sInter_eq_bInter ... ⊆ ⋂ s ∈ S, interior s : interior_bInter_subset _ _ /-! ### Closure of a set -/ /-- The closure of `s` is the smallest closed set containing `s`. -/ def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t} @[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) := is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁ lemma subset_closure {s : set α} : s ⊆ closure s := subset_sInter $ assume t ⟨h₁, h₂⟩, h₂ lemma not_mem_of_not_mem_closure {s : set α} {P : α} (hP : P ∉ closure s) : P ∉ s := λ h, hP (subset_closure h) lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t := sInter_subset_of_mem ⟨h₂, h₁⟩ lemma is_closed.closure_eq {s : set α} (h : is_closed s) : closure s = s := subset.antisymm (closure_minimal (subset.refl s) h) subset_closure lemma is_closed.closure_subset {s : set α} (hs : is_closed s) : closure s ⊆ s := closure_minimal (subset.refl _) hs lemma is_closed.closure_subset_iff {s t : set α} (h₁ : is_closed t) : closure s ⊆ t ↔ s ⊆ t := ⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩ @[mono] lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t := closure_minimal (subset.trans h subset_closure) is_closed_closure lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) := λ _ _, closure_mono lemma diff_subset_closure_iff {s t : set α} : s \ t ⊆ closure t ↔ s ⊆ closure t := by rw [diff_subset_iff, union_eq_self_of_subset_left subset_closure] lemma closure_inter_subset_inter_closure (s t : set α) : closure (s ∩ t) ⊆ closure s ∩ closure t := (monotone_closure α).map_inf_le s t lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s := by rw subset.antisymm subset_closure h; exact is_closed_closure lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s := ⟨assume h, h ▸ is_closed_closure, is_closed.closure_eq⟩ lemma closure_subset_iff_is_closed {s : set α} : closure s ⊆ s ↔ is_closed s := ⟨is_closed_of_closure_subset, is_closed.closure_subset⟩ @[simp] lemma closure_empty : closure (∅ : set α) = ∅ := is_closed_empty.closure_eq @[simp] lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ := ⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩ @[simp] lemma closure_nonempty_iff {s : set α} : (closure s).nonempty ↔ s.nonempty := by simp only [← ne_empty_iff_nonempty, ne.def, closure_empty_iff] alias closure_nonempty_iff ↔ set.nonempty.of_closure set.nonempty.closure @[simp] lemma closure_univ : closure (univ : set α) = univ := is_closed_univ.closure_eq @[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s := is_closed_closure.closure_eq @[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t := subset.antisymm (closure_minimal (union_subset_union subset_closure subset_closure) $ is_closed.union is_closed_closure is_closed_closure) ((monotone_closure α).le_map_sup s t) @[simp] lemma finset.closure_Union {ι : Type*} (s : finset ι) (f : ι → set α) : closure (⋃ i ∈ s, f i) = ⋃ i ∈ s, closure (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma closure_Union_of_fintype {ι : Type*} [fintype ι] (f : ι → set α) : closure (⋃ i, f i) = ⋃ i, closure (f i) := by { convert finset.univ.closure_Union f; simp, } lemma interior_subset_closure {s : set α} : interior s ⊆ closure s := subset.trans interior_subset subset_closure lemma closure_eq_compl_interior_compl {s : set α} : closure s = (interior sᶜ)ᶜ := begin rw [interior, closure, compl_sUnion, compl_image_set_of], simp only [compl_subset_compl, is_open_compl_iff], end @[simp] lemma interior_compl {s : set α} : interior sᶜ = (closure s)ᶜ := by simp [closure_eq_compl_interior_compl] @[simp] lemma closure_compl {s : set α} : closure sᶜ = (interior s)ᶜ := by simp [closure_eq_compl_interior_compl] theorem mem_closure_iff {s : set α} {a : α} : a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty := ⟨λ h o oo ao, classical.by_contradiction $ λ os, have s ⊆ oᶜ, from λ x xs xo, os ⟨x, xo, xs⟩, closure_minimal this (is_closed_compl_iff.2 oo) h ao, λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc, let ⟨x, hc, hs⟩ := (H _ h₁.is_open_compl nc) in hc (h₂ hs)⟩ /-- A set is dense in a topological space if every point belongs to its closure. -/ def dense (s : set α) : Prop := ∀ x, x ∈ closure s lemma dense_iff_closure_eq {s : set α} : dense s ↔ closure s = univ := eq_univ_iff_forall.symm lemma dense.closure_eq {s : set α} (h : dense s) : closure s = univ := dense_iff_closure_eq.mp h lemma interior_eq_empty_iff_dense_compl {s : set α} : interior s = ∅ ↔ dense sᶜ := by rw [dense_iff_closure_eq, closure_compl, compl_univ_iff] lemma dense.interior_compl {s : set α} (h : dense s) : interior sᶜ = ∅ := interior_eq_empty_iff_dense_compl.2 $ by rwa compl_compl /-- The closure of a set `s` is dense if and only if `s` is dense. -/ @[simp] lemma dense_closure {s : set α} : dense (closure s) ↔ dense s := by rw [dense, dense, closure_closure] alias dense_closure ↔ dense.of_closure dense.closure @[simp] lemma dense_univ : dense (univ : set α) := λ x, subset_closure trivial /-- A set is dense if and only if it has a nonempty intersection with each nonempty open set. -/ lemma dense_iff_inter_open {s : set α} : dense s ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty := begin split ; intro h, { rintros U U_op ⟨x, x_in⟩, exact mem_closure_iff.1 (by simp only [h.closure_eq]) U U_op x_in }, { intro x, rw mem_closure_iff, intros U U_op x_in, exact h U U_op ⟨_, x_in⟩ }, end alias dense_iff_inter_open ↔ dense.inter_open_nonempty _ lemma dense.exists_mem_open {s : set α} (hs : dense s) {U : set α} (ho : is_open U) (hne : U.nonempty) : ∃ x ∈ s, x ∈ U := let ⟨x, hx⟩ := hs.inter_open_nonempty U ho hne in ⟨x, hx.2, hx.1⟩ lemma dense.nonempty_iff {s : set α} (hs : dense s) : s.nonempty ↔ nonempty α := ⟨λ ⟨x, hx⟩, ⟨x⟩, λ ⟨x⟩, let ⟨y, hy⟩ := hs.inter_open_nonempty _ is_open_univ ⟨x, trivial⟩ in ⟨y, hy.2⟩⟩ lemma dense.nonempty [h : nonempty α] {s : set α} (hs : dense s) : s.nonempty := hs.nonempty_iff.2 h @[mono] lemma dense.mono {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : dense s₁) : dense s₂ := λ x, closure_mono h (hd x) /-- Complement to a singleton is dense if and only if the singleton is not an open set. -/ lemma dense_compl_singleton_iff_not_open {x : α} : dense ({x}ᶜ : set α) ↔ ¬is_open ({x} : set α) := begin fsplit, { intros hd ho, exact (hd.inter_open_nonempty _ ho (singleton_nonempty _)).ne_empty (inter_compl_self _) }, { refine λ ho, dense_iff_inter_open.2 (λ U hU hne, inter_compl_nonempty_iff.2 $ λ hUx, _), obtain rfl : U = {x}, from eq_singleton_iff_nonempty_unique_mem.2 ⟨hne, hUx⟩, exact ho hU } end /-! ### Frontier of a set -/ /-- The frontier of a set is the set of points between the closure and interior. -/ def frontier (s : set α) : set α := closure s \ interior s lemma frontier_eq_closure_inter_closure {s : set α} : frontier s = closure s ∩ closure sᶜ := by rw [closure_compl, frontier, diff_eq] lemma frontier_subset_closure {s : set α} : frontier s ⊆ closure s := diff_subset _ _ /-- The complement of a set has the same frontier as the original set. -/ @[simp] lemma frontier_compl (s : set α) : frontier sᶜ = frontier s := by simp only [frontier_eq_closure_inter_closure, compl_compl, inter_comm] @[simp] lemma frontier_univ : frontier (univ : set α) = ∅ := by simp [frontier] @[simp] lemma frontier_empty : frontier (∅ : set α) = ∅ := by simp [frontier] lemma frontier_inter_subset (s t : set α) : frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) := begin simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union], convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t), simp only [inter_distrib_left, inter_distrib_right, inter_assoc], congr' 2, apply inter_comm end lemma frontier_union_subset (s t : set α) : frontier (s ∪ t) ⊆ (frontier s ∩ closure tᶜ) ∪ (closure sᶜ ∩ frontier t) := by simpa only [frontier_compl, ← compl_union] using frontier_inter_subset sᶜ tᶜ lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s := by rw [frontier, hs.closure_eq] lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s := by rw [frontier, hs.interior_eq] lemma is_open.inter_frontier_eq {s : set α} (hs : is_open s) : s ∩ frontier s = ∅ := by rw [hs.frontier_eq, inter_diff_self] /-- The frontier of a set is closed. -/ lemma is_closed_frontier {s : set α} : is_closed (frontier s) := by rw frontier_eq_closure_inter_closure; exact is_closed.inter is_closed_closure is_closed_closure /-- The frontier of a closed set has no interior point. -/ lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ := begin have A : frontier s = s \ interior s, from h.frontier_eq, have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _), have C : interior (frontier s) ⊆ frontier s := interior_subset, have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) := subset_inter B (by simpa [A] using C), rwa [inter_diff_self, subset_empty_iff] at this, end lemma closure_eq_interior_union_frontier (s : set α) : closure s = interior s ∪ frontier s := (union_diff_cancel interior_subset_closure).symm lemma closure_eq_self_union_frontier (s : set α) : closure s = s ∪ frontier s := (union_diff_cancel' interior_subset subset_closure).symm lemma is_open.inter_frontier_eq_empty_of_disjoint {s t : set α} (ht : is_open t) (hd : disjoint s t) : t ∩ frontier s = ∅ := begin rw [inter_comm, ← subset_compl_iff_disjoint], exact subset.trans frontier_subset_closure (closure_minimal (λ _, disjoint_left.1 hd) (is_closed_compl_iff.2 ht)) end lemma frontier_eq_inter_compl_interior {s : set α} : frontier s = (interior s)ᶜ ∩ (interior (sᶜ))ᶜ := by { rw [←frontier_compl, ←closure_compl], refl } lemma compl_frontier_eq_union_interior {s : set α} : (frontier s)ᶜ = interior s ∪ interior sᶜ := begin rw frontier_eq_inter_compl_interior, simp only [compl_inter, compl_compl], end /-! ### Neighborhoods -/ /-- A set is called a neighborhood of `a` if it contains an open set around `a`. The set of all neighborhoods of `a` forms a filter, the neighborhood filter at `a`, is here defined as the infimum over the principal filters of all open sets containing `a`. -/ @[irreducible] def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) localized "notation `𝓝` := nhds" in topological_space /-- The "neighborhood within" filter. Elements of `𝓝[s] a` are sets containing the intersection of `s` and a neighborhood of `a`. -/ def nhds_within (a : α) (s : set α) : filter α := 𝓝 a ⊓ 𝓟 s localized "notation `𝓝[` s `] ` x:100 := nhds_within x s" in topological_space lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) := by rw nhds /-- The open sets containing `a` are a basis for the neighborhood filter. See `nhds_basis_opens'` for a variant using open neighborhoods instead. -/ lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) (λ x, x) := begin rw nhds_def, exact has_basis_binfi_principal (λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open.inter hs ht⟩, ⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩) ⟨univ, ⟨mem_univ a, is_open_univ⟩⟩ end /-- A filter lies below the neighborhood filter at `a` iff it contains every open set around `a`. -/ lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f := by simp [nhds_def] /-- To show a filter is above the neighborhood filter at `a`, it suffices to show that it is above the principal filter of some open set `s` containing `a`. -/ lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : 𝓟 s ≤ f) : 𝓝 a ≤ f := by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf) lemma mem_nhds_iff {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃t⊆s, is_open t ∧ a ∈ t := (nhds_basis_opens a).mem_iff.trans ⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩ /-- A predicate is true in a neighborhood of `a` iff it is true for all the points in an open set containing `a`. -/ lemma eventually_nhds_iff {a : α} {p : α → Prop} : (∀ᶠ x in 𝓝 a, p x) ↔ ∃ (t : set α), (∀ x ∈ t, p x) ∧ is_open t ∧ a ∈ t := mem_nhds_iff.trans $ by simp only [subset_def, exists_prop, mem_set_of_eq] lemma map_nhds {a : α} {f : α → β} : map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 (image f s)) := ((nhds_basis_opens a).map f).eq_binfi lemma mem_of_mem_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s := λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_iff.1 H in ht hs /-- If a predicate is true in a neighborhood of `a`, then it is true for `a`. -/ lemma filter.eventually.self_of_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : p a := mem_of_mem_nhds h lemma is_open.mem_nhds {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : s ∈ 𝓝 a := mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩ lemma is_closed.compl_mem_nhds {a : α} {s : set α} (hs : is_closed s) (ha : a ∉ s) : sᶜ ∈ 𝓝 a := hs.is_open_compl.mem_nhds (mem_compl ha) lemma is_open.eventually_mem {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : ∀ᶠ x in 𝓝 a, x ∈ s := is_open.mem_nhds hs ha /-- The open neighborhoods of `a` are a basis for the neighborhood filter. See `nhds_basis_opens` for a variant using open sets around `a` instead. -/ lemma nhds_basis_opens' (a : α) : (𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_open s) (λ x, x) := begin convert nhds_basis_opens a, ext s, split, { rintros ⟨s_in, s_op⟩, exact ⟨mem_of_mem_nhds s_in, s_op⟩ }, { rintros ⟨a_in, s_op⟩, exact ⟨is_open.mem_nhds s_op a_in, s_op⟩ }, end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of `s`: it contains an open set containing `s`. -/ lemma exists_open_set_nhds {s U : set α} (h : ∀ x ∈ s, U ∈ 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := begin have := λ x hx, (nhds_basis_opens x).mem_iff.1 (h x hx), choose! Z hZ hZ' using this, refine ⟨⋃ x ∈ s, Z x, _, _, bUnion_subset hZ'⟩, { intros x hx, simp only [mem_Union], exact ⟨x, hx, (hZ x hx).1⟩ }, { apply is_open_Union, intros x, by_cases hx : x ∈ s ; simp [hx], exact (hZ x hx).2 } end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of s: it contains an open set containing `s`. -/ lemma exists_open_set_nhds' {s U : set α} (h : U ∈ ⨆ x ∈ s, 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := exists_open_set_nhds (by simpa using h) /-- If a predicate is true in a neighbourhood of `a`, then for `y` sufficiently close to `a` this predicate is true in a neighbourhood of `y`. -/ lemma filter.eventually.eventually_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : ∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x := let ⟨t, htp, hto, ha⟩ := eventually_nhds_iff.1 h in eventually_nhds_iff.2 ⟨t, λ x hx, eventually_nhds_iff.2 ⟨t, htp, hto, hx⟩, hto, ha⟩ @[simp] lemma eventually_eventually_nhds {p : α → Prop} {a : α} : (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝 a, p x := ⟨λ h, h.self_of_nhds, λ h, h.eventually_nhds⟩ @[simp] lemma nhds_bind_nhds : (𝓝 a).bind 𝓝 = 𝓝 a := filter.ext $ λ s, eventually_eventually_nhds @[simp] lemma eventually_eventually_eq_nhds {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g) ↔ f =ᶠ[𝓝 a] g := eventually_eventually_nhds lemma filter.eventually_eq.eq_of_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : f a = g a := h.self_of_nhds @[simp] lemma eventually_eventually_le_nhds [has_le β] {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g) ↔ f ≤ᶠ[𝓝 a] g := eventually_eventually_nhds /-- If two functions are equal in a neighbourhood of `a`, then for `y` sufficiently close to `a` these functions are equal in a neighbourhood of `y`. -/ lemma filter.eventually_eq.eventually_eq_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g := h.eventually_nhds /-- If `f x ≤ g x` in a neighbourhood of `a`, then for `y` sufficiently close to `a` we have `f x ≤ g x` in a neighbourhood of `y`. -/ lemma filter.eventually_le.eventually_le_nhds [has_le β] {f g : α → β} {a : α} (h : f ≤ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g := h.eventually_nhds theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) : (∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) := ((nhds_basis_opens x).forall_iff hP).trans $ by simp only [and_comm (x ∈ _), and_imp] theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t) (l : filter β) : (∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) := all_mem_nhds _ _ (λ s t ssubt h, mem_of_superset h (hf s t ssubt)) theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) := all_mem_nhds_filter _ _ (λ s t, id) _ theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) := by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono } theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) := rtendsto_nhds theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) := rtendsto'_nhds theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} : tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) := all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _ lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) := tendsto_nhds.mpr $ assume s hs ha, univ_mem' $ assume _, ha lemma tendsto_at_top_of_eventually_const {ι : Type*} [semilattice_sup ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≥ i₀, u i = x) : tendsto u at_top (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_top.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma tendsto_at_bot_of_eventually_const {ι : Type*} [semilattice_inf ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≤ i₀, u i = x) : tendsto u at_bot (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_bot.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) := assume a s hs, mem_pure.2 $ mem_of_mem_nhds hs lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) : tendsto f (pure a) (𝓝 (f a)) := (tendsto_pure_pure f a).mono_right (pure_le_nhds _) lemma order_top.tendsto_at_top_nhds {α : Type*} [partial_order α] [order_top α] [topological_space β] (f : α → β) : tendsto f at_top (𝓝 $ f ⊤) := (tendsto_at_top_pure f).mono_right (pure_le_nhds _) @[simp] instance nhds_ne_bot {a : α} : ne_bot (𝓝 a) := ne_bot_of_le (pure_le_nhds a) /-! ### Cluster points In this section we define [cluster points](https://en.wikipedia.org/wiki/Limit_point) (also known as limit points and accumulation points) of a filter and of a sequence. -/ /-- A point `x` is a cluster point of a filter `F` if 𝓝 x ⊓ F ≠ ⊥. Also known as an accumulation point or a limit point. -/ def cluster_pt (x : α) (F : filter α) : Prop := ne_bot (𝓝 x ⊓ F) lemma cluster_pt.ne_bot {x : α} {F : filter α} (h : cluster_pt x F) : ne_bot (𝓝 x ⊓ F) := h lemma filter.has_basis.cluster_pt_iff {ιa ιF} {pa : ιa → Prop} {sa : ιa → set α} {pF : ιF → Prop} {sF : ιF → set α} {F : filter α} (ha : (𝓝 a).has_basis pa sa) (hF : F.has_basis pF sF) : cluster_pt a F ↔ ∀ ⦃i⦄ (hi : pa i) ⦃j⦄ (hj : pF j), (sa i ∩ sF j).nonempty := ha.inf_basis_ne_bot_iff hF lemma cluster_pt_iff {x : α} {F : filter α} : cluster_pt x F ↔ ∀ ⦃U : set α⦄ (hU : U ∈ 𝓝 x) ⦃V⦄ (hV : V ∈ F), (U ∩ V).nonempty := inf_ne_bot_iff /-- `x` is a cluster point of a set `s` if every neighbourhood of `x` meets `s` on a nonempty set. -/ lemma cluster_pt_principal_iff {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∀ U ∈ 𝓝 x, (U ∩ s).nonempty := inf_principal_ne_bot_iff lemma cluster_pt_principal_iff_frequently {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∃ᶠ y in 𝓝 x, y ∈ s := by simp only [cluster_pt_principal_iff, frequently_iff, set.nonempty, exists_prop, mem_inter_iff] lemma cluster_pt.of_le_nhds {x : α} {f : filter α} (H : f ≤ 𝓝 x) [ne_bot f] : cluster_pt x f := by rwa [cluster_pt, inf_eq_right.mpr H] lemma cluster_pt.of_le_nhds' {x : α} {f : filter α} (H : f ≤ 𝓝 x) (hf : ne_bot f) : cluster_pt x f := cluster_pt.of_le_nhds H lemma cluster_pt.of_nhds_le {x : α} {f : filter α} (H : 𝓝 x ≤ f) : cluster_pt x f := by simp only [cluster_pt, inf_eq_left.mpr H, nhds_ne_bot] lemma cluster_pt.mono {x : α} {f g : filter α} (H : cluster_pt x f) (h : f ≤ g) : cluster_pt x g := ⟨ne_bot_of_le_ne_bot H.ne $ inf_le_inf_left _ h⟩ lemma cluster_pt.of_inf_left {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x f := H.mono inf_le_left lemma cluster_pt.of_inf_right {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x g := H.mono inf_le_right lemma ultrafilter.cluster_pt_iff {x : α} {f : ultrafilter α} : cluster_pt x f ↔ ↑f ≤ 𝓝 x := ⟨f.le_of_inf_ne_bot', λ h, cluster_pt.of_le_nhds h⟩ /-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point of `map u F`. -/ def map_cluster_pt {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : Prop := cluster_pt x (map u F) lemma map_cluster_pt_iff {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : map_cluster_pt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := by { simp_rw [map_cluster_pt, cluster_pt, inf_ne_bot_iff_frequently_left, frequently_map], refl } lemma map_cluster_pt_of_comp {ι δ :Type*} {F : filter ι} {φ : δ → ι} {p : filter δ} {x : α} {u : ι → α} [ne_bot p] (h : tendsto φ p F) (H : tendsto (u ∘ φ) p (𝓝 x)) : map_cluster_pt x F u := begin have := calc map (u ∘ φ) p = map u (map φ p) : map_map ... ≤ map u F : map_mono h, have : map (u ∘ φ) p ≤ 𝓝 x ⊓ map u F, from le_inf H this, exact ne_bot_of_le this end /-! ### Interior, closure and frontier in terms of neighborhoods -/ lemma interior_eq_nhds' {s : set α} : interior s = {a | s ∈ 𝓝 a} := set.ext $ λ x, by simp only [mem_interior, mem_nhds_iff, mem_set_of_eq] lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ 𝓟 s} := interior_eq_nhds'.trans $ by simp only [le_principal_iff] lemma mem_interior_iff_mem_nhds {s : set α} {a : α} : a ∈ interior s ↔ s ∈ 𝓝 a := by rw [interior_eq_nhds', mem_set_of_eq] @[simp] lemma interior_mem_nhds {s : set α} {a : α} : interior s ∈ 𝓝 a ↔ s ∈ 𝓝 a := ⟨λ h, mem_of_superset h interior_subset, λ h, is_open.mem_nhds is_open_interior (mem_interior_iff_mem_nhds.2 h)⟩ lemma interior_set_of_eq {p : α → Prop} : interior {x | p x} = {x | ∀ᶠ y in 𝓝 x, p y} := interior_eq_nhds' lemma is_open_set_of_eventually_nhds {p : α → Prop} : is_open {x | ∀ᶠ y in 𝓝 x, p y} := by simp only [← interior_set_of_eq, is_open_interior] lemma subset_interior_iff_nhds {s V : set α} : s ⊆ interior V ↔ ∀ x ∈ s, V ∈ 𝓝 x := show (∀ x, x ∈ s → x ∈ _) ↔ _, by simp_rw mem_interior_iff_mem_nhds lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ 𝓟 s := calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm ... ↔ (∀a∈s, 𝓝 a ≤ 𝓟 s) : by rw [interior_eq_nhds]; refl lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a := is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff theorem is_open_iff_ultrafilter {s : set α} : is_open s ↔ (∀ (x ∈ s) (l : ultrafilter α), ↑l ≤ 𝓝 x → s ∈ l) := by simp_rw [is_open_iff_mem_nhds, ← mem_iff_ultrafilter] lemma mem_closure_iff_frequently {s : set α} {a : α} : a ∈ closure s ↔ ∃ᶠ x in 𝓝 a, x ∈ s := by rw [filter.frequently, filter.eventually, ← mem_interior_iff_mem_nhds, closure_eq_compl_interior_compl]; refl alias mem_closure_iff_frequently ↔ _ filter.frequently.mem_closure /-- The set of cluster points of a filter is closed. In particular, the set of limit points of a sequence is closed. -/ lemma is_closed_set_of_cluster_pt {f : filter α} : is_closed {x | cluster_pt x f} := begin simp only [cluster_pt, inf_ne_bot_iff_frequently_left, set_of_forall, imp_iff_not_or], refine is_closed_Inter (λ p, is_closed.union _ _); apply is_closed_compl_iff.2, exacts [is_open_set_of_eventually_nhds, is_open_const] end theorem mem_closure_iff_cluster_pt {s : set α} {a : α} : a ∈ closure s ↔ cluster_pt a (𝓟 s) := mem_closure_iff_frequently.trans cluster_pt_principal_iff_frequently.symm lemma mem_closure_iff_nhds_ne_bot {s : set α} : a ∈ closure s ↔ 𝓝 a ⊓ 𝓟 s ≠ ⊥ := mem_closure_iff_cluster_pt.trans ne_bot_iff lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} : x ∈ closure s ↔ ne_bot (𝓝[s] x) := mem_closure_iff_cluster_pt /-- If `x` is not an isolated point of a topological space, then `{x}ᶜ` is dense in the whole space. -/ lemma dense_compl_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : dense ({x}ᶜ : set α) := begin intro y, unfreezingI { rcases eq_or_ne y x with rfl|hne }, { rwa mem_closure_iff_nhds_within_ne_bot }, { exact subset_closure hne } end /-- If `x` is not an isolated point of a topological space, then the closure of `{x}ᶜ` is the whole space. -/ @[simp] lemma closure_compl_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : closure {x}ᶜ = (univ : set α) := (dense_compl_singleton x).closure_eq /-- If `x` is not an isolated point of a topological space, then the interior of `{x}ᶜ` is empty. -/ @[simp] lemma interior_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : interior {x} = (∅ : set α) := interior_eq_empty_iff_dense_compl.2 (dense_compl_singleton x) lemma closure_eq_cluster_pts {s : set α} : closure s = {a | cluster_pt a (𝓟 s)} := set.ext $ λ x, mem_closure_iff_cluster_pt theorem mem_closure_iff_nhds {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty := mem_closure_iff_cluster_pt.trans cluster_pt_principal_iff theorem mem_closure_iff_nhds' {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, ∃ y : s, ↑y ∈ t := by simp only [mem_closure_iff_nhds, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_comap_ne_bot {A : set α} {x : α} : x ∈ closure A ↔ ne_bot (comap (coe : A → α) (𝓝 x)) := by simp_rw [mem_closure_iff_nhds, comap_ne_bot_iff, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_nhds_basis' {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → (s i ∩ t).nonempty := mem_closure_iff_cluster_pt.trans $ (h.cluster_pt_iff (has_basis_principal _)).trans $ by simp only [exists_prop, forall_const] theorem mem_closure_iff_nhds_basis {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i := (mem_closure_iff_nhds_basis' h).trans $ by simp only [set.nonempty, mem_inter_eq, exists_prop, and_comm] /-- `x` belongs to the closure of `s` if and only if some ultrafilter supported on `s` converges to `x`. -/ lemma mem_closure_iff_ultrafilter {s : set α} {x : α} : x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u ∧ ↑u ≤ 𝓝 x := by simp [closure_eq_cluster_pts, cluster_pt, ← exists_ultrafilter_iff, and.comm] lemma is_closed_iff_cluster_pt {s : set α} : is_closed s ↔ ∀a, cluster_pt a (𝓟 s) → a ∈ s := calc is_closed s ↔ closure s ⊆ s : closure_subset_iff_is_closed.symm ... ↔ (∀a, cluster_pt a (𝓟 s) → a ∈ s) : by simp only [subset_def, mem_closure_iff_cluster_pt] lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).nonempty) → x ∈ s := by simp_rw [is_closed_iff_cluster_pt, cluster_pt, inf_principal_ne_bot_iff] lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) := begin rintro a ⟨hs, ht⟩, have : s ∈ 𝓝 a := is_open.mem_nhds h hs, rw mem_closure_iff_nhds_ne_bot at ht ⊢, rwa [← inf_principal, ← inf_assoc, inf_eq_left.2 (le_principal_iff.2 this)], end lemma closure_inter_open' {s t : set α} (h : is_open t) : closure s ∩ t ⊆ closure (s ∩ t) := by simpa only [inter_comm] using closure_inter_open h lemma dense.open_subset_closure_inter {s t : set α} (hs : dense s) (ht : is_open t) : t ⊆ closure (t ∩ s) := calc t = t ∩ closure s : by rw [hs.closure_eq, inter_univ] ... ⊆ closure (t ∩ s) : closure_inter_open ht lemma mem_closure_of_mem_closure_union {s₁ s₂ : set α} {x : α} (h : x ∈ closure (s₁ ∪ s₂)) (h₁ : s₁ᶜ ∈ 𝓝 x) : x ∈ closure s₂ := begin rw mem_closure_iff_nhds_ne_bot at *, rwa ← calc 𝓝 x ⊓ principal (s₁ ∪ s₂) = 𝓝 x ⊓ (principal s₁ ⊔ principal s₂) : by rw sup_principal ... = (𝓝 x ⊓ principal s₁) ⊔ (𝓝 x ⊓ principal s₂) : inf_sup_left ... = ⊥ ⊔ 𝓝 x ⊓ principal s₂ : by rw inf_principal_eq_bot.mpr h₁ ... = 𝓝 x ⊓ principal s₂ : bot_sup_eq end /-- The intersection of an open dense set with a dense set is a dense set. -/ lemma dense.inter_of_open_left {s t : set α} (hs : dense s) (ht : dense t) (hso : is_open s) : dense (s ∩ t) := λ x, (closure_minimal (closure_inter_open hso) is_closed_closure) $ by simp [hs.closure_eq, ht.closure_eq] /-- The intersection of a dense set with an open dense set is a dense set. -/ lemma dense.inter_of_open_right {s t : set α} (hs : dense s) (ht : dense t) (hto : is_open t) : dense (s ∩ t) := inter_comm t s ▸ ht.inter_of_open_left hs hto lemma dense.inter_nhds_nonempty {s t : set α} (hs : dense s) {x : α} (ht : t ∈ 𝓝 x) : (s ∩ t).nonempty := let ⟨U, hsub, ho, hx⟩ := mem_nhds_iff.1 ht in (hs.inter_open_nonempty U ho ⟨x, hx⟩).mono $ λ y hy, ⟨hy.2, hsub hy.1⟩ lemma closure_diff {s t : set α} : closure s \ closure t ⊆ closure (s \ t) := calc closure s \ closure t = (closure t)ᶜ ∩ closure s : by simp only [diff_eq, inter_comm] ... ⊆ closure ((closure t)ᶜ ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure ... = closure (s \ closure t) : by simp only [diff_eq, inter_comm] ... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure lemma filter.frequently.mem_of_closed {a : α} {s : set α} (h : ∃ᶠ x in 𝓝 a, x ∈ s) (hs : is_closed s) : a ∈ s := hs.closure_subset h.mem_closure lemma is_closed.mem_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (hs : is_closed s) (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ s := (hf.frequently $ show ∃ᶠ x in b, (λ y, y ∈ s) (f x), from h).mem_of_closed hs lemma is_closed.mem_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hs : is_closed s) (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ s := hs.mem_of_frequently_of_tendsto h.frequently hf lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ closure s := is_closed_closure.mem_of_tendsto hf $ h.mono (preimage_mono subset_closure) /-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter. Then `f` tends to `a` along `l` restricted to `s` if and only if it tends to `a` along `l`. -/ lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β} {a : α} (h : ∀ x ∉ s, f x = a) : tendsto f (l ⊓ 𝓟 s) (𝓝 a) ↔ tendsto f l (𝓝 a) := begin rw [tendsto_iff_comap, tendsto_iff_comap], replace h : 𝓟 sᶜ ≤ comap f (𝓝 a), { rintros U ⟨t, ht, htU⟩ x hx, have : f x ∈ t, from (h x hx).symm ▸ mem_of_mem_nhds ht, exact htU this }, refine ⟨λ h', _, le_trans inf_le_left⟩, have := sup_le h' h, rw [sup_inf_right, sup_principal, union_compl_self, principal_univ, inf_top_eq, sup_le_iff] at this, exact this.1 end /-! ### Limits of filters in topological spaces -/ section lim /-- If `f` is a filter, then `Lim f` is a limit of the filter, if it exists. -/ noncomputable def Lim [nonempty α] (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a /-- If `f` is a filter satisfying `ne_bot f`, then `Lim' f` is a limit of the filter, if it exists. -/ def Lim' (f : filter α) [ne_bot f] : α := @Lim _ _ (nonempty_of_ne_bot f) f /-- If `F` is an ultrafilter, then `filter.ultrafilter.Lim F` is a limit of the filter, if it exists. Note that dot notation `F.Lim` can be used for `F : ultrafilter α`. -/ def ultrafilter.Lim : ultrafilter α → α := λ F, Lim' F /-- If `f` is a filter in `β` and `g : β → α` is a function, then `lim f` is a limit of `g` at `f`, if it exists. -/ noncomputable def lim [nonempty α] (f : filter β) (g : β → α) : α := Lim (f.map g) /-- If a filter `f` is majorated by some `𝓝 a`, then it is majorated by `𝓝 (Lim f)`. We formulate this lemma with a `[nonempty α]` argument of `Lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma le_nhds_Lim {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (@Lim _ _ (nonempty_of_exists h) f) := epsilon_spec h /-- If `g` tends to some `𝓝 a` along `f`, then it tends to `𝓝 (lim f g)`. We formulate this lemma with a `[nonempty α]` argument of `lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma tendsto_nhds_lim {f : filter β} {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) : tendsto g f (𝓝 $ @lim _ _ _ (nonempty_of_exists h) f g) := le_nhds_Lim h end lim /-! ### Locally finite families -/ /- locally finite family [General Topology (Bourbaki, 1995)] -/ section locally_finite /-- A family of sets in `set α` is locally finite if at every point `x:α`, there is a neighborhood of `x` which meets only finitely many sets in the family -/ def locally_finite (f : β → set α) := ∀x:α, ∃t ∈ 𝓝 x, finite {i | (f i ∩ t).nonempty } lemma locally_finite.point_finite {f : β → set α} (hf : locally_finite f) (x : α) : finite {b | x ∈ f b} := let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩ lemma locally_finite_of_fintype [fintype β] (f : β → set α) : locally_finite f := assume x, ⟨univ, univ_mem, finite.of_fintype _⟩ lemma locally_finite.subset {f₁ f₂ : β → set α} (hf₂ : locally_finite f₂) (hf : ∀b, f₁ b ⊆ f₂ b) : locally_finite f₁ := assume a, let ⟨t, ht₁, ht₂⟩ := hf₂ a in ⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hf i) $ subset.refl _⟩ lemma locally_finite.comp_injective {ι} {f : β → set α} {g : ι → β} (hf : locally_finite f) (hg : function.injective g) : locally_finite (f ∘ g) := λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage (hg.inj_on _)⟩ lemma locally_finite.closure {f : β → set α} (hf : locally_finite f) : locally_finite (λ i, closure (f i)) := begin intro x, rcases hf x with ⟨s, hsx, hsf⟩, refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩, exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono (inter_subset_inter_right _ interior_subset) end lemma locally_finite.is_closed_Union {f : β → set α} (h₁ : locally_finite f) (h₂ : ∀i, is_closed (f i)) : is_closed (⋃i, f i) := begin simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter], intros a ha, replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (h₂ i).is_open_compl.mem_nhds (ha i), rcases h₁ a with ⟨t, h_nhds, h_fin⟩, have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a, from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)), filter_upwards [this], simp only [mem_inter_eq, mem_Inter], rintros b ⟨hbt, hn⟩ i hfb, exact hn i ⟨b, hfb, hbt⟩ hfb end lemma locally_finite.closure_Union {f : β → set α} (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) := subset.antisymm (closure_minimal (Union_subset_Union $ λ _, subset_closure) $ h.closure.is_closed_Union $ λ _, is_closed_closure) (Union_subset $ λ i, closure_mono $ subset_Union _ _) end locally_finite end topological_space /-! ### Continuity -/ section continuous variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] open_locale topological_space /-- A function between topological spaces is continuous if the preimage of every open set is open. Registered as a structure to make sure it is not unfolded by Lean. -/ structure continuous (f : α → β) : Prop := (is_open_preimage : ∀s, is_open s → is_open (f ⁻¹' s)) lemma continuous_def {f : α → β} : continuous f ↔ (∀s, is_open s → is_open (f ⁻¹' s)) := ⟨λ hf s hs, hf.is_open_preimage s hs, λ h, ⟨h⟩⟩ lemma is_open.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_open s) : is_open (f ⁻¹' s) := hf.is_open_preimage s h /-- A function between topological spaces is continuous at a point `x₀` if `f x` tends to `f x₀` when `x` tends to `x₀`. -/ def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x)) lemma continuous_at.tendsto {f : α → β} {x : α} (h : continuous_at f x) : tendsto f (𝓝 x) (𝓝 (f x)) := h lemma continuous_at_congr {f g : α → β} {x : α} (h : f =ᶠ[𝓝 x] g) : continuous_at f x ↔ continuous_at g x := by simp only [continuous_at, tendsto_congr' h, h.eq_of_nhds] lemma continuous_at.congr {f g : α → β} {x : α} (hf : continuous_at f x) (h : f =ᶠ[𝓝 x] g) : continuous_at g x := (continuous_at_congr h).1 hf lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x := h ht lemma eventually_eq_zero_nhds {M₀} [has_zero M₀] {a : α} {f : α → M₀} : f =ᶠ[𝓝 a] 0 ↔ a ∉ closure (function.support f) := by rw [← mem_compl_eq, ← interior_compl, mem_interior_iff_mem_nhds, function.compl_support]; refl lemma cluster_pt.map {x : α} {la : filter α} {lb : filter β} (H : cluster_pt x la) {f : α → β} (hfc : continuous_at f x) (hf : tendsto f la lb) : cluster_pt (f x) lb := ⟨ne_bot_of_le_ne_bot ((map_ne_bot_iff f).2 H).ne $ hfc.tendsto.inf hf⟩ /-- See also `interior_preimage_subset_preimage_interior`. -/ lemma preimage_interior_subset_interior_preimage {f : α → β} {s : set β} (hf : continuous f) : f⁻¹' (interior s) ⊆ interior (f⁻¹' s) := interior_maximal (preimage_mono interior_subset) (is_open_interior.preimage hf) lemma continuous_id : continuous (id : α → α) := continuous_def.2 $ assume s h, h lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) : continuous (g ∘ f) := continuous_def.2 $ assume s h, (h.preimage hg).preimage hf lemma continuous.iterate {f : α → α} (h : continuous f) (n : ℕ) : continuous (f^[n]) := nat.rec_on n continuous_id (λ n ihn, ihn.comp h) lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α} (hg : continuous_at g (f x)) (hf : continuous_at f x) : continuous_at (g ∘ f) x := hg.comp hf lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) : tendsto f (𝓝 x) (𝓝 (f x)) := ((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $ λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, ht.preimage hf⟩, subset.refl _⟩ /-- A version of `continuous.tendsto` that allows one to specify a simpler form of the limit. E.g., one can write `continuous_exp.tendsto' 0 1 exp_zero`. -/ lemma continuous.tendsto' {f : α → β} (hf : continuous f) (x : α) (y : β) (h : f x = y) : tendsto f (𝓝 x) (𝓝 y) := h ▸ hf.tendsto x lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) : continuous_at f x := h.tendsto x lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x := ⟨continuous.tendsto, assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)), continuous_def.2 $ assume s, assume hs : is_open s, have ∀a, f a ∈ s → s ∈ 𝓝 (f a), from λ a ha, is_open.mem_nhds hs ha, show is_open (f ⁻¹' s), from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩ lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x := tendsto_const_nhds lemma continuous_const {b : β} : continuous (λa:α, b) := continuous_iff_continuous_at.mpr $ assume a, continuous_at_const lemma filter.eventually_eq.continuous_at {x : α} {f : α → β} {y : β} (h : f =ᶠ[𝓝 x] (λ _, y)) : continuous_at f x := (continuous_at_congr h).2 tendsto_const_nhds lemma continuous_of_const {f : α → β} (h : ∀ x y, f x = f y) : continuous f := continuous_iff_continuous_at.mpr $ λ x, filter.eventually_eq.continuous_at $ eventually_of_forall (λ y, h y x) lemma continuous_at_id {x : α} : continuous_at id x := continuous_id.continuous_at lemma continuous_at.iterate {f : α → α} {x : α} (hf : continuous_at f x) (hx : f x = x) (n : ℕ) : continuous_at (f^[n]) x := nat.rec_on n continuous_at_id $ λ n ihn, show continuous_at (f^[n] ∘ f) x, from continuous_at.comp (hx.symm ▸ ihn) hf lemma continuous_iff_is_closed {f : α → β} : continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) := ⟨assume hf s hs, by simpa using (continuous_def.1 hf sᶜ hs.is_open_compl).is_closed_compl, assume hf, continuous_def.2 $ assume s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩ lemma is_closed.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_closed s) : is_closed (f ⁻¹' s) := continuous_iff_is_closed.mp hf s h lemma mem_closure_image {f : α → β} {x : α} {s : set α} (hf : continuous_at f x) (hx : x ∈ closure s) : f x ∈ closure (f '' s) := begin rw [mem_closure_iff_nhds_ne_bot] at hx ⊢, rw ← bot_lt_iff_ne_bot, haveI : ne_bot _ := ⟨hx⟩, calc ⊥ < map f (𝓝 x ⊓ principal s) : bot_lt_iff_ne_bot.mpr ne_bot.ne' ... ≤ (map f $ 𝓝 x) ⊓ (map f $ principal s) : map_inf_le ... = (map f $ 𝓝 x) ⊓ (principal $ f '' s) : by rw map_principal ... ≤ 𝓝 (f x) ⊓ (principal $ f '' s) : inf_le_inf hf le_rfl end lemma continuous_at_iff_ultrafilter {f : α → β} {x} : continuous_at f x ↔ ∀ g : ultrafilter α, ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x)) lemma continuous_iff_ultrafilter {f : α → β} : continuous f ↔ ∀ x (g : ultrafilter α), ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter] lemma continuous.closure_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : closure (f ⁻¹' t) ⊆ f ⁻¹' (closure t) := begin rw ← (is_closed_closure.preimage hf).closure_eq, exact closure_mono (preimage_mono subset_closure), end lemma continuous.frontier_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : frontier (f ⁻¹' t) ⊆ f ⁻¹' (frontier t) := diff_subset_diff (hf.closure_preimage_subset t) (preimage_interior_subset_interior_preimage hf) /-! ### Continuity and partial functions -/ /-- Continuity of a partial function -/ def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s) lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom := by rw [←pfun.preimage_univ]; exact h _ is_open_univ lemma pcontinuous_iff' {f : α →. β} : pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) := begin split, { intros h x y h', simp only [ptendsto'_def, mem_nhds_iff], rintros s ⟨t, tsubs, opent, yt⟩, exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ }, intros hf s os, rw is_open_iff_nhds, rintros x ⟨y, ys, fxy⟩ t, rw [mem_principal], assume h : f.preimage s ⊆ t, change t ∈ 𝓝 x, apply mem_of_superset _ h, have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x, { intros s hs, have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy, rw ptendsto'_def at this, exact this s hs }, show f.preimage s ∈ 𝓝 x, apply h', rw mem_nhds_iff, exact ⟨s, set.subset.refl _, os, ys⟩ end /-- If a continuous map `f` maps `s` to `t`, then it maps `closure s` to `closure t`. -/ lemma set.maps_to.closure {s : set α} {t : set β} {f : α → β} (h : maps_to f s t) (hc : continuous f) : maps_to f (closure s) (closure t) := begin simp only [maps_to, mem_closure_iff_cluster_pt], exact λ x hx, hx.map hc.continuous_at (tendsto_principal_principal.2 h) end lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) : f '' closure s ⊆ closure (f '' s) := ((maps_to_image f s).closure h).image_subset lemma closure_subset_preimage_closure_image {f : α → β} {s : set α} (h : continuous f) : closure s ⊆ f ⁻¹' (closure (f '' s)) := by { rw ← set.image_subset_iff, exact image_closure_subset_closure_image h } lemma map_mem_closure {s : set α} {t : set β} {f : α → β} {a : α} (hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t := set.maps_to.closure ht hf ha /-! ### Function with dense range -/ section dense_range variables {κ ι : Type*} (f : κ → β) (g : β → γ) /-- `f : ι → β` has dense range if its range (image) is a dense subset of β. -/ def dense_range := dense (range f) variables {f} /-- A surjective map has dense range. -/ lemma function.surjective.dense_range (hf : function.surjective f) : dense_range f := λ x, by simp [hf.range_eq] lemma dense_range_iff_closure_range : dense_range f ↔ closure (range f) = univ := dense_iff_closure_eq lemma dense_range.closure_range (h : dense_range f) : closure (range f) = univ := h.closure_eq lemma dense.dense_range_coe {s : set α} (h : dense s) : dense_range (coe : s → α) := by simpa only [dense_range, subtype.range_coe_subtype] lemma continuous.range_subset_closure_image_dense {f : α → β} (hf : continuous f) {s : set α} (hs : dense s) : range f ⊆ closure (f '' s) := by { rw [← image_univ, ← hs.closure_eq], exact image_closure_subset_closure_image hf } /-- The image of a dense set under a continuous map with dense range is a dense set. -/ lemma dense_range.dense_image {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) : dense (f '' s) := (hf'.mono $ hf.range_subset_closure_image_dense hs).of_closure /-- If `f` has dense range and `s` is an open set in the codomain of `f`, then the image of the preimage of `s` under `f` is dense in `s`. -/ lemma dense_range.subset_closure_image_preimage_of_is_open (hf : dense_range f) {s : set β} (hs : is_open s) : s ⊆ closure (f '' (f ⁻¹' s)) := by { rw image_preimage_eq_inter_range, exact hf.open_subset_closure_inter hs } /-- If a continuous map with dense range maps a dense set to a subset of `t`, then `t` is a dense set. -/ lemma dense_range.dense_of_maps_to {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) {t : set β} (ht : maps_to f s t) : dense t := (hf'.dense_image hf hs).mono ht.image_subset /-- Composition of a continuous map with dense range and a function with dense range has dense range. -/ lemma dense_range.comp {g : β → γ} {f : κ → β} (hg : dense_range g) (hf : dense_range f) (cg : continuous g) : dense_range (g ∘ f) := by { rw [dense_range, range_comp], exact hg.dense_image cg hf } lemma dense_range.nonempty_iff (hf : dense_range f) : nonempty κ ↔ nonempty β := range_nonempty_iff_nonempty.symm.trans hf.nonempty_iff lemma dense_range.nonempty [h : nonempty β] (hf : dense_range f) : nonempty κ := hf.nonempty_iff.mpr h /-- Given a function `f : α → β` with dense range and `b : β`, returns some `a : α`. -/ def dense_range.some (hf : dense_range f) (b : β) : κ := classical.choice $ hf.nonempty_iff.mpr ⟨b⟩ lemma dense_range.exists_mem_open (hf : dense_range f) {s : set β} (ho : is_open s) (hs : s.nonempty) : ∃ a, f a ∈ s := exists_range_iff.1 $ hf.exists_mem_open ho hs lemma dense_range.mem_nhds {f : κ → β} (h : dense_range f) {b : β} {U : set β} (U_in : U ∈ nhds b) : ∃ a, f a ∈ U := begin rcases (mem_closure_iff_nhds.mp ((dense_range_iff_closure_range.mp h).symm ▸ mem_univ b : b ∈ closure (range f)) U U_in) with ⟨_, h, a, rfl⟩, exact ⟨a, h⟩ end end dense_range end continuous /-- The library contains many lemmas stating that functions/operations are continuous. There are many ways to formulate the continuity of operations. Some are more convenient than others. Note: for the most part this note also applies to other properties (`measurable`, `differentiable`, `continuous_on`, ...). ### The traditional way As an example, let's look at addition `(+) : M → M → M`. We can state that this is continuous in different definitionally equal ways (omitting some typing information) * `continuous (λ p, p.1 + p.2)`; * `continuous (function.uncurry (+))`; * `continuous ↿(+)`. (`↿` is notation for recursively uncurrying a function) However, lemmas with this conclusion are not nice to use in practice because 1. They confuse the elaborator. The following two examples fail, because of limitations in the elaboration process. ``` variables {M : Type*} [has_mul M] [topological_space M] [has_continuous_mul M] example : continuous (λ x : M, x + x) := continuous_add.comp _ example : continuous (λ x : M, x + x) := continuous_add.comp (continuous_id.prod_mk continuous_id) ``` The second is a valid proof, which is accepted if you write it as `continuous_add.comp (continuous_id.prod_mk continuous_id : _)` 2. If the operation has more than 2 arguments, they are impractical to use, because in your application the arguments in the domain might be in a different order or associated differently. ### The convenient way A much more convenient way to write continuity lemmas is like `continuous.add`: ``` continuous.add {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λ x, f x + g x) ``` The conclusion can be `continuous (f + g)`, which is definitionally equal. This has the following advantages * It supports projection notation, so is shorter to write. * `continuous.add _ _` is recognized correctly by the elaborator and gives useful new goals. * It works generally, since the domain is a variable. As an example for an unary operation, we have `continuous.neg`. ``` continuous.neg {f : α → G} (hf : continuous f) : continuous (λ x, -f x) ``` For unary functions, the elaborator is not confused when applying the traditional lemma (like `continuous_neg`), but it's still convenient to have the short version available (compare `hf.neg.neg.neg` with `continuous_neg.comp $ continuous_neg.comp $ continuous_neg.comp hf`). As a harder example, consider an operation of the following type: ``` def strans {x : F} (γ γ' : path x x) (t₀ : I) : path x x ``` The precise definition is not important, only its type. The correct continuity principle for this operation is something like this: ``` {f : X → F} {γ γ' : ∀ x, path (f x) (f x)} {t₀ s : X → I} (hγ : continuous ↿γ) (hγ' : continuous ↿γ') (ht : continuous t₀) (hs : continuous s) : continuous (λ x, strans (γ x) (γ' x) (t x) (s x)) ``` Note that *all* arguments of `strans` are indexed over `X`, even the basepoint `x`, and the last argument `s` that arises since `path x x` has a coercion to `I → F`. The paths `γ` and `γ'` (which are unary functions from `I`) become binary functions in the continuity lemma. ### Summary * Make sure that your continuity lemmas are stated in the most general way, and in a convenient form. That means that: - The conclusion has a variable `X` as domain (not something like `Y × Z`); - Wherever possible, all point arguments `c : Y` are replaced by functions `c : X → Y`; - All `n`-ary function arguments are replaced by `n+1`-ary functions (`f : Y → Z` becomes `f : X → Y → Z`); - All (relevant) arguments have continuity assumptions, and perhaps there are additional assumptions needed to make the operation continuous; - The function in the conclusion is fully applied. * These remarks are mostly about the format of the *conclusion* of a continuity lemma. In assumptions it's fine to state that a function with more than 1 argument is continuous using `↿` or `function.uncurry`. ### Functions with discontinuities In some cases, you want to work with discontinuous functions, and in certain expressions they are still continuous. For example, consider the fractional part of a number, `fract : ℝ → ℝ`. In this case, you want to add conditions to when a function involving `fract` is continuous, so you get something like this: (assumption `hf` could be weakened, but the important thing is the shape of the conclusion) ``` lemma continuous_on.comp_fract {X Y : Type*} [topological_space X] [topological_space Y] {f : X → ℝ → Y} {g : X → ℝ} (hf : continuous ↿f) (hg : continuous g) (h : ∀ s, f s 0 = f s 1) : continuous (λ x, f x (fract (g x))) ``` With `continuous_at` you can be even more precise about what to prove in case of discontinuities, see e.g. `continuous_at.comp_div_cases`. -/ library_note "continuity lemma statement"
21d2fe2c80c51c995ccbc03780688f8a5dbdddec
f20db13587f4dd28a4b1fbd31953afd491691fa0
/library/init/meta/lean/parser.lean
a1e305ddfd3e88d16c2b6146333a2a0297a87aef
[ "Apache-2.0" ]
permissive
AHartNtkn/lean
9a971edfc6857c63edcbf96bea6841b9a84cf916
0d83a74b26541421fc1aa33044c35b03759710ed
refs/heads/master
1,620,592,591,236
1,516,749,881,000
1,516,749,881,000
118,697,288
1
0
null
1,516,759,470,000
1,516,759,470,000
null
UTF-8
Lean
false
false
3,156
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ prelude import init.meta.tactic namespace lean -- TODO: make inspectable (and pure) meta constant parser_state : Type meta constant parser_state.env : parser_state → environment meta constant parser_state.options : parser_state → options meta constant parser_state.cur_pos : parser_state → pos @[reducible] meta def parser := interaction_monad parser_state @[reducible] meta def parser_result := interaction_monad.result parser_state open interaction_monad open interaction_monad.result namespace parser variable {α : Type} meta constant set_env : environment → parser unit /-- Make sure the next token is an identifier, consume it, and produce the quoted name `t, where t is the identifier. -/ meta constant ident : parser name /-- Make sure the next token is a small nat, consume it, and produce it -/ meta constant small_nat : parser nat /-- Check that the next token is `tk` and consume it. `tk` must be a registered token. -/ meta constant tk (tk : string) : parser unit /-- Parse an unelaborated expression using the given right-binding power. -/ protected meta constant pexpr (rbp := std.prec.max) : parser pexpr /-- Do not report info from content parsed by `p`. -/ meta constant skip_info (p : parser α) : parser α /-- Set goal info position of content parsed by `p` to current position. Nested calls take precedence. -/ meta constant set_goal_info_pos (p : parser α) : parser α /-- Return the current parser position without consuming any input. -/ meta def cur_pos : parser pos := λ s, success (parser_state.cur_pos s) s /-- Temporarily replace input of the parser state, run `p`, and return remaining input. -/ meta constant with_input (p : parser α) (input : string) : parser (α × string) /-- Parse a top-level command. -/ meta constant command_like : parser unit meta def parser_orelse (p₁ p₂ : parser α) : parser α := λ s, let pos₁ := parser_state.cur_pos s in result.cases_on (p₁ s) success (λ e₁ ref₁ s', let pos₂ := parser_state.cur_pos s' in if pos₁ ≠ pos₂ then exception e₁ ref₁ s' else result.cases_on (p₂ s) success exception) meta instance : alternative parser := { failure := @interaction_monad.failed _, orelse := @parser_orelse, ..interaction_monad.monad } -- TODO: move meta def {u v} many {f : Type u → Type v} [monad f] [alternative f] {a : Type u} : f a → f (list a) | x := (do y ← x, ys ← many x, return $ y::ys) <|> pure list.nil local postfix `?`:100 := optional local postfix `*`:100 := many meta def sep_by : parser unit → parser α → parser (list α) | s p := (list.cons <$> p <*> (s *> p)*) <|> return [] meta def tactic_to_parser : tactic α → parser α := λ t s, match t (tactic_state.mk_empty s.env s.options) with | success x ts := (set_env ts.env >> pure x) s | exception f p _ := exception f p s end meta instance : has_coe (tactic α) (parser α) := ⟨tactic_to_parser⟩ end parser end lean
9618c4214b108133dfcbfa679f72b231d8228fd4
9b9a16fa2cb737daee6b2785474678b6fa91d6d4
/src/order/filter/basic.lean
96a927b27eb7db751b86611bb4b3656473f5f0e8
[ "Apache-2.0" ]
permissive
johoelzl/mathlib
253f46daa30b644d011e8e119025b01ad69735c4
592e3c7a2dfbd5826919b4605559d35d4d75938f
refs/heads/master
1,625,657,216,488
1,551,374,946,000
1,551,374,946,000
98,915,829
0
0
Apache-2.0
1,522,917,267,000
1,501,524,499,000
Lean
UTF-8
Lean
false
false
79,639
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Jeremy Avigad Theory of filters on sets. -/ import order.galois_connection order.zorn import data.set.finite data.list data.pfun import algebra.pi_instances import category.applicative open lattice set universes u v w x y local attribute [instance] classical.prop_decidable namespace lattice variables {α : Type u} {ι : Sort v} def complete_lattice.copy (c : complete_lattice α) (le : α → α → Prop) (eq_le : le = @complete_lattice.le α c) (top : α) (eq_top : top = @complete_lattice.top α c) (bot : α) (eq_bot : bot = @complete_lattice.bot α c) (sup : α → α → α) (eq_sup : sup = @complete_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @complete_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @complete_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @complete_lattice.Inf α c) : complete_lattice α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, ..}; subst_vars, exact @complete_lattice.le_refl α c, exact @complete_lattice.le_trans α c, exact @complete_lattice.le_antisymm α c, exact @complete_lattice.le_sup_left α c, exact @complete_lattice.le_sup_right α c, exact @complete_lattice.sup_le α c, exact @complete_lattice.inf_le_left α c, exact @complete_lattice.inf_le_right α c, exact @complete_lattice.le_inf α c, exact @complete_lattice.le_top α c, exact @complete_lattice.bot_le α c, exact @complete_lattice.le_Sup α c, exact @complete_lattice.Sup_le α c, exact @complete_lattice.Inf_le α c, exact @complete_lattice.le_Inf α c end end lattice open set lattice section order variables {α : Type u} (r : α → α → Prop) local infix `≼` : 50 := r lemma directed_on_Union {r} {ι : Sort v} {f : ι → set α} (hd : directed (⊆) f) (h : ∀x, directed_on r (f x)) : directed_on r (⋃x, f x) := by simp only [directed_on, exists_prop, mem_Union, exists_imp_distrib]; exact assume a₁ b₁ fb₁ a₂ b₂ fb₂, let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂, ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) in ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ end order theorem directed_of_chain {α β r} [is_refl β r] {f : α → β} {c : set α} (h : zorn.chain (f ⁻¹'o r) c) : directed r (λx:{a:α // a ∈ c}, f (x.val)) := assume ⟨a, ha⟩ ⟨b, hb⟩, classical.by_cases (assume : a = b, by simp only [this, exists_prop, and_self, subtype.exists]; exact ⟨b, hb, refl _⟩) (assume : a ≠ b, (h a ha b hb this).elim (λ h : r (f a) (f b), ⟨⟨b, hb⟩, h, refl _⟩) (λ h : r (f b) (f a), ⟨⟨a, ha⟩, refl _, h⟩)) structure filter (α : Type*) := (sets : set (set α)) (univ_sets : set.univ ∈ sets) (sets_of_superset {x y} : x ∈ sets → x ⊆ y → y ∈ sets) (inter_sets {x y} : x ∈ sets → y ∈ sets → x ∩ y ∈ sets) namespace filter variables {α : Type u} {f g : filter α} {s t : set α} lemma filter_eq : ∀{f g : filter α}, f.sets = g.sets → f = g | ⟨a, _, _, _⟩ ⟨._, _, _, _⟩ rfl := rfl lemma filter_eq_iff : f = g ↔ f.sets = g.sets := ⟨congr_arg _, filter_eq⟩ protected lemma ext_iff : f = g ↔ ∀ s, s ∈ f.sets ↔ s ∈ g.sets := by rw [filter_eq_iff, ext_iff] @[extensionality] protected lemma ext : (∀ s, s ∈ f.sets ↔ s ∈ g.sets) → f = g := filter.ext_iff.2 lemma univ_mem_sets : univ ∈ f.sets := f.univ_sets lemma mem_sets_of_superset : ∀{x y : set α}, x ∈ f.sets → x ⊆ y → y ∈ f.sets := f.sets_of_superset lemma inter_mem_sets : ∀{s t}, s ∈ f.sets → t ∈ f.sets → s ∩ t ∈ f.sets := f.inter_sets lemma univ_mem_sets' (h : ∀ a, a ∈ s): s ∈ f.sets := mem_sets_of_superset univ_mem_sets (assume x _, h x) lemma mp_sets (hs : s ∈ f.sets) (h : {x | x ∈ s → x ∈ t} ∈ f.sets) : t ∈ f.sets := mem_sets_of_superset (inter_mem_sets hs h) $ assume x ⟨h₁, h₂⟩, h₂ h₁ lemma Inter_mem_sets {β : Type v} {s : β → set α} {is : set β} (hf : finite is) : (∀i∈is, s i ∈ f.sets) → (⋂i∈is, s i) ∈ f.sets := finite.induction_on hf (assume hs, by simp only [univ_mem_sets, mem_empty_eq, Inter_neg, Inter_univ, not_false_iff]) (assume i is _ hf hi hs, have h₁ : s i ∈ f.sets, from hs i (by simp), have h₂ : (⋂x∈is, s x) ∈ f.sets, from hi $ assume a ha, hs _ $ by simp only [ha, mem_insert_iff, or_true], by simp [inter_mem_sets h₁ h₂]) lemma exists_sets_subset_iff : (∃t∈f.sets, t ⊆ s) ↔ s ∈ f.sets := ⟨assume ⟨t, ht, ts⟩, mem_sets_of_superset ht ts, assume hs, ⟨s, hs, subset.refl _⟩⟩ lemma monotone_mem_sets {f : filter α} : monotone (λs, s ∈ f.sets) := assume s t hst h, mem_sets_of_superset h hst end filter namespace tactic.interactive open tactic interactive /-- `filter_upwards [h1, ⋯, hn]` replaces a goal of the form `s ∈ f.sets` and terms `h1 : t1 ∈ f.sets, ⋯, hn : tn ∈ f.sets` with `∀x, x ∈ t1 → ⋯ → x ∈ tn → x ∈ s`. `filter_upwards [h1, ⋯, hn] e` is a short form for `{ filter_upwards [h1, ⋯, hn], exact e }`. -/ meta def filter_upwards (s : parse types.pexpr_list) (e' : parse $ optional types.texpr) : tactic unit := do s.reverse.mmap (λ e, eapplyc `filter.mp_sets >> eapply e), eapplyc `filter.univ_mem_sets', match e' with | some e := interactive.exact e | none := skip end end tactic.interactive namespace filter variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} section principal /-- The principal filter of `s` is the collection of all supersets of `s`. -/ def principal (s : set α) : filter α := { sets := {t | s ⊆ t}, univ_sets := subset_univ s, sets_of_superset := assume x y hx hy, subset.trans hx hy, inter_sets := assume x y, subset_inter } instance : inhabited (filter α) := ⟨principal ∅⟩ @[simp] lemma mem_principal_sets {s t : set α} : s ∈ (principal t).sets ↔ t ⊆ s := iff.rfl lemma mem_principal_self (s : set α) : s ∈ (principal s).sets := subset.refl _ end principal section join /-- The join of a filter of filters is defined by the relation `s ∈ join f ↔ {t | s ∈ t} ∈ f`. -/ def join (f : filter (filter α)) : filter α := { sets := {s | {t : filter α | s ∈ t.sets} ∈ f.sets}, univ_sets := by simp only [univ_mem_sets, mem_set_of_eq]; exact univ_mem_sets, sets_of_superset := assume x y hx xy, mem_sets_of_superset hx $ assume f h, mem_sets_of_superset h xy, inter_sets := assume x y hx hy, mem_sets_of_superset (inter_mem_sets hx hy) $ assume f ⟨h₁, h₂⟩, inter_mem_sets h₁ h₂ } @[simp] lemma mem_join_sets {s : set α} {f : filter (filter α)} : s ∈ (join f).sets ↔ {t | s ∈ filter.sets t} ∈ f.sets := iff.rfl end join section lattice instance : partial_order (filter α) := { le := λf g, g.sets ⊆ f.sets, le_antisymm := assume a b h₁ h₂, filter_eq $ subset.antisymm h₂ h₁, le_refl := assume a, subset.refl _, le_trans := assume a b c h₁ h₂, subset.trans h₂ h₁ } theorem le_def {f g : filter α} : f ≤ g ↔ ∀ x ∈ g.sets, x ∈ f.sets := iff.rfl /-- `generate_sets g s`: `s` is in the filter closure of `g`. -/ inductive generate_sets (g : set (set α)) : set α → Prop | basic {s : set α} : s ∈ g → generate_sets s | univ {} : generate_sets univ | superset {s t : set α} : generate_sets s → s ⊆ t → generate_sets t | inter {s t : set α} : generate_sets s → generate_sets t → generate_sets (s ∩ t) /-- `generate g` is the smallest filter containing the sets `g`. -/ def generate (g : set (set α)) : filter α := { sets := {s | generate_sets g s}, univ_sets := generate_sets.univ, sets_of_superset := assume x y, generate_sets.superset, inter_sets := assume s t, generate_sets.inter } lemma sets_iff_generate {s : set (set α)} {f : filter α} : f ≤ filter.generate s ↔ s ⊆ f.sets := iff.intro (assume h u hu, h $ generate_sets.basic $ hu) (assume h u hu, hu.rec_on h univ_mem_sets (assume x y _ hxy hx, mem_sets_of_superset hx hxy) (assume x y _ _ hx hy, inter_mem_sets hx hy)) protected def mk_of_closure (s : set (set α)) (hs : (generate s).sets = s) : filter α := { sets := s, univ_sets := hs ▸ univ_mem_sets, sets_of_superset := assume x y, hs ▸ mem_sets_of_superset, inter_sets := assume x y, hs ▸ inter_mem_sets } lemma mk_of_closure_sets {s : set (set α)} {hs : (generate s).sets = s} : filter.mk_of_closure s hs = generate s := filter.ext $ assume u, hs.symm ▸ iff.refl _ /- Galois insertion from sets of sets into a filters. -/ def gi_generate (α : Type*) : @galois_insertion (set (set α)) (order_dual (filter α)) _ _ filter.generate filter.sets := { gc := assume s f, sets_iff_generate, le_l_u := assume f u, generate_sets.basic, choice := λs hs, filter.mk_of_closure s (le_antisymm hs $ sets_iff_generate.1 $ le_refl _), choice_eq := assume s hs, mk_of_closure_sets } /-- The infimum of filters is the filter generated by intersections of elements of the two filters. -/ instance : has_inf (filter α) := ⟨λf g : filter α, { sets := {s | ∃ (a ∈ f.sets) (b ∈ g.sets), a ∩ b ⊆ s }, univ_sets := ⟨_, univ_mem_sets, _, univ_mem_sets, inter_subset_left _ _⟩, sets_of_superset := assume x y ⟨a, ha, b, hb, h⟩ xy, ⟨a, ha, b, hb, subset.trans h xy⟩, inter_sets := assume x y ⟨a, ha, b, hb, hx⟩ ⟨c, hc, d, hd, hy⟩, ⟨_, inter_mem_sets ha hc, _, inter_mem_sets hb hd, calc a ∩ c ∩ (b ∩ d) = (a ∩ b) ∩ (c ∩ d) : by ac_refl ... ⊆ x ∩ y : inter_subset_inter hx hy⟩ }⟩ @[simp] lemma mem_inf_sets {f g : filter α} {s : set α} : s ∈ (f ⊓ g).sets ↔ ∃t₁∈f.sets, ∃t₂∈g.sets, t₁ ∩ t₂ ⊆ s := iff.rfl lemma mem_inf_sets_of_left {f g : filter α} {s : set α} (h : s ∈ f.sets) : s ∈ (f ⊓ g).sets := ⟨s, h, univ, univ_mem_sets, inter_subset_left _ _⟩ lemma mem_inf_sets_of_right {f g : filter α} {s : set α} (h : s ∈ g.sets) : s ∈ (f ⊓ g).sets := ⟨univ, univ_mem_sets, s, h, inter_subset_right _ _⟩ lemma inter_mem_inf_sets {α : Type u} {f g : filter α} {s t : set α} (hs : s ∈ f.sets) (ht : t ∈ g.sets) : s ∩ t ∈ (f ⊓ g).sets := inter_mem_sets (mem_inf_sets_of_left hs) (mem_inf_sets_of_right ht) instance : has_top (filter α) := ⟨{ sets := {s | ∀x, x ∈ s}, univ_sets := assume x, mem_univ x, sets_of_superset := assume x y hx hxy a, hxy (hx a), inter_sets := assume x y hx hy a, mem_inter (hx _) (hy _) }⟩ lemma mem_top_sets_iff_forall {s : set α} : s ∈ (⊤ : filter α).sets ↔ (∀x, x ∈ s) := iff.refl _ @[simp] lemma mem_top_sets {s : set α} : s ∈ (⊤ : filter α).sets ↔ s = univ := by rw [mem_top_sets_iff_forall, eq_univ_iff_forall] section complete_lattice /- We lift the complete lattice along the Galois connection `generate` / `sets`. Unfortunately, we want to have different definitional equalities for the lattice operations. So we define them upfront and change the lattice operations for the complete lattice instance. -/ private def original_complete_lattice : complete_lattice (filter α) := @order_dual.lattice.complete_lattice _ (gi_generate α).lift_complete_lattice local attribute [instance] original_complete_lattice instance : complete_lattice (filter α) := original_complete_lattice.copy /- le -/ filter.partial_order.le rfl /- top -/ (filter.lattice.has_top).1 (top_unique $ assume s hs, (eq_univ_of_forall hs).symm ▸ univ_mem_sets) /- bot -/ _ rfl /- sup -/ _ rfl /- inf -/ (filter.lattice.has_inf).1 begin ext f g : 2, exact le_antisymm (le_inf (assume s, mem_inf_sets_of_left) (assume s, mem_inf_sets_of_right)) (assume s ⟨a, ha, b, hb, hs⟩, mem_sets_of_superset (inter_mem_sets (@inf_le_left (filter α) _ _ _ _ ha) (@inf_le_right (filter α) _ _ _ _ hb)) hs) end /- Sup -/ (join ∘ principal) (by ext s x; exact (@mem_bInter_iff _ _ s filter.sets x).symm) /- Inf -/ _ rfl end complete_lattice lemma bot_sets_eq : (⊥ : filter α).sets = univ := rfl lemma sup_sets_eq {f g : filter α} : (f ⊔ g).sets = f.sets ∩ g.sets := (gi_generate α).gc.u_inf lemma Sup_sets_eq {s : set (filter α)} : (Sup s).sets = (⋂f∈s, (f:filter α).sets) := (gi_generate α).gc.u_Inf lemma supr_sets_eq {f : ι → filter α} : (supr f).sets = (⋂i, (f i).sets) := (gi_generate α).gc.u_infi lemma generate_empty : filter.generate ∅ = (⊤ : filter α) := (gi_generate α).gc.l_bot lemma generate_univ : filter.generate univ = (⊥ : filter α) := mk_of_closure_sets.symm lemma generate_union {s t : set (set α)} : filter.generate (s ∪ t) = filter.generate s ⊓ filter.generate t := (gi_generate α).gc.l_sup lemma generate_Union {s : ι → set (set α)} : filter.generate (⋃ i, s i) = (⨅ i, filter.generate (s i)) := (gi_generate α).gc.l_supr @[simp] lemma mem_bot_sets {s : set α} : s ∈ (⊥ : filter α).sets := trivial @[simp] lemma mem_sup_sets {f g : filter α} {s : set α} : s ∈ (f ⊔ g).sets ↔ s ∈ f.sets ∧ s ∈ g.sets := iff.rfl @[simp] lemma mem_Sup_sets {x : set α} {s : set (filter α)} : x ∈ (Sup s).sets ↔ (∀f∈s, x ∈ (f:filter α).sets) := iff.rfl @[simp] lemma mem_supr_sets {x : set α} {f : ι → filter α} : x ∈ (supr f).sets ↔ (∀i, x ∈ (f i).sets) := by simp only [supr_sets_eq, iff_self, mem_Inter] @[simp] lemma le_principal_iff {s : set α} {f : filter α} : f ≤ principal s ↔ s ∈ f.sets := show (∀{t}, s ⊆ t → t ∈ f.sets) ↔ s ∈ f.sets, from ⟨assume h, h (subset.refl s), assume hs t ht, mem_sets_of_superset hs ht⟩ lemma principal_mono {s t : set α} : principal s ≤ principal t ↔ s ⊆ t := by simp only [le_principal_iff, iff_self, mem_principal_sets] lemma monotone_principal : monotone (principal : set α → filter α) := by simp only [monotone, principal_mono]; exact assume a b h, h @[simp] lemma principal_eq_iff_eq {s t : set α} : principal s = principal t ↔ s = t := by simp only [le_antisymm_iff, le_principal_iff, mem_principal_sets]; refl @[simp] lemma join_principal_eq_Sup {s : set (filter α)} : join (principal s) = Sup s := rfl /- lattice equations -/ lemma empty_in_sets_eq_bot {f : filter α} : ∅ ∈ f.sets ↔ f = ⊥ := ⟨assume h, bot_unique $ assume s _, mem_sets_of_superset h (empty_subset s), assume : f = ⊥, this.symm ▸ mem_bot_sets⟩ lemma inhabited_of_mem_sets {f : filter α} {s : set α} (hf : f ≠ ⊥) (hs : s ∈ f.sets) : ∃x, x ∈ s := have ∅ ∉ f.sets, from assume h, hf $ empty_in_sets_eq_bot.mp h, have s ≠ ∅, from assume h, this (h ▸ hs), exists_mem_of_ne_empty this lemma filter_eq_bot_of_not_nonempty {f : filter α} (ne : ¬ nonempty α) : f = ⊥ := empty_in_sets_eq_bot.mp $ univ_mem_sets' $ assume x, false.elim (ne ⟨x⟩) lemma forall_sets_neq_empty_iff_neq_bot {f : filter α} : (∀ (s : set α), s ∈ f.sets → s ≠ ∅) ↔ f ≠ ⊥ := by simp only [(@empty_in_sets_eq_bot α f).symm, ne.def]; exact ⟨assume h hs, h _ hs rfl, assume h s hs eq, h $ eq ▸ hs⟩ lemma mem_sets_of_neq_bot {f : filter α} {s : set α} (h : f ⊓ principal (-s) = ⊥) : s ∈ f.sets := have ∅ ∈ (f ⊓ principal (- s)).sets, from h.symm ▸ mem_bot_sets, let ⟨s₁, hs₁, s₂, (hs₂ : -s ⊆ s₂), (hs : s₁ ∩ s₂ ⊆ ∅)⟩ := this in by filter_upwards [hs₁] assume a ha, classical.by_contradiction $ assume ha', hs ⟨ha, hs₂ ha'⟩ lemma infi_sets_eq {f : ι → filter α} (h : directed (≥) f) (ne : nonempty ι) : (infi f).sets = (⋃ i, (f i).sets) := let ⟨i⟩ := ne, u := { filter . sets := (⋃ i, (f i).sets), univ_sets := by simp only [mem_Union]; exact ⟨i, univ_mem_sets⟩, sets_of_superset := by simp only [mem_Union, exists_imp_distrib]; intros x y i hx hxy; exact ⟨i, mem_sets_of_superset hx hxy⟩, inter_sets := begin simp only [mem_Union, exists_imp_distrib], assume x y a hx b hy, rcases h a b with ⟨c, ha, hb⟩, exact ⟨c, inter_mem_sets (ha hx) (hb hy)⟩ end } in subset.antisymm (show u ≤ infi f, from le_infi $ assume i, le_supr (λi, (f i).sets) i) (Union_subset $ assume i, infi_le f i) lemma infi_sets_eq' {f : β → filter α} {s : set β} (h : directed_on (f ⁻¹'o (≥)) s) (ne : ∃i, i ∈ s) : (⨅ i∈s, f i).sets = (⋃ i ∈ s, (f i).sets) := let ⟨i, hi⟩ := ne in calc (⨅ i ∈ s, f i).sets = (⨅ t : {t // t ∈ s}, (f t.val)).sets : by rw [infi_subtype]; refl ... = (⨆ t : {t // t ∈ s}, (f t.val).sets) : infi_sets_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨆ t ∈ {t | t ∈ s}, (f t).sets) : by rw [supr_subtype]; refl lemma infi_sets_eq_finite (f : ι → filter α) : (⨅i, f i).sets = (⋃t:finset (plift ι), (⨅i∈t, f (plift.down i)).sets) := begin rw [infi_eq_infi_finset, infi_sets_eq], exact (directed_of_sup $ λs₁ s₂ hs, infi_le_infi $ λi, infi_le_infi_const $ λh, hs h), apply_instance end @[simp] lemma sup_join {f₁ f₂ : filter (filter α)} : (join f₁ ⊔ join f₂) = join (f₁ ⊔ f₂) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, mem_sup_sets, iff_self, mem_set_of_eq] @[simp] lemma supr_join {ι : Sort w} {f : ι → filter (filter α)} : (⨆x, join (f x)) = join (⨆x, f x) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, iff_self, mem_Inter, mem_set_of_eq] instance : bounded_distrib_lattice (filter α) := { le_sup_inf := begin assume x y z s, simp only [and_assoc, mem_inf_sets, mem_sup_sets, exists_prop, exists_imp_distrib, and_imp], intros hs t₁ ht₁ t₂ ht₂ hts, exact ⟨s ∪ t₁, x.sets_of_superset hs $ subset_union_left _ _, y.sets_of_superset ht₁ $ subset_union_right _ _, s ∪ t₂, x.sets_of_superset hs $ subset_union_left _ _, z.sets_of_superset ht₂ $ subset_union_right _ _, subset.trans (@le_sup_inf (set α) _ _ _ _) (union_subset (subset.refl _) hts)⟩ end, ..filter.lattice.complete_lattice } /- the complementary version with ⨆i, f ⊓ g i does not hold! -/ lemma infi_sup_eq {f : filter α} {g : ι → filter α} : (⨅ x, f ⊔ g x) = f ⊔ infi g := begin refine le_antisymm _ (le_infi $ assume i, sup_le_sup (le_refl f) $ infi_le _ _), rintros t ⟨h₁, h₂⟩, rw [infi_sets_eq_finite] at h₂, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at h₂, rcases h₂ with ⟨s, hs⟩, suffices : (⨅i, f ⊔ g i) ≤ f ⊔ s.inf (λi, g i.down), { exact this ⟨h₁, hs⟩ }, refine finset.induction_on s _ _, { exact le_sup_right_of_le le_top }, { rintros ⟨i⟩ s his ih, rw [finset.inf_insert, sup_inf_left], exact le_inf (infi_le _ _) ih } end lemma mem_infi_sets_finset {s : finset α} {f : α → filter β} : ∀t, t ∈ (⨅a∈s, f a).sets ↔ (∃p:α → set β, (∀a∈s, p a ∈ (f a).sets) ∧ (⋂a∈s, p a) ⊆ t) := show ∀t, t ∈ (⨅a∈s, f a).sets ↔ (∃p:α → set β, (∀a∈s, p a ∈ (f a).sets) ∧ (⨅a∈s, p a) ≤ t), begin simp only [(finset.inf_eq_infi _ _).symm], refine finset.induction_on s _ _, { simp only [finset.not_mem_empty, false_implies_iff, finset.inf_empty, top_le_iff, imp_true_iff, mem_top_sets, true_and, exists_const], intros; refl }, { intros a s has ih t, simp only [ih, finset.forall_mem_insert, finset.inf_insert, mem_inf_sets, exists_prop, iff_iff_implies_and_implies, exists_imp_distrib, and_imp, and_assoc] {contextual := tt}, split, { intros t₁ ht₁ t₂ p hp ht₂ ht, existsi function.update p a t₁, have : ∀a'∈s, function.update p a t₁ a' = p a', from assume a' ha', have a' ≠ a, from assume h, has $ h ▸ ha', function.update_noteq this, have eq : s.inf (λj, function.update p a t₁ j) = s.inf (λj, p j) := finset.inf_congr rfl this, simp only [this, ht₁, hp, function.update_same, true_and, imp_true_iff, eq] {contextual := tt}, exact subset.trans (inter_subset_inter (subset.refl _) ht₂) ht }, assume p hpa hp ht, exact ⟨p a, hpa, (s.inf p), ⟨⟨p, hp, le_refl _⟩, ht⟩⟩ } end /- principal equations -/ @[simp] lemma inf_principal {s t : set α} : principal s ⊓ principal t = principal (s ∩ t) := le_antisymm (by simp; exact ⟨s, subset.refl s, t, subset.refl t, by simp⟩) (by simp [le_inf_iff, inter_subset_left, inter_subset_right]) @[simp] lemma sup_principal {s t : set α} : principal s ⊔ principal t = principal (s ∪ t) := filter_eq $ set.ext $ by simp only [union_subset_iff, union_subset_iff, mem_sup_sets, forall_const, iff_self, mem_principal_sets] @[simp] lemma supr_principal {ι : Sort w} {s : ι → set α} : (⨆x, principal (s x)) = principal (⋃i, s i) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, mem_principal_sets, mem_Inter]; exact (@supr_le_iff (set α) _ _ _ _).symm lemma principal_univ : principal (univ : set α) = ⊤ := top_unique $ by simp only [le_principal_iff, mem_top_sets, eq_self_iff_true] lemma principal_empty : principal (∅ : set α) = ⊥ := bot_unique $ assume s _, empty_subset _ @[simp] lemma principal_eq_bot_iff {s : set α} : principal s = ⊥ ↔ s = ∅ := ⟨assume h, principal_eq_iff_eq.mp $ by simp only [principal_empty, h, eq_self_iff_true], assume h, by simp only [h, principal_empty, eq_self_iff_true]⟩ lemma inf_principal_eq_bot {f : filter α} {s : set α} (hs : -s ∈ f.sets) : f ⊓ principal s = ⊥ := empty_in_sets_eq_bot.mp ⟨_, hs, s, mem_principal_self s, assume x ⟨h₁, h₂⟩, h₁ h₂⟩ theorem mem_inf_principal (f : filter α) (s t : set α) : s ∈ (f ⊓ principal t).sets ↔ { x | x ∈ t → x ∈ s } ∈ f.sets := begin simp only [mem_inf_sets, mem_principal_sets, exists_prop], split, { rintros ⟨u, ul, v, tsubv, uvinter⟩, apply filter.mem_sets_of_superset ul, intros x xu xt, exact uvinter ⟨xu, tsubv xt⟩ }, intro h, refine ⟨_, h, t, set.subset.refl t, _⟩, rintros x ⟨hx, xt⟩, exact hx xt end end lattice section map /-- The forward map of a filter -/ def map (m : α → β) (f : filter α) : filter β := { sets := preimage m ⁻¹' f.sets, univ_sets := univ_mem_sets, sets_of_superset := assume s t hs st, mem_sets_of_superset hs $ preimage_mono st, inter_sets := assume s t hs ht, inter_mem_sets hs ht } @[simp] lemma map_principal {s : set α} {f : α → β} : map f (principal s) = principal (set.image f s) := filter_eq $ set.ext $ assume a, image_subset_iff.symm variables {f : filter α} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] lemma mem_map : t ∈ (map m f).sets ↔ {x | m x ∈ t} ∈ f.sets := iff.rfl lemma image_mem_map (hs : s ∈ f.sets) : m '' s ∈ (map m f).sets := f.sets_of_superset hs $ subset_preimage_image m s lemma range_mem_map : range m ∈ (map m f).sets := by rw ←image_univ; exact image_mem_map univ_mem_sets lemma mem_map_sets_iff : t ∈ (map m f).sets ↔ (∃s∈f.sets, m '' s ⊆ t) := iff.intro (assume ht, ⟨set.preimage m t, ht, image_preimage_subset _ _⟩) (assume ⟨s, hs, ht⟩, mem_sets_of_superset (image_mem_map hs) ht) @[simp] lemma map_id : filter.map id f = f := filter_eq $ rfl @[simp] lemma map_compose : filter.map m' ∘ filter.map m = filter.map (m' ∘ m) := funext $ assume _, filter_eq $ rfl @[simp] lemma map_map : filter.map m' (filter.map m f) = filter.map (m' ∘ m) f := congr_fun (@@filter.map_compose m m') f end map section comap /-- The inverse map of a filter -/ def comap (m : α → β) (f : filter β) : filter α := { sets := { s | ∃t∈f.sets, m ⁻¹' t ⊆ s }, univ_sets := ⟨univ, univ_mem_sets, by simp only [subset_univ, preimage_univ]⟩, sets_of_superset := assume a b ⟨a', ha', ma'a⟩ ab, ⟨a', ha', subset.trans ma'a ab⟩, inter_sets := assume a b ⟨a', ha₁, ha₂⟩ ⟨b', hb₁, hb₂⟩, ⟨a' ∩ b', inter_mem_sets ha₁ hb₁, inter_subset_inter ha₂ hb₂⟩ } end comap /-- The cofinite filter is the filter of subsets whose complements are finite. -/ def cofinite : filter α := { sets := {s | finite (- s)}, univ_sets := by simp only [compl_univ, finite_empty, mem_set_of_eq], sets_of_superset := assume s t (hs : finite (-s)) (st: s ⊆ t), finite_subset hs $ @lattice.neg_le_neg (set α) _ _ _ st, inter_sets := assume s t (hs : finite (-s)) (ht : finite (-t)), by simp only [compl_inter, finite_union, ht, hs, mem_set_of_eq] } /-- The monadic bind operation on filter is defined the usual way in terms of `map` and `join`. Unfortunately, this `bind` does not result in the expected applicative. See `filter.seq` for the applicative instance. -/ def bind (f : filter α) (m : α → filter β) : filter β := join (map m f) /-- The applicative sequentiation operation. This is not induced by the bind operation. -/ def seq (f : filter (α → β)) (g : filter α) : filter β := ⟨{ s | ∃u∈f.sets, ∃t∈g.sets, (∀m∈u, ∀x∈t, (m : α → β) x ∈ s) }, ⟨univ, univ_mem_sets, univ, univ_mem_sets, by simp only [forall_prop_of_true, mem_univ, forall_true_iff]⟩, assume s₀ s₁ ⟨t₀, t₁, h₀, h₁, h⟩ hst, ⟨t₀, t₁, h₀, h₁, assume x hx y hy, hst $ h _ hx _ hy⟩, assume s₀ s₁ ⟨t₀, ht₀, t₁, ht₁, ht⟩ ⟨u₀, hu₀, u₁, hu₁, hu⟩, ⟨t₀ ∩ u₀, inter_mem_sets ht₀ hu₀, t₁ ∩ u₁, inter_mem_sets ht₁ hu₁, assume x ⟨hx₀, hx₁⟩ x ⟨hy₀, hy₁⟩, ⟨ht _ hx₀ _ hy₀, hu _ hx₁ _ hy₁⟩⟩⟩ instance : has_pure filter := ⟨λ(α : Type u) x, principal {x}⟩ instance : has_bind filter := ⟨@filter.bind⟩ instance : has_seq filter := ⟨@filter.seq⟩ instance : functor filter := { map := @filter.map } section -- this section needs to be before applicative, otherwise the wrong instance will be chosen protected def monad : monad filter := { map := @filter.map } local attribute [instance] filter.monad protected def is_lawful_monad : is_lawful_monad filter := { id_map := assume α f, filter_eq rfl, pure_bind := assume α β a f, by simp only [bind, Sup_image, image_singleton, join_principal_eq_Sup, lattice.Sup_singleton, map_principal, eq_self_iff_true], bind_assoc := assume α β γ f m₁ m₂, filter_eq rfl, bind_pure_comp_eq_map := assume α β f x, filter_eq $ by simp only [bind, join, map, preimage, principal, set.subset_univ, eq_self_iff_true, function.comp_app, mem_set_of_eq, singleton_subset_iff] } end instance : applicative filter := { map := @filter.map, seq := @filter.seq } instance : alternative filter := { failure := λα, ⊥, orelse := λα x y, x ⊔ y } @[simp] lemma pure_def (x : α) : pure x = principal {x} := rfl @[simp] lemma mem_pure {a : α} {s : set α} : a ∈ s → s ∈ (pure a : filter α).sets := by simp only [imp_self, pure_def, mem_principal_sets, singleton_subset_iff]; exact id @[simp] lemma mem_pure_iff {a : α} {s : set α} : s ∈ (pure a : filter α).sets ↔ a ∈ s := by rw [pure_def, mem_principal_sets, set.singleton_subset_iff] @[simp] lemma map_def {α β} (m : α → β) (f : filter α) : m <$> f = map m f := rfl @[simp] lemma bind_def {α β} (f : filter α) (m : α → filter β) : f >>= m = bind f m := rfl /- map and comap equations -/ section map variables {f f₁ f₂ : filter α} {g g₁ g₂ : filter β} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] theorem mem_comap_sets : s ∈ (comap m g).sets ↔ ∃t∈g.sets, m ⁻¹' t ⊆ s := iff.rfl theorem preimage_mem_comap (ht : t ∈ g.sets) : m ⁻¹' t ∈ (comap m g).sets := ⟨t, ht, subset.refl _⟩ lemma comap_id : comap id f = f := le_antisymm (assume s, preimage_mem_comap) (assume s ⟨t, ht, hst⟩, mem_sets_of_superset ht hst) lemma comap_comap_comp {m : γ → β} {n : β → α} : comap m (comap n f) = comap (n ∘ m) f := le_antisymm (assume c ⟨b, hb, (h : preimage (n ∘ m) b ⊆ c)⟩, ⟨preimage n b, preimage_mem_comap hb, h⟩) (assume c ⟨b, ⟨a, ha, (h₁ : preimage n a ⊆ b)⟩, (h₂ : preimage m b ⊆ c)⟩, ⟨a, ha, show preimage m (preimage n a) ⊆ c, from subset.trans (preimage_mono h₁) h₂⟩) @[simp] theorem comap_principal {t : set β} : comap m (principal t) = principal (m ⁻¹' t) := filter_eq $ set.ext $ assume s, ⟨assume ⟨u, (hu : t ⊆ u), (b : preimage m u ⊆ s)⟩, subset.trans (preimage_mono hu) b, assume : preimage m t ⊆ s, ⟨t, subset.refl t, this⟩⟩ lemma map_le_iff_le_comap : map m f ≤ g ↔ f ≤ comap m g := ⟨assume h s ⟨t, ht, hts⟩, mem_sets_of_superset (h ht) hts, assume h s ht, h ⟨_, ht, subset.refl _⟩⟩ lemma gc_map_comap (m : α → β) : galois_connection (map m) (comap m) := assume f g, map_le_iff_le_comap lemma map_mono (h : f₁ ≤ f₂) : map m f₁ ≤ map m f₂ := (gc_map_comap m).monotone_l h lemma monotone_map : monotone (map m) | a b := map_mono lemma comap_mono (h : g₁ ≤ g₂) : comap m g₁ ≤ comap m g₂ := (gc_map_comap m).monotone_u h lemma monotone_comap : monotone (comap m) | a b := comap_mono @[simp] lemma map_bot : map m ⊥ = ⊥ := (gc_map_comap m).l_bot @[simp] lemma map_sup : map m (f₁ ⊔ f₂) = map m f₁ ⊔ map m f₂ := (gc_map_comap m).l_sup @[simp] lemma map_supr {f : ι → filter α} : map m (⨆i, f i) = (⨆i, map m (f i)) := (gc_map_comap m).l_supr @[simp] lemma comap_top : comap m ⊤ = ⊤ := (gc_map_comap m).u_top @[simp] lemma comap_inf : comap m (g₁ ⊓ g₂) = comap m g₁ ⊓ comap m g₂ := (gc_map_comap m).u_inf @[simp] lemma comap_infi {f : ι → filter β} : comap m (⨅i, f i) = (⨅i, comap m (f i)) := (gc_map_comap m).u_infi lemma map_comap_le : map m (comap m g) ≤ g := (gc_map_comap m).l_u_le _ lemma le_comap_map : f ≤ comap m (map m f) := (gc_map_comap m).le_u_l _ @[simp] lemma comap_bot : comap m ⊥ = ⊥ := bot_unique $ assume s _, ⟨∅, by simp only [mem_bot_sets], by simp only [empty_subset, preimage_empty]⟩ lemma comap_supr {ι} {f : ι → filter β} {m : α → β} : comap m (supr f) = (⨆i, comap m (f i)) := le_antisymm (assume s hs, have ∀i, ∃t, t ∈ (f i).sets ∧ m ⁻¹' t ⊆ s, by simpa only [mem_comap_sets, exists_prop, mem_supr_sets] using mem_supr_sets.1 hs, let ⟨t, ht⟩ := classical.axiom_of_choice this in ⟨⋃i, t i, mem_supr_sets.2 $ assume i, (f i).sets_of_superset (ht i).1 (subset_Union _ _), begin rw [preimage_Union, Union_subset_iff], assume i, exact (ht i).2 end⟩) (supr_le $ assume i, monotone_comap $ le_supr _ _) lemma comap_Sup {s : set (filter β)} {m : α → β} : comap m (Sup s) = (⨆f∈s, comap m f) := by simp only [Sup_eq_supr, comap_supr, eq_self_iff_true] lemma comap_sup : comap m (g₁ ⊔ g₂) = comap m g₁ ⊔ comap m g₂ := le_antisymm (assume s ⟨⟨t₁, ht₁, hs₁⟩, ⟨t₂, ht₂, hs₂⟩⟩, ⟨t₁ ∪ t₂, ⟨g₁.sets_of_superset ht₁ (subset_union_left _ _), g₂.sets_of_superset ht₂ (subset_union_right _ _)⟩, union_subset hs₁ hs₂⟩) (sup_le (comap_mono le_sup_left) (comap_mono le_sup_right)) lemma map_comap {f : filter β} {m : α → β} (hf : range m ∈ f.sets) : (f.comap m).map m = f := le_antisymm map_comap_le (assume t' ⟨t, ht, sub⟩, by filter_upwards [ht, hf]; rintros x hxt ⟨y, rfl⟩; exact sub hxt) lemma comap_map {f : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : comap m (map m f) = f := have ∀s, preimage m (image m s) = s, from assume s, preimage_image_eq s h, le_antisymm (assume s hs, ⟨ image m s, f.sets_of_superset hs $ by simp only [this, subset.refl], by simp only [this, subset.refl]⟩) le_comap_map lemma le_of_map_le_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f ≤ map m g) : f ≤ g := assume t ht, by filter_upwards [hsf, h $ image_mem_map (inter_mem_sets hsg ht)] assume a has ⟨b, ⟨hbs, hb⟩, h⟩, have b = a, from hm _ hbs _ has h, this ▸ hb lemma le_of_map_le_map_inj_iff {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) : map m f ≤ map m g ↔ f ≤ g := iff.intro (le_of_map_le_map_inj' hsf hsg hm) map_mono lemma eq_of_map_eq_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f = map m g) : f = g := le_antisymm (le_of_map_le_map_inj' hsf hsg hm $ le_of_eq h) (le_of_map_le_map_inj' hsg hsf hm $ le_of_eq h.symm) lemma map_inj {f g : filter α} {m : α → β} (hm : ∀ x y, m x = m y → x = y) (h : map m f = map m g) : f = g := have comap m (map m f) = comap m (map m g), by rw h, by rwa [comap_map hm, comap_map hm] at this theorem le_map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l.sets) (hf : ∀ y ∈ u, ∃ x, f x = y) : l ≤ map f (comap f l) := assume s ⟨t, tl, ht⟩, have t ∩ u ⊆ s, from assume x ⟨xt, xu⟩, exists.elim (hf x xu) $ λ a faeq, by { rw ←faeq, apply ht, change f a ∈ t, rw faeq, exact xt }, mem_sets_of_superset (inter_mem_sets tl ul) this theorem map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l.sets) (hf : ∀ y ∈ u, ∃ x, f x = y) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective' ul hf) theorem le_map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : l ≤ map f (comap f l) := le_map_comap_of_surjective' univ_mem_sets (λ y _, hf y) theorem map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective hf l) lemma comap_neq_bot {f : filter β} {m : α → β} (hm : ∀t∈f.sets, ∃a, m a ∈ t) : comap m f ≠ ⊥ := forall_sets_neq_empty_iff_neq_bot.mp $ assume s ⟨t, ht, t_s⟩, let ⟨a, (ha : a ∈ preimage m t)⟩ := hm t ht in neq_bot_of_le_neq_bot (ne_empty_of_mem ha) t_s lemma comap_neq_bot_of_surj {f : filter β} {m : α → β} (hf : f ≠ ⊥) (hm : ∀b, ∃a, m a = b) : comap m f ≠ ⊥ := comap_neq_bot $ assume t ht, let ⟨b, (hx : b ∈ t)⟩ := inhabited_of_mem_sets hf ht, ⟨a, (ha : m a = b)⟩ := hm b in ⟨a, ha.symm ▸ hx⟩ @[simp] lemma map_eq_bot_iff : map m f = ⊥ ↔ f = ⊥ := ⟨by rw [←empty_in_sets_eq_bot, ←empty_in_sets_eq_bot]; exact id, assume h, by simp only [h, eq_self_iff_true, map_bot]⟩ lemma map_ne_bot (hf : f ≠ ⊥) : map m f ≠ ⊥ := assume h, hf $ by rwa [map_eq_bot_iff] at h lemma sInter_comap_sets (f : α → β) (F : filter β) : ⋂₀(comap f F).sets = ⋂ U ∈ F.sets, f ⁻¹' U := begin ext x, suffices : (∀ (A : set α) (B : set β), B ∈ F.sets → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : set β), B ∈ F.sets → f x ∈ B, by simp only [mem_sInter, mem_Inter, mem_comap_sets, this, and_imp, mem_comap_sets, exists_prop, mem_sInter, iff_self, mem_Inter, mem_preimage_eq, exists_imp_distrib], split, { intros h U U_in, simpa only [set.subset.refl, forall_prop_of_true, mem_preimage_eq] using h (f ⁻¹' U) U U_in }, { intros h V U U_in f_U_V, exact f_U_V (h U U_in) }, end end map lemma map_cong {m₁ m₂ : α → β} {f : filter α} (h : {x | m₁ x = m₂ x} ∈ f.sets) : map m₁ f = map m₂ f := have ∀(m₁ m₂ : α → β) (h : {x | m₁ x = m₂ x} ∈ f.sets), map m₁ f ≤ map m₂ f, begin intros m₁ m₂ h s hs, show {x | m₁ x ∈ s} ∈ f.sets, filter_upwards [h, hs], simp only [subset_def, mem_preimage_eq, mem_set_of_eq, forall_true_iff] {contextual := tt} end, le_antisymm (this m₁ m₂ h) (this m₂ m₁ $ mem_sets_of_superset h $ assume x, eq.symm) -- this is a generic rule for monotone functions: lemma map_infi_le {f : ι → filter α} {m : α → β} : map m (infi f) ≤ (⨅ i, map m (f i)) := le_infi $ assume i, map_mono $ infi_le _ _ lemma map_infi_eq {f : ι → filter α} {m : α → β} (hf : directed (≥) f) (hι : nonempty ι) : map m (infi f) = (⨅ i, map m (f i)) := le_antisymm map_infi_le (assume s (hs : preimage m s ∈ (infi f).sets), have ∃i, preimage m s ∈ (f i).sets, by simp only [infi_sets_eq hf hι, mem_Union] at hs; assumption, let ⟨i, hi⟩ := this in have (⨅ i, map m (f i)) ≤ principal s, from infi_le_of_le i $ by simp only [le_principal_iff, mem_map]; assumption, by simp only [filter.le_principal_iff] at this; assumption) lemma map_binfi_eq {ι : Type w} {f : ι → filter α} {m : α → β} {p : ι → Prop} (h : directed_on (f ⁻¹'o (≥)) {x | p x}) (ne : ∃i, p i) : map m (⨅i (h : p i), f i) = (⨅i (h: p i), map m (f i)) := let ⟨i, hi⟩ := ne in calc map m (⨅i (h : p i), f i) = map m (⨅i:subtype p, f i.val) : by simp only [infi_subtype, eq_self_iff_true] ... = (⨅i:subtype p, map m (f i.val)) : map_infi_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨅i (h : p i), map m (f i)) : by simp only [infi_subtype, eq_self_iff_true] lemma map_inf' {f g : filter α} {m : α → β} {t : set α} (htf : t ∈ f.sets) (htg : t ∈ g.sets) (h : ∀x∈t, ∀y∈t, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := begin refine le_antisymm (le_inf (map_mono inf_le_left) (map_mono inf_le_right)) (assume s hs, _), simp only [map, mem_inf_sets, exists_prop, mem_map, mem_preimage_eq, mem_inf_sets] at hs ⊢, rcases hs with ⟨t₁, h₁, t₂, h₂, hs⟩, refine ⟨m '' (t₁ ∩ t), _, m '' (t₂ ∩ t), _, _⟩, { filter_upwards [h₁, htf] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { filter_upwards [h₂, htg] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { rw [image_inter_on], { refine image_subset_iff.2 _, exact λ x ⟨⟨h₁, _⟩, h₂, _⟩, hs ⟨h₁, h₂⟩ }, { exact λ x ⟨_, hx⟩ y ⟨_, hy⟩, h x hx y hy } } end lemma map_inf {f g : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := map_inf' univ_mem_sets univ_mem_sets (assume x _ y _, h x y) lemma map_eq_comap_of_inverse {f : filter α} {m : α → β} {n : β → α} (h₁ : m ∘ n = id) (h₂ : n ∘ m = id) : map m f = comap n f := le_antisymm (assume b ⟨a, ha, (h : preimage n a ⊆ b)⟩, f.sets_of_superset ha $ calc a = preimage (n ∘ m) a : by simp only [h₂, preimage_id, eq_self_iff_true] ... ⊆ preimage m b : preimage_mono h) (assume b (hb : preimage m b ∈ f.sets), ⟨preimage m b, hb, show preimage (m ∘ n) b ⊆ b, by simp only [h₁]; apply subset.refl⟩) lemma map_swap_eq_comap_swap {f : filter (α × β)} : prod.swap <$> f = comap prod.swap f := map_eq_comap_of_inverse prod.swap_swap_eq prod.swap_swap_eq lemma le_map {f : filter α} {m : α → β} {g : filter β} (h : ∀s∈f.sets, m '' s ∈ g.sets) : g ≤ f.map m := assume s hs, mem_sets_of_superset (h _ hs) $ image_preimage_subset _ _ section applicative @[simp] lemma mem_pure_sets {a : α} {s : set α} : s ∈ (pure a : filter α).sets ↔ a ∈ s := by simp only [iff_self, pure_def, mem_principal_sets, singleton_subset_iff] lemma singleton_mem_pure_sets {a : α} : {a} ∈ (pure a : filter α).sets := by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] @[simp] lemma pure_neq_bot {α : Type u} {a : α} : pure a ≠ (⊥ : filter α) := by simp only [pure, has_pure.pure, ne.def, not_false_iff, singleton_ne_empty, principal_eq_bot_iff] lemma mem_seq_sets_def {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ (f.seq g).sets ↔ (∃u∈f.sets, ∃t∈g.sets, ∀x∈u, ∀y∈t, (x : α → β) y ∈ s) := iff.refl _ lemma mem_seq_sets_iff {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ (f.seq g).sets ↔ (∃u∈f.sets, ∃t∈g.sets, set.seq u t ⊆ s) := by simp only [mem_seq_sets_def, seq_subset, exists_prop, iff_self] lemma mem_map_seq_iff {f : filter α} {g : filter β} {m : α → β → γ} {s : set γ} : s ∈ ((f.map m).seq g).sets ↔ (∃t u, t ∈ g.sets ∧ u ∈ f.sets ∧ ∀x∈u, ∀y∈t, m x y ∈ s) := iff.intro (assume ⟨t, ht, s, hs, hts⟩, ⟨s, m ⁻¹' t, hs, ht, assume a, hts _⟩) (assume ⟨t, s, ht, hs, hts⟩, ⟨m '' s, image_mem_map hs, t, ht, assume f ⟨a, has, eq⟩, eq ▸ hts _ has⟩) lemma seq_mem_seq_sets {f : filter (α → β)} {g : filter α} {s : set (α → β)} {t : set α} (hs : s ∈ f.sets) (ht : t ∈ g.sets): s.seq t ∈ (f.seq g).sets := ⟨s, hs, t, ht, assume f hf a ha, ⟨f, hf, a, ha, rfl⟩⟩ lemma le_seq {f : filter (α → β)} {g : filter α} {h : filter β} (hh : ∀t∈f.sets, ∀u∈g.sets, set.seq t u ∈ h.sets) : h ≤ seq f g := assume s ⟨t, ht, u, hu, hs⟩, mem_sets_of_superset (hh _ ht _ hu) $ assume b ⟨m, hm, a, ha, eq⟩, eq ▸ hs _ hm _ ha lemma seq_mono {f₁ f₂ : filter (α → β)} {g₁ g₂ : filter α} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.seq g₁ ≤ f₂.seq g₂ := le_seq $ assume s hs t ht, seq_mem_seq_sets (hf hs) (hg ht) @[simp] lemma pure_seq_eq_map (g : α → β) (f : filter α) : seq (pure g) f = f.map g := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← singleton_seq, apply seq_mem_seq_sets _ hs, simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] }, { rw mem_pure_sets at hs, refine sets_of_superset (map g f) (image_mem_map ht) _, rintros b ⟨a, ha, rfl⟩, exact ⟨g, hs, a, ha, rfl⟩ } end @[simp] lemma map_pure (f : α → β) (a : α) : map f (pure a) = pure (f a) := le_antisymm (le_principal_iff.2 $ sets_of_superset (map f (pure a)) (image_mem_map singleton_mem_pure_sets) $ by simp only [image_singleton, mem_singleton, singleton_subset_iff]) (le_map $ assume s, begin simp only [mem_image, pure_def, mem_principal_sets, singleton_subset_iff], exact assume has, ⟨a, has, rfl⟩ end) @[simp] lemma seq_pure (f : filter (α → β)) (a : α) : seq f (pure a) = map (λg:α → β, g a) f := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← seq_singleton, exact seq_mem_seq_sets hs (by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff]) }, { rw mem_pure_sets at ht, refine sets_of_superset (map (λg:α→β, g a) f) (image_mem_map hs) _, rintros b ⟨g, hg, rfl⟩, exact ⟨g, hg, a, ht, rfl⟩ } end @[simp] lemma seq_assoc (x : filter α) (g : filter (α → β)) (h : filter (β → γ)) : seq h (seq g x) = seq (seq (map (∘) h) g) x := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_seq_sets_iff.1 hs with ⟨u, hu, v, hv, hs⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hu⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.trans (set.seq_mono hu (subset.refl _)) hs) (subset.refl _)), rw ← set.seq_seq, exact seq_mem_seq_sets hw (seq_mem_seq_sets hv ht) }, { rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.refl _) ht), rw set.seq_seq, exact seq_mem_seq_sets (seq_mem_seq_sets (image_mem_map hs) hu) hv } end lemma prod_map_seq_comm (f : filter α) (g : filter β) : (map prod.mk f).seq g = seq (map (λb a, (a, b)) g) f := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw ← set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu }, { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu } end instance : is_lawful_functor (filter : Type u → Type u) := { id_map := assume α f, map_id, comp_map := assume α β γ f g a, map_map.symm } instance : is_lawful_applicative (filter : Type u → Type u) := { pure_seq_eq_map := assume α β, pure_seq_eq_map, map_pure := assume α β, map_pure, seq_pure := assume α β, seq_pure, seq_assoc := assume α β γ, seq_assoc } instance : is_comm_applicative (filter : Type u → Type u) := ⟨assume α β f g, prod_map_seq_comm f g⟩ lemma {l} seq_eq_filter_seq {α β : Type l} (f : filter (α → β)) (g : filter α) : f <*> g = seq f g := rfl end applicative /- bind equations -/ section bind @[simp] lemma mem_bind_sets {s : set β} {f : filter α} {m : α → filter β} : s ∈ (bind f m).sets ↔ ∃t ∈ f.sets, ∀x ∈ t, s ∈ (m x).sets := calc s ∈ (bind f m).sets ↔ {a | s ∈ (m a).sets} ∈ f.sets : by simp only [bind, mem_map, iff_self, mem_join_sets, mem_set_of_eq] ... ↔ (∃t ∈ f.sets, t ⊆ {a | s ∈ (m a).sets}) : exists_sets_subset_iff.symm ... ↔ (∃t ∈ f.sets, ∀x ∈ t, s ∈ (m x).sets) : iff.refl _ lemma bind_mono {f : filter α} {g h : α → filter β} (h₁ : {a | g a ≤ h a} ∈ f.sets) : bind f g ≤ bind f h := assume x h₂, show (_ ∈ f.sets), by filter_upwards [h₁, h₂] assume s gh' h', gh' h' lemma bind_sup {f g : filter α} {h : α → filter β} : bind (f ⊔ g) h = bind f h ⊔ bind g h := by simp only [bind, sup_join, map_sup, eq_self_iff_true] lemma bind_mono2 {f g : filter α} {h : α → filter β} (h₁ : f ≤ g) : bind f h ≤ bind g h := assume s h', h₁ h' lemma principal_bind {s : set α} {f : α → filter β} : (bind (principal s) f) = (⨆x ∈ s, f x) := show join (map f (principal s)) = (⨆x ∈ s, f x), by simp only [Sup_image, join_principal_eq_Sup, map_principal, eq_self_iff_true] end bind lemma infi_neq_bot_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) (hb : ∀i, f i ≠ ⊥) : (infi f) ≠ ⊥ := let ⟨x⟩ := hn in assume h, have he: ∅ ∈ (infi f).sets, from h.symm ▸ mem_bot_sets, classical.by_cases (assume : nonempty ι, have ∃i, ∅ ∈ (f i).sets, by rw [infi_sets_eq hd this] at he; simp only [mem_Union] at he; assumption, let ⟨i, hi⟩ := this in hb i $ bot_unique $ assume s _, (f i).sets_of_superset hi $ empty_subset _) (assume : ¬ nonempty ι, have univ ⊆ (∅ : set α), begin rw [←principal_mono, principal_univ, principal_empty, ←h], exact (le_infi $ assume i, false.elim $ this ⟨i⟩) end, this $ mem_univ x) lemma infi_neq_bot_iff_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) : (infi f) ≠ ⊥ ↔ (∀i, f i ≠ ⊥) := ⟨assume neq_bot i eq_bot, neq_bot $ bot_unique $ infi_le_of_le i $ eq_bot ▸ le_refl _, infi_neq_bot_of_directed hn hd⟩ lemma mem_infi_sets {f : ι → filter α} (i : ι) : ∀{s}, s ∈ (f i).sets → s ∈ (⨅i, f i).sets := show (⨅i, f i) ≤ f i, from infi_le _ _ @[elab_as_eliminator] lemma infi_sets_induct {f : ι → filter α} {s : set α} (hs : s ∈ (infi f).sets) {p : set α → Prop} (uni : p univ) (ins : ∀{i s₁ s₂}, s₁ ∈ (f i).sets → p s₂ → p (s₁ ∩ s₂)) (upw : ∀{s₁ s₂}, s₁ ⊆ s₂ → p s₁ → p s₂) : p s := begin rw [infi_sets_eq_finite] at hs, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at hs, rcases hs with ⟨is, his⟩, revert s, refine finset.induction_on is _ _, { assume s hs, rwa [mem_top_sets.1 hs] }, { rintros ⟨i⟩ js his ih s hs, rw [finset.inf_insert, mem_inf_sets] at hs, rcases hs with ⟨s₁, hs₁, s₂, hs₂, hs⟩, exact upw hs (ins hs₁ (ih hs₂)) } end /- tendsto -/ /-- `tendsto` is the generic "limit of a function" predicate. `tendsto f l₁ l₂` asserts that for every `l₂` neighborhood `a`, the `f`-preimage of `a` is an `l₁` neighborhood. -/ def tendsto (f : α → β) (l₁ : filter α) (l₂ : filter β) := l₁.map f ≤ l₂ lemma tendsto_def {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ ∀ s ∈ l₂.sets, f ⁻¹' s ∈ l₁.sets := iff.rfl lemma tendsto_iff_comap {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ l₁ ≤ l₂.comap f := map_le_iff_le_comap lemma tendsto_cong {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β} (h : tendsto f₁ l₁ l₂) (hl : {x | f₁ x = f₂ x} ∈ l₁.sets) : tendsto f₂ l₁ l₂ := by rwa [tendsto, ←map_cong hl] lemma tendsto_id' {x y : filter α} : x ≤ y → tendsto id x y := by simp only [tendsto, map_id, forall_true_iff] {contextual := tt} lemma tendsto_id {x : filter α} : tendsto id x x := tendsto_id' $ le_refl x lemma tendsto.comp {f : α → β} {g : β → γ} {x : filter α} {y : filter β} {z : filter γ} (hf : tendsto f x y) (hg : tendsto g y z) : tendsto (g ∘ f) x z := calc map (g ∘ f) x = map g (map f x) : by rw [map_map] ... ≤ map g y : map_mono hf ... ≤ z : hg lemma tendsto_le_left {f : α → β} {x y : filter α} {z : filter β} (h : y ≤ x) : tendsto f x z → tendsto f y z := le_trans (map_mono h) lemma tendsto_le_right {f : α → β} {x : filter α} {y z : filter β} (h₁ : y ≤ z) (h₂ : tendsto f x y) : tendsto f x z := le_trans h₂ h₁ lemma tendsto_map {f : α → β} {x : filter α} : tendsto f x (map f x) := le_refl (map f x) lemma tendsto_map' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} (h : tendsto (f ∘ g) x y) : tendsto f (map g x) y := by rwa [tendsto, map_map] lemma tendsto_map'_iff {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} : tendsto f (map g x) y ↔ tendsto (f ∘ g) x y := by rw [tendsto, map_map]; refl lemma tendsto_comap {f : α → β} {x : filter β} : tendsto f (comap f x) x := map_comap_le lemma tendsto_comap_iff {f : α → β} {g : β → γ} {a : filter α} {c : filter γ} : tendsto f a (c.comap g) ↔ tendsto (g ∘ f) a c := ⟨assume h, h.comp tendsto_comap, assume h, map_le_iff_le_comap.mp $ by rwa [map_map]⟩ lemma tendsto_comap'_iff {m : α → β} {f : filter α} {g : filter β} {i : γ → α} (h : range i ∈ f.sets) : tendsto (m ∘ i) (comap i f) g ↔ tendsto m f g := by rw [tendsto, ← map_compose]; simp only [(∘), map_comap h, tendsto] lemma comap_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : ψ ∘ φ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : comap φ g = f := begin refine le_antisymm (le_trans (comap_mono $ map_le_iff_le_comap.1 hψ) _) (map_le_iff_le_comap.1 hφ), rw [comap_comap_comp, eq, comap_id], exact le_refl _ end lemma map_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : φ ∘ ψ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : map φ f = g := begin refine le_antisymm hφ (le_trans _ (map_mono hψ)), rw [map_map, eq, map_id], exact le_refl _ end lemma tendsto_inf {f : α → β} {x : filter α} {y₁ y₂ : filter β} : tendsto f x (y₁ ⊓ y₂) ↔ tendsto f x y₁ ∧ tendsto f x y₂ := by simp only [tendsto, lattice.le_inf_iff, iff_self] lemma tendsto_inf_left {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₁ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_left) h lemma tendsto_inf_right {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₂ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_right) h lemma tendsto_infi {f : α → β} {x : filter α} {y : ι → filter β} : tendsto f x (⨅i, y i) ↔ ∀i, tendsto f x (y i) := by simp only [tendsto, iff_self, lattice.le_infi_iff] lemma tendsto_infi' {f : α → β} {x : ι → filter α} {y : filter β} (i : ι) : tendsto f (x i) y → tendsto f (⨅i, x i) y := tendsto_le_left (infi_le _ _) lemma tendsto_principal {f : α → β} {a : filter α} {s : set β} : tendsto f a (principal s) ↔ {a | f a ∈ s} ∈ a.sets := by simp only [tendsto, le_principal_iff, mem_map, iff_self] lemma tendsto_principal_principal {f : α → β} {s : set α} {t : set β} : tendsto f (principal s) (principal t) ↔ ∀a∈s, f a ∈ t := by simp only [tendsto, image_subset_iff, le_principal_iff, map_principal, mem_principal_sets]; refl lemma tendsto_pure_pure (f : α → β) (a : α) : tendsto f (pure a) (pure (f a)) := show filter.map f (pure a) ≤ pure (f a), by rw [filter.map_pure]; exact le_refl _ lemma tendsto_const_pure {a : filter α} {b : β} : tendsto (λa, b) a (pure b) := by simp [tendsto]; exact univ_mem_sets lemma tendsto_if {l₁ : filter α} {l₂ : filter β} {f g : α → β} {p : α → Prop} [decidable_pred p] (h₀ : tendsto f (l₁ ⊓ principal p) l₂) (h₁ : tendsto g (l₁ ⊓ principal { x | ¬ p x }) l₂) : tendsto (λ x, if p x then f x else g x) l₁ l₂ := begin revert h₀ h₁, simp only [tendsto_def, mem_inf_principal], intros h₀ h₁ s hs, apply mem_sets_of_superset (inter_mem_sets (h₀ s hs) (h₁ s hs)), rintros x ⟨hp₀, hp₁⟩, dsimp, by_cases h : p x, { rw if_pos h, exact hp₀ h }, rw if_neg h, exact hp₁ h end section prod variables {s : set α} {t : set β} {f : filter α} {g : filter β} /- The product filter cannot be defined using the monad structure on filters. For example: F := do {x <- seq, y <- top, return (x, y)} hence: s ∈ F <-> ∃n, [n..∞] × univ ⊆ s G := do {y <- top, x <- seq, return (x, y)} hence: s ∈ G <-> ∀i:ℕ, ∃n, [n..∞] × {i} ⊆ s Now ⋃i, [i..∞] × {i} is in G but not in F. As product filter we want to have F as result. -/ /-- Product of filters. This is the filter generated by cartesian products of elements of the component filters. -/ protected def prod (f : filter α) (g : filter β) : filter (α × β) := f.comap prod.fst ⊓ g.comap prod.snd lemma prod_mem_prod {s : set α} {t : set β} {f : filter α} {g : filter β} (hs : s ∈ f.sets) (ht : t ∈ g.sets) : set.prod s t ∈ (filter.prod f g).sets := inter_mem_inf_sets (preimage_mem_comap hs) (preimage_mem_comap ht) lemma mem_prod_iff {s : set (α×β)} {f : filter α} {g : filter β} : s ∈ (filter.prod f g).sets ↔ (∃t₁∈f.sets, ∃t₂∈g.sets, set.prod t₁ t₂ ⊆ s) := begin simp only [filter.prod], split, exact assume ⟨t₁, ⟨s₁, hs₁, hts₁⟩, t₂, ⟨s₂, hs₂, hts₂⟩, h⟩, ⟨s₁, hs₁, s₂, hs₂, subset.trans (inter_subset_inter hts₁ hts₂) h⟩, exact assume ⟨t₁, ht₁, t₂, ht₂, h⟩, ⟨prod.fst ⁻¹' t₁, ⟨t₁, ht₁, subset.refl _⟩, prod.snd ⁻¹' t₂, ⟨t₂, ht₂, subset.refl _⟩, h⟩ end lemma tendsto_fst {f : filter α} {g : filter β} : tendsto prod.fst (filter.prod f g) f := tendsto_inf_left tendsto_comap lemma tendsto_snd {f : filter α} {g : filter β} : tendsto prod.snd (filter.prod f g) g := tendsto_inf_right tendsto_comap lemma tendsto.prod_mk {f : filter α} {g : filter β} {h : filter γ} {m₁ : α → β} {m₂ : α → γ} (h₁ : tendsto m₁ f g) (h₂ : tendsto m₂ f h) : tendsto (λx, (m₁ x, m₂ x)) f (filter.prod g h) := tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ lemma prod_infi_left {f : ι → filter α} {g : filter β} (i : ι) : filter.prod (⨅i, f i) g = (⨅i, filter.prod (f i) g) := by rw [filter.prod, comap_infi, infi_inf i]; simp only [filter.prod, eq_self_iff_true] lemma prod_infi_right {f : filter α} {g : ι → filter β} (i : ι) : filter.prod f (⨅i, g i) = (⨅i, filter.prod f (g i)) := by rw [filter.prod, comap_infi, inf_infi i]; simp only [filter.prod, eq_self_iff_true] lemma prod_mono {f₁ f₂ : filter α} {g₁ g₂ : filter β} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : filter.prod f₁ g₁ ≤ filter.prod f₂ g₂ := inf_le_inf (comap_mono hf) (comap_mono hg) lemma prod_comap_comap_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : β₁ → α₁} {m₂ : β₂ → α₂} : filter.prod (comap m₁ f₁) (comap m₂ f₂) = comap (λp:β₁×β₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := by simp only [filter.prod, comap_comap_comp, eq_self_iff_true, comap_inf] lemma prod_comm' : filter.prod f g = comap (prod.swap) (filter.prod g f) := by simp only [filter.prod, comap_comap_comp, (∘), inf_comm, prod.fst_swap, eq_self_iff_true, prod.snd_swap, comap_inf] lemma prod_comm : filter.prod f g = map (λp:β×α, (p.2, p.1)) (filter.prod g f) := by rw [prod_comm', ← map_swap_eq_comap_swap]; refl lemma prod_map_map_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : α₁ → β₁} {m₂ : α₂ → β₂} : filter.prod (map m₁ f₁) (map m₂ f₂) = map (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := le_antisymm (assume s hs, let ⟨s₁, hs₁, s₂, hs₂, h⟩ := mem_prod_iff.mp hs in filter.sets_of_superset _ (prod_mem_prod (image_mem_map hs₁) (image_mem_map hs₂)) $ calc set.prod (m₁ '' s₁) (m₂ '' s₂) = (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) '' set.prod s₁ s₂ : set.prod_image_image_eq ... ⊆ _ : by rwa [image_subset_iff]) ((tendsto_fst.comp (le_refl _)).prod_mk (tendsto_snd.comp (le_refl _))) lemma map_prod (m : α × β → γ) (f : filter α) (g : filter β) : map m (f.prod g) = (f.map (λa b, m (a, b))).seq g := begin simp [filter.ext_iff, mem_prod_iff, mem_map_seq_iff], assume s, split, exact assume ⟨t, ht, s, hs, h⟩, ⟨s, hs, t, ht, assume x hx y hy, @h ⟨x, y⟩ ⟨hx, hy⟩⟩, exact assume ⟨s, hs, t, ht, h⟩, ⟨t, ht, s, hs, assume ⟨x, y⟩ ⟨hx, hy⟩, h x hx y hy⟩ end lemma prod_eq {f : filter α} {g : filter β} : f.prod g = (f.map prod.mk).seq g := have h : _ := map_prod id f g, by rwa [map_id] at h lemma prod_inf_prod {f₁ f₂ : filter α} {g₁ g₂ : filter β} : filter.prod f₁ g₁ ⊓ filter.prod f₂ g₂ = filter.prod (f₁ ⊓ f₂) (g₁ ⊓ g₂) := by simp only [filter.prod, comap_inf, inf_comm, inf_assoc, lattice.inf_left_comm] @[simp] lemma prod_bot {f : filter α} : filter.prod f (⊥ : filter β) = ⊥ := by simp [filter.prod] @[simp] lemma bot_prod {g : filter β} : filter.prod (⊥ : filter α) g = ⊥ := by simp [filter.prod] @[simp] lemma prod_principal_principal {s : set α} {t : set β} : filter.prod (principal s) (principal t) = principal (set.prod s t) := by simp only [filter.prod, comap_principal, principal_eq_iff_eq, comap_principal, inf_principal]; refl @[simp] lemma prod_pure_pure {a : α} {b : β} : filter.prod (pure a) (pure b) = pure (a, b) := by simp lemma prod_eq_bot {f : filter α} {g : filter β} : filter.prod f g = ⊥ ↔ (f = ⊥ ∨ g = ⊥) := begin split, { assume h, rcases mem_prod_iff.1 (empty_in_sets_eq_bot.2 h) with ⟨s, hs, t, ht, hst⟩, rw [subset_empty_iff, set.prod_eq_empty_iff] at hst, cases hst with s_eq t_eq, { left, exact empty_in_sets_eq_bot.1 (s_eq ▸ hs) }, { right, exact empty_in_sets_eq_bot.1 (t_eq ▸ ht) } }, { rintros (rfl | rfl), exact bot_prod, exact prod_bot } end lemma prod_neq_bot {f : filter α} {g : filter β} : filter.prod f g ≠ ⊥ ↔ (f ≠ ⊥ ∧ g ≠ ⊥) := by rw [(≠), prod_eq_bot, not_or_distrib] lemma tendsto_prod_iff {f : α × β → γ} {x : filter α} {y : filter β} {z : filter γ} : filter.tendsto f (filter.prod x y) z ↔ ∀ W ∈ z.sets, ∃ U ∈ x.sets, ∃ V ∈ y.sets, ∀ x y, x ∈ U → y ∈ V → f (x, y) ∈ W := by simp only [tendsto_def, mem_prod_iff, prod_sub_preimage_iff, exists_prop, iff_self] end prod /- at_top and at_bot -/ /-- `at_top` is the filter representing the limit `→ ∞` on an ordered set. It is generated by the collection of up-sets `{b | a ≤ b}`. (The preorder need not have a top element for this to be well defined, and indeed is trivial when a top element exists.) -/ def at_top [preorder α] : filter α := ⨅ a, principal {b | a ≤ b} /-- `at_bot` is the filter representing the limit `→ -∞` on an ordered set. It is generated by the collection of down-sets `{b | b ≤ a}`. (The preorder need not have a bottom element for this to be well defined, and indeed is trivial when a bottom element exists.) -/ def at_bot [preorder α] : filter α := ⨅ a, principal {b | b ≤ a} lemma mem_at_top [preorder α] (a : α) : {b : α | a ≤ b} ∈ (@at_top α _).sets := mem_infi_sets a $ subset.refl _ @[simp] lemma at_top_ne_bot [nonempty α] [semilattice_sup α] : (at_top : filter α) ≠ ⊥ := infi_neq_bot_of_directed (by apply_instance) (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (assume a, by simp only [principal_eq_bot_iff, ne.def, principal_eq_bot_iff]; exact ne_empty_of_mem (le_refl a)) @[simp] lemma mem_at_top_sets [nonempty α] [semilattice_sup α] {s : set α} : s ∈ (at_top : filter α).sets ↔ ∃a:α, ∀b≥a, b ∈ s := let ⟨a⟩ := ‹nonempty α› in iff.intro (assume h, infi_sets_induct h ⟨a, by simp only [forall_const, mem_univ, forall_true_iff]⟩ (assume a s₁ s₂ ha ⟨b, hb⟩, ⟨a ⊔ b, assume c hc, ⟨ha $ le_trans le_sup_left hc, hb _ $ le_trans le_sup_right hc⟩⟩) (assume s₁ s₂ h ⟨a, ha⟩, ⟨a, assume b hb, h $ ha _ hb⟩)) (assume ⟨a, h⟩, mem_infi_sets a $ assume x, h x) lemma map_at_top_eq [nonempty α] [semilattice_sup α] {f : α → β} : at_top.map f = (⨅a, principal $ f '' {a' | a ≤ a'}) := calc map f (⨅a, principal {a' | a ≤ a'}) = (⨅a, map f $ principal {a' | a ≤ a'}) : map_infi_eq (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (by apply_instance) ... = (⨅a, principal $ f '' {a' | a ≤ a'}) : by simp only [map_principal, eq_self_iff_true] lemma tendsto_at_top [preorder β] (m : α → β) (f : filter α) : tendsto m f at_top ↔ (∀b, {a | b ≤ m a} ∈ f.sets) := by simp only [at_top, tendsto_infi, tendsto_principal]; refl lemma tendsto_at_top' [nonempty α] [semilattice_sup α] (f : α → β) (l : filter β) : tendsto f at_top l ↔ (∀s∈l.sets, ∃a, ∀b≥a, f b ∈ s) := by simp only [tendsto_def, mem_at_top_sets]; refl theorem tendsto_at_top_principal [nonempty β] [semilattice_sup β] {f : β → α} {s : set α} : tendsto f at_top (principal s) ↔ ∃N, ∀n≥N, f n ∈ s := by rw [tendsto_iff_comap, comap_principal, le_principal_iff, mem_at_top_sets]; refl /-- A function `f` grows to infinity independent of an order-preserving embedding `e`. -/ lemma tendsto_at_top_embedding {α β γ : Type*} [preorder β] [preorder γ] {f : α → β} {e : β → γ} {l : filter α} (hm : ∀b₁ b₂, e b₁ ≤ e b₂ ↔ b₁ ≤ b₂) (hu : ∀c, ∃b, c ≤ e b) : tendsto (e ∘ f) l at_top ↔ tendsto f l at_top := begin rw [tendsto_at_top, tendsto_at_top], split, { assume hc b, filter_upwards [hc (e b)] assume a, (hm b (f a)).1 }, { assume hb c, rcases hu c with ⟨b, hc⟩, filter_upwards [hb b] assume a ha, le_trans hc ((hm b (f a)).2 ha) } end lemma tendsto_at_top_at_top [nonempty α] [semilattice_sup α] [preorder β] (f : α → β) : tendsto f at_top at_top ↔ ∀ b : β, ∃ i : α, ∀ a : α, i ≤ a → b ≤ f a := iff.trans tendsto_infi $ forall_congr $ assume b, tendsto_at_top_principal lemma tendsto_finset_image_at_top_at_top {i : β → γ} {j : γ → β} (h : ∀x, j (i x) = x) : tendsto (λs:finset γ, s.image j) at_top at_top := tendsto_infi.2 $ assume s, tendsto_infi' (s.image i) $ tendsto_principal_principal.2 $ assume t (ht : s.image i ⊆ t), calc s = (s.image i).image j : by simp only [finset.image_image, (∘), h]; exact finset.image_id.symm ... ⊆ t.image j : finset.image_subset_image ht lemma prod_at_top_at_top_eq {β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] : filter.prod (@at_top β₁ _) (@at_top β₂ _) = @at_top (β₁ × β₂) _ := by simp [at_top, prod_infi_left (default β₁), prod_infi_right (default β₂), infi_prod]; exact infi_comm lemma prod_map_at_top_eq {α₁ α₂ β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] (u₁ : β₁ → α₁) (u₂ : β₂ → α₂) : filter.prod (map u₁ at_top) (map u₂ at_top) = map (prod.map u₁ u₂) at_top := by rw [prod_map_map_eq, prod_at_top_at_top_eq, prod.map_def] /-- A function `f` maps upwards closed sets (at_top sets) to upwards closed sets when it is a Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an insertion and a connetion above `b'`. -/ lemma map_at_top_eq_of_gc [semilattice_sup α] [semilattice_sup β] {f : α → β} (g : β → α) (b' : β)(hf : monotone f) (gc : ∀a, ∀b≥b', f a ≤ b ↔ a ≤ g b) (hgi : ∀b≥b', b ≤ f (g b)) : map f at_top = at_top := begin rw [@map_at_top_eq α _ ⟨g b'⟩], refine le_antisymm (le_infi $ assume b, infi_le_of_le (g (b ⊔ b')) $ principal_mono.2 $ image_subset_iff.2 _) (le_infi $ assume a, infi_le_of_le (f a ⊔ b') $ principal_mono.2 _), { assume a ha, exact (le_trans le_sup_left $ le_trans (hgi _ le_sup_right) $ hf ha) }, { assume b hb, have hb' : b' ≤ b := le_trans le_sup_right hb, exact ⟨g b, (gc _ _ hb').1 (le_trans le_sup_left hb), le_antisymm ((gc _ _ hb').2 (le_refl _)) (hgi _ hb')⟩ } end lemma map_add_at_top_eq_nat (k : ℕ) : map (λa, a + k) at_top = at_top := map_at_top_eq_of_gc (λa, a - k) k (assume a b h, add_le_add_right h k) (assume a b h, (nat.le_sub_right_iff_add_le h).symm) (assume a h, by rw [nat.sub_add_cancel h]) lemma map_sub_at_top_eq_nat (k : ℕ) : map (λa, a - k) at_top = at_top := map_at_top_eq_of_gc (λa, a + k) 0 (assume a b h, nat.sub_le_sub_right h _) (assume a b _, nat.sub_le_right_iff_le_add) (assume b _, by rw [nat.add_sub_cancel]) lemma tendso_add_at_top_nat (k : ℕ) : tendsto (λa, a + k) at_top at_top := le_of_eq (map_add_at_top_eq_nat k) lemma tendso_sub_at_top_nat (k : ℕ) : tendsto (λa, a - k) at_top at_top := le_of_eq (map_sub_at_top_eq_nat k) lemma tendsto_add_at_top_iff_nat {f : ℕ → α} {l : filter α} (k : ℕ) : tendsto (λn, f (n + k)) at_top l ↔ tendsto f at_top l := show tendsto (f ∘ (λn, n + k)) at_top l ↔ tendsto f at_top l, by rw [← tendsto_map'_iff, map_add_at_top_eq_nat] lemma map_div_at_top_eq_nat (k : ℕ) (hk : k > 0) : map (λa, a / k) at_top = at_top := map_at_top_eq_of_gc (λb, b * k + (k - 1)) 1 (assume a b h, nat.div_le_div_right h) (assume a b _, calc a / k ≤ b ↔ a / k < b + 1 : by rw [← nat.succ_eq_add_one, nat.lt_succ_iff] ... ↔ a < (b + 1) * k : nat.div_lt_iff_lt_mul _ _ hk ... ↔ _ : begin cases k, exact (lt_irrefl _ hk).elim, simp [mul_add, add_mul, nat.succ_add, nat.lt_succ_iff] end) (assume b _, calc b = (b * k) / k : by rw [nat.mul_div_cancel b hk] ... ≤ (b * k + (k - 1)) / k : nat.div_le_div_right $ nat.le_add_right _ _) /- ultrafilter -/ section ultrafilter open zorn variables {f g : filter α} /-- An ultrafilter is a minimal (maximal in the set order) proper filter. -/ def is_ultrafilter (f : filter α) := f ≠ ⊥ ∧ ∀g, g ≠ ⊥ → g ≤ f → f ≤ g lemma ultrafilter_unique (hg : is_ultrafilter g) (hf : f ≠ ⊥) (h : f ≤ g) : f = g := le_antisymm h (hg.right _ hf h) lemma le_of_ultrafilter {g : filter α} (hf : is_ultrafilter f) (h : f ⊓ g ≠ ⊥) : f ≤ g := le_of_inf_eq $ ultrafilter_unique hf h inf_le_left /-- Equivalent characterization of ultrafilters: A filter f is an ultrafilter if and only if for each set s, -s belongs to f if and only if s does not belong to f. -/ lemma ultrafilter_iff_compl_mem_iff_not_mem : is_ultrafilter f ↔ (∀ s, -s ∈ f.sets ↔ s ∉ f.sets) := ⟨assume hf s, ⟨assume hns hs, hf.1 $ empty_in_sets_eq_bot.mp $ by convert f.inter_sets hs hns; rw [inter_compl_self], assume hs, have f ≤ principal (-s), from le_of_ultrafilter hf $ assume h, hs $ mem_sets_of_neq_bot $ by simp only [h, eq_self_iff_true, lattice.neg_neg], by simp only [le_principal_iff] at this; assumption⟩, assume hf, ⟨mt empty_in_sets_eq_bot.mpr ((hf ∅).mp (by convert f.univ_sets; rw [compl_empty])), assume g hg g_le s hs, classical.by_contradiction $ mt (hf s).mpr $ assume : - s ∈ f.sets, have s ∩ -s ∈ g.sets, from inter_mem_sets hs (g_le this), by simp only [empty_in_sets_eq_bot, hg, inter_compl_self] at this; contradiction⟩⟩ lemma mem_or_compl_mem_of_ultrafilter (hf : is_ultrafilter f) (s : set α) : s ∈ f.sets ∨ - s ∈ f.sets := classical.or_iff_not_imp_left.2 (ultrafilter_iff_compl_mem_iff_not_mem.mp hf s).mpr lemma mem_or_mem_of_ultrafilter {s t : set α} (hf : is_ultrafilter f) (h : s ∪ t ∈ f.sets) : s ∈ f.sets ∨ t ∈ f.sets := (mem_or_compl_mem_of_ultrafilter hf s).imp_right (assume : -s ∈ f.sets, by filter_upwards [this, h] assume x hnx hx, hx.resolve_left hnx) lemma mem_of_finite_sUnion_ultrafilter {s : set (set α)} (hf : is_ultrafilter f) (hs : finite s) : ⋃₀ s ∈ f.sets → ∃t∈s, t ∈ f.sets := finite.induction_on hs (by simp only [empty_in_sets_eq_bot, hf.left, mem_empty_eq, sUnion_empty, forall_prop_of_false, exists_false, not_false_iff, exists_prop_of_false]) $ λ t s' ht' hs' ih, by simp only [exists_prop, mem_insert_iff, set.sUnion_insert]; exact assume h, (mem_or_mem_of_ultrafilter hf h).elim (assume : t ∈ f.sets, ⟨t, or.inl rfl, this⟩) (assume h, let ⟨t, hts', ht⟩ := ih h in ⟨t, or.inr hts', ht⟩) lemma mem_of_finite_Union_ultrafilter {is : set β} {s : β → set α} (hf : is_ultrafilter f) (his : finite is) (h : (⋃i∈is, s i) ∈ f.sets) : ∃i∈is, s i ∈ f.sets := have his : finite (image s is), from finite_image s his, have h : (⋃₀ image s is) ∈ f.sets, from by simp only [sUnion_image, set.sUnion_image]; assumption, let ⟨t, ⟨i, hi, h_eq⟩, (ht : t ∈ f.sets)⟩ := mem_of_finite_sUnion_ultrafilter hf his h in ⟨i, hi, h_eq.symm ▸ ht⟩ lemma ultrafilter_map {f : filter α} {m : α → β} (h : is_ultrafilter f) : is_ultrafilter (map m f) := by rw ultrafilter_iff_compl_mem_iff_not_mem at ⊢ h; exact assume s, h (m ⁻¹' s) lemma ultrafilter_pure {a : α} : is_ultrafilter (pure a) := begin rw ultrafilter_iff_compl_mem_iff_not_mem, intro s, rw [mem_pure_sets, mem_pure_sets], exact iff.rfl end lemma ultrafilter_bind {f : filter α} (hf : is_ultrafilter f) {m : α → filter β} (hm : ∀ a, is_ultrafilter (m a)) : is_ultrafilter (f.bind m) := begin simp only [ultrafilter_iff_compl_mem_iff_not_mem] at ⊢ hf hm, intro s, dsimp [bind, join, map], simp only [hm], apply hf end /-- The ultrafilter lemma: Any proper filter is contained in an ultrafilter. -/ lemma exists_ultrafilter (h : f ≠ ⊥) : ∃u, u ≤ f ∧ is_ultrafilter u := let τ := {f' // f' ≠ ⊥ ∧ f' ≤ f}, r : τ → τ → Prop := λt₁ t₂, t₂.val ≤ t₁.val, ⟨a, ha⟩ := inhabited_of_mem_sets h univ_mem_sets, top : τ := ⟨f, h, le_refl f⟩, sup : Π(c:set τ), chain r c → τ := λc hc, ⟨⨅a:{a:τ // a ∈ insert top c}, a.val.val, infi_neq_bot_of_directed ⟨a⟩ (directed_of_chain $ chain_insert hc $ assume ⟨b, _, hb⟩ _ _, or.inl hb) (assume ⟨⟨a, ha, _⟩, _⟩, ha), infi_le_of_le ⟨top, mem_insert _ _⟩ (le_refl _)⟩ in have ∀c (hc: chain r c) a (ha : a ∈ c), r a (sup c hc), from assume c hc a ha, infi_le_of_le ⟨a, mem_insert_of_mem _ ha⟩ (le_refl _), have (∃ (u : τ), ∀ (a : τ), r u a → r a u), from zorn (assume c hc, ⟨sup c hc, this c hc⟩) (assume f₁ f₂ f₃ h₁ h₂, le_trans h₂ h₁), let ⟨uτ, hmin⟩ := this in ⟨uτ.val, uτ.property.right, uτ.property.left, assume g hg₁ hg₂, hmin ⟨g, hg₁, le_trans hg₂ uτ.property.right⟩ hg₂⟩ /-- Construct an ultrafilter extending a given filter. The ultrafilter lemma is the assertion that such a filter exists; we use the axiom of choice to pick one. -/ noncomputable def ultrafilter_of (f : filter α) : filter α := if h : f = ⊥ then ⊥ else classical.epsilon (λu, u ≤ f ∧ is_ultrafilter u) lemma ultrafilter_of_spec (h : f ≠ ⊥) : ultrafilter_of f ≤ f ∧ is_ultrafilter (ultrafilter_of f) := begin have h' := classical.epsilon_spec (exists_ultrafilter h), simp only [ultrafilter_of, dif_neg, h, dif_neg, not_false_iff], simp only at h', assumption end lemma ultrafilter_of_le : ultrafilter_of f ≤ f := if h : f = ⊥ then by simp only [ultrafilter_of, dif_pos, h, dif_pos, eq_self_iff_true, le_bot_iff]; exact le_refl _ else (ultrafilter_of_spec h).left lemma ultrafilter_ultrafilter_of (h : f ≠ ⊥) : is_ultrafilter (ultrafilter_of f) := (ultrafilter_of_spec h).right lemma ultrafilter_of_ultrafilter (h : is_ultrafilter f) : ultrafilter_of f = f := ultrafilter_unique h (ultrafilter_ultrafilter_of h.left).left ultrafilter_of_le /-- A filter equals the intersection of all the ultrafilters which contain it. -/ lemma sup_of_ultrafilters (f : filter α) : f = ⨆ (g) (u : is_ultrafilter g) (H : g ≤ f), g := begin refine le_antisymm _ (supr_le $ λ g, supr_le $ λ u, supr_le $ λ H, H), intros s hs, -- If s ∉ f.sets, we'll apply the ultrafilter lemma to the restriction of f to -s. by_contradiction hs', let j : (-s) → α := subtype.val, have j_inv_s : j ⁻¹' s = ∅, by erw [←preimage_inter_range, subtype.val_range, inter_compl_self, preimage_empty], let f' := comap j f, have : f' ≠ ⊥, { apply mt empty_in_sets_eq_bot.mpr, rintro ⟨t, htf, ht⟩, suffices : t ⊆ s, from absurd (f.sets_of_superset htf this) hs', rw [subset_empty_iff] at ht, have : j '' (j ⁻¹' t) = ∅, by rw [ht, image_empty], erw [image_preimage_eq_inter_range, subtype.val_range, ←subset_compl_iff_disjoint, set.compl_compl] at this, exact this }, rcases exists_ultrafilter this with ⟨g', g'f', u'⟩, simp only [supr_sets_eq, mem_Inter] at hs, have := hs (g'.map subtype.val) (ultrafilter_map u') (map_le_iff_le_comap.mpr g'f'), rw [←le_principal_iff, map_le_iff_le_comap, comap_principal, j_inv_s, principal_empty, le_bot_iff] at this, exact absurd this u'.1 end /-- The `tendsto` relation can be checked on ultrafilters. -/ lemma tendsto_iff_ultrafilter (f : α → β) (l₁ : filter α) (l₂ : filter β) : tendsto f l₁ l₂ ↔ ∀ g, is_ultrafilter g → g ≤ l₁ → g.map f ≤ l₂ := ⟨assume h g u gx, le_trans (map_mono gx) h, assume h, by rw [sup_of_ultrafilters l₁]; simpa only [tendsto, map_supr, supr_le_iff]⟩ /- The ultrafilter monad. The monad structure on ultrafilters is the restriction of the one on filters. -/ def ultrafilter (α : Type u) : Type u := {f : filter α // is_ultrafilter f} def ultrafilter.map (m : α → β) (u : ultrafilter α) : ultrafilter β := ⟨u.val.map m, ultrafilter_map u.property⟩ def ultrafilter.pure (x : α) : ultrafilter α := ⟨pure x, ultrafilter_pure⟩ def ultrafilter.bind (u : ultrafilter α) (m : α → ultrafilter β) : ultrafilter β := ⟨u.val.bind (λ a, (m a).val), ultrafilter_bind u.property (λ a, (m a).property)⟩ instance ultrafilter.has_pure : has_pure ultrafilter := ⟨@ultrafilter.pure⟩ instance ultrafilter.has_bind : has_bind ultrafilter := ⟨@ultrafilter.bind⟩ instance ultrafilter.functor : functor ultrafilter := { map := @ultrafilter.map } instance ultrafilter.monad : monad ultrafilter := { map := @ultrafilter.map } section local attribute [instance] filter.monad filter.is_lawful_monad instance ultrafilter.is_lawful_monad : is_lawful_monad ultrafilter := { id_map := assume α f, subtype.eq (id_map f.val), pure_bind := assume α β a f, subtype.eq (pure_bind a (subtype.val ∘ f)), bind_assoc := assume α β γ f m₁ m₂, subtype.eq (filter_eq rfl), bind_pure_comp_eq_map := assume α β f x, subtype.eq (bind_pure_comp_eq_map _ f x.val) } end lemma ultrafilter.eq_iff_val_le_val {u v : ultrafilter α} : u = v ↔ u.val ≤ v.val := ⟨assume h, by rw h; exact le_refl _, assume h, by rw subtype.ext; apply ultrafilter_unique v.property u.property.1 h⟩ lemma exists_ultrafilter_iff (f : filter α) : (∃ (u : ultrafilter α), u.val ≤ f) ↔ f ≠ ⊥ := ⟨assume ⟨u, uf⟩, lattice.neq_bot_of_le_neq_bot u.property.1 uf, assume h, let ⟨u, uf, hu⟩ := exists_ultrafilter h in ⟨⟨u, hu⟩, uf⟩⟩ end ultrafilter end filter namespace filter variables {α β γ : Type u} {f : β → filter α} {s : γ → set α} open list lemma mem_traverse_sets : ∀(fs : list β) (us : list γ), forall₂ (λb c, s c ∈ (f b).sets) fs us → traverse s us ∈ (traverse f fs).sets | [] [] forall₂.nil := mem_pure_sets.2 $ mem_singleton _ | (f::fs) (u::us) (forall₂.cons h hs) := seq_mem_seq_sets (image_mem_map h) (mem_traverse_sets fs us hs) lemma mem_traverse_sets_iff (fs : list β) (t : set (list α)) : t ∈ (traverse f fs).sets ↔ (∃us:list (set α), forall₂ (λb (s : set α), s ∈ (f b).sets) fs us ∧ sequence us ⊆ t) := begin split, { induction fs generalizing t, case nil { simp only [sequence, pure_def, imp_self, forall₂_nil_left_iff, pure_def, exists_eq_left, mem_principal_sets, set.pure_def, singleton_subset_iff, traverse_nil] }, case cons : b fs ih t { assume ht, rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hwu⟩, rcases ih v hv with ⟨us, hus, hu⟩, exact ⟨w :: us, forall₂.cons hw hus, subset.trans (set.seq_mono hwu hu) ht⟩ } }, { rintros ⟨us, hus, hs⟩, exact mem_sets_of_superset (mem_traverse_sets _ _ hus) hs } end lemma sequence_mono : ∀(as bs : list (filter α)), forall₂ (≤) as bs → sequence as ≤ sequence bs | [] [] forall₂.nil := le_refl _ | (a::as) (b::bs) (forall₂.cons h hs) := seq_mono (map_mono h) (sequence_mono as bs hs) end filter
201cf95cfd0d3171dd0215320e30064058a440aa
c3f2fcd060adfa2ca29f924839d2d925e8f2c685
/tests/lean/var2.lean
836f1151e628586304f1d5d1d79efbf2822ad68b
[ "Apache-2.0" ]
permissive
respu/lean
6582d19a2f2838a28ecd2b3c6f81c32d07b5341d
8c76419c60b63d0d9f7bc04ebb0b99812d0ec654
refs/heads/master
1,610,882,451,231
1,427,747,084,000
1,427,747,429,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
186
lean
import logic context universe l variable A : Type.{l} variable a : A parameter B : Type.{l} parameter b : B definition foo := fun (H : A = B), cast H a = b end check foo
4ca6f906e6b6e98d9b75af8904d36b0754167b10
cf39355caa609c0f33405126beee2739aa3cb77e
/library/init/data/nat/lemmas.lean
93231a9b8e28b95a62c00b815c29304a4b565a6e
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
48,955
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad -/ prelude import init.data.nat.basic init.data.nat.div init.meta init.algebra.functions universes u namespace nat attribute [pre_smt] nat_zero_eq_zero /-! addition -/ protected lemma add_comm : ∀ n m : ℕ, n + m = m + n | n 0 := eq.symm (nat.zero_add n) | n (m+1) := suffices succ (n + m) = succ (m + n), from eq.symm (succ_add m n) ▸ this, congr_arg succ (add_comm n m) protected lemma add_assoc : ∀ n m k : ℕ, (n + m) + k = n + (m + k) | n m 0 := rfl | n m (succ k) := by rw [add_succ, add_succ, add_assoc]; refl protected lemma add_left_comm : ∀ (n m k : ℕ), n + (m + k) = m + (n + k) := left_comm nat.add nat.add_comm nat.add_assoc protected lemma add_left_cancel : ∀ {n m k : ℕ}, n + m = n + k → m = k | 0 m k := by simp [nat.zero_add] {contextual := tt} | (succ n) m k := λ h, have n+m = n+k, by { simp [succ_add] at h, assumption }, add_left_cancel this protected lemma add_right_cancel {n m k : ℕ} (h : n + m = k + m) : n = k := have m + n = m + k, by rwa [nat.add_comm n m, nat.add_comm k m] at h, nat.add_left_cancel this lemma succ_ne_zero (n : ℕ) : succ n ≠ 0 := assume h, nat.no_confusion h lemma succ_ne_self : ∀ n : ℕ, succ n ≠ n | 0 h := absurd h (nat.succ_ne_zero 0) | (n+1) h := succ_ne_self n (nat.no_confusion h (λ h, h)) protected lemma one_ne_zero : 1 ≠ (0 : ℕ) := assume h, nat.no_confusion h protected lemma zero_ne_one : 0 ≠ (1 : ℕ) := assume h, nat.no_confusion h protected lemma eq_zero_of_add_eq_zero_right : ∀ {n m : ℕ}, n + m = 0 → n = 0 | 0 m := by simp [nat.zero_add] | (n+1) m := λ h, begin exfalso, rw [add_one, succ_add] at h, apply succ_ne_zero _ h end protected lemma eq_zero_of_add_eq_zero_left {n m : ℕ} (h : n + m = 0) : m = 0 := @nat.eq_zero_of_add_eq_zero_right m n (nat.add_comm n m ▸ h) protected theorem add_right_comm : ∀ (n m k : ℕ), n + m + k = n + k + m := right_comm nat.add nat.add_comm nat.add_assoc theorem eq_zero_of_add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 := ⟨nat.eq_zero_of_add_eq_zero_right H, nat.eq_zero_of_add_eq_zero_left H⟩ /-! multiplication -/ protected lemma mul_zero (n : ℕ) : n * 0 = 0 := rfl lemma mul_succ (n m : ℕ) : n * succ m = n * m + n := rfl protected theorem zero_mul : ∀ (n : ℕ), 0 * n = 0 | 0 := rfl | (succ n) := by rw [mul_succ, zero_mul] private meta def sort_add := `[simp [nat.add_assoc, nat.add_comm, nat.add_left_comm]] lemma succ_mul : ∀ (n m : ℕ), (succ n) * m = (n * m) + m | n 0 := rfl | n (succ m) := begin simp [mul_succ, add_succ, succ_mul n m], sort_add end protected lemma right_distrib : ∀ (n m k : ℕ), (n + m) * k = n * k + m * k | n m 0 := rfl | n m (succ k) := begin simp [mul_succ, right_distrib n m k], sort_add end protected lemma left_distrib : ∀ (n m k : ℕ), n * (m + k) = n * m + n * k | 0 m k := by simp [nat.zero_mul] | (succ n) m k := begin simp [succ_mul, left_distrib n m k], sort_add end protected lemma mul_comm : ∀ (n m : ℕ), n * m = m * n | n 0 := by rw [nat.zero_mul, nat.mul_zero] | n (succ m) := by simp [mul_succ, succ_mul, mul_comm n m] protected lemma mul_assoc : ∀ (n m k : ℕ), (n * m) * k = n * (m * k) | n m 0 := rfl | n m (succ k) := by simp [mul_succ, nat.left_distrib, mul_assoc n m k] protected lemma mul_one : ∀ (n : ℕ), n * 1 = n := nat.zero_add protected lemma one_mul (n : ℕ) : 1 * n = n := by rw [nat.mul_comm, nat.mul_one] theorem succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m := by simp [succ_add, add_succ] theorem eq_zero_of_mul_eq_zero : ∀ {n m : ℕ}, n * m = 0 → n = 0 ∨ m = 0 | 0 m := λ h, or.inl rfl | (succ n) m := begin rw succ_mul, intro h, exact or.inr (nat.eq_zero_of_add_eq_zero_left h) end /-! properties of inequality -/ protected lemma le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ less_than_or_equal.refl lemma le_succ_of_le {n m : ℕ} (h : n ≤ m) : n ≤ succ m := nat.le_trans h (le_succ m) lemma le_of_succ_le {n m : ℕ} (h : succ n ≤ m) : n ≤ m := nat.le_trans (le_succ n) h protected lemma le_of_lt {n m : ℕ} (h : n < m) : n ≤ m := le_of_succ_le h lemma lt.step {n m : ℕ} : n < m → n < succ m := less_than_or_equal.step protected lemma eq_zero_or_pos (n : ℕ) : n = 0 ∨ 0 < n := by {cases n, exact or.inl rfl, exact or.inr (succ_pos _)} protected lemma pos_of_ne_zero {n : nat} : n ≠ 0 → 0 < n := or.resolve_left n.eq_zero_or_pos protected lemma lt_trans {n m k : ℕ} (h₁ : n < m) : m < k → n < k := nat.le_trans (less_than_or_equal.step h₁) protected lemma lt_of_le_of_lt {n m k : ℕ} (h₁ : n ≤ m) : m < k → n < k := nat.le_trans (succ_le_succ h₁) lemma lt.base (n : ℕ) : n < succ n := nat.le_refl (succ n) lemma lt_succ_self (n : ℕ) : n < succ n := lt.base n protected lemma le_antisymm {n m : ℕ} (h₁ : n ≤ m) : m ≤ n → n = m := less_than_or_equal.cases_on h₁ (λ a, rfl) (λ a b c, absurd (nat.lt_of_le_of_lt b c) (nat.lt_irrefl n)) protected lemma lt_or_ge : ∀ (a b : ℕ), a < b ∨ b ≤ a | a 0 := or.inr a.zero_le | a (b+1) := match lt_or_ge a b with | or.inl h := or.inl (le_succ_of_le h) | or.inr h := match nat.eq_or_lt_of_le h with | or.inl h1 := or.inl (h1 ▸ lt_succ_self b) | or.inr h1 := or.inr h1 end end protected lemma le_total {m n : ℕ} : m ≤ n ∨ n ≤ m := or.imp_left nat.le_of_lt (nat.lt_or_ge m n) protected lemma lt_of_le_and_ne {m n : ℕ} (h1 : m ≤ n) : m ≠ n → m < n := or.resolve_right (or.swap (nat.eq_or_lt_of_le h1)) protected lemma lt_iff_le_not_le {m n : ℕ} : m < n ↔ (m ≤ n ∧ ¬ n ≤ m) := ⟨λ hmn, ⟨nat.le_of_lt hmn, λ hnm, nat.lt_irrefl _ (nat.lt_of_le_of_lt hnm hmn)⟩, λ ⟨hmn, hnm⟩, nat.lt_of_le_and_ne hmn (λ heq, hnm (heq ▸ nat.le_refl _))⟩ instance : linear_order ℕ := { le := nat.less_than_or_equal, le_refl := @nat.le_refl, le_trans := @nat.le_trans, le_antisymm := @nat.le_antisymm, le_total := @nat.le_total, lt := nat.lt, lt_iff_le_not_le := @nat.lt_iff_le_not_le, decidable_lt := nat.decidable_lt, decidable_le := nat.decidable_le, decidable_eq := nat.decidable_eq } protected lemma eq_zero_of_le_zero {n : nat} (h : n ≤ 0) : n = 0 := le_antisymm h n.zero_le lemma succ_lt_succ {a b : ℕ} : a < b → succ a < succ b := succ_le_succ lemma lt_of_succ_lt {a b : ℕ} : succ a < b → a < b := le_of_succ_le lemma lt_of_succ_lt_succ {a b : ℕ} : succ a < succ b → a < b := le_of_succ_le_succ lemma pred_lt_pred : ∀ {n m : ℕ}, n ≠ 0 → n < m → pred n < pred m | 0 _ h₁ h := absurd rfl h₁ | n 0 h₁ h := absurd h n.not_lt_zero | (succ n) (succ m) _ h := lt_of_succ_lt_succ h lemma lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h lemma succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h protected lemma le_add_right : ∀ (n k : ℕ), n ≤ n + k | n 0 := nat.le_refl n | n (k+1) := le_succ_of_le (le_add_right n k) protected lemma le_add_left (n m : ℕ): n ≤ m + n := nat.add_comm n m ▸ n.le_add_right m lemma le.dest : ∀ {n m : ℕ}, n ≤ m → ∃ k, n + k = m | n _ less_than_or_equal.refl := ⟨0, rfl⟩ | n _ (less_than_or_equal.step h) := match le.dest h with | ⟨w, hw⟩ := ⟨succ w, hw ▸ add_succ n w⟩ end protected lemma le.intro {n m k : ℕ} (h : n + k = m) : n ≤ m := h ▸ n.le_add_right k protected lemma add_le_add_left {n m : ℕ} (h : n ≤ m) (k : ℕ) : k + n ≤ k + m := match le.dest h with | ⟨w, hw⟩ := @le.intro _ _ w begin rw [nat.add_assoc, hw] end end protected lemma add_le_add_right {n m : ℕ} (h : n ≤ m) (k : ℕ) : n + k ≤ m + k := begin rw [nat.add_comm n k, nat.add_comm m k], apply nat.add_le_add_left h end protected lemma le_of_add_le_add_left {k n m : ℕ} (h : k + n ≤ k + m) : n ≤ m := match le.dest h with | ⟨w, hw⟩ := @le.intro _ _ w begin rw [nat.add_assoc] at hw, apply nat.add_left_cancel hw end end protected lemma le_of_add_le_add_right {k n m : ℕ} : n + k ≤ m + k → n ≤ m := begin rw [nat.add_comm _ k, nat.add_comm _ k], apply nat.le_of_add_le_add_left end protected lemma add_le_add_iff_right {k n m : ℕ} : n + k ≤ m + k ↔ n ≤ m := ⟨ nat.le_of_add_le_add_right , assume h, nat.add_le_add_right h _ ⟩ protected theorem lt_of_add_lt_add_left {k n m : ℕ} (h : k + n < k + m) : n < m := let h' := nat.le_of_lt h in nat.lt_of_le_and_ne (nat.le_of_add_le_add_left h') (λ heq, nat.lt_irrefl (k + m) begin rw heq at h, assumption end) protected lemma lt_of_add_lt_add_right {a b c : ℕ} (h : a + b < c + b) : a < c := nat.lt_of_add_lt_add_left $ show b + a < b + c, by rwa [nat.add_comm b a, nat.add_comm b c] protected lemma add_lt_add_left {n m : ℕ} (h : n < m) (k : ℕ) : k + n < k + m := lt_of_succ_le (add_succ k n ▸ nat.add_le_add_left (succ_le_of_lt h) k) protected lemma add_lt_add_right {n m : ℕ} (h : n < m) (k : ℕ) : n + k < m + k := nat.add_comm k m ▸ nat.add_comm k n ▸ nat.add_lt_add_left h k protected lemma lt_add_of_pos_right {n k : ℕ} (h : 0 < k) : n < n + k := nat.add_lt_add_left h n protected lemma lt_add_of_pos_left {n k : ℕ} (h : 0 < k) : n < k + n := by rw nat.add_comm; exact nat.lt_add_of_pos_right h protected lemma add_lt_add {a b c d : ℕ} (h₁ : a < b) (h₂ : c < d) : a + c < b + d := lt_trans (nat.add_lt_add_right h₁ c) (nat.add_lt_add_left h₂ b) protected lemma add_le_add {a b c d : ℕ} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d := le_trans (nat.add_le_add_right h₁ c) (nat.add_le_add_left h₂ b) protected lemma zero_lt_one : 0 < (1:nat) := zero_lt_succ 0 protected lemma mul_le_mul_left {n m : ℕ} (k : ℕ) (h : n ≤ m) : k * n ≤ k * m := match le.dest h with | ⟨l, hl⟩ := have k * n + k * l = k * m, by rw [← nat.left_distrib, hl], le.intro this end protected lemma mul_le_mul_right {n m : ℕ} (k : ℕ) (h : n ≤ m) : n * k ≤ m * k := nat.mul_comm k m ▸ nat.mul_comm k n ▸ k.mul_le_mul_left h protected lemma mul_lt_mul_of_pos_left {n m k : ℕ} (h : n < m) (hk : 0 < k) : k * n < k * m := nat.lt_of_lt_of_le (nat.lt_add_of_pos_right hk) (mul_succ k n ▸ nat.mul_le_mul_left k (succ_le_of_lt h)) protected lemma mul_lt_mul_of_pos_right {n m k : ℕ} (h : n < m) (hk : 0 < k) : n * k < m * k := nat.mul_comm k m ▸ nat.mul_comm k n ▸ nat.mul_lt_mul_of_pos_left h hk protected lemma le_of_mul_le_mul_left {a b c : ℕ} (h : c * a ≤ c * b) (hc : 0 < c) : a ≤ b := not_lt.1 (assume h1 : b < a, have h2 : c * b < c * a, from nat.mul_lt_mul_of_pos_left h1 hc, not_le_of_gt h2 h) lemma le_of_lt_succ {m n : nat} : m < succ n → m ≤ n := le_of_succ_le_succ protected theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : 0 < n) (H : n * m = n * k) : m = k := le_antisymm (nat.le_of_mul_le_mul_left (le_of_eq H) Hn) (nat.le_of_mul_le_mul_left (le_of_eq H.symm) Hn) protected lemma mul_pos {a b : ℕ} (ha : 0 < a) (hb : 0 < b) : 0 < a * b := have h : 0 * b < a * b, from nat.mul_lt_mul_of_pos_right ha hb, by rwa nat.zero_mul at h theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m := nat.cases_on n less_than_or_equal.step (λ a, succ_le_succ) theorem le_lt_antisymm {n m : ℕ} (h₁ : n ≤ m) (h₂ : m < n) : false := nat.lt_irrefl n (nat.lt_of_le_of_lt h₁ h₂) theorem lt_le_antisymm {n m : ℕ} (h₁ : n < m) (h₂ : m ≤ n) : false := le_lt_antisymm h₂ h₁ protected theorem lt_asymm {n m : ℕ} (h₁ : n < m) : ¬ m < n := le_lt_antisymm (nat.le_of_lt h₁) protected def lt_ge_by_cases {a b : ℕ} {C : Sort u} (h₁ : a < b → C) (h₂ : b ≤ a → C) : C := decidable.by_cases h₁ (λ h, h₂ (or.elim (nat.lt_or_ge a b) (λ a, absurd a h) (λ a, a))) protected def lt_by_cases {a b : ℕ} {C : Sort u} (h₁ : a < b → C) (h₂ : a = b → C) (h₃ : b < a → C) : C := nat.lt_ge_by_cases h₁ (λ h₁, nat.lt_ge_by_cases h₃ (λ h, h₂ (nat.le_antisymm h h₁))) protected theorem lt_trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a := nat.lt_by_cases (λ h, or.inl h) (λ h, or.inr (or.inl h)) (λ h, or.inr (or.inr h)) protected theorem eq_or_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ∨ b < a := (nat.lt_trichotomy a b).resolve_left hnlt theorem lt_succ_of_lt {a b : nat} (h : a < b) : a < succ b := le_succ_of_le h lemma one_pos : 0 < 1 := nat.zero_lt_one protected lemma mul_le_mul_of_nonneg_left {a b c : ℕ} (h₁ : a ≤ b) : c * a ≤ c * b := begin by_cases hba : b ≤ a, { simp [le_antisymm hba h₁] }, by_cases hc0 : c ≤ 0, { simp [le_antisymm hc0 c.zero_le, nat.zero_mul] }, exact (le_not_le_of_lt (nat.mul_lt_mul_of_pos_left (lt_of_le_not_le h₁ hba) (lt_of_le_not_le c.zero_le hc0))).left, end protected lemma mul_le_mul_of_nonneg_right {a b c : ℕ} (h₁ : a ≤ b) : a * c ≤ b * c := begin by_cases hba : b ≤ a, { simp [le_antisymm hba h₁] }, by_cases hc0 : c ≤ 0, { simp [le_antisymm hc0 c.zero_le, nat.mul_zero] }, exact (le_not_le_of_lt (nat.mul_lt_mul_of_pos_right (lt_of_le_not_le h₁ hba) (lt_of_le_not_le c.zero_le hc0))).left, end protected lemma mul_lt_mul {a b c d : ℕ} (hac : a < c) (hbd : b ≤ d) (pos_b : 0 < b) : a * b < c * d := calc a * b < c * b : nat.mul_lt_mul_of_pos_right hac pos_b ... ≤ c * d : nat.mul_le_mul_of_nonneg_left hbd protected lemma mul_lt_mul' {a b c d : ℕ} (h1 : a ≤ c) (h2 : b < d) (h3 : 0 < c) : a * b < c * d := calc a * b ≤ c * b : nat.mul_le_mul_of_nonneg_right h1 ... < c * d : nat.mul_lt_mul_of_pos_left h2 h3 -- TODO: there are four variations, depending on which variables we assume to be nonneg protected lemma mul_le_mul {a b c d : ℕ} (hac : a ≤ c) (hbd : b ≤ d) : a * b ≤ c * d := calc a * b ≤ c * b : nat.mul_le_mul_of_nonneg_right hac ... ≤ c * d : nat.mul_le_mul_of_nonneg_left hbd /-! bit0/bit1 properties -/ protected lemma bit1_eq_succ_bit0 (n : ℕ) : bit1 n = succ (bit0 n) := rfl protected lemma bit1_succ_eq (n : ℕ) : bit1 (succ n) = succ (succ (bit1 n)) := eq.trans (nat.bit1_eq_succ_bit0 (succ n)) (congr_arg succ (nat.bit0_succ_eq n)) protected lemma bit1_ne_one : ∀ {n : ℕ}, n ≠ 0 → bit1 n ≠ 1 | 0 h h1 := absurd rfl h | (n+1) h h1 := nat.no_confusion h1 (λ h2, absurd h2 (succ_ne_zero _)) protected lemma bit0_ne_one : ∀ n : ℕ, bit0 n ≠ 1 | 0 h := absurd h (ne.symm nat.one_ne_zero) | (n+1) h := have h1 : succ (succ (n + n)) = 1, from succ_add n n ▸ h, nat.no_confusion h1 (λ h2, absurd h2 (succ_ne_zero (n + n))) protected lemma add_self_ne_one : ∀ (n : ℕ), n + n ≠ 1 | 0 h := nat.no_confusion h | (n+1) h := have h1 : succ (succ (n + n)) = 1, from succ_add n n ▸ h, nat.no_confusion h1 (λ h2, absurd h2 (nat.succ_ne_zero (n + n))) protected lemma bit1_ne_bit0 : ∀ (n m : ℕ), bit1 n ≠ bit0 m | 0 m h := absurd h (ne.symm (nat.add_self_ne_one m)) | (n+1) 0 h := have h1 : succ (bit0 (succ n)) = 0, from h, absurd h1 (nat.succ_ne_zero _) | (n+1) (m+1) h := have h1 : succ (succ (bit1 n)) = succ (succ (bit0 m)), from nat.bit0_succ_eq m ▸ nat.bit1_succ_eq n ▸ h, have h2 : bit1 n = bit0 m, from nat.no_confusion h1 (λ h2', nat.no_confusion h2' (λ h2'', h2'')), absurd h2 (bit1_ne_bit0 n m) protected lemma bit0_ne_bit1 : ∀ (n m : ℕ), bit0 n ≠ bit1 m := λ n m : nat, ne.symm (nat.bit1_ne_bit0 m n) protected lemma bit0_inj : ∀ {n m : ℕ}, bit0 n = bit0 m → n = m | 0 0 h := rfl | 0 (m+1) h := by contradiction | (n+1) 0 h := by contradiction | (n+1) (m+1) h := have succ (succ (n + n)) = succ (succ (m + m)), by { unfold bit0 at h, simp [add_one, add_succ, succ_add] at h, have aux : n + n = m + m := h, rw aux }, have n + n = m + m, by iterate { injection this with this }, have n = m, from bit0_inj this, by rw this protected lemma bit1_inj : ∀ {n m : ℕ}, bit1 n = bit1 m → n = m := λ n m h, have succ (bit0 n) = succ (bit0 m), begin simp [nat.bit1_eq_succ_bit0] at h, rw h end, have bit0 n = bit0 m, by injection this, nat.bit0_inj this protected lemma bit0_ne {n m : ℕ} : n ≠ m → bit0 n ≠ bit0 m := λ h₁ h₂, absurd (nat.bit0_inj h₂) h₁ protected lemma bit1_ne {n m : ℕ} : n ≠ m → bit1 n ≠ bit1 m := λ h₁ h₂, absurd (nat.bit1_inj h₂) h₁ protected lemma zero_ne_bit0 {n : ℕ} : n ≠ 0 → 0 ≠ bit0 n := λ h, ne.symm (nat.bit0_ne_zero h) protected lemma zero_ne_bit1 (n : ℕ) : 0 ≠ bit1 n := ne.symm (nat.bit1_ne_zero n) protected lemma one_ne_bit0 (n : ℕ) : 1 ≠ bit0 n := ne.symm (nat.bit0_ne_one n) protected lemma one_ne_bit1 {n : ℕ} : n ≠ 0 → 1 ≠ bit1 n := λ h, ne.symm (nat.bit1_ne_one h) protected lemma one_lt_bit1 : ∀ {n : nat}, n ≠ 0 → 1 < bit1 n | 0 h := by contradiction | (succ n) h := begin rw nat.bit1_succ_eq, apply succ_lt_succ, apply zero_lt_succ end protected lemma one_lt_bit0 : ∀ {n : nat}, n ≠ 0 → 1 < bit0 n | 0 h := by contradiction | (succ n) h := begin rw nat.bit0_succ_eq, apply succ_lt_succ, apply zero_lt_succ end protected lemma bit0_lt {n m : nat} (h : n < m) : bit0 n < bit0 m := nat.add_lt_add h h protected lemma bit1_lt {n m : nat} (h : n < m) : bit1 n < bit1 m := succ_lt_succ (nat.add_lt_add h h) protected lemma bit0_lt_bit1 {n m : nat} (h : n ≤ m) : bit0 n < bit1 m := lt_succ_of_le (nat.add_le_add h h) protected lemma bit1_lt_bit0 : ∀ {n m : nat}, n < m → bit1 n < bit0 m | n 0 h := absurd h n.not_lt_zero | n (succ m) h := have n ≤ m, from le_of_lt_succ h, have succ (n + n) ≤ succ (m + m), from succ_le_succ (nat.add_le_add this this), have succ (n + n) ≤ succ m + m, {rw succ_add, assumption}, show succ (n + n) < succ (succ m + m), from lt_succ_of_le this protected lemma one_le_bit1 (n : ℕ) : 1 ≤ bit1 n := show 1 ≤ succ (bit0 n), from succ_le_succ (bit0 n).zero_le protected lemma one_le_bit0 : ∀ (n : ℕ), n ≠ 0 → 1 ≤ bit0 n | 0 h := absurd rfl h | (n+1) h := suffices 1 ≤ succ (succ (bit0 n)), from eq.symm (nat.bit0_succ_eq n) ▸ this, succ_le_succ (bit0 n).succ.zero_le /-! successor and predecessor -/ @[simp] lemma pred_zero : pred 0 = 0 := rfl @[simp] lemma pred_succ (n : ℕ) : pred (succ n) = n := rfl theorem add_one_ne_zero (n : ℕ) : n + 1 ≠ 0 := succ_ne_zero _ theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) := by cases n; simp theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : ∃k : ℕ, n = succ k := ⟨_, (eq_zero_or_eq_succ_pred _).resolve_left H⟩ def discriminate {B : Sort u} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B := by induction h : n; [exact H1 h, exact H2 _ h] theorem one_succ_zero : 1 = succ 0 := rfl theorem pred_inj : ∀ {a b : nat}, 0 < a → 0 < b → nat.pred a = nat.pred b → a = b | (succ a) (succ b) ha hb h := have a = b, from h, by rw this | (succ a) 0 ha hb h := absurd hb (lt_irrefl _) | 0 (succ b) ha hb h := absurd ha (lt_irrefl _) | 0 0 ha hb h := rfl /-! subtraction Many lemmas are proven more generally in mathlib `algebra/order/sub` -/ @[simp] protected lemma zero_sub : ∀ a : ℕ, 0 - a = 0 | 0 := rfl | (a+1) := congr_arg pred (zero_sub a) lemma sub_lt_succ (a b : ℕ) : a - b < succ a := lt_succ_of_le (a.sub_le b) protected theorem sub_le_sub_right {n m : ℕ} (h : n ≤ m) : ∀ k, n - k ≤ m - k | 0 := h | (succ z) := pred_le_pred (sub_le_sub_right z) @[simp] protected theorem sub_zero (n : ℕ) : n - 0 = n := rfl theorem sub_succ (n m : ℕ) : n - succ m = pred (n - m) := rfl theorem succ_sub_succ (n m : ℕ) : succ n - succ m = n - m := succ_sub_succ_eq_sub n m protected theorem sub_self : ∀ (n : ℕ), n - n = 0 | 0 := by rw nat.sub_zero | (succ n) := by rw [succ_sub_succ, sub_self n] /- TODO(Leo): remove the following ematch annotations as soon as we have arithmetic theory in the smt_stactic -/ @[ematch_lhs] protected theorem add_sub_add_right : ∀ (n k m : ℕ), (n + k) - (m + k) = n - m | n 0 m := by rw [nat.add_zero, nat.add_zero] | n (succ k) m := by rw [add_succ, add_succ, succ_sub_succ, add_sub_add_right n k m] @[ematch_lhs] protected theorem add_sub_add_left (k n m : ℕ) : (k + n) - (k + m) = n - m := by rw [nat.add_comm k n, nat.add_comm k m, nat.add_sub_add_right] @[ematch_lhs] protected theorem add_sub_cancel (n m : ℕ) : n + m - m = n := suffices n + m - (0 + m) = n, from by rwa [nat.zero_add] at this, by rw [nat.add_sub_add_right, nat.sub_zero] @[ematch_lhs] protected theorem add_sub_cancel_left (n m : ℕ) : n + m - n = m := show n + m - (n + 0) = m, from by rw [nat.add_sub_add_left, nat.sub_zero] protected theorem sub_sub : ∀ (n m k : ℕ), n - m - k = n - (m + k) | n m 0 := by rw [nat.add_zero, nat.sub_zero] | n m (succ k) := by rw [add_succ, nat.sub_succ, nat.sub_succ, sub_sub n m k] protected theorem le_of_le_of_sub_le_sub_right {n m k : ℕ} (h₀ : k ≤ m) (h₁ : n - k ≤ m - k) : n ≤ m := begin revert k m, induction n with n ; intros k m h₀ h₁, { exact m.zero_le }, { cases k with k, { apply h₁ }, cases m with m, { cases not_succ_le_zero _ h₀ }, { simp [succ_sub_succ] at h₁, apply succ_le_succ, apply n_ih _ h₁, apply le_of_succ_le_succ h₀ }, } end protected theorem sub_le_sub_iff_right {n m k : ℕ} (h : k ≤ m) : n - k ≤ m - k ↔ n ≤ m := ⟨ nat.le_of_le_of_sub_le_sub_right h , assume h, nat.sub_le_sub_right h k ⟩ protected theorem sub_self_add (n m : ℕ) : n - (n + m) = 0 := show (n + 0) - (n + m) = 0, from by rw [nat.add_sub_add_left, nat.zero_sub] protected theorem le_sub_iff_right {x y k : ℕ} (h : k ≤ y) : x ≤ y - k ↔ x + k ≤ y := by rw [← nat.add_sub_cancel x k, nat.sub_le_sub_iff_right h, nat.add_sub_cancel] protected lemma sub_lt_of_pos_le (a b : ℕ) (h₀ : 0 < a) (h₁ : a ≤ b) : b - a < b := begin apply nat.sub_lt _ h₀, apply lt_of_lt_of_le h₀ h₁ end protected theorem sub_one (n : ℕ) : n - 1 = pred n := rfl theorem succ_sub_one (n : ℕ) : succ n - 1 = n := rfl theorem succ_pred_eq_of_pos : ∀ {n : ℕ}, 0 < n → succ (pred n) = n | 0 h := absurd h (lt_irrefl 0) | (succ k) h := rfl protected theorem sub_eq_zero_of_le {n m : ℕ} (h : n ≤ m) : n - m = 0 := exists.elim (nat.le.dest h) (assume k, assume hk : n + k = m, by rw [← hk, nat.sub_self_add]) protected theorem le_of_sub_eq_zero : ∀{n m : ℕ}, n - m = 0 → n ≤ m | n 0 H := begin rw [nat.sub_zero] at H, simp [H] end | 0 (m+1) H := (m + 1).zero_le | (n+1) (m+1) H := nat.add_le_add_right (le_of_sub_eq_zero begin simp [nat.add_sub_add_right] at H, exact H end) _ protected theorem sub_eq_zero_iff_le {n m : ℕ} : n - m = 0 ↔ n ≤ m := ⟨nat.le_of_sub_eq_zero, nat.sub_eq_zero_of_le⟩ protected theorem add_sub_of_le {n m : ℕ} (h : n ≤ m) : n + (m - n) = m := exists.elim (nat.le.dest h) (assume k, assume hk : n + k = m, by rw [← hk, nat.add_sub_cancel_left]) protected theorem sub_add_cancel {n m : ℕ} (h : m ≤ n) : n - m + m = n := by rw [nat.add_comm, nat.add_sub_of_le h] protected theorem add_sub_assoc {m k : ℕ} (h : k ≤ m) (n : ℕ) : n + m - k = n + (m - k) := exists.elim (nat.le.dest h) (assume l, assume hl : k + l = m, by rw [← hl, nat.add_sub_cancel_left, nat.add_comm k, ← nat.add_assoc, nat.add_sub_cancel]) protected lemma sub_eq_iff_eq_add {a b c : ℕ} (ab : b ≤ a) : a - b = c ↔ a = c + b := ⟨assume c_eq, begin rw [c_eq.symm, nat.sub_add_cancel ab] end, assume a_eq, begin rw [a_eq, nat.add_sub_cancel] end⟩ protected lemma lt_of_sub_eq_succ {m n l : ℕ} (H : m - n = nat.succ l) : n < m := not_le.1 (assume (H' : n ≥ m), begin simp [nat.sub_eq_zero_of_le H'] at H, contradiction end) protected theorem sub_le_sub_left {n m : ℕ} (k) (h : n ≤ m) : k - m ≤ k - n := by induction h; [refl, exact le_trans (pred_le _) h_ih] theorem succ_sub_sub_succ (n m k : ℕ) : succ n - m - succ k = n - m - k := by rw [nat.sub_sub, nat.sub_sub, add_succ, succ_sub_succ] protected theorem sub.right_comm (m n k : ℕ) : m - n - k = m - k - n := by rw [nat.sub_sub, nat.sub_sub, nat.add_comm] theorem succ_sub {m n : ℕ} (h : n ≤ m) : succ m - n = succ (m - n) := exists.elim (nat.le.dest h) (assume k, assume hk : n + k = m, by rw [← hk, nat.add_sub_cancel_left, ← add_succ, nat.add_sub_cancel_left]) protected theorem sub_pos_of_lt {m n : ℕ} (h : m < n) : 0 < n - m := have 0 + m < n - m + m, begin rw [nat.zero_add, nat.sub_add_cancel (le_of_lt h)], exact h end, nat.lt_of_add_lt_add_right this protected theorem sub_sub_self {n m : ℕ} (h : m ≤ n) : n - (n - m) = m := (nat.sub_eq_iff_eq_add (nat.sub_le _ _)).2 (nat.add_sub_of_le h).symm protected theorem sub_add_comm {n m k : ℕ} (h : k ≤ n) : n + m - k = n - k + m := (nat.sub_eq_iff_eq_add (nat.le_trans h (nat.le_add_right _ _))).2 (by rwa [nat.add_right_comm, nat.sub_add_cancel]) theorem sub_one_sub_lt {n i} (h : i < n) : n - 1 - i < n := begin rw nat.sub_sub, apply nat.sub_lt, apply lt_of_lt_of_le (nat.zero_lt_succ _) h, rw nat.add_comm, apply nat.zero_lt_succ end theorem mul_pred_left : ∀ (n m : ℕ), pred n * m = n * m - m | 0 m := by simp [nat.zero_sub, pred_zero, nat.zero_mul] | (succ n) m := by rw [pred_succ, succ_mul, nat.add_sub_cancel] theorem mul_pred_right (n m : ℕ) : n * pred m = n * m - n := by rw [nat.mul_comm, mul_pred_left, nat.mul_comm] protected theorem mul_sub_right_distrib : ∀ (n m k : ℕ), (n - m) * k = n * k - m * k | n 0 k := by simp [nat.sub_zero, nat.zero_mul] | n (succ m) k := by rw [nat.sub_succ, mul_pred_left, mul_sub_right_distrib, succ_mul, nat.sub_sub] protected theorem mul_sub_left_distrib (n m k : ℕ) : n * (m - k) = n * m - n * k := by rw [nat.mul_comm, nat.mul_sub_right_distrib, nat.mul_comm m n, nat.mul_comm n k] protected theorem mul_self_sub_mul_self_eq (a b : nat) : a * a - b * b = (a + b) * (a - b) := by rw [nat.mul_sub_left_distrib, nat.right_distrib, nat.right_distrib, nat.mul_comm b a, nat.add_comm (a*a) (a*b), nat.add_sub_add_left] theorem succ_mul_succ_eq (a b : nat) : succ a * succ b = a * b + a + b + 1 := begin rw [← add_one, ← add_one], simp [nat.right_distrib, nat.left_distrib, nat.add_left_comm, nat.mul_one, nat.one_mul, nat.add_assoc], end /-! min -/ protected lemma zero_min (a : ℕ) : min 0 a = 0 := min_eq_left a.zero_le protected lemma min_zero (a : ℕ) : min a 0 = 0 := min_eq_right a.zero_le -- Distribute succ over min theorem min_succ_succ (x y : ℕ) : min (succ x) (succ y) = succ (min x y) := have f : x ≤ y → min (succ x) (succ y) = succ (min x y), from λp, calc min (succ x) (succ y) = succ x : if_pos (succ_le_succ p) ... = succ (min x y) : congr_arg succ (eq.symm (if_pos p)), have g : ¬ (x ≤ y) → min (succ x) (succ y) = succ (min x y), from λp, calc min (succ x) (succ y) = succ y : if_neg (λeq, p (pred_le_pred eq)) ... = succ (min x y) : congr_arg succ (eq.symm (if_neg p)), decidable.by_cases f g theorem sub_eq_sub_min (n m : ℕ) : n - m = n - min n m := if h : n ≥ m then by rewrite [min_eq_right h] else by rewrite [nat.sub_eq_zero_of_le (le_of_not_ge h), min_eq_left (le_of_not_ge h), nat.sub_self] @[simp] protected theorem sub_add_min_cancel (n m : ℕ) : n - m + min n m = n := by rw [sub_eq_sub_min, nat.sub_add_cancel (min_le_left n m)] /-! induction principles -/ def two_step_induction {P : ℕ → Sort u} (H1 : P 0) (H2 : P 1) (H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : Π (a : ℕ), P a | 0 := H1 | 1 := H2 | (succ (succ n)) := H3 _ (two_step_induction _) (two_step_induction _) def sub_induction {P : ℕ → ℕ → Sort u} (H1 : ∀m, P 0 m) (H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : Π (n m : ℕ), P n m | 0 m := H1 _ | (succ n) 0 := H2 _ | (succ n) (succ m) := H3 _ _ (sub_induction n m) protected def strong_rec_on {p : nat → Sort u} (n : nat) (h : ∀ n, (∀ m, m < n → p m) → p n) : p n := suffices ∀ n m, m < n → p m, from this (succ n) n (lt_succ_self _), begin intros n, induction n with n ih, {intros m h₁, exact absurd h₁ m.not_lt_zero}, {intros m h₁, apply or.by_cases (decidable.lt_or_eq_of_le (le_of_lt_succ h₁)), {intros, apply ih, assumption}, {intros, subst m, apply h _ ih}} end protected lemma strong_induction_on {p : nat → Prop} (n : nat) (h : ∀ n, (∀ m, m < n → p m) → p n) : p n := nat.strong_rec_on n h protected lemma case_strong_induction_on {p : nat → Prop} (a : nat) (hz : p 0) (hi : ∀ n, (∀ m, m ≤ n → p m) → p (succ n)) : p a := nat.strong_induction_on a $ λ n, match n with | 0 := λ _, hz | (n+1) := λ h₁, hi n (λ m h₂, h₁ _ (lt_succ_of_le h₂)) end /-! mod -/ private lemma mod_core_congr {x y f1 f2} (h1 : x ≤ f1) (h2 : x ≤ f2) : nat.mod_core y f1 x = nat.mod_core y f2 x := begin cases y, { cases f1; cases f2; refl }, induction f1 with f1 ih generalizing x f2, { cases h1, cases f2; refl }, cases x, { cases f1; cases f2; refl }, cases f2, { cases h2 }, refine if_congr iff.rfl _ rfl, simp only [succ_sub_succ], exact ih (le_trans (nat.sub_le _ _) (le_of_succ_le_succ h1)) (le_trans (nat.sub_le _ _) (le_of_succ_le_succ h2)) end lemma mod_def (x y : nat) : x % y = if 0 < y ∧ y ≤ x then (x - y) % y else x := begin cases x, { cases y; refl }, cases y, { refl }, refine if_congr iff.rfl (mod_core_congr _ _) rfl; simp [nat.sub_le] end @[simp] lemma mod_zero (a : nat) : a % 0 = a := begin rw mod_def, have h : ¬ (0 < 0 ∧ 0 ≤ a), simp [lt_irrefl], simp [if_neg, h] end lemma mod_eq_of_lt {a b : nat} (h : a < b) : a % b = a := begin rw mod_def, have h' : ¬(0 < b ∧ b ≤ a), simp [not_le_of_gt h], simp [if_neg, h'] end @[simp] lemma zero_mod (b : nat) : 0 % b = 0 := begin rw mod_def, have h : ¬(0 < b ∧ b ≤ 0), {intro hn, cases hn with l r, exact absurd (lt_of_lt_of_le l r) (lt_irrefl 0)}, simp [if_neg, h] end lemma mod_eq_sub_mod {a b : nat} (h : b ≤ a) : a % b = (a - b) % b := or.elim b.eq_zero_or_pos (λb0, by rw [b0, nat.sub_zero]) (λh₂, by rw [mod_def, if_pos (and.intro h₂ h)]) lemma mod_lt (x : nat) {y : nat} (h : 0 < y) : x % y < y := begin induction x using nat.case_strong_induction_on with x ih, { rw zero_mod, assumption }, { by_cases h₁ : succ x < y, { rwa [mod_eq_of_lt h₁] }, { have h₁ : succ x % y = (succ x - y) % y := mod_eq_sub_mod (not_lt.1 h₁), have : succ x - y ≤ x := le_of_lt_succ (nat.sub_lt (succ_pos x) h), have h₂ : (succ x - y) % y < y := ih _ this, rwa [← h₁] at h₂ } } end @[simp] theorem mod_self (n : nat) : n % n = 0 := by rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod] @[simp] lemma mod_one (n : ℕ) : n % 1 = 0 := have n % 1 < 1, from (mod_lt n) (succ_pos 0), nat.eq_zero_of_le_zero (le_of_lt_succ this) lemma mod_two_eq_zero_or_one (n : ℕ) : n % 2 = 0 ∨ n % 2 = 1 := match n % 2, @nat.mod_lt n 2 dec_trivial with | 0, _ := or.inl rfl | 1, _ := or.inr rfl | k+2, h := absurd h dec_trivial end theorem mod_le (x y : ℕ) : x % y ≤ x := or.elim (lt_or_le x y) (λxlty, by rw mod_eq_of_lt xlty; refl) (λylex, or.elim y.eq_zero_or_pos (λy0, by rw [y0, mod_zero]; refl) (λypos, le_trans (le_of_lt (mod_lt _ ypos)) ylex)) @[simp] theorem add_mod_right (x z : ℕ) : (x + z) % z = x % z := by rw [mod_eq_sub_mod (nat.le_add_left _ _), nat.add_sub_cancel] @[simp] theorem add_mod_left (x z : ℕ) : (x + z) % x = z % x := by rw [nat.add_comm, add_mod_right] @[simp] theorem add_mul_mod_self_left (x y z : ℕ) : (x + y * z) % y = x % y := by {induction z with z ih, rw [nat.mul_zero, nat.add_zero], rw [mul_succ, ← nat.add_assoc, add_mod_right, ih]} @[simp] theorem add_mul_mod_self_right (x y z : ℕ) : (x + y * z) % z = x % z := by rw [nat.mul_comm, add_mul_mod_self_left] @[simp] theorem mul_mod_right (m n : ℕ) : (m * n) % m = 0 := by rw [← nat.zero_add (m*n), add_mul_mod_self_left, zero_mod] @[simp] theorem mul_mod_left (m n : ℕ) : (m * n) % n = 0 := by rw [nat.mul_comm, mul_mod_right] theorem mul_mod_mul_left (z x y : ℕ) : (z * x) % (z * y) = z * (x % y) := if y0 : y = 0 then by rw [y0, nat.mul_zero, mod_zero, mod_zero] else if z0 : z = 0 then by rw [z0, nat.zero_mul, nat.zero_mul, nat.zero_mul, mod_zero] else x.strong_induction_on $ λn IH, have y0 : y > 0, from nat.pos_of_ne_zero y0, have z0 : z > 0, from nat.pos_of_ne_zero z0, or.elim (le_or_lt y n) (λyn, by rw [ mod_eq_sub_mod yn, mod_eq_sub_mod (nat.mul_le_mul_left z yn), ← nat.mul_sub_left_distrib]; exact IH _ (nat.sub_lt (lt_of_lt_of_le y0 yn) y0)) (λyn, by rw [mod_eq_of_lt yn, mod_eq_of_lt (nat.mul_lt_mul_of_pos_left yn z0)]) theorem mul_mod_mul_right (z x y : ℕ) : (x * z) % (y * z) = (x % y) * z := by rw [nat.mul_comm x z, nat.mul_comm y z, nat.mul_comm (x % y) z]; apply mul_mod_mul_left theorem cond_to_bool_mod_two (x : ℕ) [d : decidable (x % 2 = 1)] : cond (@to_bool (x % 2 = 1) d) 1 0 = x % 2 := begin by_cases h : x % 2 = 1, { simp! [*] }, { cases mod_two_eq_zero_or_one x; simp! [*, nat.zero_ne_one]; contradiction } end theorem sub_mul_mod (x k n : ℕ) (h₁ : n*k ≤ x) : (x - n*k) % n = x % n := begin induction k with k, { rw [nat.mul_zero, nat.sub_zero] }, { have h₂ : n * k ≤ x, { rw [mul_succ] at h₁, apply nat.le_trans _ h₁, apply nat.le_add_right _ n }, have h₄ : x - n * k ≥ n, { apply @nat.le_of_add_le_add_right (n*k), rw [nat.sub_add_cancel h₂], simp [mul_succ, nat.add_comm] at h₁, simp [h₁] }, rw [mul_succ, ← nat.sub_sub, ← mod_eq_sub_mod h₄, k_ih h₂] } end /-! div -/ private lemma div_core_congr {x y f1 f2} (h1 : x ≤ f1) (h2 : x ≤ f2) : nat.div_core y f1 x = nat.div_core y f2 x := begin cases y, { cases f1; cases f2; refl }, induction f1 with f1 ih generalizing x f2, { cases h1, cases f2; refl }, cases x, { cases f1; cases f2; refl }, cases f2, { cases h2 }, refine if_congr iff.rfl _ rfl, simp only [succ_sub_succ], refine congr_arg (+1) _, exact ih (le_trans (nat.sub_le _ _) (le_of_succ_le_succ h1)) (le_trans (nat.sub_le _ _) (le_of_succ_le_succ h2)) end lemma div_def (x y : nat) : x / y = if 0 < y ∧ y ≤ x then (x - y) / y + 1 else 0 := begin cases x, { cases y; refl }, cases y, { refl }, refine if_congr iff.rfl (congr_arg (+1) _) rfl, refine div_core_congr _ _; simp [nat.sub_le] end lemma mod_add_div (m k : ℕ) : m % k + k * (m / k) = m := begin apply nat.strong_induction_on m, clear m, intros m IH, cases decidable.em (0 < k ∧ k ≤ m) with h h', -- 0 < k ∧ k ≤ m { have h' : m - k < m, { apply nat.sub_lt _ h.left, apply lt_of_lt_of_le h.left h.right }, rw [div_def, mod_def, if_pos h, if_pos h], simp [nat.left_distrib, IH _ h', nat.add_comm, nat.add_left_comm], rw [nat.add_comm, ← nat.add_sub_assoc h.right, nat.mul_one, nat.add_sub_cancel_left] }, -- ¬ (0 < k ∧ k ≤ m) { rw [div_def, mod_def, if_neg h', if_neg h', nat.mul_zero, nat.add_zero] }, end @[simp] protected lemma div_one (n : ℕ) : n / 1 = n := have n % 1 + 1 * (n / 1) = n, from mod_add_div _ _, by { rwa [mod_one, nat.zero_add, nat.one_mul] at this } @[simp] protected lemma div_zero (n : ℕ) : n / 0 = 0 := begin rw [div_def], simp [lt_irrefl] end @[simp] protected lemma zero_div (b : ℕ) : 0 / b = 0 := eq.trans (div_def 0 b) $ if_neg (and.rec not_le_of_gt) protected lemma div_le_of_le_mul {m n : ℕ} : ∀ {k}, m ≤ k * n → m / k ≤ n | 0 h := by simp [nat.div_zero, n.zero_le] | (succ k) h := suffices succ k * (m / succ k) ≤ succ k * n, from nat.le_of_mul_le_mul_left this (zero_lt_succ _), calc succ k * (m / succ k) ≤ m % succ k + succ k * (m / succ k) : nat.le_add_left _ _ ... = m : by rw mod_add_div ... ≤ succ k * n : h protected lemma div_le_self : ∀ (m n : ℕ), m / n ≤ m | m 0 := by simp [nat.div_zero, m.zero_le] | m (succ n) := have m ≤ succ n * m, from calc m = 1 * m : by rw nat.one_mul ... ≤ succ n * m : m.mul_le_mul_right (succ_le_succ n.zero_le), nat.div_le_of_le_mul this lemma div_eq_sub_div {a b : nat} (h₁ : 0 < b) (h₂ : b ≤ a) : a / b = (a - b) / b + 1 := begin rw [div_def a, if_pos], split ; assumption end lemma div_eq_of_lt {a b : ℕ} (h₀ : a < b) : a / b = 0 := begin rw [div_def a, if_neg], intro h₁, apply not_le_of_gt h₀ h₁.right end -- this is a Galois connection -- f x ≤ y ↔ x ≤ g y -- with -- f x = x * k -- g y = y / k theorem le_div_iff_mul_le {x y k : ℕ} (Hk : 0 < k) : x ≤ y / k ↔ x * k ≤ y := begin -- Hk is needed because, despite div being made total, y / 0 := 0 -- x * 0 ≤ y ↔ x ≤ y / 0 -- ↔ 0 ≤ y ↔ x ≤ 0 -- ↔ true ↔ x = 0 -- ↔ x = 0 revert x, apply nat.strong_induction_on y _, clear y, intros y IH x, cases lt_or_le y k with h h, -- base case: y < k { rw [div_eq_of_lt h], cases x with x, { simp [nat.zero_mul, y.zero_le] }, { simp [succ_mul, not_succ_le_zero, nat.add_comm], apply lt_of_lt_of_le h, apply nat.le_add_right } }, -- step: k ≤ y { rw [div_eq_sub_div Hk h], cases x with x, { simp [nat.zero_mul, nat.zero_le] }, { rw [←add_one, nat.add_le_add_iff_right, IH (y - k) (nat.sub_lt_of_pos_le _ _ Hk h), add_one, succ_mul, nat.le_sub_iff_right h] } } end theorem div_lt_iff_lt_mul {x y k : ℕ} (Hk : 0 < k) : x / k < y ↔ x < y * k := by rw [←not_le, not_congr (le_div_iff_mul_le Hk), not_le] theorem sub_mul_div (x n p : ℕ) (h₁ : n*p ≤ x) : (x - n*p) / n = x / n - p := begin cases nat.eq_zero_or_pos n with h₀ h₀, { rw [h₀, nat.div_zero, nat.div_zero, nat.zero_sub] }, { induction p with p, { rw [nat.mul_zero, nat.sub_zero, nat.sub_zero] }, { have h₂ : n*p ≤ x, { transitivity, { apply nat.mul_le_mul_left, apply le_succ }, { apply h₁ } }, have h₃ : x - n * p ≥ n, { apply nat.le_of_add_le_add_right, rw [nat.sub_add_cancel h₂, nat.add_comm], rw [mul_succ] at h₁, apply h₁ }, rw [sub_succ, ← p_ih h₂], rw [@div_eq_sub_div (x - n*p) _ h₀ h₃], simp [add_one, pred_succ, mul_succ, nat.sub_sub] } } end theorem div_mul_le_self : ∀ (m n : ℕ), m / n * n ≤ m | m 0 := by simp [m.zero_le, nat.zero_mul] | m (succ n) := (le_div_iff_mul_le $ nat.succ_pos _).1 (le_refl _) @[simp] theorem add_div_right (x : ℕ) {z : ℕ} (H : 0 < z) : (x + z) / z = succ (x / z) := by rw [div_eq_sub_div H (nat.le_add_left _ _), nat.add_sub_cancel] @[simp] theorem add_div_left (x : ℕ) {z : ℕ} (H : 0 < z) : (z + x) / z = succ (x / z) := by rw [nat.add_comm, add_div_right x H] @[simp] theorem mul_div_right (n : ℕ) {m : ℕ} (H : 0 < m) : m * n / m = n := by {induction n; simp [*, mul_succ, nat.mul_zero] } @[simp] theorem mul_div_left (m : ℕ) {n : ℕ} (H : 0 < n) : m * n / n = m := by rw [nat.mul_comm, mul_div_right _ H] protected theorem div_self {n : ℕ} (H : 0 < n) : n / n = 1 := let t := add_div_right 0 H in by rwa [nat.zero_add, nat.zero_div] at t theorem add_mul_div_left (x z : ℕ) {y : ℕ} (H : 0 < y) : (x + y * z) / y = x / y + z := begin induction z with z ih, { rw [nat.mul_zero, nat.add_zero, nat.add_zero] }, { rw [mul_succ, ← nat.add_assoc, add_div_right _ H, ih], refl } end theorem add_mul_div_right (x y : ℕ) {z : ℕ} (H : 0 < z) : (x + y * z) / z = x / z + y := by rw [nat.mul_comm, add_mul_div_left _ _ H] protected theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : 0 < n) : m * n / n = m := let t := add_mul_div_right 0 m H in by rwa [nat.zero_add, nat.zero_div, nat.zero_add] at t protected theorem mul_div_cancel_left (m : ℕ) {n : ℕ} (H : 0 < n) : n * m / n = m := by rw [nat.mul_comm, nat.mul_div_cancel _ H] protected theorem div_eq_of_eq_mul_left {m n k : ℕ} (H1 : 0 < n) (H2 : m = k * n) : m / n = k := by rw [H2, nat.mul_div_cancel _ H1] protected theorem div_eq_of_eq_mul_right {m n k : ℕ} (H1 : 0 < n) (H2 : m = n * k) : m / n = k := by rw [H2, nat.mul_div_cancel_left _ H1] protected theorem div_eq_of_lt_le {m n k : ℕ} (lo : k * n ≤ m) (hi : m < succ k * n) : m / n = k := have npos : 0 < n, from n.eq_zero_or_pos.resolve_left $ λ hn, by rw [hn, nat.mul_zero] at hi lo; exact absurd lo (not_le_of_gt hi), le_antisymm (le_of_lt_succ $ (nat.div_lt_iff_lt_mul npos).2 hi) ((nat.le_div_iff_mul_le npos).2 lo) theorem mul_sub_div (x n p : ℕ) (h₁ : x < n*p) : (n * p - succ x) / n = p - succ (x / n) := begin have npos : 0 < n := n.eq_zero_or_pos.resolve_left (λ n0, by rw [n0, nat.zero_mul] at h₁; exact nat.not_lt_zero _ h₁), apply nat.div_eq_of_lt_le, { rw [nat.mul_sub_right_distrib, nat.mul_comm], apply nat.sub_le_sub_left, exact (div_lt_iff_lt_mul npos).1 (lt_succ_self _) }, { change succ (pred (n * p - x)) ≤ (succ (pred (p - x / n))) * n, rw [succ_pred_eq_of_pos (nat.sub_pos_of_lt h₁), succ_pred_eq_of_pos (nat.sub_pos_of_lt _)], { rw [nat.mul_sub_right_distrib, nat.mul_comm], apply nat.sub_le_sub_left, apply div_mul_le_self }, { apply (div_lt_iff_lt_mul npos).2, rwa nat.mul_comm } } end protected theorem div_div_eq_div_mul (m n k : ℕ) : m / n / k = m / (n * k) := begin cases k.eq_zero_or_pos with k0 kpos, {rw [k0, nat.mul_zero, nat.div_zero, nat.div_zero]}, cases n.eq_zero_or_pos with n0 npos, {rw [n0, nat.zero_mul, nat.div_zero, nat.zero_div]}, apply le_antisymm, { apply (le_div_iff_mul_le $ nat.mul_pos npos kpos).2, rw [nat.mul_comm n k, ← nat.mul_assoc], apply (le_div_iff_mul_le npos).1, apply (le_div_iff_mul_le kpos).1, refl }, { apply (le_div_iff_mul_le kpos).2, apply (le_div_iff_mul_le npos).2, rw [nat.mul_assoc, nat.mul_comm n k], apply (le_div_iff_mul_le (nat.mul_pos kpos npos)).1, refl } end protected theorem mul_div_mul {m : ℕ} (n k : ℕ) (H : 0 < m) : m * n / (m * k) = n / k := by rw [← nat.div_div_eq_div_mul, nat.mul_div_cancel_left _ H] lemma div_lt_self {n m : nat} : 0 < n → 1 < m → n / m < n := begin intros h₁ h₂, have := nat.mul_lt_mul h₂ (le_refl _) h₁, rw [nat.one_mul, nat.mul_comm] at this, exact (nat.div_lt_iff_lt_mul $ lt_trans (by comp_val) h₂).2 this, end /-! dvd -/ protected theorem dvd_mul_right (a b : ℕ) : a ∣ a * b := ⟨b, rfl⟩ protected theorem dvd_trans {a b c : ℕ} (h₁ : a ∣ b) (h₂ : b ∣ c) : a ∣ c := match h₁, h₂ with | ⟨d, (h₃ : b = a * d)⟩, ⟨e, (h₄ : c = b * e)⟩ := ⟨d * e, show c = a * (d * e), by simp [h₃, h₄, nat.mul_assoc]⟩ end protected theorem eq_zero_of_zero_dvd {a : ℕ} (h : 0 ∣ a) : a = 0 := exists.elim h (assume c, assume H' : a = 0 * c, eq.trans H' (nat.zero_mul c)) protected theorem dvd_add {a b c : ℕ} (h₁ : a ∣ b) (h₂ : a ∣ c) : a ∣ b + c := exists.elim h₁ (λ d hd, exists.elim h₂ (λ e he, ⟨d + e, by simp [nat.left_distrib, hd, he]⟩)) protected theorem dvd_add_iff_right {k m n : ℕ} (h : k ∣ m) : k ∣ n ↔ k ∣ m + n := ⟨nat.dvd_add h, exists.elim h $ λd hd, match m, hd with | ._, rfl := λh₂, exists.elim h₂ $ λe he, ⟨e - d, by rw [nat.mul_sub_left_distrib, ← he, nat.add_sub_cancel_left]⟩ end⟩ protected theorem dvd_add_iff_left {k m n : ℕ} (h : k ∣ n) : k ∣ m ↔ k ∣ m + n := by rw nat.add_comm; exact nat.dvd_add_iff_right h theorem dvd_sub {k m n : ℕ} (H : n ≤ m) (h₁ : k ∣ m) (h₂ : k ∣ n) : k ∣ m - n := (nat.dvd_add_iff_left h₂).2 $ by rw nat.sub_add_cancel H; exact h₁ theorem dvd_mod_iff {k m n : ℕ} (h : k ∣ n) : k ∣ m % n ↔ k ∣ m := let t := @nat.dvd_add_iff_left _ (m % n) _ (nat.dvd_trans h (nat.dvd_mul_right n (m / n))) in by rwa mod_add_div at t theorem le_of_dvd {m n : ℕ} (h : 0 < n) : m ∣ n → m ≤ n := λ⟨k, e⟩, by { revert h, rw e, refine k.cases_on _ _, exact λhn, absurd hn (lt_irrefl _), exact λk _, let t := m.mul_le_mul_left (succ_pos k) in by rwa nat.mul_one at t } theorem dvd_antisymm : Π {m n : ℕ}, m ∣ n → n ∣ m → m = n | m 0 h₁ h₂ := nat.eq_zero_of_zero_dvd h₂ | 0 n h₁ h₂ := (nat.eq_zero_of_zero_dvd h₁).symm | (succ m) (succ n) h₁ h₂ := le_antisymm (le_of_dvd (succ_pos _) h₁) (le_of_dvd (succ_pos _) h₂) theorem pos_of_dvd_of_pos {m n : ℕ} (H1 : m ∣ n) (H2 : 0 < n) : 0 < m := nat.pos_of_ne_zero $ λm0, by rw m0 at H1; rw nat.eq_zero_of_zero_dvd H1 at H2; exact lt_irrefl _ H2 theorem eq_one_of_dvd_one {n : ℕ} (H : n ∣ 1) : n = 1 := le_antisymm (le_of_dvd dec_trivial H) (pos_of_dvd_of_pos H dec_trivial) theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n % m = 0) : m ∣ n := ⟨n / m, by { have t := (mod_add_div n m).symm, rwa [H, nat.zero_add] at t }⟩ theorem mod_eq_zero_of_dvd {m n : ℕ} (H : m ∣ n) : n % m = 0 := exists.elim H (λ z H1, by rw [H1, mul_mod_right]) theorem dvd_iff_mod_eq_zero {m n : ℕ} : m ∣ n ↔ n % m = 0 := ⟨mod_eq_zero_of_dvd, dvd_of_mod_eq_zero⟩ instance decidable_dvd : @decidable_rel ℕ (∣) := λm n, decidable_of_decidable_of_iff (by apply_instance) dvd_iff_mod_eq_zero.symm protected theorem mul_div_cancel' {m n : ℕ} (H : n ∣ m) : n * (m / n) = m := let t := mod_add_div m n in by rwa [mod_eq_zero_of_dvd H, nat.zero_add] at t protected theorem div_mul_cancel {m n : ℕ} (H : n ∣ m) : m / n * n = m := by rw [nat.mul_comm, nat.mul_div_cancel' H] protected theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n / k = m * (n / k) := or.elim k.eq_zero_or_pos (λh, by rw [h, nat.div_zero, nat.div_zero, nat.mul_zero]) (λh, have m * n / k = m * (n / k * k) / k, by rw nat.div_mul_cancel H, by rw[this, ← nat.mul_assoc, nat.mul_div_cancel _ h]) theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : 0 < k) (H : k * m ∣ k * n) : m ∣ n := exists.elim H (λl H1, by rw nat.mul_assoc at H1; exact ⟨_, nat.eq_of_mul_eq_mul_left kpos H1⟩) theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : 0 < k) (H : m * k ∣ n * k) : m ∣ n := by rw [nat.mul_comm m k, nat.mul_comm n k] at H; exact dvd_of_mul_dvd_mul_left kpos H /-! iterate -/ def iterate {α : Sort u} (op : α → α) : ℕ → α → α | 0 a := a | (succ k) a := iterate k (op a) notation f`^[`n`]` := iterate f n /-! find -/ section find parameter {p : ℕ → Prop} private def lbp (m n : ℕ) : Prop := m = n + 1 ∧ ∀ k ≤ n, ¬p k parameters [decidable_pred p] (H : ∃n, p n) private def wf_lbp : well_founded lbp := ⟨let ⟨n, pn⟩ := H in suffices ∀m k, n ≤ k + m → acc lbp k, from λa, this _ _ (nat.le_add_left _ _), λm, nat.rec_on m (λk kn, ⟨_, λy r, match y, r with ._, ⟨rfl, a⟩ := absurd pn (a _ kn) end⟩) (λm IH k kn, ⟨_, λy r, match y, r with ._, ⟨rfl, a⟩ := IH _ (by rw nat.add_right_comm; exact kn) end⟩)⟩ protected def find_x : {n // p n ∧ ∀m < n, ¬p m} := @well_founded.fix _ (λk, (∀n < k, ¬p n) → {n // p n ∧ ∀m < n, ¬p m}) lbp wf_lbp (λm IH al, if pm : p m then ⟨m, pm, al⟩ else have ∀ n ≤ m, ¬p n, from λn h, or.elim (decidable.lt_or_eq_of_le h) (al n) (λe, by rw e; exact pm), IH _ ⟨rfl, this⟩ (λn h, this n $ nat.le_of_succ_le_succ h)) 0 (λn h, absurd h (nat.not_lt_zero _)) /-- If `p` is a (decidable) predicate on `ℕ` and `hp : ∃ (n : ℕ), p n` is a proof that there exists some natural number satisfying `p`, then `nat.find hp` is the smallest natural number satisfying `p`. Note that `nat.find` is protected, meaning that you can't just write `find`, even if the `nat` namespace is open. The API for `nat.find` is: * `nat.find_spec` is the proof that `nat.find hp` satisfies `p`. * `nat.find_min` is the proof that if `m < nat.find hp` then `m` does not satisfy `p`. * `nat.find_min'` is the proof that if `m` does satisfy `p` then `nat.find hp ≤ m`. -/ protected def find : ℕ := nat.find_x.1 protected theorem find_spec : p nat.find := nat.find_x.2.left protected theorem find_min : ∀ {m : ℕ}, m < nat.find → ¬p m := nat.find_x.2.right protected theorem find_min' {m : ℕ} (h : p m) : nat.find ≤ m := le_of_not_lt (λ l, find_min l h) end find end nat
1063e5b6df717f78c166abc15b4cfb053add1504
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/algebra/char_p/quotient.lean
d6257701ef9c1a215c155fa1e6e2a067a8b6aa91
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
1,985
lean
/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Eric Wieser -/ import algebra.char_p.basic import ring_theory.ideal.quotient /-! # Characteristic of quotients rings > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. -/ universes u v namespace char_p theorem quotient (R : Type u) [comm_ring R] (p : ℕ) [hp1 : fact p.prime] (hp2 : ↑p ∈ nonunits R) : char_p (R ⧸ (ideal.span {p} : ideal R)) p := have hp0 : (p : R ⧸ (ideal.span {p} : ideal R)) = 0, from map_nat_cast (ideal.quotient.mk (ideal.span {p} : ideal R)) p ▸ ideal.quotient.eq_zero_iff_mem.2 (ideal.subset_span $ set.mem_singleton _), ring_char.of_eq $ or.resolve_left ((nat.dvd_prime hp1.1).1 $ ring_char.dvd hp0) $ λ h1, hp2 $ is_unit_iff_dvd_one.2 $ ideal.mem_span_singleton.1 $ ideal.quotient.eq_zero_iff_mem.1 $ @@subsingleton.elim (@@char_p.subsingleton _ $ ring_char.of_eq h1) _ _ /-- If an ideal does not contain any coercions of natural numbers other than zero, then its quotient inherits the characteristic of the underlying ring. -/ lemma quotient' {R : Type*} [comm_ring R] (p : ℕ) [char_p R p] (I : ideal R) (h : ∀ x : ℕ, (x : R) ∈ I → (x : R) = 0) : char_p (R ⧸ I) p := ⟨λ x, begin rw [←cast_eq_zero_iff R p x, ←map_nat_cast (ideal.quotient.mk I)], refine ideal.quotient.eq.trans (_ : ↑x - 0 ∈ I ↔ _), rw sub_zero, exact ⟨h x, λ h', h'.symm ▸ I.zero_mem⟩, end⟩ end char_p lemma ideal.quotient.index_eq_zero {R : Type*} [comm_ring R] (I : ideal R) : (I.to_add_subgroup.index : R ⧸ I) = 0 := begin rw [add_subgroup.index, nat.card_eq], split_ifs with hq, swap, simp, by_contra h, -- TODO: can we avoid rewriting the `I.to_add_subgroup` here? letI : fintype (R ⧸ I) := @fintype.of_finite _ hq, have h : (fintype.card (R ⧸ I) : R ⧸ I) ≠ 0 := h, simpa using h end
c49587b0e4742399525e8b90992db05e8529689c
77c5b91fae1b966ddd1db969ba37b6f0e4901e88
/src/ring_theory/adjoin/basic.lean
fb83bd8cfc7f3c7cc687c0180d851cca1fd5a6be
[ "Apache-2.0" ]
permissive
dexmagic/mathlib
ff48eefc56e2412429b31d4fddd41a976eb287ce
7a5d15a955a92a90e1d398b2281916b9c41270b2
refs/heads/master
1,693,481,322,046
1,633,360,193,000
1,633,360,193,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,436
lean
/- Copyright (c) 2019 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.algebra.subalgebra import linear_algebra.prod /-! # Adjoining elements to form subalgebras This file develops the basic theory of subalgebras of an R-algebra generated by a set of elements. A basic interface for `adjoin` is set up, and various results about finitely-generated subalgebras and submodules are proved. ## Definitions * `fg (S : subalgebra R A)` : A predicate saying that the subalgebra is finitely-generated as an A-algebra ## Tags adjoin, algebra, finitely-generated algebra -/ universes u v w open submodule open_locale pointwise namespace algebra variables {R : Type u} {A : Type v} {B : Type w} section semiring variables [comm_semiring R] [semiring A] [semiring B] variables [algebra R A] [algebra R B] {s t : set A} open subsemiring theorem subset_adjoin : s ⊆ adjoin R s := algebra.gc.le_u_l s theorem adjoin_le {S : subalgebra R A} (H : s ⊆ S) : adjoin R s ≤ S := algebra.gc.l_le H theorem adjoin_le_iff {S : subalgebra R A} : adjoin R s ≤ S ↔ s ⊆ S:= algebra.gc _ _ theorem adjoin_mono (H : s ⊆ t) : adjoin R s ≤ adjoin R t := algebra.gc.monotone_l H theorem adjoin_eq_of_le (S : subalgebra R A) (h₁ : s ⊆ S) (h₂ : S ≤ adjoin R s) : adjoin R s = S := le_antisymm (adjoin_le h₁) h₂ theorem adjoin_eq (S : subalgebra R A) : adjoin R ↑S = S := adjoin_eq_of_le _ (set.subset.refl _) subset_adjoin @[elab_as_eliminator] theorem adjoin_induction {p : A → Prop} {x : A} (h : x ∈ adjoin R s) (Hs : ∀ x ∈ s, p x) (Halg : ∀ r, p (algebra_map R A r)) (Hadd : ∀ x y, p x → p y → p (x + y)) (Hmul : ∀ x y, p x → p y → p (x * y)) : p x := let S : subalgebra R A := { carrier := p, mul_mem' := Hmul, add_mem' := Hadd, algebra_map_mem' := Halg } in adjoin_le (show s ≤ S, from Hs) h lemma adjoin_union (s t : set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t := (algebra.gc : galois_connection _ (coe : subalgebra R A → set A)).l_sup variables (R A) @[simp] theorem adjoin_empty : adjoin R (∅ : set A) = ⊥ := show adjoin R ⊥ = ⊥, by { apply galois_connection.l_bot, exact algebra.gc } @[simp] theorem adjoin_univ : adjoin R (set.univ : set A) = ⊤ := eq_top_iff.2 $ λ x, subset_adjoin $ set.mem_univ _ variables (R) {A} (s) theorem adjoin_eq_span : (adjoin R s).to_submodule = span R (submonoid.closure s) := begin apply le_antisymm, { intros r hr, rcases subsemiring.mem_closure_iff_exists_list.1 hr with ⟨L, HL, rfl⟩, clear hr, induction L with hd tl ih, { exact zero_mem _ }, rw list.forall_mem_cons at HL, rw [list.map_cons, list.sum_cons], refine submodule.add_mem _ _ (ih HL.2), replace HL := HL.1, clear ih tl, suffices : ∃ z r (hr : r ∈ submonoid.closure s), has_scalar.smul z r = list.prod hd, { rcases this with ⟨z, r, hr, hzr⟩, rw ← hzr, exact smul_mem _ _ (subset_span hr) }, induction hd with hd tl ih, { exact ⟨1, 1, (submonoid.closure s).one_mem', one_smul _ _⟩ }, rw list.forall_mem_cons at HL, rcases (ih HL.2) with ⟨z, r, hr, hzr⟩, rw [list.prod_cons, ← hzr], rcases HL.1 with ⟨hd, rfl⟩ | hs, { refine ⟨hd * z, r, hr, _⟩, rw [algebra.smul_def, algebra.smul_def, (algebra_map _ _).map_mul, _root_.mul_assoc] }, { exact ⟨z, hd * r, submonoid.mul_mem _ (submonoid.subset_closure hs) hr, (mul_smul_comm _ _ _).symm⟩ } }, refine span_le.2 _, change submonoid.closure s ≤ (adjoin R s).to_subsemiring.to_submonoid, exact submonoid.closure_le.2 subset_adjoin end lemma span_le_adjoin (s : set A) : span R s ≤ (adjoin R s).to_submodule := span_le.mpr subset_adjoin lemma adjoin_to_submodule_le {s : set A} {t : submodule R A} : (adjoin R s).to_submodule ≤ t ↔ ↑(submonoid.closure s) ⊆ (t : set A) := by rw [adjoin_eq_span, span_le] lemma adjoin_eq_span_of_subset {s : set A} (hs : ↑(submonoid.closure s) ⊆ (span R s : set A)) : (adjoin R s).to_submodule = span R s := le_antisymm ((adjoin_to_submodule_le R).mpr hs) (span_le_adjoin R s) lemma adjoin_image (f : A →ₐ[R] B) (s : set A) : adjoin R (f '' s) = (adjoin R s).map f := le_antisymm (adjoin_le $ set.image_subset _ subset_adjoin) $ subalgebra.map_le.2 $ adjoin_le $ set.image_subset_iff.1 subset_adjoin @[simp] lemma adjoin_insert_adjoin (x : A) : adjoin R (insert x ↑(adjoin R s)) = adjoin R (insert x s) := le_antisymm (adjoin_le (set.insert_subset.mpr ⟨subset_adjoin (set.mem_insert _ _), adjoin_mono (set.subset_insert _ _)⟩)) (algebra.adjoin_mono (set.insert_subset_insert algebra.subset_adjoin)) lemma adjoint_prod_le (s : set A) (t : set B) : adjoin R (set.prod s t) ≤ (adjoin R s).prod (adjoin R t) := adjoin_le $ set.prod_mono subset_adjoin subset_adjoin lemma adjoin_inl_union_inr_le_prod (s) (t) : adjoin R (linear_map.inl R A B '' (s ∪ {1}) ∪ linear_map.inr R A B '' (t ∪ {1})) ≤ (adjoin R s).prod (adjoin R t) := begin rw [set.image_union, set.image_union], refine adjoin_le (λ x hx, subalgebra.mem_prod.2 _), rcases hx with (⟨x₁, ⟨hx₁, rfl⟩⟩ | ⟨x₂, ⟨hx₂, rfl⟩⟩) | (⟨x₃, ⟨hx₃, rfl⟩⟩ | ⟨x₄, ⟨hx₄, rfl⟩⟩), { exact ⟨subset_adjoin hx₁, subalgebra.zero_mem _⟩ }, { rw set.mem_singleton_iff.1 hx₂, exact ⟨subalgebra.one_mem _, subalgebra.zero_mem _⟩ }, { exact ⟨subalgebra.zero_mem _, subset_adjoin hx₃⟩ }, { rw set.mem_singleton_iff.1 hx₄, exact ⟨subalgebra.zero_mem _, subalgebra.one_mem _⟩ } end lemma mem_adjoin_of_map_mul {s} {x : A} {f : A →ₗ[R] B} (hf : ∀ a₁ a₂, f(a₁ * a₂) = f a₁ * f a₂) (h : x ∈ adjoin R s) : f x ∈ adjoin R (f '' (s ∪ {1})) := begin refine @adjoin_induction R A _ _ _ _ (λ a, f a ∈ adjoin R (f '' (s ∪ {1}))) x h (λ a ha, subset_adjoin ⟨a, ⟨set.subset_union_left _ _ ha, rfl⟩⟩) (λ r, _) (λ y z hy hz, by simpa [hy, hz] using subalgebra.add_mem _ hy hz) (λ y z hy hz, by simpa [hy, hz, hf y z] using subalgebra.mul_mem _ hy hz), have : f 1 ∈ adjoin R (f '' (s ∪ {1})) := subset_adjoin ⟨1, ⟨set.subset_union_right _ _ $ set.mem_singleton 1, rfl⟩⟩, replace this := subalgebra.smul_mem (adjoin R (f '' (s ∪ {1}))) this r, convert this, rw algebra_map_eq_smul_one, exact f.map_smul _ _ end lemma adjoin_inl_union_inr_eq_prod (s) (t) : adjoin R (linear_map.inl R A B '' (s ∪ {1}) ∪ linear_map.inr R A B '' (t ∪ {1})) = (adjoin R s).prod (adjoin R t) := begin let P := adjoin R (linear_map.inl R A B '' (s ∪ {1}) ∪ linear_map.inr R A B '' (t ∪ {1})), refine le_antisymm (adjoin_inl_union_inr_le_prod R s t) _, rintro ⟨a, b⟩ ⟨ha, hb⟩, have Ha : (a, (0 : B)) ∈ adjoin R ((linear_map.inl R A B) '' (s ∪ {1})) := mem_adjoin_of_map_mul R (linear_map.inl_map_mul) ha, have Hb : ((0 : A), b) ∈ adjoin R ((linear_map.inr R A B) '' (t ∪ {1})) := mem_adjoin_of_map_mul R (linear_map.inr_map_mul) hb, replace Ha : (a, (0 : B)) ∈ P := adjoin_mono (set.subset_union_of_subset_left (set.subset.refl _) _) Ha, replace Hb : ((0 : A), b) ∈ P := adjoin_mono (set.subset_union_of_subset_right (set.subset.refl _) _) Hb, simpa using subalgebra.add_mem _ Ha Hb end end semiring section comm_semiring variables [comm_semiring R] [comm_semiring A] variables [algebra R A] {s t : set A} open subsemiring variables (R s t) theorem adjoin_union_eq_under : adjoin R (s ∪ t) = (adjoin R s).under (adjoin (adjoin R s) t) := le_antisymm (closure_mono $ set.union_subset (set.range_subset_iff.2 $ λ r, or.inl ⟨algebra_map R (adjoin R s) r, rfl⟩) (set.union_subset_union_left _ $ λ x hxs, ⟨⟨_, subset_adjoin hxs⟩, rfl⟩)) (closure_le.2 $ set.union_subset (set.range_subset_iff.2 $ λ x, adjoin_mono (set.subset_union_left _ _) x.2) (set.subset.trans (set.subset_union_right _ _) subset_adjoin)) lemma adjoin_singleton_one : adjoin R ({1} : set A) = ⊥ := eq_bot_iff.2 $ adjoin_le $ set.singleton_subset_iff.2 $ set_like.mem_coe.2 $ one_mem _ theorem adjoin_union_coe_submodule : (adjoin R (s ∪ t)).to_submodule = (adjoin R s).to_submodule * (adjoin R t).to_submodule := begin rw [adjoin_eq_span, adjoin_eq_span, adjoin_eq_span, span_mul_span], congr' 1 with z, simp [submonoid.closure_union, submonoid.mem_sup, set.mem_mul] end end comm_semiring section ring variables [comm_ring R] [ring A] variables [algebra R A] {s t : set A} variables {R s t} theorem adjoin_int (s : set R) : adjoin ℤ s = subalgebra_of_subring (subring.closure s) := le_antisymm (adjoin_le subring.subset_closure) (subring.closure_le.2 subset_adjoin : subring.closure s ≤ (adjoin ℤ s).to_subring) theorem mem_adjoin_iff {s : set A} {x : A} : x ∈ adjoin R s ↔ x ∈ subring.closure (set.range (algebra_map R A) ∪ s) := ⟨λ hx, subsemiring.closure_induction hx subring.subset_closure (subring.zero_mem _) (subring.one_mem _) (λ _ _, subring.add_mem _) ( λ _ _, subring.mul_mem _), suffices subring.closure (set.range ⇑(algebra_map R A) ∪ s) ≤ (adjoin R s).to_subring, from @this x, subring.closure_le.2 subsemiring.subset_closure⟩ theorem adjoin_eq_ring_closure (s : set A) : (adjoin R s).to_subring = subring.closure (set.range (algebra_map R A) ∪ s) := subring.ext $ λ x, mem_adjoin_iff end ring end algebra
de4120c626a65c49318c3640d9383f536d43c5cf
453dcd7c0d1ef170b0843a81d7d8caedc9741dce
/linear_algebra/multivariate_polynomial.lean
67371cb3350e9c8c9872eab0b197bd75dd9f4a64
[ "Apache-2.0" ]
permissive
amswerdlow/mathlib
9af77a1f08486d8fa059448ae2d97795bd12ec0c
27f96e30b9c9bf518341705c99d641c38638dfd0
refs/heads/master
1,585,200,953,598
1,534,275,532,000
1,534,275,532,000
144,564,700
0
0
null
1,534,156,197,000
1,534,156,197,000
null
UTF-8
Lean
false
false
12,410
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro Multivariate Polynomial -/ import data.finsupp linear_algebra.basic algebra.ring open set function finsupp lattice universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- Multivariate polynomial, where `σ` is the index set of the variables and `α` is the coefficient ring -/ def mv_polynomial (σ : Type*) (α : Type*) [comm_semiring α] := (σ →₀ ℕ) →₀ α namespace mv_polynomial variables {σ : Type*} {a a' a₁ a₂ : α} {e : ℕ} {n m : σ} {s : σ →₀ ℕ} variables [decidable_eq σ] [decidable_eq α] section comm_semiring variables [comm_semiring α] {p q : mv_polynomial σ α} instance : decidable_eq (mv_polynomial σ α) := finsupp.decidable_eq instance : has_zero (mv_polynomial σ α) := finsupp.has_zero instance : has_one (mv_polynomial σ α) := finsupp.has_one instance : has_add (mv_polynomial σ α) := finsupp.has_add instance : has_mul (mv_polynomial σ α) := finsupp.has_mul instance : comm_semiring (mv_polynomial σ α) := finsupp.to_comm_semiring /-- `monomial s a` is the monomial `a * X^s` -/ def monomial (s : σ →₀ ℕ) (a : α) : mv_polynomial σ α := single s a /-- `C a` is the constant polynomial with value `a` -/ def C (a : α) : mv_polynomial σ α := monomial 0 a /-- `X n` is the polynomial with value X_n -/ def X (n : σ) : mv_polynomial σ α := monomial (single n 1) 1 @[simp] lemma C_0 : C 0 = (0 : mv_polynomial σ α) := by simp [C, monomial]; refl @[simp] lemma C_1 : C 1 = (1 : mv_polynomial σ α) := rfl lemma C_mul_monomial : C a * monomial s a' = monomial s (a * a') := by simp [C, monomial, single_mul_single] @[simp] lemma C_add : (C (a + a') : mv_polynomial σ α) = C a + C a' := single_add @[simp] lemma C_mul : (C (a * a') : mv_polynomial σ α) = C a * C a' := C_mul_monomial.symm instance : is_semiring_hom (C : α → mv_polynomial σ α) := { map_zero := C_0, map_one := C_1, map_add := λ a a', C_add, map_mul := λ a a', C_mul } lemma X_pow_eq_single : X n ^ e = monomial (single n e) (1 : α) := begin induction e, { simp [X], refl }, { simp [pow_succ, e_ih], simp [X, monomial, single_mul_single, nat.succ_eq_add_one] } end lemma monomial_add_single : monomial (s + single n e) a = (monomial s a * X n ^ e):= by rw [X_pow_eq_single, monomial, monomial, monomial, single_mul_single]; simp lemma monomial_single_add : monomial (single n e + s) a = (X n ^ e * monomial s a):= by rw [X_pow_eq_single, monomial, monomial, monomial, single_mul_single]; simp lemma monomial_eq : monomial s a = C a * (s.prod $ λn e, X n ^ e : mv_polynomial σ α) := begin apply @finsupp.induction σ ℕ _ _ _ _ s, { simp [C, prod_zero_index]; exact (mul_one _).symm }, { assume n e s hns he ih, simp [prod_add_index, prod_single_index, pow_zero, pow_add, (mul_assoc _ _ _).symm, ih.symm, monomial_add_single] } end @[recursor 7] lemma induction_on {M : mv_polynomial σ α → Prop} (p : mv_polynomial σ α) (h_C : ∀a, M (C a)) (h_add : ∀p q, M p → M q → M (p + q)) (h_X : ∀p n, M p → M (p * X n)) : M p := have ∀s a, M (monomial s a), begin assume s a, apply @finsupp.induction σ ℕ _ _ _ _ s, { show M (monomial 0 a), from h_C a, }, { assume n e p hpn he ih, have : ∀e:ℕ, M (monomial p a * X n ^ e), { intro e, induction e, { simp [ih] }, { simp [ih, pow_succ', (mul_assoc _ _ _).symm, h_X, e_ih] } }, simp [monomial_add_single, this] } end, finsupp.induction p (by have : M (C 0) := h_C 0; rwa [C_0] at this) (assume s a p hsp ha hp, h_add _ _ (this s a) hp) section eval₂ variables [comm_semiring β] variables (f : α → β) [is_semiring_hom f] (g : σ → β) /-- Evaluate a polynomial `p` given a valuation `g` of all the variables and a ring hom `f` from the scalar ring to the target -/ def eval₂ (p : mv_polynomial σ α) : β := p.sum (λs a, f a * s.prod (λn e, g n ^ e)) @[simp] lemma eval₂_zero : (0 : mv_polynomial σ α).eval₂ f g = 0 := finsupp.sum_zero_index @[simp] lemma eval₂_add : (p + q).eval₂ f g = p.eval₂ f g + q.eval₂ f g := finsupp.sum_add_index (by simp [is_semiring_hom.map_zero f]) (by simp [add_mul, is_semiring_hom.map_add f]) @[simp] lemma eval₂_monomial : (monomial s a).eval₂ f g = f a * s.prod (λn e, g n ^ e) := finsupp.sum_single_index (by simp [is_semiring_hom.map_zero f]) @[simp] lemma eval₂_C (a) : (C a).eval₂ f g = f a := by simp [eval₂_monomial, C, prod_zero_index] @[simp] lemma eval₂_one : (1 : mv_polynomial σ α).eval₂ f g = 1 := (eval₂_C _ _ _).trans (is_semiring_hom.map_one f) @[simp] lemma eval₂_X (n) : (X n).eval₂ f g = g n := by simp [eval₂_monomial, is_semiring_hom.map_one f, X, prod_single_index, pow_one] lemma eval₂_mul_monomial : ∀{s a}, (p * monomial s a).eval₂ f g = p.eval₂ f g * f a * s.prod (λn e, g n ^ e) := begin apply mv_polynomial.induction_on p, { assume a' s a, simp [C_mul_monomial, eval₂_monomial, is_semiring_hom.map_mul f] }, { assume p q ih_p ih_q, simp [add_mul, eval₂_add, ih_p, ih_q] }, { assume p n ih s a, from calc (p * X n * monomial s a).eval₂ f g = (p * monomial (single n 1 + s) a).eval₂ f g : by simp [monomial_single_add, -add_comm, pow_one, mul_assoc] ... = (p * monomial (single n 1) 1).eval₂ f g * f a * s.prod (λn e, g n ^ e) : by simp [ih, prod_single_index, prod_add_index, pow_one, pow_add, mul_assoc, mul_left_comm, is_semiring_hom.map_one f, -add_comm] } end lemma eval₂_mul : ∀{p}, (p * q).eval₂ f g = p.eval₂ f g * q.eval₂ f g := begin apply mv_polynomial.induction_on q, { simp [C, eval₂_monomial, eval₂_mul_monomial, prod_zero_index] }, { simp [mul_add, eval₂_add] {contextual := tt} }, { simp [X, eval₂_monomial, eval₂_mul_monomial, (mul_assoc _ _ _).symm] { contextual := tt} } end instance eval₂.is_semiring_hom : is_semiring_hom (eval₂ f g) := { map_zero := eval₂_zero _ _, map_one := eval₂_one _ _, map_add := λ p q, eval₂_add _ _, map_mul := λ p q, eval₂_mul _ _ } lemma eval₂_comp_left {γ} [comm_semiring γ] (k : β → γ) [is_semiring_hom k] (f : α → β) [is_semiring_hom f] (g : σ → β) (p) : k (eval₂ f g p) = eval₂ (k ∘ f) (k ∘ g) p := by apply mv_polynomial.induction_on p; simp [ eval₂_add, is_semiring_hom.map_add k, eval₂_mul, is_semiring_hom.map_mul k] {contextual := tt} lemma eval₂_eta (p : mv_polynomial σ α) : eval₂ C X p = p := by apply mv_polynomial.induction_on p; simp [eval₂_add, eval₂_mul] {contextual := tt} end eval₂ section eval variables {f : σ → α} /-- Evaluate a polynomial `p` given a valuation `f` of all the variables -/ def eval (f : σ → α) : mv_polynomial σ α → α := eval₂ id f @[simp] lemma eval_zero : (0 : mv_polynomial σ α).eval f = 0 := eval₂_zero _ _ @[simp] lemma eval_add : (p + q).eval f = p.eval f + q.eval f := eval₂_add _ _ lemma eval_monomial : (monomial s a).eval f = a * s.prod (λn e, f n ^ e) := eval₂_monomial _ _ @[simp] lemma eval_C : ∀ a, (C a).eval f = a := eval₂_C _ _ @[simp] lemma eval_X : ∀ n, (X n).eval f = f n := eval₂_X _ _ @[simp] lemma eval_mul : (p * q).eval f = p.eval f * q.eval f := eval₂_mul _ _ instance eval.is_semiring_hom : is_semiring_hom (eval f) := eval₂.is_semiring_hom _ _ theorem eval_assoc {τ} [decidable_eq τ] (f : σ → mv_polynomial τ α) (g : τ → α) (p : mv_polynomial σ α) : p.eval (eval g ∘ f) = (eval₂ C f p).eval g := begin rw eval₂_comp_left (eval g), unfold eval, congr; funext a; simp end end eval section map variables [comm_semiring β] [decidable_eq β] variables (f : α → β) [is_semiring_hom f] -- `mv_polynomial σ` is a functor (incomplete) def map : mv_polynomial σ α → mv_polynomial σ β := eval₂ (C ∘ f) X @[simp] theorem map_monomial (s : σ →₀ ℕ) (a : α) : map f (monomial s a) = monomial s (f a) := (eval₂_monomial _ _).trans monomial_eq.symm @[simp] theorem map_C : ∀ (a : α), map f (C a : mv_polynomial σ α) = C (f a) := map_monomial _ _ @[simp] theorem map_X : ∀ (n : σ), map f (X n : mv_polynomial σ α) = X n := eval₂_X _ _ @[simp] theorem map_one : map f (1 : mv_polynomial σ α) = 1 := eval₂_one _ _ @[simp] theorem map_add (p q : mv_polynomial σ α) : map f (p + q) = map f p + map f q := eval₂_add _ _ @[simp] theorem map_mul (p q : mv_polynomial σ α) : map f (p * q) = map f p * map f q := eval₂_mul _ _ instance map.is_semiring_hom : is_semiring_hom (map f : mv_polynomial σ α → mv_polynomial σ β) := eval₂.is_semiring_hom _ _ theorem map_id : ∀ (p : mv_polynomial σ α), map id p = p := eval₂_eta theorem map_map [comm_semiring γ] [decidable_eq γ] (g : β → γ) [is_semiring_hom g] (p : mv_polynomial σ α) : map g (map f p) = map (g ∘ f) p := (eval₂_comp_left (map g) (C ∘ f) X p).trans $ by congr; funext a; simp theorem eval₂_eq_eval_map (g : σ → β) (p : mv_polynomial σ α) : p.eval₂ f g = (map f p).eval g := begin unfold map eval, rw eval₂_comp_left (eval₂ id g), congr; funext a; simp end end map section vars /-- `vars p` is the set of variables appearing in the polynomial `p` -/ def vars (p : mv_polynomial σ α) : finset σ := p.support.bind finsupp.support @[simp] lemma vars_0 : (0 : mv_polynomial σ α).vars = ∅ := show (0 : (σ →₀ ℕ) →₀ α).support.bind finsupp.support = ∅, by simp @[simp] lemma vars_monomial (h : a ≠ 0) : (monomial s a).vars = s.support := show (single s a : (σ →₀ ℕ) →₀ α).support.bind finsupp.support = s.support, by simp [support_single_ne_zero, h] @[simp] lemma vars_C : (C a : mv_polynomial σ α).vars = ∅ := decidable.by_cases (assume h : a = 0, by simp [h]) (assume h : a ≠ 0, by simp [C, h]) @[simp] lemma vars_X (h : 0 ≠ (1 : α)) : (X n : mv_polynomial σ α).vars = {n} := calc (X n : mv_polynomial σ α).vars = (single n 1).support : vars_monomial h.symm ... = {n} : by rw [support_single_ne_zero nat.zero_ne_one.symm] end vars section degree_of /-- `degree_of n p` gives the highest power of X_n that appears in `p` -/ def degree_of (n : σ) (p : mv_polynomial σ α) : ℕ := p.support.sup (λs, s n) end degree_of section total_degree /-- `total_degree p` gives the maximum |s| over the monomials X^s in `p` -/ def total_degree (p : mv_polynomial σ α) : ℕ := p.support.sup (λs, s.sum $ λn e, e) end total_degree end comm_semiring section comm_ring variable [comm_ring α] variables {p q : mv_polynomial σ α} instance : ring (mv_polynomial σ α) := finsupp.to_ring instance : comm_ring (mv_polynomial σ α) := finsupp.to_comm_ring instance : has_scalar α (mv_polynomial σ α) := finsupp.to_has_scalar instance : module α (mv_polynomial σ α) := finsupp.to_module instance C.is_ring_hom : is_ring_hom (C : α → mv_polynomial σ α) := by apply is_ring_hom.of_semiring lemma C_sub : (C (a - a') : mv_polynomial σ α) = C a - C a' := is_ring_hom.map_sub _ @[simp] lemma C_neg : (C (-a) : mv_polynomial σ α) = -C a := is_ring_hom.map_neg _ section eval₂ variables [decidable_eq β] [comm_ring β] variables (f : α → β) [is_ring_hom f] (g : σ → β) instance eval₂.is_ring_hom : is_ring_hom (eval₂ f g) := by apply is_ring_hom.of_semiring lemma eval₂_sub : (p - q).eval₂ f g = p.eval₂ f g - q.eval₂ f g := is_ring_hom.map_sub _ @[simp] lemma eval₂_neg : (-p).eval₂ f g = -(p.eval₂ f g) := is_ring_hom.map_neg _ end eval₂ section eval variables (f : σ → α) instance eval.is_ring_hom : is_ring_hom (eval f) := eval₂.is_ring_hom _ _ lemma eval_sub : (p - q).eval f = p.eval f - q.eval f := is_ring_hom.map_sub _ @[simp] lemma eval_neg : (-p).eval f = -(p.eval f) := is_ring_hom.map_neg _ end eval section map variables [decidable_eq β] [comm_ring β] variables (f : α → β) [is_ring_hom f] instance map.is_ring_hom : is_ring_hom (map f : mv_polynomial σ α → mv_polynomial σ β) := eval₂.is_ring_hom _ _ lemma map_sub : (p - q).map f = p.map f - q.map f := is_ring_hom.map_sub _ @[simp] lemma map_neg : (-p).map f = -(p.map f) := is_ring_hom.map_neg _ end map end comm_ring end mv_polynomial
042f0c4243c5e54ab0518907059ce721b7e4533a
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/topology/sheaves/locally_surjective.lean
a1c6a63df1dd853d4ff6206d1feb82d1fac62e2d
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
4,189
lean
/- Copyright (c) 2022 Sam van Gool and Jake Levinson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sam van Gool, Jake Levinson -/ import topology.sheaves.presheaf import topology.sheaves.stalks import category_theory.sites.surjective /-! # Locally surjective maps of presheaves. Let `X` be a topological space, `ℱ` and `𝒢` presheaves on `X`, `T : ℱ ⟶ 𝒢` a map. In this file we formulate two notions for what it means for `T` to be locally surjective: 1. For each open set `U`, each section `t : 𝒢(U)` is in the image of `T` after passing to some open cover of `U`. 2. For each `x : X`, the map of *stalks* `Tₓ : ℱₓ ⟶ 𝒢ₓ` is surjective. We prove that these are equivalent. -/ universes v u noncomputable theory open category_theory open topological_space open opposite namespace Top.presheaf section locally_surjective local attribute [instance] concrete_category.has_coe_to_fun local attribute [instance] concrete_category.has_coe_to_sort open_locale algebraic_geometry /-- Let `C` be a concrete category, `X` a topological space. -/ variables {C : Type u} [category.{v} C] [concrete_category.{v} C] {X : Top.{v}} /-- Let `ℱ, 𝒢 : (opens X)ᵒᵖ ⥤ C` be `C`-valued presheaves on `X`. -/ variables {ℱ 𝒢 : X.presheaf C} /-- A map of presheaves `T : ℱ ⟶ 𝒢` is **locally surjective** if for any open set `U`, section `t` over `U`, and `x ∈ U`, there exists an open set `x ∈ V ⊆ U` and a section `s` over `V` such that `$T_*(s_V) = t|_V$`. See `is_locally_surjective_iff` below. -/ def is_locally_surjective (T : ℱ ⟶ 𝒢) := category_theory.is_locally_surjective (opens.grothendieck_topology X) T lemma is_locally_surjective_iff (T : ℱ ⟶ 𝒢) : is_locally_surjective T ↔ ∀ U t (x ∈ U), ∃ V (ι : V ⟶ U), (∃ s, T.app _ s = t |_ₕ ι) ∧ x ∈ V := iff.rfl section surjective_on_stalks variables [limits.has_colimits C] [limits.preserves_filtered_colimits (forget C)] /-- An equivalent condition for a map of presheaves to be locally surjective is for all the induced maps on stalks to be surjective. -/ lemma locally_surjective_iff_surjective_on_stalks (T : ℱ ⟶ 𝒢) : is_locally_surjective T ↔ ∀ (x : X), function.surjective ((stalk_functor C x).map T) := begin split; intro hT, { /- human proof: Let g ∈ Γₛₜ 𝒢 x be a germ. Represent it on an open set U ⊆ X as ⟨t, U⟩. By local surjectivity, pass to a smaller open set V on which there exists s ∈ Γ_ ℱ V mapping to t |_ V. Then the germ of s maps to g -/ -- Let g ∈ Γₛₜ 𝒢 x be a germ. intros x g, -- Represent it on an open set U ⊆ X as ⟨t, U⟩. obtain ⟨U, hxU, t, rfl⟩ := 𝒢.germ_exist x g, -- By local surjectivity, pass to a smaller open set V -- on which there exists s ∈ Γ_ ℱ V mapping to t |_ V. rcases hT U t x hxU with ⟨V, ι, ⟨s, h_eq⟩, hxV⟩, -- Then the germ of s maps to g. use ℱ.germ ⟨x, hxV⟩ s, convert stalk_functor_map_germ_apply V ⟨x, hxV⟩ T s, simpa [h_eq] using germ_res_apply 𝒢 ι ⟨x,hxV⟩ t, }, { /- human proof: Let U be an open set, t ∈ Γ ℱ U a section, x ∈ U a point. By surjectivity on stalks, the germ of t is the image of some germ f ∈ Γₛₜ ℱ x. Represent f on some open set V ⊆ X as ⟨s, V⟩. Then there is some possibly smaller open set x ∈ W ⊆ V ∩ U on which we have T(s) |_ W = t |_ W. -/ intros U t x hxU, set t_x := 𝒢.germ ⟨x, hxU⟩ t with ht_x, obtain ⟨s_x, hs_x : ((stalk_functor C x).map T) s_x = t_x⟩ := hT x t_x, obtain ⟨V, hxV, s, rfl⟩ := ℱ.germ_exist x s_x, -- rfl : ℱ.germ x s = s_x have key_W := 𝒢.germ_eq x hxV hxU (T.app _ s) t (by { convert hs_x, symmetry, convert stalk_functor_map_germ_apply _ _ _ s, }), obtain ⟨W, hxW, hWV, hWU, h_eq⟩ := key_W, refine ⟨W, hWU, ⟨ℱ.map hWV.op s, _⟩, hxW⟩, convert h_eq, simp only [← comp_apply, T.naturality], }, end end surjective_on_stalks end locally_surjective end Top.presheaf
49545241126d063722b0185145a62c9221b2f372
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/stage0/src/Lean/Elab/Mixfix.lean
e74ef2a9be58fa64c2b6fe2272a58f2c4ccfcd2d
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
2,121
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Elab.Attributes namespace Lean.Elab.Command @[builtinMacro Lean.Parser.Command.mixfix] def expandMixfix : Macro := fun stx => withAttrKindGlobal stx fun stx => do match stx with | `($[$doc?:docComment]? $[@[$attrs?,*]]? infixl:$prec $[(name := $name)]? $[(priority := $prio)]? $op => $f) => let prec1 := quote <| (← evalPrec prec) + 1 `($[$doc?:docComment]? $[@[$attrs?,*]]? notation:$prec $[(name := $name)]? $[(priority := $prio)]? lhs:$prec $op:str rhs:$prec1 => $f lhs rhs) | `($[$doc?:docComment]? $[@[$attrs?,*]]? infix:$prec $[(name := $name)]? $[(priority := $prio)]? $op => $f) => let prec1 := quote <| (← evalPrec prec) + 1 `($[$doc?:docComment]? $[@[$attrs?,*]]? notation:$prec $[(name := $name)]? $[(priority := $prio)]? lhs:$prec1 $op:str rhs:$prec1 => $f lhs rhs) | `($[$doc?:docComment]? $[@[$attrs?,*]]? infixr:$prec $[(name := $name)]? $[(priority := $prio)]? $op => $f) => let prec1 := quote <| (← evalPrec prec) + 1 `($[$doc?:docComment]? $[@[$attrs?,*]]? notation:$prec $[(name := $name)]? $[(priority := $prio)]? lhs:$prec1 $op:str rhs:$prec => $f lhs rhs) | `($[$doc?:docComment]? $[@[$attrs?,*]]? prefix:$prec $[(name := $name)]? $[(priority := $prio)]? $op => $f) => `($[$doc?:docComment]? $[@[$attrs?,*]]? notation:$prec $[(name := $name)]? $[(priority := $prio)]? $op:str arg:$prec => $f arg) | `($[$doc?:docComment]? $[@[$attrs?,*]]? postfix:$prec $[(name := $name)]? $[(priority := $prio)]? $op => $f) => `($[$doc?:docComment]? $[@[$attrs?,*]]? notation:$prec $[(name := $name)]? $[(priority := $prio)]? arg:$prec $op:str => $f arg) | _ => Macro.throwUnsupported where -- set "global" `attrKind`, apply `f`, and restore `attrKind` to result withAttrKindGlobal stx f := do let attrKind := stx[2] let stx := stx.setArg 2 mkAttrKindGlobal let stx ← f stx return stx.raw.setArg 2 attrKind end Lean.Elab.Command
073210850fc8ca67f7853f1bc4041f4203656252
9d00e4b237465921fb33aa10eed92a2495ca2e46
/orRules.lean
534ae5bef222b1cedc998021044895cbe2f78e09
[]
no_license
Bpalkmim/LeanNatD
7756abf1ed7b0e7a3e3b9d16ad756018f5c70c7c
2e73bb44e44b955839e7a0874cd7013fbfb9c4e3
refs/heads/master
1,610,999,141,530
1,475,515,895,000
1,475,515,895,000
69,893,600
0
0
null
null
null
null
UTF-8
Lean
false
false
1,522
lean
namespace orRules -- Requer o namespace de implicação open implRules print " " print "Provas com OR - início" print " " constant or : Prop → Prop → Prop constants A B C : Prop -- Definições -- or_intro_right introduz o operador ∨ com as proposições recebidas por parâmetro na ordem constant or_intro_right {X Y : Prop} : Proof X → Proof Y → Proof (or X Y) -- or_intro_left inverte a ordem dos parâmetros para inserir no ∨ introduzido constant or_intro_left {X Y : Prop} : Proof X → Proof Y → Proof (or Y X) constant or_elim {X Y Z : Prop} : Proof (or X Y) → (Π x : Proof X, Proof Z) → (Π x : Proof Y, Proof Z) → Proof Z → Proof Z → Proof Z -- Termos úteis variable a : Proof A variable b : Proof B variable c : Proof C variable aORb : Proof (or A B) variable aDEPc : Π x : Proof A, Proof C variable bDEPc : Π x : Proof B, Proof C variable concl : Π x : Proof (or A B), Proof (or B A) -- Testes iniciais check @or_intro_left check @or_intro_right check @or_elim check or_intro_right a b check or_intro_left b a check or_elim aORb aDEPc bDEPc c c print "------" -- Testes parciais check or_intro_left a -- (λx. x ∨ a) check or_intro_right b -- (λx. b ∨ x) check or_elim aORb (or_intro_right b) (or_intro_left a) print "------" -- Teste final (A ∨ B) → (B ∨ A) check impl_intro concl (or_elim aORb (or_intro_right b) (or_intro_left a) (or_intro_right b a) (or_intro_left a b) ) print " " print "Provas com OR - fim" print " " end orRules
3979206c27fa7b9227383c60ef3d5072bf0dcc35
5d166a16ae129621cb54ca9dde86c275d7d2b483
/library/init/meta/relation_tactics.lean
868a540a39d90127f6b67278591604a538d386a7
[ "Apache-2.0" ]
permissive
jcarlson23/lean
b00098763291397e0ac76b37a2dd96bc013bd247
8de88701247f54d325edd46c0eed57aeacb64baf
refs/heads/master
1,611,571,813,719
1,497,020,963,000
1,497,021,515,000
93,882,536
1
0
null
1,497,029,896,000
1,497,029,896,000
null
UTF-8
Lean
false
false
1,850
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.tactic init.function namespace tactic open expr private meta def relation_tactic (md : transparency) (op_for : environment → name → option name) (tac_name : string) : tactic unit := do tgt ← target, env ← get_env, let r := get_app_fn tgt, match (op_for env (const_name r)) with | (some refl) := do r ← mk_const refl, apply_core r {md := md} >> return () | none := fail $ tac_name ++ " tactic failed, target is not a relation application with the expected property." end meta def reflexivity (md := semireducible) : tactic unit := relation_tactic md environment.refl_for "reflexivity" meta def symmetry (md := semireducible) : tactic unit := relation_tactic md environment.symm_for "symmetry" meta def transitivity (md := semireducible) : tactic unit := relation_tactic md environment.trans_for "transitivity" meta def relation_lhs_rhs (e : expr) : tactic (name × expr × expr) := do (const c _) ← return e.get_app_fn, env ← get_env, (some (arity, lhs_pos, rhs_pos)) ← return $ env.relation_info c, args ← return $ get_app_args e, guard (args.length = arity), (some lhs) ← return $ args.nth lhs_pos, (some rhs) ← return $ args.nth rhs_pos, return (c, lhs, rhs) meta def target_lhs_rhs : tactic (name × expr × expr) := target >>= relation_lhs_rhs meta def subst_vars_aux : list expr → tactic unit | [] := failed | (h::hs) := do o ← try_core (subst h), if o.is_none then subst_vars_aux hs else return () /-- Try to apply subst exhaustively -/ meta def subst_vars : tactic unit := repeat (local_context >>= subst_vars_aux) >> try (reflexivity reducible) end tactic
9c371f28af8f960fad4795039f4e5ba2903c5be1
9cb9db9d79fad57d80ca53543dc07efb7c4f3838
/src/normed_snake.lean
080d578b1dbfcc78775f4d87c57ffd843dbfed94
[]
no_license
mr-infty/lean-liquid
3ff89d1f66244b434654c59bdbd6b77cb7de0109
a8db559073d2101173775ccbd85729d3a4f1ed4d
refs/heads/master
1,678,465,145,334
1,614,565,310,000
1,614,565,310,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,390
lean
import system_of_complexes.basic universe variables u noncomputable theory open_locale nnreal open category_theory opposite normed_group_hom system_of_complexes variables (M M' N : system_of_complexes.{u}) (f : M ⟶ M') (g : M' ⟶ N) /-- The normed snake lemma, weak version. See Proposition 9.10 from Analytic.pdf -/ --TODO Add the non weak version for complete system of complexes lemma weak_normed_snake {k k' k'' K K' K'' : ℝ≥0} [hk : fact (1 ≤ k)] [hk' : fact (1 ≤ k')] [hk'' : fact (1 ≤ k'')] {m : ℤ} {c₀ : ℝ≥0} (hM : M.is_weak_bounded_exact k K m c₀) (hM' : M'.is_weak_bounded_exact k' K' m c₀) (hM'_adm : M'.admissible) (hf : ∀ c i, is_strict (f.apply : M c i ⟶ M' c i)) (Hf : ∀ (c : ℝ≥0) (i : ℤ) (hi : i ≤ m + 1) (x : M (k'' * c) i), ∥(res x : M c i)∥ ≤ K'' * ∥f x∥) (hg : ∀ c i, (g.apply : M' c i ⟶ N c i).ker = f.apply.range) (hgquot : system_of_complexes.is_quotient g) : N.is_weak_bounded_exact (k''*k*k') (K'*(K*K'' + 1)) (m - 1) c₀ := begin have bound_nonneg : (0 : ℝ) ≤ K' * (K * K'' + 1), { exact_mod_cast nnreal.zero_le_coe }, intros c hc i hi, let c₁ := k'' * (k * (k' * c)), suffices : ∀ n : N c₁ (i + 1), ∀ ε > 0, ∃ y : N c i, ∥res n - d y∥ ≤ K' * (K * K'' + 1) * ∥d n∥ + ε, { dsimp [c₁] at this, intros n₁ ε hε, haveI hc : fact (k'' * k * k' * c = c₁) := by { dsimp [fact, c₁], ring }, let n : ↥(N c₁ (i + 1)) := res n₁, rcases this n ε hε with ⟨y, hy : ∥res (res n₁) - d y∥ ≤ K' * (K * K'' + 1) * ∥d (res n₁)∥ + ε⟩, rw [res_res, d_res] at hy, have : ∥(res (d n₁) : N (k'' * (k * (k' * c))) (i + 1 + 1))∥ ≤ ∥d n₁∥, by { apply (admissible_of_quotient hgquot hM'_adm).res_norm_noninc, }, exact ⟨y, hy.trans (add_le_add_right (mul_le_mul_of_nonneg_left this bound_nonneg) ε)⟩ }, intros n ε hε, let ε₁ := ε/(K' * (K * K'' + 2) + 1), have honele : 1 ≤ K' * (K * K'' + 2) + 1, by { change fact _, apply_instance }, have hε₁_ε : (K' * (K * K'' + 2) + 1 : ℝ)*ε₁ = ε, from mul_div_cancel' _ (by exact_mod_cast ne_of_gt (lt_of_lt_of_le zero_lt_one honele)), have hε₁ : 0 < ε₁, from div_pos hε (lt_of_lt_of_le zero_lt_one honele), let c₁ := k''*(k*(k'*c)), obtain ⟨m' : M' c₁ (i + 1), hm' : g m' = n⟩ := (hgquot _ _).surjective _, let m₁' := d m', have hm₁' : g m₁' = d n := by simpa [hm'] using (d_apply _ _ g m').symm, obtain ⟨m₁'' : M' c₁ (i + 1 + 1), hgm₁'' : g m₁'' = d n, hnorm_m₁'' : ∥m₁''∥ < ∥d n∥ + ε₁⟩ := quotient_norm_lift (hgquot _ _) hε₁ (d n), obtain ⟨m₁, hm₁⟩ : ∃ m₁ : M c₁ (i + 1 + 1), f m₁ + m₁'' = m₁', { have hrange : m₁' - m₁'' ∈ f.apply.range, { rw [← hg _ _, mem_ker _ _, normed_group_hom.map_sub], change g m₁' - g m₁'' = 0, rw [hm₁', hgm₁'', sub_self] }, obtain ⟨m₁, hm₁ : f m₁ = m₁' - m₁''⟩ := (mem_range _ _).1 hrange, exact ⟨m₁, by rw [hm₁, sub_add_cancel]⟩ }, have hm₂ : f (d m₁) = -d m₁'', { rw [← d_apply, eq_sub_of_add_eq hm₁, normed_group_hom.map_sub, ← coe_comp, d, d, homological_complex.d_squared, coe_zero, ← neg_inj, pi.zero_apply, zero_sub], }, have hle : ∥res (d m₁)∥ ≤ K'' * ∥m₁''∥, calc ∥res (d m₁)∥ ≤ K'' * ∥f (d m₁)∥ : Hf _ _ (by linarith) (d m₁) ... = K'' * ∥d m₁''∥ : by rw [hm₂, norm_neg] ... ≤ K'' * ∥m₁''∥ : (mul_le_mul_of_nonneg_left (hM'_adm.d_norm_noninc _ _ m₁'') $ nnreal.coe_nonneg K''), obtain ⟨m₀ : M (k'*c) (i+1), hm₀ : ∥res (res m₁) - d m₀∥ ≤ K * ∥d (res m₁)∥ + ε₁⟩ := hM _ (le_trans hc $ le_mul_of_one_le_left' hk') _ (by linarith) (res m₁) ε₁ hε₁, replace hm₀ : ∥res m₁ - d m₀∥ ≤ K * K'' * ∥d n∥ + K*K''*ε₁ + ε₁, calc ∥res m₁ - d m₀∥ = ∥res (res m₁) - d m₀∥ : by rw res_res ... ≤ K * ∥d (res m₁)∥ + ε₁ : hm₀ ... = K * ∥res (d m₁)∥ + ε₁ : by rw d_res ... ≤ K*(K'' * ∥m₁''∥) + ε₁ : add_le_add_right (mul_le_mul_of_nonneg_left hle nnreal.zero_le_coe) _ ... ≤ K*(K'' * (∥d n∥ + ε₁)) + ε₁ : add_le_add_right (mul_le_mul_of_nonneg_left (mul_le_mul_of_nonneg_left hnorm_m₁''.le nnreal.zero_le_coe) nnreal.zero_le_coe) ε₁ ... = K * K'' * ∥d n∥ + K*K''*ε₁ + ε₁ : by ring, let mnew' := res m' - f m₀, let mnew₁' := d mnew', have hmnew' : mnew₁' = res m₁'' + f (res m₁ - d m₀), calc mnew₁' = d (res m' - f m₀) : rfl ... = res (d m') - (f (d m₀)) : by rw [normed_group_hom.map_sub, d_res _, d_apply] ... = res (d m') - (f (res m₁)) + (f (res m₁) - f (d m₀)) : by abel ... = res m₁'' + f ((res m₁) - (d m₀)) : by { rw [← system_of_complexes.map_sub, ← res_apply, ← normed_group_hom.map_sub, ← sub_eq_of_eq_add' hm₁.symm] }, have hnormle : ∥mnew₁'∥ ≤ (K*K'' + 1)*∥d n∥ + (K*K'' + 2) * ε₁, calc ∥mnew₁'∥ = ∥res m₁'' + f (res m₁ - d m₀)∥ : by rw [hmnew'] ... ≤ ∥res m₁''∥ + ∥f (res m₁ - d m₀)∥ : norm_add_le _ _ ... ≤ ∥m₁''∥ + ∥f (res m₁ - d m₀)∥ : add_le_add_right (hM'_adm.res_norm_noninc _ _ _ infer_instance m₁'') _ ... = ∥m₁''∥ + ∥res m₁ - d m₀∥ : by erw hf ... ≤ ∥d n∥ + ε₁ + ∥res m₁ - d m₀∥ : add_le_add_right (le_of_lt hnorm_m₁'') _ ... ≤ ∥d n∥ + ε₁ + (K * K'' * ∥d n∥ + K * K'' * ε₁ + ε₁) : add_le_add_left hm₀ _ ... = (K*K'' + 1)*∥d n∥ + (K*K'' + 2) * ε₁ : by ring, obtain ⟨mnew₀ : M' c i, hmnew₀ : ∥res mnew' - d mnew₀∥ ≤ K' * ∥d mnew'∥ + ε₁⟩ := hM' _ hc _ (hi.trans (sub_one_lt m)) mnew' _ hε₁, replace hmnew₀ : ∥res mnew' - d mnew₀∥ ≤ K' * ((K * K'' + 1) * ∥d n∥ + (K * K'' + 2) * ε₁) + ε₁ := hmnew₀.trans (add_le_add_right (mul_le_mul_of_nonneg_left hnormle nnreal.zero_le_coe) ε₁), let nnew₀ : ↥(N c i) := g mnew₀, have hmnewlift : g (res mnew' - d mnew₀) = res n - d nnew₀, { suffices h : g mnew' = res n, { rw [system_of_complexes.map_sub, ← res_apply, ← d_apply, h, res_res] }, rw system_of_complexes.map_sub, have hker : f m₀ ∈ g.apply.ker, { rw [hg _ _, mem_range _ _], use [m₀, rfl] }, replace hker : g (f m₀) = 0, by rwa mem_ker at hker, rw [hker, sub_zero, ← res_apply, hm'] }, use nnew₀, rw ← hmnewlift, suffices : ∥res mnew' - d mnew₀∥ ≤ K' * (K * K'' + 1) * ∥d n∥ + ε, from (quotient_norm_le (hgquot _ _) (res mnew' - d mnew₀)).trans this, calc ∥res mnew' - d mnew₀∥ ≤ K' * ((K * K'' + 1) * ∥d n∥ + (K * K'' + 2) * ε₁) + ε₁ : hmnew₀ ... = K' * (K * K'' + 1) * ∥d n∥ + (K'*(K * K'' + 2) + 1)* ε₁ : by ring ... = K' * (K * K'' + 1) * ∥d n∥ + ε : by rw hε₁_ε, end
306dd96374a16d6b73cf340610f328770bbcea36
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/sites/cover_lifting.lean
deca91fbd087b9b556f6c586f04be7d0fe12eadf
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
13,245
lean
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import category_theory.sites.sheaf import category_theory.limits.kan_extension import category_theory.sites.cover_preserving /-! # Cover-lifting functors between sites. We define cover-lifting functors between sites as functors that pull covering sieves back to covering sieves. This concept is also known as *cocontinuous functors* or *cover-reflecting functors*, but we have chosen this name following [MM92] in order to avoid potential naming collision or confusion with the general definition of cocontinuous functors between categories as functors preserving small colimits. The definition given here seems stronger than the definition found elsewhere, but they are actually equivalent via `category_theory.grothendieck_topology.superset_covering`. (The precise statement is not formalized, but follows from it quite trivially). ## Main definitions * `category_theory.sites.cover_lifting`: a functor between sites is cover-lifting if it pulls back covering sieves to covering sieves * `category_theory.sites.copullback`: A cover-lifting functor `G : (C, J) ⥤ (D, K)` induces a morphism of sites in the same direction as the functor. ## Main results * `category_theory.sites.Ran_is_sheaf_of_cover_lifting`: If `G : C ⥤ D` is cover_lifting, then `Ran G.op` (`ₚu`) as a functor `(Cᵒᵖ ⥤ A) ⥤ (Dᵒᵖ ⥤ A)` of presheaves maps sheaves to sheaves. * `category_theory.pullback_copullback_adjunction`: If `G : (C, J) ⥤ (D, K)` is cover-lifting, cover-preserving, and compatible-preserving, then `pullback G` and `copullback G` are adjoint. ## References * [Elephant]: *Sketches of an Elephant*, P. T. Johnstone: C2.3. * [S. MacLane, I. Moerdijk, *Sheaves in Geometry and Logic*][MM92] * https://stacks.math.columbia.edu/tag/00XI -/ universes w v v₁ v₂ v₃ u u₁ u₂ u₃ noncomputable theory open category_theory open opposite open category_theory.presieve.family_of_elements open category_theory.presieve open category_theory.limits namespace category_theory section cover_lifting variables {C : Type*} [category C] {D : Type*} [category D] {E : Type*} [category E] variables (J : grothendieck_topology C) (K : grothendieck_topology D) variables {L : grothendieck_topology E} /-- A functor `G : (C, J) ⥤ (D, K)` between sites is called to have the cover-lifting property if for all covering sieves `R` in `D`, `R.pullback G` is a covering sieve in `C`. -/ @[nolint has_nonempty_instance] structure cover_lifting (G : C ⥤ D) : Prop := (cover_lift : ∀ {U : C} {S : sieve (G.obj U)} (hS : S ∈ K (G.obj U)), S.functor_pullback G ∈ J U) /-- The identity functor on a site is cover-lifting. -/ lemma id_cover_lifting : cover_lifting J J (𝟭 _) := ⟨λ _ _ h, by simpa using h⟩ variables {J K} /-- The composition of two cover-lifting functors are cover-lifting -/ lemma comp_cover_lifting {F : C ⥤ D} (hu : cover_lifting J K F) {G : D ⥤ E} (hv : cover_lifting K L G) : cover_lifting J L (F ⋙ G) := ⟨λ _ S h, hu.cover_lift (hv.cover_lift h)⟩ end cover_lifting /-! We will now prove that `Ran G.op` (`ₚu`) maps sheaves to sheaves if `G` is cover-lifting. This can be found in <https://stacks.math.columbia.edu/tag/00XK>. However, the proof given here uses the amalgamation definition of sheaves, and thus does not require that `C` or `D` has categorical pullbacks. For the following proof sketch, `⊆` denotes the homs on `C` and `D` as in the topological analogy. By definition, the presheaf `𝒢 : Dᵒᵖ ⥤ A` is a sheaf if for every sieve `S` of `U : D`, and every compatible family of morphisms `X ⟶ 𝒢(V)` for each `V ⊆ U : S` with a fixed source `X`, we can glue them into a morphism `X ⟶ 𝒢(U)`. Since the presheaf `𝒢 := (Ran G.op).obj ℱ.val` is defined via `𝒢(U) = lim_{G(V) ⊆ U} ℱ(V)`, for gluing the family `x` into a `X ⟶ 𝒢(U)`, it suffices to provide a `X ⟶ ℱ(Y)` for each `G(Y) ⊆ U`. This can be done since `{ Y' ⊆ Y : G(Y') ⊆ U ∈ S}` is a covering sieve for `Y` on `C` (by the cover-lifting property of `G`). Thus the morphisms `X ⟶ 𝒢(G(Y')) ⟶ ℱ(Y')` can be glued into a morphism `X ⟶ ℱ(Y)`. This is done in `get_sections`. In `glued_limit_cone`, we verify these obtained sections are indeed compatible, and thus we obtain A `X ⟶ 𝒢(U)`. The remaining work is to verify that this is indeed the amalgamation and is unique. -/ variables {C D : Type u} [category.{v} C] [category.{v} D] variables {A : Type w} [category.{max u v} A] [has_limits A] variables {J : grothendieck_topology C} {K : grothendieck_topology D} namespace Ran_is_sheaf_of_cover_lifting variables {G : C ⥤ D} (hu : cover_lifting J K G) (ℱ : Sheaf J A) variables {X : A} {U : D} (S : sieve U) (hS : S ∈ K U) instance (X : Dᵒᵖ) : has_limits_of_shape (structured_arrow X G.op) A := begin haveI := limits.has_limits_of_size_shrink.{v (max u v) (max u v) (max u v)} A, exact has_limits_of_size.has_limits_of_shape _ end variables (x : S.arrows.family_of_elements ((Ran G.op).obj ℱ.val ⋙ coyoneda.obj (op X))) variables (hx : x.compatible) /-- The family of morphisms `X ⟶ 𝒢(G(Y')) ⟶ ℱ(Y')` defined on `{ Y' ⊆ Y : G(Y') ⊆ U ∈ S}`. -/ def pulledback_family (Y : structured_arrow (op U) G.op) := (((x.pullback Y.hom.unop).functor_pullback G).comp_presheaf_map (show _ ⟶ _, from whisker_right ((Ran.adjunction A G.op).counit.app ℱ.val) (coyoneda.obj (op X)))) @[simp] lemma pulledback_family_apply (Y : structured_arrow (op U) G.op) {W} {f : W ⟶ _} (Hf) : pulledback_family ℱ S x Y f Hf = x (G.map f ≫ Y.hom.unop) Hf ≫ ((Ran.adjunction A G.op).counit.app ℱ.val).app (op W) := rfl variables {x} {S} include hu hS hx /-- Given a `G(Y) ⊆ U`, we can find a unique section `X ⟶ ℱ(Y)` that agrees with `x`. -/ def get_section (Y : structured_arrow (op U) G.op) : X ⟶ ℱ.val.obj Y.right := begin let hom_sh := whisker_right ((Ran.adjunction A G.op).counit.app ℱ.val) (coyoneda.obj (op X)), have S' := (K.pullback_stable Y.hom.unop hS), have hs' := ((hx.pullback Y.3.unop).functor_pullback G).comp_presheaf_map hom_sh, exact (ℱ.2 X _ (hu.cover_lift S')).amalgamate _ hs' end lemma get_section_is_amalgamation (Y : structured_arrow (op U) G.op) : (pulledback_family ℱ S x Y).is_amalgamation (get_section hu ℱ hS hx Y) := is_sheaf_for.is_amalgamation _ _ lemma get_section_is_unique (Y : structured_arrow (op U) G.op) {y} (H : (pulledback_family ℱ S x Y).is_amalgamation y) : y = get_section hu ℱ hS hx Y := begin apply is_sheaf_for.is_separated_for _ (pulledback_family ℱ S x Y), { exact H }, { apply get_section_is_amalgamation }, { exact ℱ.2 X _ (hu.cover_lift (K.pullback_stable Y.hom.unop hS)) } end @[simp] lemma get_section_commute {Y Z : structured_arrow (op U) G.op} (f : Y ⟶ Z) : get_section hu ℱ hS hx Y ≫ ℱ.val.map f.right = get_section hu ℱ hS hx Z := begin apply get_section_is_unique, intros V' fV' hV', have eq : Z.hom = Y.hom ≫ (G.map f.right.unop).op, { convert f.w, erw category.id_comp }, rw eq at hV', convert get_section_is_amalgamation hu ℱ hS hx Y (fV' ≫ f.right.unop) _ using 1, { tidy }, { simp only [eq, quiver.hom.unop_op, pulledback_family_apply, functor.map_comp, unop_comp, category.assoc] }, { change S (G.map _ ≫ Y.hom.unop), simpa only [functor.map_comp, category.assoc] using hV' } end /-- The limit cone in order to glue the sections obtained via `get_section`. -/ def glued_limit_cone : limits.cone (Ran.diagram G.op ℱ.val (op U)) := { X := X, π := { app := λ Y, get_section hu ℱ hS hx Y, naturality' := λ Y Z f, by tidy } } @[simp] lemma glued_limit_cone_π_app (W) : (glued_limit_cone hu ℱ hS hx).π.app W = get_section hu ℱ hS hx W := rfl /-- The section obtained by passing `glued_limit_cone` into `category_theory.limits.limit.lift`. -/ def glued_section : X ⟶ ((Ran G.op).obj ℱ.val).obj (op U) := limit.lift _ (glued_limit_cone hu ℱ hS hx) /-- A helper lemma for the following two lemmas. Basically stating that if the section `y : X ⟶ 𝒢(V)` coincides with `x` on `G(V')` for all `G(V') ⊆ V ∈ S`, then `X ⟶ 𝒢(V) ⟶ ℱ(W)` is indeed the section obtained in `get_sections`. That said, this is littered with some more categorical jargon in order to be applied in the following lemmas easier. -/ lemma helper {V} (f : V ⟶ U) (y : X ⟶ ((Ran G.op).obj ℱ.val).obj (op V)) (W) (H : ∀ {V'} {fV : G.obj V' ⟶ V} (hV), y ≫ ((Ran G.op).obj ℱ.val).map fV.op = x (fV ≫ f) hV) : y ≫ limit.π (Ran.diagram G.op ℱ.val (op V)) W = (glued_limit_cone hu ℱ hS hx).π.app ((structured_arrow.map f.op).obj W) := begin dsimp only [glued_limit_cone_π_app], apply get_section_is_unique hu ℱ hS hx ((structured_arrow.map f.op).obj W), intros V' fV' hV', dsimp only [Ran.adjunction, Ran.equiv, pulledback_family_apply], erw [adjunction.adjunction_of_equiv_right_counit_app], have : y ≫ ((Ran G.op).obj ℱ.val).map (G.map fV' ≫ W.hom.unop).op = x (G.map fV' ≫ W.hom.unop ≫ f) (by simpa only using hV'), { convert H (show S ((G.map fV' ≫ W.hom.unop) ≫ f), by simpa only [category.assoc] using hV') using 2, simp only [category.assoc] }, simp only [quiver.hom.unop_op, equiv.symm_symm, structured_arrow.map_obj_hom, unop_comp, equiv.coe_fn_mk, functor.comp_map, coyoneda_obj_map, category.assoc, ← this, op_comp, Ran_obj_map, nat_trans.id_app], erw [category.id_comp, limit.pre_π], congr, convert limit.w (Ran.diagram G.op ℱ.val (op V)) (structured_arrow.hom_mk' W fV'.op), rw structured_arrow.map_mk, erw category.comp_id, simp only [quiver.hom.unop_op, functor.op_map, quiver.hom.op_unop] end /-- Verify that the `glued_section` is an amalgamation of `x`. -/ lemma glued_section_is_amalgamation : x.is_amalgamation (glued_section hu ℱ hS hx) := begin intros V fV hV, ext W, simp only [functor.comp_map, limit.lift_pre, coyoneda_obj_map, Ran_obj_map, glued_section], erw limit.lift_π, symmetry, convert helper hu ℱ hS hx _ (x fV hV) _ _ using 1, intros V' fV' hV', convert hx (fV') (𝟙 _) hV hV' (by rw category.id_comp), simp only [op_id, functor_to_types.map_id_apply] end /-- Verify that the amalgamation is indeed unique. -/ lemma glued_section_is_unique (y) (hy: x.is_amalgamation y) : y = glued_section hu ℱ hS hx := begin unfold glued_section limit.lift, ext W, erw limit.lift_π, convert helper hu ℱ hS hx (𝟙 _) y W _, { simp only [op_id, structured_arrow.map_id] }, { intros V' fV' hV', convert hy fV' (by simpa only [category.comp_id] using hV'), erw category.comp_id } end end Ran_is_sheaf_of_cover_lifting /-- If `G` is cover_lifting, then `Ran G.op` pushes sheaves to sheaves. This result is basically https://stacks.math.columbia.edu/tag/00XK, but without the condition that `C` or `D` has pullbacks. -/ theorem Ran_is_sheaf_of_cover_lifting {G : C ⥤ D} (hG : cover_lifting J K G) (ℱ : Sheaf J A) : presheaf.is_sheaf K ((Ran G.op).obj ℱ.val) := begin intros X U S hS x hx, split, swap, { apply Ran_is_sheaf_of_cover_lifting.glued_section hG ℱ hS hx }, split, { apply Ran_is_sheaf_of_cover_lifting.glued_section_is_amalgamation }, { apply Ran_is_sheaf_of_cover_lifting.glued_section_is_unique } end variable (A) /-- A cover-lifting functor induces a morphism of sites in the same direction as the functor. -/ def sites.copullback {G : C ⥤ D} (hG : cover_lifting J K G) : Sheaf J A ⥤ Sheaf K A := { obj := λ ℱ, ⟨(Ran G.op).obj ℱ.val, Ran_is_sheaf_of_cover_lifting hG ℱ⟩, map := λ _ _ f, ⟨(Ran G.op).map f.val⟩, map_id' := λ ℱ, Sheaf.hom.ext _ _ $ (Ran G.op).map_id ℱ.val, map_comp' := λ _ _ _ f g, Sheaf.hom.ext _ _ $ (Ran G.op).map_comp f.val g.val } /-- Given a functor between sites that is cover-preserving, cover-lifting, and compatible-preserving, the pullback and copullback along `G` are adjoint to each other -/ @[simps unit_app_val counit_app_val] noncomputable def sites.pullback_copullback_adjunction {G : C ⥤ D} (Hp : cover_preserving J K G) (Hl : cover_lifting J K G) (Hc : compatible_preserving K G) : sites.pullback A Hc Hp ⊣ sites.copullback A Hl := { hom_equiv := λ X Y, { to_fun := λ f, ⟨(Ran.adjunction A G.op).hom_equiv X.val Y.val f.val⟩, inv_fun := λ f, ⟨((Ran.adjunction A G.op).hom_equiv X.val Y.val).symm f.val⟩, left_inv := λ f, by { ext1, dsimp, rw [equiv.symm_apply_apply] }, right_inv := λ f, by { ext1, dsimp, rw [equiv.apply_symm_apply] } }, unit := { app := λ X, ⟨(Ran.adjunction A G.op).unit.app X.val⟩, naturality' := λ _ _ f, Sheaf.hom.ext _ _ $ (Ran.adjunction A G.op).unit.naturality f.val }, counit := { app := λ X, ⟨(Ran.adjunction A G.op).counit.app X.val⟩, naturality' := λ _ _ f, Sheaf.hom.ext _ _ $ (Ran.adjunction A G.op).counit.naturality f.val }, hom_equiv_unit' := λ X Y f, by { ext1, apply (Ran.adjunction A G.op).hom_equiv_unit }, hom_equiv_counit' := λ X Y f, by { ext1, apply (Ran.adjunction A G.op).hom_equiv_counit } } end category_theory
c9f8c3f5e12161ba6ecf658fec7e1b83b55fcabc
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/try_for_heap.lean
4a4c0fdd3d9586631303125b99ecfecc8e717277
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
2,227
lean
constant heap : Type constant ptr : Type constant val : Type constant pt : ptr → val → heap constant hunion : heap → heap → heap constant is_def : heap → Prop infix `∙`:60 := hunion infix `↣`:70 := pt /- constant hunion_is_assoc : is_associative heap hunion constant hunion_is_comm : is_commutative heap hunion attribute [instance] hunion_is_comm hunion_is_assoc axiom noalias : ∀ (h : heap) (y₁ y₂ : ptr) (w₁ w₂ : val), is_def (h ∙ y₁ ↣ w₁ ∙ y₂ ↣ w₂) → y₁ ≠ y₂ -/ open tactic meta def my_tac : tactic unit := using_smt `[ { [smt] intros, smt_tactic.add_lemmas_from_facts, eblast } ] -- set_option profiler true example (h₁ h₂ : heap) (x₁ x₂ x₃ x₄ : ptr) (v₁ v₂ v₃ : val) (hcomm : ∀ x y, x ∙ y = y ∙ x) (hassoc : ∀ x y z, (x ∙ y) ∙ z = x ∙ (y ∙ z)) (hnoalias : ∀ h y₁ y₂ w₁ w₂, is_def (h ∙ y₁ ↣ w₁ ∙ y₂ ↣ w₂) → y₁ ≠ y₂) : is_def (h₁ ∙ (x₁ ↣ v₁ ∙ x₂ ↣ v₂) ∙ h₂ ∙ (x₃ ↣ v₃)) → x₁ ≠ x₃ ∧ x₁ ≠ x₂ ∧ x₂ ≠ x₃ := by my_tac -- should work example (h₁ h₂ : heap) (x₁ x₂ x₃ x₄ : ptr) (v₁ v₂ v₃ : val) (hcomm : ∀ x y, x ∙ y = y ∙ x) (hassoc : ∀ x y z, (x ∙ y) ∙ z = x ∙ (y ∙ z)) (hnoalias : ∀ h y₁ y₂ w₁ w₂, is_def (h ∙ y₁ ↣ w₁ ∙ y₂ ↣ w₂) → y₁ ≠ y₂) : is_def (h₁ ∙ (x₁ ↣ v₁ ∙ x₂ ↣ v₂) ∙ h₂ ∙ (x₃ ↣ v₃)) → x₁ ≠ x₃ ∧ x₁ ≠ x₂ ∧ x₂ ≠ x₃ := by try_for 100 $ my_tac -- should timeout /- Remark: disable this test because it was too slow. TODO(Leo): enable again after we resolve the cache issues, and re-implement the SMT tactic framework example (h₁ h₂ : heap) (x₁ x₂ x₃ x₄ : ptr) (v₁ v₂ v₃ : val) (hcomm : ∀ x y, x ∙ y = y ∙ x) (hassoc : ∀ x y z, (x ∙ y) ∙ z = x ∙ (y ∙ z)) (hnoalias : ∀ h y₁ y₂ w₁ w₂, is_def (h ∙ y₁ ↣ w₁ ∙ y₂ ↣ w₂) → y₁ ≠ y₂) : is_def (h₁ ∙ (x₁ ↣ v₁ ∙ x₂ ↣ v₂) ∙ h₂ ∙ (x₃ ↣ v₃)) → x₁ ≠ x₃ ∧ x₁ ≠ x₂ ∧ x₂ ≠ x₃ := by try_for 100000 $ my_tac -- should work -/
e355411244a8f5b9cad929526ceee6084d10b5bd
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/analysis/topology.lean
3fa267b906750e20c771cb76e42d7a7a5fd01db3
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
8,197
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro Computational realization of topological spaces (experimental). -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.topology.bases import Mathlib.data.analysis.filter import Mathlib.PostPort universes u_1 u_2 l u_3 u_4 u_5 u_6 namespace Mathlib /-- A `ctop α σ` is a realization of a topology (basis) on `α`, represented by a type `σ` together with operations for the top element and the intersection operation. -/ structure ctop (α : Type u_1) (σ : Type u_2) where f : σ → set α top : α → σ top_mem : ∀ (x : α), x ∈ f (top x) inter : (a b : σ) → (x : α) → x ∈ f a ∩ f b → σ inter_mem : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), x ∈ f (inter a b x h) inter_sub : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), f (inter a b x h) ⊆ f a ∩ f b namespace ctop protected instance has_coe_to_fun {α : Type u_1} {σ : Type u_3} : has_coe_to_fun (ctop α σ) := has_coe_to_fun.mk (fun (x : ctop α σ) => σ → set α) f @[simp] theorem coe_mk {α : Type u_1} {σ : Type u_3} (f : σ → set α) (T : α → σ) (h₁ : ∀ (x : α), x ∈ f (T x)) (I : (a b : σ) → (x : α) → x ∈ f a ∩ f b → σ) (h₂ : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), x ∈ f (I a b x h)) (h₃ : ∀ (a b : σ) (x : α) (h : x ∈ f a ∩ f b), f (I a b x h) ⊆ f a ∩ f b) (a : σ) : coe_fn (mk f T h₁ I h₂ h₃) a = f a := rfl /-- Map a ctop to an equivalent representation type. -/ def of_equiv {α : Type u_1} {σ : Type u_3} {τ : Type u_4} (E : σ ≃ τ) : ctop α σ → ctop α τ := sorry @[simp] theorem of_equiv_val {α : Type u_1} {σ : Type u_3} {τ : Type u_4} (E : σ ≃ τ) (F : ctop α σ) (a : τ) : coe_fn (of_equiv E F) a = coe_fn F (coe_fn (equiv.symm E) a) := sorry /-- Every `ctop` is a topological space. -/ def to_topsp {α : Type u_1} {σ : Type u_3} (F : ctop α σ) : topological_space α := topological_space.generate_from (set.range (f F)) theorem to_topsp_is_topological_basis {α : Type u_1} {σ : Type u_3} (F : ctop α σ) : topological_space.is_topological_basis (set.range (f F)) := sorry @[simp] theorem mem_nhds_to_topsp {α : Type u_1} {σ : Type u_3} (F : ctop α σ) {s : set α} {a : α} : s ∈ nhds a ↔ ∃ (b : σ), a ∈ coe_fn F b ∧ coe_fn F b ⊆ s := sorry end ctop /-- A `ctop` realizer for the topological space `T` is a `ctop` which generates `T`. -/ structure ctop.realizer (α : Type u_5) [T : topological_space α] where σ : Type u_6 F : ctop α σ eq : ctop.to_topsp F = T protected def ctop.to_realizer {α : Type u_1} {σ : Type u_3} (F : ctop α σ) : ctop.realizer α := ctop.realizer.mk σ F sorry namespace ctop.realizer protected theorem is_basis {α : Type u_1} [T : topological_space α] (F : realizer α) : topological_space.is_topological_basis (set.range (f (F F))) := eq.mp (Eq._oldrec (Eq.refl (topological_space.is_topological_basis (set.range (f (F F))))) (eq F)) (to_topsp_is_topological_basis (F F)) protected theorem mem_nhds {α : Type u_1} [T : topological_space α] (F : realizer α) {s : set α} {a : α} : s ∈ nhds a ↔ ∃ (b : σ F), a ∈ coe_fn (F F) b ∧ coe_fn (F F) b ⊆ s := eq.mp (Eq._oldrec (Eq.refl (s ∈ nhds a ↔ ∃ (b : σ F), a ∈ coe_fn (F F) b ∧ coe_fn (F F) b ⊆ s)) (eq F)) (mem_nhds_to_topsp (F F)) theorem is_open_iff {α : Type u_1} [topological_space α] (F : realizer α) {s : set α} : is_open s ↔ ∀ (a : α), a ∈ s → ∃ (b : σ F), a ∈ coe_fn (F F) b ∧ coe_fn (F F) b ⊆ s := iff.trans is_open_iff_mem_nhds (ball_congr fun (a : α) (h : a ∈ s) => realizer.mem_nhds F) theorem is_closed_iff {α : Type u_1} [topological_space α] (F : realizer α) {s : set α} : is_closed s ↔ ∀ (a : α), (∀ (b : σ F), a ∈ coe_fn (F F) b → ∃ (z : α), z ∈ coe_fn (F F) b ∩ s) → a ∈ s := sorry theorem mem_interior_iff {α : Type u_1} [topological_space α] (F : realizer α) {s : set α} {a : α} : a ∈ interior s ↔ ∃ (b : σ F), a ∈ coe_fn (F F) b ∧ coe_fn (F F) b ⊆ s := iff.trans mem_interior_iff_mem_nhds (realizer.mem_nhds F) protected theorem is_open {α : Type u_1} [topological_space α] (F : realizer α) (s : σ F) : is_open (coe_fn (F F) s) := sorry theorem ext' {α : Type u_1} [T : topological_space α] {σ : Type u_2} {F : ctop α σ} (H : ∀ (a : α) (s : set α), s ∈ nhds a ↔ ∃ (b : σ), a ∈ coe_fn F b ∧ coe_fn F b ⊆ s) : to_topsp F = T := sorry theorem ext {α : Type u_1} [T : topological_space α] {σ : Type u_2} {F : ctop α σ} (H₁ : ∀ (a : σ), is_open (coe_fn F a)) (H₂ : ∀ (a : α) (s : set α), s ∈ nhds a → ∃ (b : σ), a ∈ coe_fn F b ∧ coe_fn F b ⊆ s) : to_topsp F = T := sorry protected def id {α : Type u_1} [topological_space α] : realizer α := mk (Subtype fun (x : set α) => is_open x) (mk subtype.val (fun (_x : α) => { val := set.univ, property := is_open_univ }) set.mem_univ (fun (_x : Subtype fun (x : set α) => is_open x) => sorry) sorry sorry) sorry def of_equiv {α : Type u_1} {τ : Type u_4} [topological_space α] (F : realizer α) (E : σ F ≃ τ) : realizer α := mk τ (of_equiv E (F F)) sorry @[simp] theorem of_equiv_σ {α : Type u_1} {τ : Type u_4} [topological_space α] (F : realizer α) (E : σ F ≃ τ) : σ (of_equiv F E) = τ := rfl @[simp] theorem of_equiv_F {α : Type u_1} {τ : Type u_4} [topological_space α] (F : realizer α) (E : σ F ≃ τ) (s : τ) : coe_fn (F (of_equiv F E)) s = coe_fn (F F) (coe_fn (equiv.symm E) s) := sorry protected def nhds {α : Type u_1} [topological_space α] (F : realizer α) (a : α) : filter.realizer (nhds a) := filter.realizer.mk (Subtype fun (s : σ F) => a ∈ coe_fn (F F) s) (cfilter.mk (fun (s : Subtype fun (s : σ F) => a ∈ coe_fn (F F) s) => coe_fn (F F) (subtype.val s)) { val := top (F F) a, property := sorry } (fun (_x : Subtype fun (s : σ F) => a ∈ coe_fn (F F) s) => sorry) sorry sorry) sorry @[simp] theorem nhds_σ {α : Type u_1} {β : Type u_2} [topological_space α] (m : α → β) (F : realizer α) (a : α) : filter.realizer.σ (realizer.nhds F a) = Subtype fun (s : σ F) => a ∈ coe_fn (F F) s := rfl @[simp] theorem nhds_F {α : Type u_1} {β : Type u_2} [topological_space α] (m : α → β) (F : realizer α) (a : α) (s : filter.realizer.σ (realizer.nhds F a)) : coe_fn (filter.realizer.F (realizer.nhds F a)) s = coe_fn (F F) (subtype.val s) := rfl theorem tendsto_nhds_iff {α : Type u_1} {β : Type u_2} [topological_space α] {m : β → α} {f : filter β} (F : filter.realizer f) (R : realizer α) {a : α} : filter.tendsto m f (nhds a) ↔ ∀ (t : σ R), a ∈ coe_fn (F R) t → ∃ (s : filter.realizer.σ F), ∀ (x : β), x ∈ coe_fn (filter.realizer.F F) s → m x ∈ coe_fn (F R) t := iff.trans (filter.realizer.tendsto_iff m F (realizer.nhds R a)) subtype.forall end ctop.realizer structure locally_finite.realizer {α : Type u_1} {β : Type u_2} [topological_space α] (F : ctop.realizer α) (f : β → set α) where bas : (a : α) → Subtype fun (s : ctop.realizer.σ F) => a ∈ coe_fn (ctop.realizer.F F) s sets : (x : α) → fintype ↥(set_of fun (i : β) => set.nonempty (f i ∩ coe_fn (ctop.realizer.F F) ↑(bas x))) theorem locally_finite.realizer.to_locally_finite {α : Type u_1} {β : Type u_2} [topological_space α] {F : ctop.realizer α} {f : β → set α} (R : locally_finite.realizer F f) : locally_finite f := sorry theorem locally_finite_iff_exists_realizer {α : Type u_1} {β : Type u_2} [topological_space α] (F : ctop.realizer α) {f : β → set α} : locally_finite f ↔ Nonempty (locally_finite.realizer F f) := sorry def compact.realizer {α : Type u_1} [topological_space α] (R : ctop.realizer α) (s : set α) := {f : filter α} → (F : filter.realizer f) → (x : filter.realizer.σ F) → f ≠ ⊥ → coe_fn (filter.realizer.F F) x ⊆ s → Subtype fun (a : α) => a ∈ s ∧ nhds a ⊓ f ≠ ⊥
ed25f772f716756ad4b950ff6c3dee3d4f0b2d2e
acc85b4be2c618b11fc7cb3005521ae6858a8d07
/data/list/basic.lean
cec1c6888e72b4f45bc98834dc0183f82d4470dc
[ "Apache-2.0" ]
permissive
linpingchuan/mathlib
d49990b236574df2a45d9919ba43c923f693d341
5ad8020f67eb13896a41cc7691d072c9331b1f76
refs/heads/master
1,626,019,377,808
1,508,048,784,000
1,508,048,784,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
94,159
lean
/- Copyright (c) 2014 Parikshit Khanna. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro Basic properties of lists. -/ import logic.basic data.nat.basic data.option data.bool tactic.interactive open function nat namespace list universes u v w variables {α : Type u} {β : Type v} {γ : Type w} @[simp] theorem cons_ne_nil (a : α) (l : list α) : a::l ≠ []. theorem head_eq_of_cons_eq {h₁ h₂ : α} {t₁ t₂ : list α} : (h₁::t₁) = (h₂::t₂) → h₁ = h₂ := assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pheq) theorem tail_eq_of_cons_eq {h₁ h₂ : α} {t₁ t₂ : list α} : (h₁::t₁) = (h₂::t₂) → t₁ = t₂ := assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pteq) theorem cons_inj {a : α} : injective (cons a) := assume l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe @[simp] theorem cons_inj' (a : α) {l l' : list α} : a::l = a::l' ↔ l = l' := ⟨λ e, cons_inj e, congr_arg _⟩ /- mem -/ theorem eq_nil_of_forall_not_mem : ∀ {l : list α}, (∀ a, a ∉ l) → l = nil | [] := assume h, rfl | (b :: l') := assume h, absurd (mem_cons_self b l') (h b) theorem mem_singleton_self (a : α) : a ∈ [a] := mem_cons_self _ _ theorem eq_of_mem_singleton {a b : α} : a ∈ [b] → a = b := assume : a ∈ [b], or.elim (eq_or_mem_of_mem_cons this) (assume : a = b, this) (assume : a ∈ [], absurd this (not_mem_nil a)) @[simp] theorem mem_singleton {a b : α} : a ∈ [b] ↔ a = b := ⟨eq_of_mem_singleton, by intro h; simp [h]⟩ theorem mem_of_mem_cons_of_mem {a b : α} {l : list α} : a ∈ b::l → b ∈ l → a ∈ l := assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl) (assume : a = b, begin subst a, exact binl end) (assume : a ∈ l, this) theorem not_mem_append {a : α} {s t : list α} (h₁ : a ∉ s) (h₂ : a ∉ t) : a ∉ s ++ t := mt mem_append.1 $ not_or_distrib.2 ⟨h₁, h₂⟩ theorem length_pos_of_mem {a : α} : ∀ {l : list α}, a ∈ l → 0 < length l | (b::l) _ := zero_lt_succ _ theorem exists_mem_of_length_pos : ∀ {l : list α}, 0 < length l → ∃ a, a ∈ l | (b::l) _ := ⟨b, mem_cons_self _ _⟩ theorem mem_split {a : α} {l : list α} (h : a ∈ l) : ∃ s t : list α, l = s ++ a :: t := begin induction l with b l ih; simp at h; cases h with h h, { subst h, exact ⟨[], l, rfl⟩ }, { cases ih h with s e, cases e with t e, subst l, exact ⟨b::s, t, rfl⟩ } end theorem mem_of_ne_of_mem {a y : α} {l : list α} (h₁ : a ≠ y) (h₂ : a ∈ y :: l) : a ∈ l := or.elim (eq_or_mem_of_mem_cons h₂) (λe, absurd e h₁) (λr, r) theorem ne_of_not_mem_cons {a b : α} {l : list α} : a ∉ b::l → a ≠ b := assume nin aeqb, absurd (or.inl aeqb) nin theorem not_mem_of_not_mem_cons {a b : α} {l : list α} : a ∉ b::l → a ∉ l := assume nin nainl, absurd (or.inr nainl) nin theorem not_mem_cons_of_ne_of_not_mem {a y : α} {l : list α} : a ≠ y → a ∉ l → a ∉ y::l := assume p1 p2, not.intro (assume Pain, absurd (eq_or_mem_of_mem_cons Pain) (not_or p1 p2)) theorem ne_and_not_mem_of_not_mem_cons {a y : α} {l : list α} : a ∉ y::l → a ≠ y ∧ a ∉ l := assume p, and.intro (ne_of_not_mem_cons p) (not_mem_of_not_mem_cons p) theorem mem_map_of_mem (f : α → β) {a : α} {l : list α} (h : a ∈ l) : f a ∈ map f l := begin induction l with b l' ih, {simp at h, contradiction }, {simp, simp at h, cases h with h h, {simp *}, {exact or.inr (ih h)}} end theorem exists_of_mem_map {f : α → β} {b : β} {l : list α} (h : b ∈ map f l) : ∃ a, a ∈ l ∧ f a = b := begin induction l with c l' ih, {simp at h, contradiction}, {cases (eq_or_mem_of_mem_cons h) with h h, {existsi c, simp [h]}, {cases ih h with a ha, cases ha with ha₁ ha₂, existsi a, simp * }} end @[simp] theorem mem_map {f : α → β} {b : β} {l : list α} : b ∈ map f l ↔ ∃ a, a ∈ l ∧ f a = b := ⟨exists_of_mem_map, λ ⟨a, la, h⟩, by rw [← h]; exact mem_map_of_mem f la⟩ @[simp] theorem mem_map_of_inj {f : α → β} (H : injective f) {a : α} {l : list α} : f a ∈ map f l ↔ a ∈ l := ⟨λ m, let ⟨a', m', e⟩ := exists_of_mem_map m in H e ▸ m', mem_map_of_mem _⟩ @[simp] theorem mem_join {a : α} : ∀ {L : list (list α)}, a ∈ join L ↔ ∃ l, l ∈ L ∧ a ∈ l | [] := ⟨false.elim, λ⟨_, h, _⟩, false.elim h⟩ | (c :: L) := by simp [join, @mem_join L]; exact ⟨λh, match h with | or.inl ac := ⟨c, ac, or.inl rfl⟩ | or.inr ⟨l, al, lL⟩ := ⟨l, al, or.inr lL⟩ end, λ⟨l, al, o⟩, o.elim (λ lc, by rw lc at al; exact or.inl al) (λlL, or.inr ⟨l, al, lL⟩)⟩ theorem exists_of_mem_join {a : α} {L : list (list α)} : a ∈ join L → ∃ l, l ∈ L ∧ a ∈ l := mem_join.1 theorem mem_join_of_mem {a : α} {L : list (list α)} {l} (lL : l ∈ L) (al : a ∈ l) : a ∈ join L := mem_join.2 ⟨l, lL, al⟩ @[simp] theorem mem_bind {b : β} {l : list α} {f : α → list β} : b ∈ bind l f ↔ ∃ a ∈ l, b ∈ f a := iff.trans mem_join ⟨λ ⟨l', h1, h2⟩, let ⟨a, al, fa⟩ := exists_of_mem_map h1 in ⟨a, al, fa.symm ▸ h2⟩, λ ⟨a, al, bfa⟩, ⟨f a, mem_map_of_mem _ al, bfa⟩⟩ theorem exists_of_mem_bind {b : β} {l : list α} {f : α → list β} : b ∈ bind l f → ∃ a ∈ l, b ∈ f a := mem_bind.1 theorem mem_bind_of_mem {b : β} {l : list α} {f : α → list β} {a} (al : a ∈ l) (h : b ∈ f a) : b ∈ bind l f := mem_bind.2 ⟨a, al, h⟩ /- list subset -/ theorem subset_app_of_subset_left (l l₁ l₂ : list α) : l ⊆ l₁ → l ⊆ l₁++l₂ := λ s, subset.trans s $ subset_append_left _ _ theorem subset_app_of_subset_right (l l₁ l₂ : list α) : l ⊆ l₂ → l ⊆ l₁++l₂ := λ s, subset.trans s $ subset_append_right _ _ theorem cons_subset_of_subset_of_mem {a : α} {l m : list α} (ainm : a ∈ m) (lsubm : l ⊆ m) : a::l ⊆ m := λ b, or_imp_distrib.2 ⟨λ e, e.symm ▸ ainm, @lsubm _⟩ theorem app_subset_of_subset_of_subset {l₁ l₂ l : list α} (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) : l₁ ++ l₂ ⊆ l := λ a h, (mem_append.1 h).elim (@l₁subl _) (@l₂subl _) theorem eq_nil_of_subset_nil : ∀ {l : list α}, l ⊆ [] → l = [] | [] s := rfl | (a::l) s := false.elim $ s $ mem_cons_self a l theorem eq_nil_iff_forall_not_mem {l : list α} : l = [] ↔ ∀ a, a ∉ l := show l = [] ↔ l ⊆ [], from ⟨λ e, e ▸ subset.refl _, eq_nil_of_subset_nil⟩ /- append -/ theorem append_ne_nil_of_ne_nil_left (s t : list α) : s ≠ [] → s ++ t ≠ [] := by induction s; intros; contradiction theorem append_ne_nil_of_ne_nil_right (s t : list α) : t ≠ [] → s ++ t ≠ [] := by induction s; intros; contradiction theorem append_foldl (f : α → β → α) (a : α) (s t : list β) : foldl f a (s ++ t) = foldl f (foldl f a s) t := by {induction s with b s H generalizing a, refl, simp [foldl], rw H _} theorem append_foldr (f : α → β → β) (a : β) (s t : list α) : foldr f a (s ++ t) = foldr f (foldr f a t) s := by {induction s with b s H generalizing a, refl, simp [foldr], rw H _} /- join -/ attribute [simp] join /- repeat take drop -/ def split_at : ℕ → list α → list α × list α | 0 a := ([], a) | (succ n) [] := ([], []) | (succ n) (x :: xs) := let (l, r) := split_at n xs in (x :: l, r) @[simp] theorem split_at_eq_take_drop : ∀ (n : ℕ) (l : list α), split_at n l = (take n l, drop n l) | 0 a := rfl | (succ n) [] := rfl | (succ n) (x :: xs) := by simp [split_at, split_at_eq_take_drop n xs] @[simp] theorem take_append_drop : ∀ (n : ℕ) (l : list α), take n l ++ drop n l = l | 0 a := rfl | (succ n) [] := rfl | (succ n) (x :: xs) := by simp [take_append_drop n xs] -- TODO(Leo): cleanup proof after arith dec proc theorem append_inj : ∀ {s₁ s₂ t₁ t₂ : list α}, s₁ ++ t₁ = s₂ ++ t₂ → length s₁ = length s₂ → s₁ = s₂ ∧ t₁ = t₂ | [] [] t₁ t₂ h hl := ⟨rfl, h⟩ | (a::s₁) [] t₁ t₂ h hl := list.no_confusion $ eq_nil_of_length_eq_zero hl | [] (b::s₂) t₁ t₂ h hl := list.no_confusion $ eq_nil_of_length_eq_zero hl.symm | (a::s₁) (b::s₂) t₁ t₂ h hl := list.no_confusion h $ λab hap, let ⟨e1, e2⟩ := @append_inj s₁ s₂ t₁ t₂ hap (succ.inj hl) in by rw [ab, e1, e2]; exact ⟨rfl, rfl⟩ theorem append_inj_left {s₁ s₂ t₁ t₂ : list α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length s₁ = length s₂) : s₁ = s₂ := (append_inj h hl).left theorem append_inj_right {s₁ s₂ t₁ t₂ : list α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length s₁ = length s₂) : t₁ = t₂ := (append_inj h hl).right theorem append_inj' {s₁ s₂ t₁ t₂ : list α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : s₁ = s₂ ∧ t₁ = t₂ := append_inj h $ @nat.add_right_cancel _ (length t₁) _ $ let hap := congr_arg length h in by simp at hap; rwa [← hl] at hap theorem append_inj_left' {s₁ s₂ t₁ t₂ : list α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : s₁ = s₂ := (append_inj' h hl).left theorem append_inj_right' {s₁ s₂ t₁ t₂ : list α} (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : t₁ = t₂ := (append_inj' h hl).right theorem append_left_cancel {s₁ s₂ t : list α} (h : s₁ ++ t = s₂ ++ t) : s₁ = s₂ := append_inj_left' h rfl theorem append_right_cancel {s t₁ t₂ : list α} (h : s ++ t₁ = s ++ t₂) : t₁ = t₂ := append_inj_right h rfl theorem eq_of_mem_repeat {a b : α} : ∀ {n}, b ∈ repeat a n → b = a | (n+1) h := or.elim h id $ @eq_of_mem_repeat _ theorem eq_repeat_of_mem {a : α} : ∀ {l : list α}, (∀ b ∈ l, b = a) → l = repeat a l.length | [] H := rfl | (b::l) H := have b = a ∧ ∀ (x : α), x ∈ l → x = a, by simpa [or_imp_distrib, forall_and_distrib] using H, by dsimp; congr; [exact this.1, exact eq_repeat_of_mem this.2] theorem eq_repeat' {a : α} {l : list α} : l = repeat a l.length ↔ ∀ b ∈ l, b = a := ⟨λ h, h.symm ▸ λ b, eq_of_mem_repeat, eq_repeat_of_mem⟩ theorem eq_repeat {a : α} {n} {l : list α} : l = repeat a n ↔ length l = n ∧ ∀ b ∈ l, b = a := ⟨λ h, h.symm ▸ ⟨length_repeat _ _, λ b, eq_of_mem_repeat⟩, λ ⟨e, al⟩, e ▸ eq_repeat_of_mem al⟩ theorem repeat_subset_singleton (a : α) (n) : repeat a n ⊆ [a] := λ b h, mem_singleton.2 (eq_of_mem_repeat h) @[simp] theorem map_const {l : list α} {b : β} : map (function.const α b) l = repeat b l.length := by induction l; simp [-add_comm, *] theorem eq_of_mem_map_const {b₁ b₂ : β} {l : list α} (h : b₁ ∈ map (function.const α b₂) l) : b₁ = b₂ := by rw map_const at h; exact eq_of_mem_repeat h /- concat -/ @[simp] def concat : list α → α → list α | [] a := [a] | (b::l) a := b :: concat l a @[simp] theorem concat_nil (a : α) : concat [] a = [a] := rfl @[simp] theorem concat_cons (a b : α) (l : list α) : concat (a :: l) b = a :: concat l b := rfl @[simp] theorem concat_ne_nil (a : α) (l : list α) : concat l a ≠ [] := by induction l; intro h; contradiction @[simp] theorem concat_append (a : α) (l₁ l₂ : list α) : concat l₁ a ++ l₂ = l₁ ++ a :: l₂ := by induction l₁ with b l₁ ih; [simp, simp [ih]] @[simp] theorem concat_eq_append (a : α) (l : list α) : concat l a = l ++ [a] := by induction l; simp [*, concat] @[simp] theorem length_concat (a : α) (l : list α) : length (concat l a) = succ (length l) := by simp [succ_eq_add_one] theorem append_concat (a : α) (l₁ l₂ : list α) : l₁ ++ concat l₂ a = concat (l₁ ++ l₂) a := by induction l₂ with b l₂ ih; simp /- reverse -/ @[simp] theorem reverse_nil : reverse (@nil α) = [] := rfl local attribute [simp] reverse_core @[simp] theorem reverse_cons (a : α) (l : list α) : reverse (a::l) = concat (reverse l) a := have aux : ∀ l₁ l₂, reverse_core l₁ (concat l₂ a) = concat (reverse_core l₁ l₂) a, by intros l₁; induction l₁; intros; rsimp, aux l nil theorem reverse_cons' (a : α) (l : list α) : reverse (a::l) = reverse l ++ [a] := by simp @[simp] theorem reverse_singleton (a : α) : reverse [a] = [a] := rfl @[simp] theorem reverse_append (s t : list α) : reverse (s ++ t) = (reverse t) ++ (reverse s) := by induction s; simp * @[simp] theorem reverse_reverse (l : list α) : reverse (reverse l) = l := by induction l; simp * theorem concat_eq_reverse_cons (a : α) (l : list α) : concat l a = reverse (a :: reverse l) := by simp @[simp] theorem length_reverse (l : list α) : length (reverse l) = length l := by induction l; simp * @[simp] theorem map_reverse (f : α → β) (l : list α) : map f (reverse l) = reverse (map f l) := by induction l; simp * @[simp] theorem mem_reverse {a : α} {l : list α} : a ∈ reverse l ↔ a ∈ l := by induction l; simp *; rw mem_append_eq /- last -/ @[simp] theorem last_cons {a : α} {l : list α} : ∀ (h₁ : a :: l ≠ nil) (h₂ : l ≠ nil), last (a :: l) h₁ = last l h₂ := by {induction l; intros, contradiction, simp *, reflexivity} @[simp] theorem last_append {a : α} (l : list α) (h : l ++ [a] ≠ []) : last (l ++ [a]) h = a := begin induction l with hd tl ih; rsimp, have haux : tl ++ [a] ≠ [], {apply append_ne_nil_of_ne_nil_right, contradiction}, simp * end theorem last_concat {a : α} (l : list α) (h : concat l a ≠ []) : last (concat l a) h = a := by simp * @[simp] theorem last_singleton (a : α) (h : [a] ≠ []) : last [a] h = a := rfl @[simp] theorem last_cons_cons (a₁ a₂ : α) (l : list α) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) (cons_ne_nil a₂ l) := rfl theorem last_congr {l₁ l₂ : list α} (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) (h₃ : l₁ = l₂) : last l₁ h₁ = last l₂ h₂ := by subst l₁ /- head and tail -/ @[simp] theorem head_cons [h : inhabited α] (a : α) (l : list α) : head (a::l) = a := rfl @[simp] theorem tail_nil : tail (@nil α) = [] := rfl @[simp] theorem tail_cons (a : α) (l : list α) : tail (a::l) = l := rfl @[simp] theorem head_append [h : inhabited α] (t : list α) {s : list α} (h : s ≠ []) : head (s ++ t) = head s := by {induction s, contradiction, simp} theorem cons_head_tail [h : inhabited α] {l : list α} (h : l ≠ []) : (head l)::(tail l) = l := by {induction l, contradiction, simp} /- map -/ theorem map_concat (f : α → β) (a : α) (l : list α) : map f (concat l a) = concat (map f l) (f a) := by induction l; simp * theorem map_id' {f : α → α} (h : ∀ x, f x = x) (l : list α) : map f l = l := by induction l; simp * @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : list β) : foldl f a (map g l) = foldl (λx y, f x (g y)) a l := by revert a; induction l; intros; simp * @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : list β) : foldr f a (map g l) = foldr (f ∘ g) a l := by revert a; induction l; intros; simp * theorem foldl_hom (f : α → β) (g : α → γ → α) (g' : β → γ → β) (a : α) (h : ∀a x, f (g a x) = g' (f a) x) (l : list γ) : f (foldl g a l) = foldl g' (f a) l := by revert a; induction l; intros; simp * theorem foldr_hom (f : α → β) (g : γ → α → α) (g' : γ → β → β) (a : α) (h : ∀x a, f (g x a) = g' x (f a)) (l : list γ) : f (foldr g a l) = foldr g' (f a) l := by revert a; induction l; intros; simp * theorem eq_nil_of_map_eq_nil {f : α → β} {l :list α} (h : map f l = nil) : l = nil := eq_nil_of_length_eq_zero (begin rw [← length_map f l], simp [h] end) /- map₂ -/ theorem nil_map₂ (f : α → β → γ) (l : list β) : map₂ f [] l = [] := by cases l; refl theorem map₂_nil (f : α → β → γ) (l : list α) : map₂ f l [] = [] := by cases l; refl /- sublists -/ @[simp] theorem nil_sublist : Π (l : list α), [] <+ l | [] := sublist.slnil | (a :: l) := sublist.cons _ _ a (nil_sublist l) @[refl, simp] theorem sublist.refl : Π (l : list α), l <+ l | [] := sublist.slnil | (a :: l) := sublist.cons2 _ _ a (sublist.refl l) @[trans] theorem sublist.trans {l₁ l₂ l₃ : list α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃ := sublist.rec_on h₂ (λ_ s, s) (λl₂ l₃ a h₂ IH l₁ h₁, sublist.cons _ _ _ (IH l₁ h₁)) (λl₂ l₃ a h₂ IH l₁ h₁, @sublist.cases_on _ (λl₁ l₂', l₂' = a :: l₂ → l₁ <+ a :: l₃) _ _ h₁ (λ_, nil_sublist _) (λl₁ l₂' a' h₁' e, match a', l₂', e, h₁' with ._, ._, rfl, h₁ := sublist.cons _ _ _ (IH _ h₁) end) (λl₁ l₂' a' h₁' e, match a', l₂', e, h₁' with ._, ._, rfl, h₁ := sublist.cons2 _ _ _ (IH _ h₁) end) rfl) l₁ h₁ @[simp] theorem sublist_cons (a : α) (l : list α) : l <+ a::l := sublist.cons _ _ _ (sublist.refl l) theorem sublist_of_cons_sublist {a : α} {l₁ l₂ : list α} : a::l₁ <+ l₂ → l₁ <+ l₂ := sublist.trans (sublist_cons a l₁) theorem cons_sublist_cons {l₁ l₂ : list α} (a : α) (s : l₁ <+ l₂) : a::l₁ <+ a::l₂ := sublist.cons2 _ _ _ s @[simp] theorem sublist_append_left : Π (l₁ l₂ : list α), l₁ <+ l₁++l₂ | [] l₂ := nil_sublist _ | (a::l₁) l₂ := cons_sublist_cons _ (sublist_append_left l₁ l₂) @[simp] theorem sublist_append_right : Π (l₁ l₂ : list α), l₂ <+ l₁++l₂ | [] l₂ := sublist.refl _ | (a::l₁) l₂ := sublist.cons _ _ _ (sublist_append_right l₁ l₂) theorem sublist_cons_of_sublist (a : α) {l₁ l₂ : list α} : l₁ <+ l₂ → l₁ <+ a::l₂ := sublist.cons _ _ _ theorem sublist_app_of_sublist_left {l l₁ l₂ : list α} (s : l <+ l₁) : l <+ l₁++l₂ := s.trans $ sublist_append_left _ _ theorem sublist_app_of_sublist_right {l l₁ l₂ : list α} (s : l <+ l₂) : l <+ l₁++l₂ := s.trans $ sublist_append_right _ _ theorem sublist_of_cons_sublist_cons {l₁ l₂ : list α} : ∀ {a : α}, a::l₁ <+ a::l₂ → l₁ <+ l₂ | ._ (sublist.cons ._ ._ a s) := sublist_of_cons_sublist s | ._ (sublist.cons2 ._ ._ a s) := s theorem cons_sublist_cons_iff {l₁ l₂ : list α} {a : α} : a::l₁ <+ a::l₂ ↔ l₁ <+ l₂ := ⟨sublist_of_cons_sublist_cons, cons_sublist_cons _⟩ @[simp] theorem append_sublist_append_left {l₁ l₂ : list α} : ∀ l, l++l₁ <+ l++l₂ ↔ l₁ <+ l₂ | [] := iff.rfl | (a::l) := cons_sublist_cons_iff.trans (append_sublist_append_left l) theorem append_sublist_append_of_sublist_right {l₁ l₂ : list α} (h : l₁ <+ l₂) (l) : l₁++l <+ l₂++l := by induction h; [refl, apply sublist_cons_of_sublist _ ih_1, apply cons_sublist_cons _ ih_1] theorem reverse_sublist {l₁ l₂ : list α} (h : l₁ <+ l₂) : l₁.reverse <+ l₂.reverse := by induction h; simp; [ exact sublist_app_of_sublist_left ih_1, exact append_sublist_append_of_sublist_right ih_1 _] @[simp] theorem reverse_sublist_iff {l₁ l₂ : list α} : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂ := ⟨λ h, by have := reverse_sublist h; simp at this; assumption, reverse_sublist⟩ @[simp] theorem append_sublist_append_right {l₁ l₂ : list α} (l) : l₁++l <+ l₂++l ↔ l₁ <+ l₂ := ⟨λ h, by have := reverse_sublist h; simp at this; assumption, λ h, append_sublist_append_of_sublist_right h l⟩ theorem subset_of_sublist : Π {l₁ l₂ : list α}, l₁ <+ l₂ → l₁ ⊆ l₂ | ._ ._ sublist.slnil b h := h | ._ ._ (sublist.cons l₁ l₂ a s) b h := mem_cons_of_mem _ (subset_of_sublist s h) | ._ ._ (sublist.cons2 l₁ l₂ a s) b h := match eq_or_mem_of_mem_cons h with | or.inl h := h ▸ mem_cons_self _ _ | or.inr h := mem_cons_of_mem _ (subset_of_sublist s h) end theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l := ⟨λ h, subset_of_sublist h (mem_singleton_self _), λ h, let ⟨s, t, e⟩ := mem_split h in e.symm ▸ (cons_sublist_cons _ (nil_sublist _)).trans (sublist_append_right _ _)⟩ theorem eq_nil_of_sublist_nil {l : list α} (s : l <+ []) : l = [] := eq_nil_of_subset_nil $ subset_of_sublist s theorem repeat_sublist_repeat (a : α) {m n} : repeat a m <+ repeat a n ↔ m ≤ n := ⟨λ h, by simpa using length_le_of_sublist h, λ h, by induction h; [apply sublist.refl, simp [*, sublist.cons]] ⟩ theorem eq_of_sublist_of_length_eq : ∀ {l₁ l₂ : list α}, l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂ | ._ ._ sublist.slnil h := rfl | ._ ._ (sublist.cons l₁ l₂ a s) h := absurd (length_le_of_sublist s) $ not_le_of_gt $ by rw h; apply lt_succ_self | ._ ._ (sublist.cons2 l₁ l₂ a s) h := by rw [length, length] at h; injection h with h; rw eq_of_sublist_of_length_eq s h theorem sublist_antisymm {l₁ l₂ : list α} (s₁ : l₁ <+ l₂) (s₂ : l₂ <+ l₁) : l₁ = l₂ := eq_of_sublist_of_length_eq s₁ (le_antisymm (length_le_of_sublist s₁) (length_le_of_sublist s₂)) instance decidable_sublist [decidable_eq α] : ∀ (l₁ l₂ : list α), decidable (l₁ <+ l₂) | [] l₂ := is_true $ nil_sublist _ | (a::l₁) [] := is_false $ λh, list.no_confusion $ eq_nil_of_sublist_nil h | (a::l₁) (b::l₂) := if h : a = b then decidable_of_decidable_of_iff (decidable_sublist l₁ l₂) $ by rw [← h]; exact ⟨cons_sublist_cons _, sublist_of_cons_sublist_cons⟩ else decidable_of_decidable_of_iff (decidable_sublist (a::l₁) l₂) ⟨sublist_cons_of_sublist _, λs, match a, l₁, s, h with | a, l₁, sublist.cons ._ ._ ._ s', h := s' | ._, ._, sublist.cons2 t ._ ._ s', h := absurd rfl h end⟩ /- index_of -/ section index_of variable [decidable_eq α] @[simp] theorem index_of_nil (a : α) : index_of a [] = 0 := rfl theorem index_of_cons (a b : α) (l : list α) : index_of a (b::l) = if a = b then 0 else succ (index_of a l) := rfl theorem index_of_cons_eq {a b : α} (l : list α) : a = b → index_of a (b::l) = 0 := assume e, if_pos e @[simp] theorem index_of_cons_self (a : α) (l : list α) : index_of a (a::l) = 0 := index_of_cons_eq _ rfl @[simp] theorem index_of_cons_ne {a b : α} (l : list α) : a ≠ b → index_of a (b::l) = succ (index_of a l) := assume n, if_neg n theorem index_of_eq_length {a : α} {l : list α} : index_of a l = length l ↔ a ∉ l := begin induction l with b l ih; simp [-add_comm], by_cases a = b with h; simp [h, -add_comm], { intro, contradiction }, { rw ← ih, exact ⟨succ_inj, congr_arg _⟩ } end @[simp] theorem index_of_of_not_mem {l : list α} {a : α} : a ∉ l → index_of a l = length l := index_of_eq_length.2 theorem index_of_le_length {a : α} {l : list α} : index_of a l ≤ length l := begin induction l with b l ih; simp [-add_comm, index_of_cons], by_cases a = b with h; simp [h, -add_comm, zero_le], exact succ_le_succ ih end theorem index_of_lt_length {a} {l : list α} : index_of a l < length l ↔ a ∈ l := ⟨λh, by_contradiction $ λ al, ne_of_lt h $ index_of_eq_length.2 al, λal, lt_of_le_of_ne index_of_le_length $ λ h, index_of_eq_length.1 h al⟩ end index_of /- nth element -/ theorem nth_le_nth : Π (l : list α) (n h), nth l n = some (nth_le l n h) | [] n h := absurd h (not_lt_zero n) | (a :: l) 0 h := rfl | (a :: l) (n+1) h := nth_le_nth l n _ theorem nth_ge_len : Π (l : list α) (n), n ≥ length l → nth l n = none | [] n h := rfl | (a :: l) 0 h := absurd h (not_lt_zero _) | (a :: l) (n+1) h := nth_ge_len l n (le_of_succ_le_succ h) theorem ext : Π {l₁ l₂ : list α}, (∀n, nth l₁ n = nth l₂ n) → l₁ = l₂ | [] [] h := rfl | (a::l₁) [] h := by have h0 := h 0; contradiction | [] (a'::l₂) h := by have h0 := h 0; contradiction | (a::l₁) (a'::l₂) h := by have h0 : some a = some a' := h 0; injection h0 with aa; simp [*, ext (λn, h (n+1))] theorem ext_le {l₁ l₂ : list α} (hl : length l₁ = length l₂) (h : ∀n h₁ h₂, nth_le l₁ n h₁ = nth_le l₂ n h₂) : l₁ = l₂ := ext $ λn, if h₁ : n < length l₁ then by rw [nth_le_nth, nth_le_nth, h n h₁ (by rwa [← hl])] else let h₁ := le_of_not_gt h₁ in by rw [nth_ge_len _ _ h₁, nth_ge_len _ _ (by rwa [← hl])] @[simp] theorem index_of_nth_le [decidable_eq α] {a : α} : ∀ {l : list α} h, nth_le l (index_of a l) h = a | (b::l) h := by by_cases a = b with h'; simp * @[simp] theorem index_of_nth [decidable_eq α] {a : α} {l : list α} (h : a ∈ l) : nth l (index_of a l) = some a := by rw [nth_le_nth, index_of_nth_le (index_of_lt_length.2 h)] theorem nth_le_reverse_aux1 : Π (l r : list α) (i h1 h2), nth_le (reverse_core l r) (i + length l) h1 = nth_le r i h2 | [] r i := λh1 h2, rfl | (a :: l) r i := by rw (show i + length (a :: l) = i + 1 + length l, by simp); exact λh1 h2, nth_le_reverse_aux1 l (a :: r) (i+1) h1 (succ_lt_succ h2) theorem nth_le_reverse_aux2 : Π (l r : list α) (i : nat) (h1) (h2), nth_le (reverse_core l r) (length l - 1 - i) h1 = nth_le l i h2 | [] r i h1 h2 := absurd h2 (not_lt_zero _) | (a :: l) r 0 h1 h2 := begin have aux := nth_le_reverse_aux1 l (a :: r) 0, rw zero_add at aux, exact aux _ (zero_lt_succ _) end | (a :: l) r (i+1) h1 h2 := begin have aux := nth_le_reverse_aux2 l (a :: r) i, have heq := calc length (a :: l) - 1 - (i + 1) = length l - (1 + i) : by rw add_comm; refl ... = length l - 1 - i : by rw nat.sub_sub, rw [← heq] at aux, apply aux end @[simp] theorem nth_le_reverse (l : list α) (i : nat) (h1 h2) : nth_le (reverse l) (length l - 1 - i) h1 = nth_le l i h2 := nth_le_reverse_aux2 _ _ _ _ _ def to_array (l : list α) : array α l.length := {data := λ v, l.nth_le v.1 v.2} @[simp] def inth [h : inhabited α] (l : list α) (n : nat) : α := (nth l n).iget /- take, drop -/ @[simp] theorem take_zero : ∀ (l : list α), take 0 l = [] := begin intros, reflexivity end @[simp] theorem take_nil : ∀ n, take n [] = ([] : list α) | 0 := rfl | (n+1) := rfl theorem take_cons (n) (a : α) (l : list α) : take (succ n) (a::l) = a :: take n l := rfl theorem take_all : ∀ (l : list α), take (length l) l = l | [] := rfl | (a::l) := begin change a :: (take (length l) l) = a :: l, rw take_all end theorem take_all_of_ge : ∀ {n} {l : list α}, n ≥ length l → take n l = l | 0 [] h := rfl | 0 (a::l) h := absurd h (not_le_of_gt (zero_lt_succ _)) | (n+1) [] h := rfl | (n+1) (a::l) h := begin change a :: take n l = a :: l, rw [take_all_of_ge (le_of_succ_le_succ h)] end theorem take_take : ∀ (n m) (l : list α), take n (take m l) = take (min n m) l | n 0 l := by rw [min_zero, take_zero, take_nil] | 0 m l := by simp | (succ n) (succ m) nil := by simp | (succ n) (succ m) (a::l) := by simp [min_succ_succ, take_take] /- take_while -/ def take_while (p : α → Prop) [decidable_pred p] : list α → list α | [] := [] | (a::l) := if p a then a :: take_while l else [] /- foldl, foldr, scanl, scanr -/ @[simp] theorem foldl_nil (f : α → β → α) (a : α) : foldl f a [] = a := rfl @[simp] theorem foldl_cons (f : α → β → α) (a : α) (b : β) (l : list β) : foldl f a (b::l) = foldl f (f a b) l := rfl @[simp] theorem foldr_nil (f : α → β → β) (b : β) : foldr f b [] = b := rfl @[simp] theorem foldr_cons (f : α → β → β) (b : β) (a : α) (l : list α) : foldr f b (a::l) = f a (foldr f b l) := rfl @[simp] theorem foldl_append (f : β → α → β) : ∀ (b : β) (l₁ l₂ : list α), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂ | b [] l₂ := rfl | b (a::l₁) l₂ := by simp [foldl_append] @[simp] theorem foldr_append (f : α → β → β) : ∀ (b : β) (l₁ l₂ : list α), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁ | b [] l₂ := rfl | b (a::l₁) l₂ := by simp [foldr_append] theorem foldl_reverse (f : α → β → α) (a : α) (l : list β) : foldl f a (reverse l) = foldr (λx y, f y x) a l := by induction l; simp [*, foldr] theorem foldr_reverse (f : α → β → β) (a : β) (l : list α) : foldr f a (reverse l) = foldl (λx y, f y x) a l := let t := foldl_reverse (λx y, f y x) a (reverse l) in by rw reverse_reverse l at t; rwa t @[simp] theorem foldr_eta : ∀ (l : list α), foldr cons [] l = l | [] := rfl | (x::l) := by simp [foldr_eta l] def scanl (f : α → β → α) : α → list β → list α | a [] := [a] | a (b::l) := a :: scanl (f a b) l def scanr_aux (f : α → β → β) (b : β) : list α → β × list β | [] := (b, []) | (a::l) := let (b', l') := scanr_aux l in (f a b', b' :: l') def scanr (f : α → β → β) (b : β) (l : list α) : list β := let (b', l') := scanr_aux f b l in b' :: l' @[simp] theorem scanr_nil (f : α → β → β) (b : β) : scanr f b [] = [b] := rfl @[simp] theorem scanr_aux_cons (f : α → β → β) (b : β) : ∀ (a : α) (l : list α), scanr_aux f b (a::l) = (foldr f b (a::l), scanr f b l) | a [] := rfl | a (x::l) := let t := scanr_aux_cons x l in by simp [scanr, scanr_aux] at t; simp [scanr, scanr_aux, t] @[simp] theorem scanr_cons (f : α → β → β) (b : β) (a : α) (l : list α) : scanr f b (a::l) = foldr f b (a::l) :: scanr f b l := by simp [scanr] section foldl_eq_foldr -- foldl and foldr coincide when f is commutative and associative variables {f : α → α → α} (hcomm : commutative f) (hassoc : associative f) include hassoc theorem foldl1_eq_foldr1 : ∀ a b l, foldl f a (l++[b]) = foldr f b (a::l) | a b nil := rfl | a b (c :: l) := by simp [foldl1_eq_foldr1 _ _ l]; rw hassoc include hcomm theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l) | a b nil := hcomm a b | a b (c::l) := by simp; rw [← foldl_eq_of_comm_of_assoc, right_comm _ hcomm hassoc]; simp theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l | a nil := rfl | a (b :: l) := by simp [foldl_eq_of_comm_of_assoc hcomm hassoc]; rw (foldl_eq_foldr a l) end foldl_eq_foldr /- sum -/ def prod [has_mul α] [has_one α] : list α → α := foldl (*) 1 def sum [has_add α] [has_zero α] : list α → α := foldl (+) 0 /- all & any, bounded quantifiers over lists -/ theorem forall_mem_nil (p : α → Prop) : ∀ x ∈ @nil α, p x := by simp @[simp] theorem forall_mem_cons' {p : α → Prop} {a : α} {l : list α} : (∀ (x : α), x = a ∨ x ∈ l → p x) ↔ p a ∧ ∀ x ∈ l, p x := by simp [or_imp_distrib, forall_and_distrib] theorem forall_mem_cons {p : α → Prop} {a : α} {l : list α} : (∀ x ∈ a :: l, p x) ↔ p a ∧ ∀ x ∈ l, p x := by simp theorem forall_mem_of_forall_mem_cons {p : α → Prop} {a : α} {l : list α} (h : ∀ x ∈ a :: l, p x) : ∀ x ∈ l, p x := (forall_mem_cons.1 h).2 theorem not_exists_mem_nil (p : α → Prop) : ¬ ∃ x ∈ @nil α, p x := by simp theorem exists_mem_cons_of {p : α → Prop} {a : α} (l : list α) (h : p a) : ∃ x ∈ a :: l, p x := bex.intro a (by simp) h theorem exists_mem_cons_of_exists {p : α → Prop} {a : α} {l : list α} (h : ∃ x ∈ l, p x) : ∃ x ∈ a :: l, p x := bex.elim h (λ x xl px, bex.intro x (by simp [xl]) px) theorem or_exists_of_exists_mem_cons {p : α → Prop} {a : α} {l : list α} (h : ∃ x ∈ a :: l, p x) : p a ∨ ∃ x ∈ l, p x := bex.elim h (λ x xal px, or.elim (eq_or_mem_of_mem_cons xal) (assume : x = a, begin rw ←this, simp [px] end) (assume : x ∈ l, or.inr (bex.intro x this px))) @[simp] theorem exists_mem_cons_iff (p : α → Prop) (a : α) (l : list α) : (∃ x ∈ a :: l, p x) ↔ p a ∨ ∃ x ∈ l, p x := iff.intro or_exists_of_exists_mem_cons (assume h, or.elim h (exists_mem_cons_of l) exists_mem_cons_of_exists) @[simp] theorem all_nil (p : α → bool) : all [] p = tt := rfl @[simp] theorem all_cons (p : α → bool) (a : α) (l : list α) : all (a::l) p = (p a && all l p) := rfl theorem all_iff_forall {p : α → bool} {l : list α} : all l p ↔ ∀ a ∈ l, p a := by induction l with a l; simp [forall_and_distrib, *] theorem all_iff_forall_prop {p : α → Prop} [decidable_pred p] {l : list α} : all l (λ a, p a) ↔ ∀ a ∈ l, p a := by simp [all_iff_forall] @[simp] theorem any_nil (p : α → bool) : any [] p = ff := rfl @[simp] theorem any_cons (p : α → bool) (a : α) (l : list α) : any (a::l) p = (p a || any l p) := rfl theorem any_iff_exists {p : α → bool} {l : list α} : any l p ↔ ∃ a ∈ l, p a := by induction l with a l; simp [and_or_distrib_left, exists_or_distrib, *] theorem any_iff_exists_prop {p : α → Prop} [decidable_pred p] {l : list α} : any l (λ a, p a) ↔ ∃ a ∈ l, p a := by simp [any_iff_exists] theorem any_of_mem {p : α → bool} {a : α} {l : list α} (h₁ : a ∈ l) (h₂ : p a) : any l p := any_iff_exists.2 ⟨_, h₁, h₂⟩ instance decidable_forall_mem {p : α → Prop} [decidable_pred p] (l : list α) : decidable (∀ x ∈ l, p x) := decidable_of_iff _ all_iff_forall_prop instance decidable_exists_mem {p : α → Prop} [decidable_pred p] (l : list α) : decidable (∃ x ∈ l, p x) := decidable_of_iff _ any_iff_exists_prop /- find -/ section find variables (p : α → Prop) [decidable_pred p] def find : list α → option α | [] := none | (a::l) := if p a then some a else find l def find_indexes_aux (p : α → Prop) [decidable_pred p] : list α → nat → list nat | [] n := [] | (a::l) n := let t := find_indexes_aux l (succ n) in if p a then n :: t else t def find_indexes (p : α → Prop) [decidable_pred p] (l : list α) : list nat := find_indexes_aux p l 0 @[simp] theorem find_nil : find p [] = none := rfl @[simp] theorem find_cons_of_pos {p : α → Prop} [h : decidable_pred p] {a : α} (l) (h : p a) : find p (a::l) = some a := if_pos h @[simp] theorem find_cons_of_neg {p : α → Prop} [h : decidable_pred p] {a : α} (l) (h : ¬ p a) : find p (a::l) = find p l := if_neg h @[simp] theorem find_eq_none {p : α → Prop} [h : decidable_pred p] {l : list α} : find p l = none ↔ ∀ x ∈ l, ¬ p x := begin induction l with a l IH, {simp}, by_cases p a; simp [h, IH], intro, contradiction end @[simp] theorem find_some {p : α → Prop} [h : decidable_pred p] {l : list α} {a : α} (H : find p l = some a) : p a := begin induction l with b l IH, {contradiction}, by_cases p b; simp [h] at H, { subst b, assumption }, { exact IH H } end @[simp] theorem find_mem {p : α → Prop} [h : decidable_pred p] {l : list α} {a : α} (H : find p l = some a) : a ∈ l := begin induction l with b l IH, {contradiction}, by_cases p b; simp [h] at H, { subst b, apply mem_cons_self }, { exact mem_cons_of_mem _ (IH H) } end end find def indexes_of [decidable_eq α] (a : α) : list α → list nat := find_indexes (eq a) /- filter_map -/ @[simp] theorem filter_map_nil (f : α → option β) : filter_map f [] = [] := rfl @[simp] theorem filter_map_cons_none {f : α → option β} (a : α) (l : list α) (h : f a = none) : filter_map f (a :: l) = filter_map f l := by simp [filter_map, h] @[simp] theorem filter_map_cons_some (f : α → option β) (a : α) (l : list α) {b : β} (h : f a = some b) : filter_map f (a :: l) = b :: filter_map f l := by simp [filter_map, h] theorem filter_map_eq_map (f : α → β) : filter_map (some ∘ f) = map f := funext $ λ l, begin induction l with a l IH, {simp}, simp [filter_map_cons_some (some ∘ f) _ _ rfl, IH] end theorem filter_map_eq_filter (p : α → Prop) [decidable_pred p] : filter_map (option.guard p) = filter p := funext $ λ l, begin induction l with a l IH, {simp}, by_cases p a with pa; simp [filter_map, option.guard, pa, IH] end theorem filter_map_filter_map (f : α → option β) (g : β → option γ) (l : list α) : filter_map g (filter_map f l) = filter_map (λ x, (f x).bind g) l := begin induction l with a l IH, {refl}, cases h : f a with b, { rw [filter_map_cons_none _ _ h, filter_map_cons_none, IH], simp [h, option.bind] }, rw filter_map_cons_some _ _ _ h, cases h' : g b with c; [ rw [filter_map_cons_none _ _ h', filter_map_cons_none, IH], rw [filter_map_cons_some _ _ _ h', filter_map_cons_some, IH] ]; simp [h, h', option.bind] end theorem map_filter_map (f : α → option β) (g : β → γ) (l : list α) : map g (filter_map f l) = filter_map (λ x, (f x).map g) l := by rw [← filter_map_eq_map, filter_map_filter_map]; refl theorem filter_map_map (f : α → β) (g : β → option γ) (l : list α) : filter_map g (map f l) = filter_map (g ∘ f) l := by rw [← filter_map_eq_map, filter_map_filter_map]; refl theorem filter_filter_map (f : α → option β) (p : β → Prop) [decidable_pred p] (l : list α) : filter p (filter_map f l) = filter_map (λ x, (f x).filter p) l := by rw [← filter_map_eq_filter, filter_map_filter_map]; refl theorem filter_map_filter (p : α → Prop) [decidable_pred p] (f : α → option β) (l : list α) : filter_map f (filter p l) = filter_map (λ x, if p x then f x else none) l := begin rw [← filter_map_eq_filter, filter_map_filter_map], congr, apply funext, intro x, show (option.guard p x).bind f = ite (p x) (f x) none, by_cases p x; simp [h, option.guard, option.bind] end @[simp] theorem filter_map_some (l : list α) : filter_map some l = l := by rw filter_map_eq_map; apply map_id @[simp] theorem mem_filter_map (f : α → option β) (l : list α) {b : β} : b ∈ filter_map f l ↔ ∃ a, a ∈ l ∧ f a = some b := begin induction l with a l IH, {simp}, cases h : f a with b', { have : f a ≠ some b, {rw h, intro, contradiction}, simp [filter_map_cons_none _ _ h, IH, or_and_distrib_right, exists_or_distrib, this] }, { have : f a = some b ↔ b = b', { split; intro t, {rw t at h; injection h}, {exact t.symm ▸ h} }, simp [filter_map_cons_some _ _ _ h, IH, or_and_distrib_right, exists_or_distrib, this] } end theorem map_filter_map_of_inv (f : α → option β) (g : β → α) (H : ∀ x : α, (f x).map g = some x) (l : list α) : map g (filter_map f l) = l := by simp [map_filter_map, H] theorem filter_map_sublist_filter_map (f : α → option β) {l₁ l₂ : list α} (s : l₁ <+ l₂) : filter_map f l₁ <+ filter_map f l₂ := by induction s with l₁ l₂ a s IH l₁ l₂ a s IH; simp [filter_map]; cases f a with b; simp [filter_map, IH, sublist.cons, sublist.cons2] /- filter -/ section filter variables {p : α → Prop} [decidable_pred p] @[simp] theorem filter_subset (l : list α) : filter p l ⊆ l := subset_of_sublist $ filter_sublist l theorem of_mem_filter {a : α} : ∀ {l}, a ∈ filter p l → p a | [] ain := absurd ain (not_mem_nil a) | (b::l) ain := if pb : p b then have a ∈ b :: filter p l, begin simp [pb] at ain, assumption end, or.elim (eq_or_mem_of_mem_cons this) (assume : a = b, begin rw [← this] at pb, exact pb end) (assume : a ∈ filter p l, of_mem_filter this) else begin simp [pb] at ain, exact (of_mem_filter ain) end theorem mem_of_mem_filter {a : α} {l} (h : a ∈ filter p l) : a ∈ l := filter_subset l h theorem mem_filter_of_mem {a : α} : ∀ {l}, a ∈ l → p a → a ∈ filter p l | [] ain pa := absurd ain (not_mem_nil a) | (b::l) ain pa := if pb : p b then or.elim (eq_or_mem_of_mem_cons ain) (assume : a = b, by simp [pb, this]) (assume : a ∈ l, begin simp [pb], exact (mem_cons_of_mem _ (mem_filter_of_mem this pa)) end) else or.elim (eq_or_mem_of_mem_cons ain) (assume : a = b, begin simp [this] at pa, contradiction end) --absurd (this ▸ pa) pb) (assume : a ∈ l, by simp [pa, pb, mem_filter_of_mem this]) @[simp] theorem mem_filter {a : α} {l} : a ∈ filter p l ↔ a ∈ l ∧ p a := ⟨λ h, ⟨mem_of_mem_filter h, of_mem_filter h⟩, λ ⟨h₁, h₂⟩, mem_filter_of_mem h₁ h₂⟩ theorem filter_eq_self {l} : filter p l = l ↔ ∀ a ∈ l, p a := begin induction l with a l, {simp}, by_cases p a; simp [filter, *], show filter p l ≠ a :: l, intro e, have := filter_sublist l, rw e at this, exact not_lt_of_ge (length_le_of_sublist this) (lt_succ_self _) end theorem filter_eq_nil {l} : filter p l = [] ↔ ∀ a ∈ l, ¬p a := by simp [-and.comm, eq_nil_iff_forall_not_mem, mem_filter] theorem filter_sublist_filter {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂ := by rw ← filter_map_eq_filter; exact filter_map_sublist_filter_map _ s @[simp] theorem span_eq_take_drop (p : α → Prop) [decidable_pred p] : ∀ (l : list α), span p l = (take_while p l, drop_while p l) | [] := rfl | (a::l) := by by_cases p a with pa; simp [span, take_while, drop_while, pa, span_eq_take_drop l] @[simp] theorem take_while_append_drop (p : α → Prop) [decidable_pred p] : ∀ (l : list α), take_while p l ++ drop_while p l = l | [] := rfl | (a::l) := by by_cases p a with pa; simp [take_while, drop_while, pa, take_while_append_drop l] def countp (p : α → Prop) [decidable_pred p] : list α → nat | [] := 0 | (x::xs) := if p x then succ (countp xs) else countp xs @[simp] theorem countp_nil (p : α → Prop) [decidable_pred p] : countp p [] = 0 := rfl @[simp] theorem countp_cons_of_pos {a : α} (l) (pa : p a) : countp p (a::l) = countp p l + 1 := if_pos pa @[simp] theorem countp_cons_of_neg {a : α} (l) (pa : ¬ p a) : countp p (a::l) = countp p l := if_neg pa theorem countp_eq_length_filter (l) : countp p l = length (filter p l) := by induction l with x l; [refl, by_cases (p x)]; simp [*, -add_comm] local attribute [simp] countp_eq_length_filter @[simp] theorem countp_append (l₁ l₂) : countp p (l₁ ++ l₂) = countp p l₁ + countp p l₂ := by simp theorem exists_mem_of_countp_pos {l} (h : countp p l > 0) : ∃ a ∈ l, p a := by simp at h; exact exists_imp_exists (λ a al, ⟨mem_of_mem_filter al, of_mem_filter al⟩) (exists_mem_of_length_pos h) theorem countp_pos_of_mem {l a} (h : a ∈ l) (pa : p a) : countp p l > 0 := by simp; exact length_pos_of_mem (mem_filter_of_mem h pa) theorem countp_le_of_sublist {l₁ l₂} (s : l₁ <+ l₂) : countp p l₁ ≤ countp p l₂ := by simpa using length_le_of_sublist (filter_sublist_filter s) end filter /- count -/ section count variable [decidable_eq α] def count (a : α) : list α → nat := countp (eq a) @[simp] theorem count_nil (a : α) : count a [] = 0 := rfl theorem count_cons (a b : α) (l : list α) : count a (b :: l) = if a = b then succ (count a l) else count a l := rfl theorem count_cons' (a b : α) (l : list α) : count a (b :: l) = count a l + (if a = b then 1 else 0) := decidable.by_cases (assume : a = b, begin rw [count_cons, if_pos this, if_pos this] end) (assume : a ≠ b, begin rw [count_cons, if_neg this, if_neg this], reflexivity end) @[simp] theorem count_cons_self (a : α) (l : list α) : count a (a::l) = succ (count a l) := if_pos rfl @[simp] theorem count_cons_of_ne {a b : α} (h : a ≠ b) (l : list α) : count a (b::l) = count a l := if_neg h theorem count_le_of_sublist (a : α) {l₁ l₂} : l₁ <+ l₂ → count a l₁ ≤ count a l₂ := countp_le_of_sublist theorem count_cons_ge_count (a b : α) (l : list α) : count a (b :: l) ≥ count a l := count_le_of_sublist _ (sublist_cons _ _) theorem count_singleton (a : α) : count a [a] = 1 := by simp @[simp] theorem count_append (a : α) : ∀ l₁ l₂, count a (l₁ ++ l₂) = count a l₁ + count a l₂ := countp_append @[simp] theorem count_concat (a : α) (l : list α) : count a (concat l a) = succ (count a l) := by rw [concat_eq_append, count_append, count_singleton] theorem mem_of_count_pos {a : α} {l : list α} (h : count a l > 0) : a ∈ l := let ⟨a', ael, e⟩ := exists_mem_of_countp_pos h in e.symm ▸ ael theorem count_pos_of_mem {a : α} {l : list α} (h : a ∈ l) : count a l > 0 := countp_pos_of_mem h rfl theorem count_pos {a : α} {l : list α} : count a l > 0 ↔ a ∈ l := ⟨mem_of_count_pos, count_pos_of_mem⟩ @[simp] theorem count_eq_zero_of_not_mem {a : α} {l : list α} (h : a ∉ l) : count a l = 0 := by_contradiction $ λ h', h $ count_pos.1 (nat.pos_of_ne_zero h') theorem not_mem_of_count_eq_zero {a : α} {l : list α} (h : count a l = 0) : a ∉ l := λ h', ne_of_gt (count_pos.2 h') h @[simp] theorem count_repeat (a : α) (n : ℕ) : count a (repeat a n) = n := by rw [count, countp_eq_length_filter, filter_eq_self.2, length_repeat]; exact λ b m, (eq_of_mem_repeat m).symm theorem le_count_iff_repeat_sublist {a : α} {l : list α} {n : ℕ} : n ≤ count a l ↔ repeat a n <+ l := ⟨λ h, ((repeat_sublist_repeat a).2 h).trans $ have filter (eq a) l = repeat a (count a l), from eq_repeat.2 ⟨by simp [count, countp_eq_length_filter], λ b m, (of_mem_filter m).symm⟩, by rw ← this; apply filter_sublist, λ h, by simpa using count_le_of_sublist a h⟩ end count /- prefix, suffix, infix -/ def is_prefix (l₁ : list α) (l₂ : list α) : Prop := ∃ t, l₁ ++ t = l₂ def is_suffix (l₁ : list α) (l₂ : list α) : Prop := ∃ t, t ++ l₁ = l₂ def is_infix (l₁ : list α) (l₂ : list α) : Prop := ∃ s t, s ++ l₁ ++ t = l₂ infix ` <+: `:50 := is_prefix infix ` <:+ `:50 := is_suffix infix ` <:+: `:50 := is_infix @[simp] theorem prefix_append (l₁ l₂ : list α) : l₁ <+: l₁ ++ l₂ := ⟨l₂, rfl⟩ @[simp] theorem suffix_append (l₁ l₂ : list α) : l₂ <:+ l₁ ++ l₂ := ⟨l₁, rfl⟩ @[simp] theorem infix_append (l₁ l₂ l₃ : list α) : l₂ <:+: l₁ ++ l₂ ++ l₃ := ⟨l₁, l₃, rfl⟩ @[refl] theorem prefix_refl (l : list α) : l <+: l := ⟨[], append_nil _⟩ @[refl] theorem suffix_refl (l : list α) : l <:+ l := ⟨[], rfl⟩ @[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l := suffix_append [a] @[simp] theorem prefix_concat (a : α) (l) : l <+: concat l a := by simp theorem infix_of_prefix {l₁ l₂ : list α} : l₁ <+: l₂ → l₁ <:+: l₂ := λ⟨t, h⟩, ⟨[], t, h⟩ theorem infix_of_suffix {l₁ l₂ : list α} : l₁ <:+ l₂ → l₁ <:+: l₂ := λ⟨t, h⟩, ⟨t, [], by simp [h]⟩ @[refl] theorem infix_refl (l : list α) : l <:+: l := infix_of_prefix $ prefix_refl l @[trans] theorem is_prefix.trans : ∀ {l₁ l₂ l₃ : list α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃ | l ._ ._ ⟨r₁, rfl⟩ ⟨r₂, rfl⟩ := ⟨r₁ ++ r₂, by simp⟩ @[trans] theorem is_suffix.trans : ∀ {l₁ l₂ l₃ : list α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃ | l ._ ._ ⟨l₁, rfl⟩ ⟨l₂, rfl⟩ := ⟨l₂ ++ l₁, by simp⟩ @[trans] theorem is_infix.trans : ∀ {l₁ l₂ l₃ : list α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃ | l ._ ._ ⟨l₁, r₁, rfl⟩ ⟨l₂, r₂, rfl⟩ := ⟨l₂ ++ l₁, r₁ ++ r₂, by simp⟩ theorem sublist_of_infix {l₁ l₂ : list α} : l₁ <:+: l₂ → l₁ <+ l₂ := λ⟨s, t, h⟩, by rw [← h]; exact (sublist_append_right _ _).trans (sublist_append_left _ _) theorem sublist_of_prefix {l₁ l₂ : list α} : l₁ <+: l₂ → l₁ <+ l₂ := sublist_of_infix ∘ infix_of_prefix theorem sublist_of_suffix {l₁ l₂ : list α} : l₁ <:+ l₂ → l₁ <+ l₂ := sublist_of_infix ∘ infix_of_suffix theorem length_le_of_infix {l₁ l₂ : list α} (s : l₁ <:+: l₂) : length l₁ ≤ length l₂ := length_le_of_sublist $ sublist_of_infix s theorem eq_nil_of_infix_nil {l : list α} (s : l <:+: []) : l = [] := eq_nil_of_sublist_nil $ sublist_of_infix s theorem eq_nil_of_prefix_nil {l : list α} (s : l <+: []) : l = [] := eq_nil_of_infix_nil $ infix_of_prefix s theorem eq_nil_of_suffix_nil {l : list α} (s : l <:+ []) : l = [] := eq_nil_of_infix_nil $ infix_of_suffix s theorem infix_iff_prefix_suffix (l₁ l₂ : list α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂ := ⟨λ⟨s, t, e⟩, ⟨l₁ ++ t, ⟨_, rfl⟩, by rw [← e, append_assoc]; exact ⟨_, rfl⟩⟩, λ⟨._, ⟨t, rfl⟩, ⟨s, e⟩⟩, ⟨s, t, by rw append_assoc; exact e⟩⟩ theorem eq_of_infix_of_length_eq {l₁ l₂ : list α} (s : l₁ <:+: l₂) : length l₁ = length l₂ → l₁ = l₂ := eq_of_sublist_of_length_eq $ sublist_of_infix s theorem eq_of_prefix_of_length_eq {l₁ l₂ : list α} (s : l₁ <+: l₂) : length l₁ = length l₂ → l₁ = l₂ := eq_of_sublist_of_length_eq $ sublist_of_prefix s theorem eq_of_suffix_of_length_eq {l₁ l₂ : list α} (s : l₁ <:+ l₂) : length l₁ = length l₂ → l₁ = l₂ := eq_of_sublist_of_length_eq $ sublist_of_suffix s @[simp] def inits : list α → list (list α) | [] := [[]] | (a::l) := [] :: map (λt, a::t) (inits l) @[simp] theorem mem_inits : ∀ (s t : list α), s ∈ inits t ↔ s <+: t | s [] := suffices s = nil ↔ s <+: nil, by simpa, ⟨λh, h.symm ▸ prefix_refl [], eq_nil_of_prefix_nil⟩ | s (a::t) := suffices (s = nil ∨ ∃ l ∈ inits t, a :: l = s) ↔ s <+: a :: t, by simpa, ⟨λo, match s, o with | ._, or.inl rfl := ⟨_, rfl⟩ | s, or.inr ⟨r, hr, hs⟩ := let ⟨s, ht⟩ := (mem_inits _ _).1 hr in by rw [← hs, ← ht]; exact ⟨s, rfl⟩ end, λmi, match s, mi with | [], ⟨._, rfl⟩ := or.inl rfl | (b::s), ⟨r, hr⟩ := list.no_confusion hr $ λba (st : s++r = t), or.inr $ by rw ba; exact ⟨_, (mem_inits _ _).2 ⟨_, st⟩, rfl⟩ end⟩ @[simp] def tails : list α → list (list α) | [] := [[]] | (a::l) := (a::l) :: tails l @[simp] theorem mem_tails : ∀ (s t : list α), s ∈ tails t ↔ s <:+ t | s [] := by simp; exact ⟨λh, by rw h; exact suffix_refl [], eq_nil_of_suffix_nil⟩ | s (a::t) := by simp [mem_tails s t]; exact show s <:+ t ∨ s = a :: t ↔ s <:+ a :: t, from ⟨λo, match s, t, o with | s, ._, or.inl ⟨l, rfl⟩ := ⟨a::l, rfl⟩ | ._, t, or.inr rfl := suffix_refl _ end, λe, match s, t, e with | ._, t, ⟨[], rfl⟩ := or.inr rfl | s, t, ⟨b::l, he⟩ := list.no_confusion he (λab lt, or.inl ⟨l, lt⟩) end⟩ def sublists_aux : list α → (list α → list β → list β) → list β | [] f := [] | (a::l) f := f [a] (sublists_aux l (λys r, f ys (f (a :: ys) r))) def sublists (l : list α) : list (list α) := [] :: sublists_aux l cons theorem sublists_aux_eq_foldl : ∀ (l : list α) {β : Type u} (f : list α → list β → list β), sublists_aux l f = foldr f [] (sublists_aux l cons) | [] β f := rfl | (a::l) β f := suffices ∀ t, foldr (λ ys r, f ys (f (a :: ys) r)) [] t = foldr f [] (t.foldr (λ ys r, ys :: (a :: ys) :: r) nil), by simp [sublists_aux]; rw [sublists_aux_eq_foldl l, sublists_aux_eq_foldl l (λ ys r, ys :: (a :: ys) :: r), this], λt, by induction t; simp; simp [ih_1] theorem sublists_aux_cons_cons (l : list α) (a : α) : sublists_aux (a::l) cons = [a] :: foldr (λys r, ys :: (a :: ys) :: r) [] (sublists_aux l cons) := by rw [← sublists_aux_eq_foldl]; refl @[simp] theorem mem_sublists (s t : list α) : s ∈ sublists t ↔ s <+ t := by simp [sublists]; exact ⟨λm, let good := λ (l : list (list α)), ∀ s ∈ l, s <+ t in suffices ∀ l (f : list α → list (list α) → list (list α)), (∀ {x y}, x <+ l → good y → good (f x y)) → l <+ t → good (sublists_aux l f), from or.elim m (λe, by rw e; apply nil_sublist) (this t cons (λ x y hx hy s m, by exact or.elim m (λe, by rw e; exact hx) (hy s)) (sublist.refl _) s), begin intro l; induction l with a l IH; intros f al sl x m, exact false.elim m, refine al (cons_sublist_cons a (nil_sublist _)) _ _ m, exact λs hs, IH _ (λx y hx hy, al (sublist_cons_of_sublist _ hx) (al (cons_sublist_cons _ hx) hy)) (sublist_of_cons_sublist sl) _ hs end, λsl, begin have this : ∀ {a : α} {y t}, y ∈ t → y ∈ foldr (λ ys r, ys :: (a :: ys) :: r) nil t ∧ a :: y ∈ foldr (λ ys r, ys :: (a :: ys) :: r) nil t, { intros a y t yt, induction t with x t IH, exact absurd yt (not_mem_nil _), simp, simp at yt, cases yt with yx yt, { simp [yx] }, { cases IH yt with h1 h2, exact ⟨or.inr $ or.inr h1, or.inr $ or.inr h2⟩ } }, induction sl with l₁ l₂ a sl IH l₁ l₂ a sl IH, exact or.inl rfl, { refine or.imp_right (λh, _) IH, rw sublists_aux_cons_cons, exact mem_cons_of_mem _ (this h).left }, { refine or.inr _, rw sublists_aux_cons_cons, simp, refine or.imp (λ(h : l₁ = []), by rw h) (λh, _) IH, exact (this h).right }, end⟩ instance decidable_prefix [decidable_eq α] : ∀ (l₁ l₂ : list α), decidable (l₁ <+: l₂) | [] l₂ := is_true ⟨l₂, rfl⟩ | (a::l₁) [] := is_false $ λ⟨t, te⟩, list.no_confusion te | (a::l₁) (b::l₂) := if h : a = b then decidable_of_decidable_of_iff (decidable_prefix l₁ l₂) $ by rw [← h]; exact ⟨λ⟨t, te⟩, ⟨t, by rw [← te]; refl⟩, λ⟨t, te⟩, list.no_confusion te (λ_ te, ⟨t, te⟩)⟩ else is_false $ λ⟨t, te⟩, list.no_confusion te $ λh', absurd h' h -- Alternatively, use mem_tails instance decidable_suffix [decidable_eq α] : ∀ (l₁ l₂ : list α), decidable (l₁ <:+ l₂) | [] l₂ := is_true ⟨l₂, append_nil _⟩ | (a::l₁) [] := is_false $ λ⟨t, te⟩, absurd te $ append_ne_nil_of_ne_nil_right _ _ $ λh, list.no_confusion h | l₁ l₂ := let len1 := length l₁, len2 := length l₂ in if hl : len1 ≤ len2 then if he : drop (len2 - len1) l₂ = l₁ then is_true $ ⟨take (len2 - len1) l₂, by rw [← he, take_append_drop]⟩ else is_false $ suffices length l₁ ≤ length l₂ → l₁ <:+ l₂ → drop (length l₂ - length l₁) l₂ = l₁, from λsuf, he (this hl suf), λ hl ⟨t, te⟩, append_inj_right' ((take_append_drop (length l₂ - length l₁) l₂).trans te.symm) (by simp; exact nat.sub_sub_self hl) else is_false $ λ⟨t, te⟩, hl $ show length l₁ ≤ length l₂, by rw [← te, length_append]; apply nat.le_add_left instance decidable_infix [decidable_eq α] : ∀ (l₁ l₂ : list α), decidable (l₁ <:+: l₂) | [] l₂ := is_true ⟨[], l₂, rfl⟩ | (a::l₁) [] := is_false $ λ⟨s, t, te⟩, absurd te $ append_ne_nil_of_ne_nil_left _ _ $ append_ne_nil_of_ne_nil_right _ _ $ λh, list.no_confusion h | l₁ l₂ := decidable_of_decidable_of_iff (list.decidable_bex (λt, l₁ <+: t) (tails l₂)) $ by refine (exists_congr (λt, _)).trans (infix_iff_prefix_suffix _ _).symm; exact ⟨λ⟨h1, h2⟩, ⟨h2, (mem_tails _ _).1 h1⟩, λ⟨h2, h1⟩, ⟨(mem_tails _ _).2 h1, h2⟩⟩ /- transpose -/ def transpose_aux : list α → list (list α) → list (list α) | [] ls := ls | (a::i) [] := [a] :: transpose_aux i [] | (a::i) (l::ls) := (a::l) :: transpose_aux i ls def transpose : list (list α) → list (list α) | [] := [] | (l::ls) := transpose_aux l (transpose ls) /- permutations -/ def permutations_aux2 (t : α) (ts : list α) : list α → (list α → β) → list β → list α × list β | [] f r := (ts, r) | (y::ys) f r := let (us, zs) := permutations_aux2 ys (λx : list α, f (y::x)) r in (y :: us, f (t :: y :: us) :: zs) private def meas : list α × list α → ℕ × ℕ | (l, i) := (length l + length i, length l) local infix ` ≺ `:50 := inv_image (prod.lex (<) (<)) meas def permutations_aux.F : Π (x : list α × list α), (Π (y : list α × list α), y ≺ x → list (list α)) → list (list α) | ([], is) IH := [] | (t::ts, is) IH := have h1 : (ts, t :: is) ≺ (t :: ts, is), from show prod.lex _ _ (succ (length ts + length is), length ts) (succ (length ts) + length is, length (t :: ts)), by rw nat.succ_add; exact prod.lex.right _ _ (lt_succ_self _), have h2 : (is, []) ≺ (t :: ts, is), from prod.lex.left _ _ _ (lt_add_of_pos_left _ (succ_pos _)), foldr (λy r, (permutations_aux2 t ts y id r).2) (IH (ts, t::is) h1) (is :: IH (is, []) h2) def permutations_aux : list α × list α → list (list α) := well_founded.fix (inv_image.wf meas (prod.lex_wf lt_wf lt_wf)) permutations_aux.F def permutations (l : list α) : list (list α) := l :: permutations_aux (l, []) def permutations_aux.eqn_1 (is : list α) : permutations_aux ([], is) = [] := well_founded.fix_eq _ _ _ def permutations_aux.eqn_2 (t : α) (ts is) : permutations_aux (t::ts, is) = foldr (λy r, (permutations_aux2 t ts y id r).2) (permutations_aux (ts, t::is)) (permutations is) := well_founded.fix_eq _ _ _ /- insert -/ section insert variable [decidable_eq α] @[simp] theorem insert_nil (a : α) : insert a nil = [a] := rfl theorem insert.def (a : α) (l : list α) : insert a l = if a ∈ l then l else a :: l := rfl @[simp] theorem insert_of_mem {a : α} {l : list α} (h : a ∈ l) : insert a l = l := by simp [insert.def, h] @[simp] theorem insert_of_not_mem {a : α} {l : list α} (h : a ∉ l) : insert a l = a :: l := by simp [insert.def, h] @[simp] theorem mem_insert_iff {a b : α} {l : list α} : a ∈ insert b l ↔ a = b ∨ a ∈ l := begin by_cases b ∈ l with h'; simp [h'], apply (or_iff_right_of_imp _).symm, exact λ e, e.symm ▸ h' end @[simp] theorem suffix_insert (a : α) (l : list α) : l <:+ insert a l := by by_cases a ∈ l; simp * @[simp] theorem mem_insert_self (a : α) (l : list α) : a ∈ insert a l := mem_insert_iff.2 (or.inl rfl) @[simp] theorem mem_insert_of_mem {a b : α} {l : list α} (h : a ∈ l) : a ∈ insert b l := mem_insert_iff.2 (or.inr h) theorem eq_or_mem_of_mem_insert {a b : α} {l : list α} (h : a ∈ insert b l) : a = b ∨ a ∈ l := mem_insert_iff.1 h @[simp] theorem length_insert_of_mem {a : α} [decidable_eq α] {l : list α} (h : a ∈ l) : length (insert a l) = length l := by simp [h] @[simp] theorem length_insert_of_not_mem {a : α} [decidable_eq α] {l : list α} (h : a ∉ l) : length (insert a l) = length l + 1 := by simp [h] end insert /- erase -/ section erase variable [decidable_eq α] @[simp] theorem erase_nil (a : α) : [].erase a = [] := rfl theorem erase_cons (a b : α) (l : list α) : (b :: l).erase a = if b = a then l else b :: l.erase a := rfl @[simp] theorem erase_cons_head (a : α) (l : list α) : (a :: l).erase a = l := by simp [erase_cons] @[simp] theorem erase_cons_tail {a b : α} (l : list α) (h : b ≠ a) : (b::l).erase a = b :: l.erase a := by simp [erase_cons, h] @[simp] theorem erase_of_not_mem {a : α} {l : list α} (h : a ∉ l) : l.erase a = l := by induction l with b l; [refl, simp [(ne_of_not_mem_cons h).symm, ih_1 (not_mem_of_not_mem_cons h)]] theorem exists_erase_eq {a : α} {l : list α} (h : a ∈ l) : ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂ := by induction l with b l; [cases h, { simp at h, by_cases b = a with e, { subst b, exact ⟨[], l, not_mem_nil _, rfl, by simp⟩ }, { exact let ⟨l₁, l₂, h₁, h₂, h₃⟩ := ih_1 (h.resolve_left (ne.symm e)) in ⟨b::l₁, l₂, not_mem_cons_of_ne_of_not_mem (ne.symm e) h₁, by rw h₂; refl, by simp [e, h₃]⟩ } }] @[simp] theorem length_erase_of_mem {a : α} {l : list α} (h : a ∈ l) : length (l.erase a) = pred (length l) := match l, l.erase a, exists_erase_eq h with | ._, ._, ⟨l₁, l₂, _, rfl, rfl⟩ := by simp [-add_comm]; refl end theorem erase_append_left {a : α} : ∀ {l₁ : list α} (l₂), a ∈ l₁ → (l₁++l₂).erase a = l₁.erase a ++ l₂ | (x::xs) l₂ h := begin by_cases x = a with h'; simp [h'], rw erase_append_left l₂ (mem_of_ne_of_mem (ne.symm h') h) end theorem erase_append_right {a : α} : ∀ {l₁ : list α} (l₂), a ∉ l₁ → (l₁++l₂).erase a = l₁ ++ l₂.erase a | [] l₂ h := rfl | (x::xs) l₂ h := by simp [*, (ne_of_not_mem_cons h).symm, (not_mem_of_not_mem_cons h)] theorem erase_sublist (a : α) (l : list α) : l.erase a <+ l := if h : a ∈ l then match l, l.erase a, exists_erase_eq h with | ._, ._, ⟨l₁, l₂, _, rfl, rfl⟩ := by simp end else by simp [h] theorem erase_subset (a : α) (l : list α) : l.erase a ⊆ l := subset_of_sublist (erase_sublist a l) theorem mem_erase_of_ne_of_mem {a b : α} {l : list α} (ab : a ≠ b) (al : a ∈ l) : a ∈ l.erase b := if h : b ∈ l then match l, l.erase b, exists_erase_eq h, al with | ._, ._, ⟨l₁, l₂, _, rfl, rfl⟩, al := by simp at *; exact or.resolve_left al ab end else by simp [h, al] theorem mem_of_mem_erase {a b : α} {l : list α} : a ∈ l.erase b → a ∈ l := @erase_subset _ _ _ _ _ end erase /- zip & unzip -/ @[simp] theorem zip_cons_cons (a : α) (b : β) (l₁ : list α) (l₂ : list β) : zip (a :: l₁) (b :: l₂) = (a, b) :: zip l₁ l₂ := rfl @[simp] theorem zip_nil_left (l : list α) : zip ([] : list β) l = [] := rfl @[simp] theorem zip_nil_right (l : list α) : zip l ([] : list β) = [] := by cases l; refl @[simp] theorem unzip_nil : unzip (@nil (α × β)) = ([], []) := rfl @[simp] theorem unzip_cons (a : α) (b : β) (l : list (α × β)) : unzip ((a, b) :: l) = (a :: (unzip l).1, b :: (unzip l).2) := by rw unzip; cases unzip l; refl theorem zip_unzip : ∀ (l : list (α × β)), zip (unzip l).1 (unzip l).2 = l | [] := rfl | ((a, b) :: l) := by simp [zip_unzip l] /- product -/ def product (l₁ : list α) (l₂ : list β) : list (α × β) := l₁.bind $ λ a, l₂.map $ prod.mk a @[simp] theorem nil_product (l : list β) : product (@nil α) l = [] := rfl @[simp] theorem product_cons (a : α) (l₁ : list α) (l₂ : list β) : product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ product l₁ l₂ := rfl @[simp] theorem product_nil : ∀ (l : list α), product l (@nil β) = [] | [] := rfl | (a::l) := begin rw [product_cons, product_nil], reflexivity end @[simp] theorem mem_product {l₁ : list α} {l₂ : list β} {a : α} {b : β} : (a, b) ∈ product l₁ l₂ ↔ a ∈ l₁ ∧ b ∈ l₂ := by simp [product] theorem length_product (l₁ : list α) (l₂ : list β) : length (product l₁ l₂) = length l₁ * length l₂ := by induction l₁ with x l₁ IH; simp [*, right_distrib] /- disjoint -/ /- disjoint -/ section disjoint def disjoint (l₁ l₂ : list α) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false) theorem disjoint.symm {l₁ l₂ : list α} (d : disjoint l₁ l₂) : disjoint l₂ l₁ | a i₂ i₁ := d i₁ i₂ @[simp] theorem disjoint_comm {l₁ l₂ : list α} : disjoint l₁ l₂ ↔ disjoint l₂ l₁ := ⟨disjoint.symm, disjoint.symm⟩ theorem disjoint_left {l₁ l₂ : list α} : disjoint l₁ l₂ ↔ ∀ {a}, a ∈ l₁ → a ∉ l₂ := iff.rfl theorem disjoint_right {l₁ l₂ : list α} : disjoint l₁ l₂ ↔ ∀ {a}, a ∈ l₂ → a ∉ l₁ := disjoint_comm theorem disjoint_iff_ne {l₁ l₂ : list α} : disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b := by simp [disjoint_left, imp_not_comm] theorem disjoint_of_subset_left {l₁ l₂ l : list α} (ss : l₁ ⊆ l) (d : disjoint l l₂) : disjoint l₁ l₂ | x m₁ := d (ss m₁) theorem disjoint_of_subset_right {l₁ l₂ l : list α} (ss : l₂ ⊆ l) (d : disjoint l₁ l) : disjoint l₁ l₂ | x m m₁ := d m (ss m₁) theorem disjoint_of_disjoint_cons_left {a : α} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ := disjoint_of_subset_left (list.subset_cons _ _) theorem disjoint_of_disjoint_cons_right {a : α} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ := disjoint_of_subset_right (list.subset_cons _ _) @[simp] theorem disjoint_nil_left (l : list α) : disjoint [] l | a := (not_mem_nil a).elim @[simp] theorem singleton_disjoint {l : list α} {a : α} : disjoint [a] l ↔ a ∉ l := by simp [disjoint]; refl @[simp] theorem disjoint_singleton {l : list α} {a : α} : disjoint l [a] ↔ a ∉ l := by rw disjoint_comm; simp @[simp] theorem disjoint_append_left {l₁ l₂ l : list α} : disjoint (l₁++l₂) l ↔ disjoint l₁ l ∧ disjoint l₂ l := by simp [disjoint, or_imp_distrib, forall_and_distrib] @[simp] theorem disjoint_append_right {l₁ l₂ l : list α} : disjoint l (l₁++l₂) ↔ disjoint l l₁ ∧ disjoint l l₂ := disjoint_comm.trans $ by simp [disjoint_append_left] @[simp] theorem disjoint_cons_left {a : α} {l₁ l₂ : list α} : disjoint (a::l₁) l₂ ↔ a ∉ l₂ ∧ disjoint l₁ l₂ := (@disjoint_append_left _ [a] l₁ l₂).trans $ by simp @[simp] theorem disjoint_cons_right {a : α} {l₁ l₂ : list α} : disjoint l₁ (a::l₂) ↔ a ∉ l₁ ∧ disjoint l₁ l₂ := disjoint_comm.trans $ by simp [disjoint_cons_left] theorem disjoint_append_of_disjoint_left {l₁ l₂ l : list α} : disjoint l₁ l → disjoint l₂ l → disjoint (l₁++l₂) l := λ d₁ d₂ x h, or.elim (mem_append.1 h) (@d₁ x) (@d₂ x) theorem disjoint_of_disjoint_append_left_left {l₁ l₂ l : list α} (d : disjoint (l₁++l₂) l) : disjoint l₁ l := (disjoint_append_left.1 d).1 theorem disjoint_of_disjoint_append_left_right {l₁ l₂ l : list α} (d : disjoint (l₁++l₂) l) : disjoint l₂ l := (disjoint_append_left.1 d).2 theorem disjoint_of_disjoint_append_right_left {l₁ l₂ l : list α} (d : disjoint l (l₁++l₂)) : disjoint l l₁ := (disjoint_append_right.1 d).1 theorem disjoint_of_disjoint_append_right_right {l₁ l₂ l : list α} (d : disjoint l (l₁++l₂)) : disjoint l l₂ := (disjoint_append_right.1 d).2 end disjoint /- union -/ section union variable [decidable_eq α] @[simp] theorem nil_union (l : list α) : [] ∪ l = l := rfl @[simp] theorem cons_union (l₁ l₂ : list α) (a : α) : a :: l₁ ∪ l₂ = insert a (l₁ ∪ l₂) := rfl @[simp] theorem mem_union {l₁ l₂ : list α} {a : α} : a ∈ l₁ ∪ l₂ ↔ a ∈ l₁ ∨ a ∈ l₂ := by induction l₁; simp * theorem mem_union_left {a : α} {l₁ : list α} (h : a ∈ l₁) (l₂ : list α) : a ∈ l₁ ∪ l₂ := mem_union.2 (or.inl h) theorem mem_union_right {a : α} (l₁ : list α) {l₂ : list α} (h : a ∈ l₂) : a ∈ l₁ ∪ l₂ := mem_union.2 (or.inr h) theorem sublist_suffix_of_union : Π l₁ l₂ : list α, ∃ t, t <+ l₁ ∧ t ++ l₂ = l₁ ∪ l₂ | [] l₂ := ⟨[], by refl, rfl⟩ | (a::l₁) l₂ := let ⟨t, s, e⟩ := sublist_suffix_of_union l₁ l₂ in by simp [e.symm]; by_cases a ∈ t ++ l₂ with h; [existsi t, existsi a::t]; simp [h]; [apply sublist_cons_of_sublist _ s, apply cons_sublist_cons _ s] theorem suffix_union_right (l₁ l₂ : list α) : l₂ <:+ l₁ ∪ l₂ := exists_imp_exists (λ a, and.right) (sublist_suffix_of_union l₁ l₂) theorem union_sublist_append (l₁ l₂ : list α) : l₁ ∪ l₂ <+ l₁ ++ l₂ := let ⟨t, s, e⟩ := sublist_suffix_of_union l₁ l₂ in e ▸ (append_sublist_append_right _).2 s theorem forall_mem_union {p : α → Prop} {l₁ l₂ : list α} : (∀ x ∈ l₁ ∪ l₂, p x) ↔ (∀ x ∈ l₁, p x) ∧ (∀ x ∈ l₂, p x) := by simp [or_imp_distrib, forall_and_distrib] theorem forall_mem_of_forall_mem_union_left {p : α → Prop} {l₁ l₂ : list α} (h : ∀ x ∈ l₁ ∪ l₂, p x) : ∀ x ∈ l₁, p x := (forall_mem_union.1 h).1 theorem forall_mem_of_forall_mem_union_right {p : α → Prop} {l₁ l₂ : list α} (h : ∀ x ∈ l₁ ∪ l₂, p x) : ∀ x ∈ l₂, p x := (forall_mem_union.1 h).2 end union /- inter -/ section inter variable [decidable_eq α] @[simp] theorem inter_nil (l : list α) : [] ∩ l = [] := rfl @[simp] theorem inter_cons_of_mem {a : α} (l₁ : list α) {l₂ : list α} (h : a ∈ l₂) : (a::l₁) ∩ l₂ = a :: (l₁ ∩ l₂) := if_pos h @[simp] theorem inter_cons_of_not_mem {a : α} (l₁ : list α) {l₂ : list α} (h : a ∉ l₂) : (a::l₁) ∩ l₂ = l₁ ∩ l₂ := if_neg h theorem mem_of_mem_inter_left {l₁ l₂ : list α} {a : α} : a ∈ l₁ ∩ l₂ → a ∈ l₁ := mem_of_mem_filter theorem mem_of_mem_inter_right {l₁ l₂ : list α} {a : α} : a ∈ l₁ ∩ l₂ → a ∈ l₂ := of_mem_filter theorem mem_inter_of_mem_of_mem {l₁ l₂ : list α} {a : α} : a ∈ l₁ → a ∈ l₂ → a ∈ l₁ ∩ l₂ := mem_filter_of_mem @[simp] theorem mem_inter {a : α} {l₁ l₂ : list α} : a ∈ l₁ ∩ l₂ ↔ a ∈ l₁ ∧ a ∈ l₂ := mem_filter theorem inter_subset_left (l₁ l₂ : list α) : l₁ ∩ l₂ ⊆ l₁ := filter_subset _ theorem inter_subset_right (l₁ l₂ : list α) : l₁ ∩ l₂ ⊆ l₂ := λ a, mem_of_mem_inter_right theorem subset_inter {l l₁ l₂ : list α} (h₁ : l ⊆ l₁) (h₂ : l ⊆ l₂) : l ⊆ l₁ ∩ l₂ := λ a h, mem_inter.2 ⟨h₁ h, h₂ h⟩ theorem inter_eq_nil_iff_disjoint {l₁ l₂ : list α} : l₁ ∩ l₂ = [] ↔ disjoint l₁ l₂ := by simp [eq_nil_iff_forall_not_mem]; refl theorem forall_mem_inter_of_forall_left {p : α → Prop} {l₁ : list α} (h : ∀ x ∈ l₁, p x) (l₂ : list α) : ∀ x, x ∈ l₁ ∩ l₂ → p x := ball.imp_left (λ x, mem_of_mem_inter_left) h theorem forall_mem_inter_of_forall_right {p : α → Prop} (l₁ : list α) {l₂ : list α} (h : ∀ x ∈ l₂, p x) : ∀ x, x ∈ l₁ ∩ l₂ → p x := ball.imp_left (λ x, mem_of_mem_inter_right) h end inter /- pairwise relation (generalized no duplicate) -/ section pairwise variable (R : α → α → Prop) inductive pairwise : list α → Prop | nil : pairwise [] | cons : ∀ {a : α} {l : list α}, (∀ a' ∈ l, R a a') → pairwise l → pairwise (a::l) attribute [simp] pairwise.nil variable {R} @[simp] theorem pairwise_cons {a : α} {l : list α} : pairwise R (a::l) ↔ (∀ a' ∈ l, R a a') ∧ pairwise R l := ⟨λ p, by cases p with a l n p; exact ⟨n, p⟩, λ ⟨n, p⟩, p.cons n⟩ theorem rel_of_pairwise_cons {a : α} {l : list α} (p : pairwise R (a::l)) : ∀ {a'}, a' ∈ l → R a a' := (pairwise_cons.1 p).1 theorem pairwise_of_pairwise_cons {a : α} {l : list α} (p : pairwise R (a::l)) : pairwise R l := (pairwise_cons.1 p).2 theorem pairwise.imp {S : α → α → Prop} (H : ∀ a b, R a b → S a b) {l : list α} (p : pairwise R l) : pairwise S l := by induction p with a l r p IH; constructor; [exact ball.imp_right (λ x _, H _ _) r, exact IH] theorem pairwise.iff {S : α → α → Prop} (H : ∀ a b, R a b ↔ S a b) {l : list α} : pairwise R l ↔ pairwise S l := ⟨pairwise.imp (λ a b, (H a b).1), pairwise.imp (λ a b, (H a b).2)⟩ theorem pairwise_of_forall {l : list α} (H : ∀ x y, R x y) : pairwise R l := by induction l; simp * theorem pairwise.iff_mem {l : list α} : pairwise R l ↔ pairwise (λ x y, x ∈ l ∧ y ∈ l ∧ R x y) l := ⟨λ p, by induction p with a l r p IH; constructor; [exact λ b m, ⟨mem_cons_self _ _, mem_cons_of_mem _ m, r b m⟩, exact IH.imp (λ a b ⟨am, bm, h⟩, ⟨mem_cons_of_mem _ am, mem_cons_of_mem _ bm, h⟩)], pairwise.imp (λ a b h, h.2.2)⟩ theorem pairwise_of_sublist : Π {l₁ l₂ : list α}, l₁ <+ l₂ → pairwise R l₂ → pairwise R l₁ | ._ ._ sublist.slnil h := h | ._ ._ (sublist.cons l₁ l₂ a s) (pairwise.cons i n) := pairwise_of_sublist s n | ._ ._ (sublist.cons2 l₁ l₂ a s) (pairwise.cons i n) := (pairwise_of_sublist s n).cons (ball.imp_left (subset_of_sublist s) i) theorem pairwise_singleton (R) (a : α) : pairwise R [a] := by simp theorem pairwise_pair {a b : α} : pairwise R [a, b] ↔ R a b := by simp theorem pairwise_append {l₁ l₂ : list α} : pairwise R (l₁++l₂) ↔ pairwise R l₁ ∧ pairwise R l₂ ∧ ∀ x ∈ l₁, ∀ y ∈ l₂, R x y := by induction l₁ with x l₁ IH; simp [or_imp_distrib, forall_and_distrib, *] theorem pairwise_app_comm (s : symmetric R) {l₁ l₂ : list α} : pairwise R (l₁++l₂) ↔ pairwise R (l₂++l₁) := have ∀ l₁ l₂ : list α, (∀ (x : α), x ∈ l₁ → ∀ (y : α), y ∈ l₂ → R x y) → (∀ (x : α), x ∈ l₂ → ∀ (y : α), y ∈ l₁ → R x y), from λ l₁ l₂ a x xm y ym, s (a y ym x xm), by simp [pairwise_append]; rw iff.intro (this l₁ l₂) (this l₂ l₁) theorem pairwise_middle (s : symmetric R) {a : α} {l₁ l₂ : list α} : pairwise R (l₁ ++ a::l₂) ↔ pairwise R (a::(l₁++l₂)) := show pairwise R (l₁ ++ ([a] ++ l₂)) ↔ pairwise R ([a] ++ l₁ ++ l₂), by rw [← append_assoc, pairwise_append, @pairwise_append _ _ ([a] ++ l₁), pairwise_app_comm s]; simp theorem pairwise_map (f : β → α) : ∀ {l : list β}, pairwise R (map f l) ↔ pairwise (λ a b : β, R (f a) (f b)) l | [] := by simp | (b::l) := have (∀ a b', f b' = a → b' ∈ l → R (f b) a) ↔ ∀ (b' : β), b' ∈ l → R (f b) (f b'), from forall_swap.trans $ forall_congr $ by simp, by simp *; rw this theorem pairwise_of_pairwise_map {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, S (f a) (f b) → R a b) {l : list α} (p : pairwise S (map f l)) : pairwise R l := ((pairwise_map f).1 p).imp H theorem pairwise_map_of_pairwise {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, R a b → S (f a) (f b)) {l : list α} (p : pairwise R l) : pairwise S (map f l) := (pairwise_map f).2 $ p.imp H theorem pairwise_filter_map (f : β → option α) {l : list β} : pairwise R (filter_map f l) ↔ pairwise (λ a a' : β, ∀ (b ∈ f a) (b' ∈ f a'), R b b') l := let S (a a' : β) := ∀ (b ∈ f a) (b' ∈ f a'), R b b' in begin simp, induction l with a l IH; simp, cases e : f a with b; simp [e, IH], { show pairwise S l ↔ pairwise S l ∧ ∀ (a' : β), a' ∈ l → ∀ (b : α), none = some b → ∀ (b' : α), f a' = some b' → R b b', refine (and_iff_left _).symm, intros, contradiction }, { rw [filter_map_cons_some _ _ _ e], simp [IH], show (∀ (a' : α) (x : β), f x = some a' → x ∈ l → R b a') ∧ pairwise S l ↔ (∀ (a' : β), a' ∈ l → ∀ (b' : α), f a' = some b' → R b b') ∧ pairwise S l, from and_congr ⟨λ h b mb a ma, h a b ma mb, λ h a b ma mb, h b mb a ma⟩ iff.rfl } end theorem pairwise_filter_map_of_pairwise {S : β → β → Prop} (f : α → option β) (H : ∀ (a a' : α), R a a' → ∀ (b ∈ f a) (b' ∈ f a'), S b b') {l : list α} (p : pairwise R l) : pairwise S (filter_map f l) := (pairwise_filter_map _).2 $ p.imp H theorem pairwise_filter (p : α → Prop) [decidable_pred p] {l : list α} : pairwise R (filter p l) ↔ pairwise (λ x y, p x → p y → R x y) l := begin rw [← filter_map_eq_filter, pairwise_filter_map], apply pairwise.iff, intros b c, simp, have : (∀ (b' : α), p b → b = b' → ∀ (c' : α), p c → c = c' → R b' c') ↔ ∀ (b' : α), b = b' → p b → ∀ (c' : α), c = c' → p c → R b' c' := ⟨λ h a b c d e f, h a c b d f e, λ h a c b d f e, h a b c d e f⟩, simp [this] end theorem pairwise_filter_of_pairwise (p : α → Prop) [decidable_pred p] {l : list α} : pairwise R l → pairwise R (filter p l) := pairwise_of_sublist (filter_sublist _) theorem pairwise_join {L : list (list α)} : pairwise R (join L) ↔ (∀ l ∈ L, pairwise R l) ∧ pairwise (λ l₁ l₂, ∀ (x ∈ l₁) (y ∈ l₂), R x y) L := begin induction L with l L IH, {simp}, have : (∀ (x : α), x ∈ l → ∀ (y : α) (x_1 : list α), y ∈ x_1 → x_1 ∈ L → R x y) ↔ ∀ (a' : list α), a' ∈ L → ∀ (x : α), x ∈ l → ∀ (y : α), y ∈ a' → R x y := ⟨λ h a b c d e f, h c d e a f b, λ h c d e a f b, h a b c d e f⟩, simp [pairwise_append, IH, this] end @[simp] theorem pairwise_reverse : ∀ {R} {l : list α}, pairwise R (reverse l) ↔ pairwise (λ x y, R y x) l := suffices ∀ {R l}, @pairwise α R l → pairwise (λ x y, R y x) (reverse l), from λ R l, ⟨λ p, reverse_reverse l ▸ this p, this⟩, λ R l p, by induction p with a l h p IH; [simp, simpa [pairwise_append, IH] using h] variable [decidable_rel R] instance decidable_pairwise (l : list α) : decidable (pairwise R l) := by induction l; simp; apply_instance /- pairwise reduct -/ def pw_filter (R : α → α → Prop) [decidable_rel R] : list α → list α | [] := [] | (x :: xs) := let IH := pw_filter xs in if ∀ y ∈ IH, R x y then x :: IH else IH @[simp] theorem pw_filter_nil : pw_filter R [] = [] := rfl @[simp] theorem pw_filter_cons_of_pos {a : α} {l : list α} (h : ∀ b ∈ pw_filter R l, R a b) : pw_filter R (a::l) = a :: pw_filter R l := if_pos h @[simp] theorem pw_filter_cons_of_neg {a : α} {l : list α} (h : ¬ ∀ b ∈ pw_filter R l, R a b) : pw_filter R (a::l) = pw_filter R l := if_neg h theorem pw_filter_sublist : ∀ (l : list α), pw_filter R l <+ l | [] := nil_sublist _ | (x::l) := begin by_cases (∀ y ∈ pw_filter R l, R x y); dsimp at h, { rw [pw_filter_cons_of_pos h], exact cons_sublist_cons _ (pw_filter_sublist l) }, { rw [pw_filter_cons_of_neg h], exact sublist_cons_of_sublist _ (pw_filter_sublist l) }, end theorem pw_filter_subset (l : list α) : pw_filter R l ⊆ l := subset_of_sublist (pw_filter_sublist _) theorem pairwise_pw_filter : ∀ (l : list α), pairwise R (pw_filter R l) | [] := pairwise.nil _ | (x::l) := begin by_cases (∀ y ∈ pw_filter R l, R x y); dsimp at h, { rw [pw_filter_cons_of_pos h], exact pairwise_cons.2 ⟨h, pairwise_pw_filter l⟩ }, { rw [pw_filter_cons_of_neg h], exact pairwise_pw_filter l }, end theorem pw_filter_eq_self {l : list α} : pw_filter R l = l ↔ pairwise R l := ⟨λ e, e ▸ pairwise_pw_filter l, λ p, begin induction l with x l IH, {simp}, cases pairwise_cons.1 p with al p, rw [pw_filter_cons_of_pos (ball.imp_left (pw_filter_subset l) al), IH p], end⟩ theorem forall_mem_pw_filter (neg_trans : ∀ {x y z}, R x z → R x y ∨ R y z) (a : α) (l : list α) : (∀ b ∈ pw_filter R l, R a b) ↔ (∀ b ∈ l, R a b) := ⟨begin induction l with x l IH; simp *, by_cases (∀ y ∈ pw_filter R l, R x y); dsimp at h, { simp [pw_filter_cons_of_pos h], exact λ r H, ⟨r, IH H⟩ }, { rw [pw_filter_cons_of_neg h], refine λ H, ⟨_, IH H⟩, cases e : find (λ y, ¬ R x y) (pw_filter R l) with k, { exact h.elim (ball.imp_right (λ_ _, not_not.1) (find_eq_none.1 e)) }, { have := find_some e, exact (neg_trans (H k (find_mem e))).resolve_right this } } end, ball.imp_left (pw_filter_subset l)⟩ end pairwise /- chain relation (conjunction of R a b ∧ R b c ∧ R c d ...) -/ section chain variable (R : α → α → Prop) inductive chain : α → list α → Prop | nil (a : α) : chain a [] | cons : ∀ {a b : α} {l : list α}, R a b → chain b l → chain a (b::l) attribute [simp] chain.nil variable {R} @[simp] theorem chain_cons {a b : α} {l : list α} : chain R a (b::l) ↔ R a b ∧ chain R b l := ⟨λ p, by cases p with _ a b l n p; exact ⟨n, p⟩, λ ⟨n, p⟩, p.cons n⟩ theorem rel_of_chain_cons {a b : α} {l : list α} (p : chain R a (b::l)) : R a b := (chain_cons.1 p).1 theorem chain_of_chain_cons {a b : α} {l : list α} (p : chain R a (b::l)) : chain R b l := (chain_cons.1 p).2 theorem chain.imp {S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : list α} (p : chain R a l) : chain S a l := by induction p with _ a b l r p IH; constructor; [exact H _ _ r, exact IH] theorem chain.iff {S : α → α → Prop} (H : ∀ a b, R a b ↔ S a b) {a : α} {l : list α} : chain R a l ↔ chain S a l := ⟨chain.imp (λ a b, (H a b).1), chain.imp (λ a b, (H a b).2)⟩ theorem chain.iff_mem {S : α → α → Prop} {a : α} {l : list α} : chain R a l ↔ chain (λ x y, x ∈ a :: l ∧ y ∈ l ∧ R x y) a l := ⟨λ p, by induction p with _ a b l r p IH; constructor; [exact ⟨mem_cons_self _ _, mem_cons_self _ _, r⟩, exact IH.imp (λ a b ⟨am, bm, h⟩, ⟨mem_cons_of_mem _ am, mem_cons_of_mem _ bm, h⟩)], chain.imp (λ a b h, h.2.2)⟩ theorem chain_singleton {a b : α} : chain R a [b] ↔ R a b := by simp theorem chain_split {a b : α} {l₁ l₂ : list α} : chain R a (l₁++b::l₂) ↔ chain R a (l₁++[b]) ∧ chain R b l₂ := by induction l₁ with x l₁ IH generalizing a; simp * theorem chain_map (f : β → α) {b : β} {l : list β} : chain R (f b) (map f l) ↔ chain (λ a b : β, R (f a) (f b)) b l := by induction l generalizing b; simp * theorem chain_of_chain_map {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, S (f a) (f b) → R a b) {a : α} {l : list α} (p : chain S (f a) (map f l)) : chain R a l := ((chain_map f).1 p).imp H theorem chain_map_of_chain {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, R a b → S (f a) (f b)) {a : α} {l : list α} (p : chain R a l) : chain S (f a) (map f l) := (chain_map f).2 $ p.imp H theorem chain_of_pairwise {a : α} {l : list α} (p : pairwise R (a::l)) : chain R a l := begin cases pairwise_cons.1 p with r p', clear p, induction p' with b l r' p IH generalizing a; simp, simp at r, simp [r], show chain R b l, from IH r' end theorem chain_iff_pairwise (tr : transitive R) {a : α} {l : list α} : chain R a l ↔ pairwise R (a::l) := ⟨λ c, begin induction c with b b c l r p IH, {simp}, apply IH.cons _, simp [r], show ∀ x ∈ l, R b x, from λ x m, (tr r (rel_of_pairwise_cons IH m)), end, chain_of_pairwise⟩ instance decidable_chain [decidable_rel R] (a : α) (l : list α) : decidable (chain R a l) := by induction l generalizing a; simp; apply_instance end chain /- no duplicates predicate -/ def nodup : list α → Prop := pairwise (≠) section nodup @[simp] theorem forall_mem_ne {a : α} {l : list α} : (∀ (a' : α), a' ∈ l → ¬a = a') ↔ a ∉ l := ⟨λ h m, h _ m rfl, λ h a' m e, h (e.symm ▸ m)⟩ @[simp] theorem nodup_nil : @nodup α [] := pairwise.nil _ @[simp] theorem nodup_cons {a : α} {l : list α} : nodup (a::l) ↔ a ∉ l ∧ nodup l := by simp [nodup] theorem nodup_cons_of_nodup {a : α} {l : list α} (m : a ∉ l) (n : nodup l) : nodup (a::l) := nodup_cons.2 ⟨m, n⟩ theorem nodup_singleton (a : α) : nodup [a] := nodup_cons_of_nodup (not_mem_nil a) nodup_nil theorem nodup_of_nodup_cons {a : α} {l : list α} (h : nodup (a::l)) : nodup l := (nodup_cons.1 h).2 theorem not_mem_of_nodup_cons {a : α} {l : list α} (h : nodup (a::l)) : a ∉ l := (nodup_cons.1 h).1 theorem not_nodup_cons_of_mem {a : α} {l : list α} : a ∈ l → ¬ nodup (a :: l) := imp_not_comm.1 not_mem_of_nodup_cons theorem nodup_of_sublist {l₁ l₂ : list α} : l₁ <+ l₂ → nodup l₂ → nodup l₁ := pairwise_of_sublist theorem not_nodup_pair (a : α) : ¬ nodup [a, a] := not_nodup_cons_of_mem $ mem_singleton_self _ theorem nodup_iff_sublist {l : list α} : nodup l ↔ ∀ a, ¬ [a, a] <+ l := ⟨λ d a h, not_nodup_pair a (nodup_of_sublist h d), begin induction l with a l IH; intro h, {simp}, exact nodup_cons_of_nodup (λ al, h a $ cons_sublist_cons _ $ singleton_sublist.2 al) (IH $ λ a s, h a $ sublist_cons_of_sublist _ s) end⟩ theorem nodup_iff_count_le_one [decidable_eq α] {l : list α} : nodup l ↔ ∀ a, count a l ≤ 1 := nodup_iff_sublist.trans $ forall_congr $ λ a, have [a, a] <+ l ↔ 1 < count a l, from (@le_count_iff_repeat_sublist _ _ a l 2).symm, (not_congr this).trans not_lt @[simp] theorem count_eq_one_of_mem [decidable_eq α] {a : α} {l : list α} (d : nodup l) (h : a ∈ l) : count a l = 1 := le_antisymm (nodup_iff_count_le_one.1 d a) (count_pos_of_mem h) theorem nodup_of_nodup_append_left {l₁ l₂ : list α} : nodup (l₁++l₂) → nodup l₁ := nodup_of_sublist (sublist_append_left l₁ l₂) theorem nodup_of_nodup_append_right {l₁ l₂ : list α} : nodup (l₁++l₂) → nodup l₂ := nodup_of_sublist (sublist_append_right l₁ l₂) theorem nodup_append {l₁ l₂ : list α} : nodup (l₁++l₂) ↔ nodup l₁ ∧ nodup l₂ ∧ disjoint l₁ l₂ := by simp [nodup, pairwise_append, disjoint_iff_ne] theorem disjoint_of_nodup_append {l₁ l₂ : list α} (d : nodup (l₁++l₂)) : disjoint l₁ l₂ := (nodup_append.1 d).2.2 theorem nodup_append_of_nodup {l₁ l₂ : list α} (d₁ : nodup l₁) (d₂ : nodup l₂) (dj : disjoint l₁ l₂) : nodup (l₁++l₂) := nodup_append.2 ⟨d₁, d₂, dj⟩ theorem nodup_app_comm {l₁ l₂ : list α} : nodup (l₁++l₂) ↔ nodup (l₂++l₁) := by simp [nodup_append] theorem nodup_middle {a : α} {l₁ l₂ : list α} : nodup (l₁ ++ a::l₂) ↔ nodup (a::(l₁++l₂)) := by simp [nodup_append, not_or_distrib] theorem nodup_of_nodup_map (f : α → β) {l : list α} : nodup (map f l) → nodup l := pairwise_of_pairwise_map f $ λ a b, mt $ congr_arg f theorem nodup_map_on {f : α → β} {l : list α} (H : ∀x∈l, ∀y∈l, f x = f y → x = y) (d : nodup l) : nodup (map f l) := pairwise_map_of_pairwise _ (by exact λ a b ⟨ma, mb, n⟩ e, n (H a ma b mb e)) (pairwise.iff_mem.1 d) theorem nodup_map {f : α → β} {l : list α} (hf : injective f) (h : nodup l) : nodup (map f l) := nodup_map_on (assume x _ y _ h, hf h) h theorem nodup_filter (p : α → Prop) [decidable_pred p] {l} : nodup l → nodup (filter p l) := pairwise_filter_of_pairwise p @[simp] theorem nodup_reverse {l : list α} : nodup (reverse l) ↔ nodup l := pairwise_reverse.trans $ by simp [nodup, eq_comm] instance nodup_decidable [decidable_eq α] : ∀ l : list α, decidable (nodup l) := list.decidable_pairwise theorem nodup_erase_eq_filter [decidable_eq α] (a : α) {l} (d : nodup l) : l.erase a = filter (≠ a) l := begin induction d with b l m d IH; simp [list.erase, list.filter], by_cases b = a; simp *, subst b, show l = filter (λ a', ¬ a' = a) l, rw filter_eq_self.2, simpa only [eq_comm] using m end theorem nodup_erase_of_nodup [decidable_eq α] (a : α) {l} : nodup l → nodup (l.erase a) := nodup_of_sublist (erase_sublist _ _) theorem mem_erase_iff_of_nodup [decidable_eq α] {a b : α} {l} (d : nodup l) : a ∈ l.erase b ↔ a ≠ b ∧ a ∈ l := by rw nodup_erase_eq_filter b d; simp theorem mem_erase_of_nodup [decidable_eq α] {a : α} {l} (h : nodup l) : a ∉ l.erase a := by rw mem_erase_iff_of_nodup h; simp theorem nodup_join {L : list (list α)} : nodup (join L) ↔ (∀ l ∈ L, nodup l) ∧ pairwise disjoint L := by simp [nodup, pairwise_join, disjoint_left.symm] theorem nodup_bind {l₁ : list α} {f : α → list β} : nodup (l₁.bind f) ↔ (∀ x ∈ l₁, nodup (f x)) ∧ pairwise (λ (a b : α), disjoint (f a) (f b)) l₁ := by simp [bind, nodup_join, pairwise_map]; rw [show (∀ (l : list β) (x : α), f x = l → x ∈ l₁ → nodup l) ↔ (∀ (x : α), x ∈ l₁ → nodup (f x)), from forall_swap.trans $ forall_congr $ λ_, by simp] theorem nodup_product {l₁ : list α} {l₂ : list β} (d₁ : nodup l₁) (d₂ : nodup l₂) : nodup (product l₁ l₂) := nodup_bind.2 ⟨λ a ma, nodup_map (injective_of_left_inverse (λ b, (rfl : (a,b).2 = b))) d₂, d₁.imp (λ a₁ a₂ n x, suffices ∀ (b₁ : β), b₁ ∈ l₂ → (a₁, b₁) = x → ∀ (b₂ : β), b₂ ∈ l₂ → (a₂, b₂) ≠ x, by simpa, λ b₁ mb₁ e b₂ mb₂ e', by subst e'; injection e; contradiction)⟩ theorem nodup_filter_map {f : α → option β} (pdi : true) {l : list α} (H : ∀ (a a' : α) (b : β), b ∈ f a → b ∈ f a' → a = a') : nodup l → nodup (filter_map f l) := pairwise_filter_map_of_pairwise f $ λ a a' n b bm b' bm' e, n $ H a a' b' (e ▸ bm) bm' theorem nodup_concat {a : α} {l : list α} (h : a ∉ l) (h' : nodup l) : nodup (concat l a) := by simp; exact nodup_append_of_nodup h' (nodup_singleton _) (disjoint_singleton.2 h) theorem nodup_insert [decidable_eq α] {a : α} {l : list α} (h : nodup l) : nodup (insert a l) := by by_cases a ∈ l with h'; simp [h', h]; apply nodup_cons h' h theorem nodup_union [decidable_eq α] (l₁ : list α) {l₂ : list α} (h : nodup l₂) : nodup (l₁ ∪ l₂) := begin induction l₁ with a l₁ ih generalizing l₂, { exact h }, simp, apply nodup_insert, exact ih h end theorem nodup_inter_of_nodup [decidable_eq α] {l₁ : list α} (l₂) : nodup l₁ → nodup (l₁ ∩ l₂) := nodup_filter _ end nodup /- erase duplicates function -/ section erase_dup variable [decidable_eq α] def erase_dup : list α → list α := pw_filter (≠) @[simp] theorem erase_dup_nil : erase_dup [] = ([] : list α) := rfl theorem erase_dup_cons_of_mem' {a : α} {l : list α} (h : a ∈ erase_dup l) : erase_dup (a::l) = erase_dup l := pw_filter_cons_of_neg $ by simpa using h theorem erase_dup_cons_of_not_mem' {a : α} {l : list α} (h : a ∉ erase_dup l) : erase_dup (a::l) = a :: erase_dup l := pw_filter_cons_of_pos $ by simpa using h @[simp] theorem mem_erase_dup {a : α} {l : list α} : a ∈ erase_dup l ↔ a ∈ l := by simpa using not_congr (@forall_mem_pw_filter α (≠) _ (λ x y z xz, not_and_distrib.1 $ mt (and.rec eq.trans) xz) a l) @[simp] theorem erase_dup_cons_of_mem {a : α} {l : list α} (h : a ∈ l) : erase_dup (a::l) = erase_dup l := erase_dup_cons_of_mem' $ mem_erase_dup.2 h @[simp] theorem erase_dup_cons_of_not_mem {a : α} {l : list α} (h : a ∉ l) : erase_dup (a::l) = a :: erase_dup l := erase_dup_cons_of_not_mem' $ mt mem_erase_dup.1 h theorem erase_dup_sublist : ∀ (l : list α), erase_dup l <+ l := pw_filter_sublist theorem erase_dup_subset : ∀ (l : list α), erase_dup l ⊆ l := pw_filter_subset theorem subset_erase_dup (l : list α) : l ⊆ erase_dup l := λ a, mem_erase_dup.2 theorem nodup_erase_dup : ∀ l : list α, nodup (erase_dup l) := pairwise_pw_filter theorem erase_dup_eq_self {l : list α} : erase_dup l = l ↔ nodup l := pw_filter_eq_self theorem erase_dup_append {l₁ l₂ : list α} : erase_dup (l₁ ++ l₂) = l₁ ∪ erase_dup l₂ := begin induction l₁ with a l₁ IH; simp, rw ← IH, show erase_dup (a :: (l₁ ++ l₂)) = insert a (erase_dup (l₁ ++ l₂)), by_cases a ∈ erase_dup (l₁ ++ l₂); [ rw [erase_dup_cons_of_mem' h, insert_of_mem h], rw [erase_dup_cons_of_not_mem' h, insert_of_not_mem h]] end end erase_dup /- iota and range -/ @[simp] def range' : ℕ → ℕ → list ℕ | s 0 := [] | s (n+1) := s :: range' (s+1) n @[simp] theorem length_range' : ∀ (s n : ℕ), length (range' s n) = n | s 0 := rfl | s (n+1) := congr_arg succ (length_range' _ _) @[simp] theorem mem_range' {m : ℕ} : ∀ {s n : ℕ}, m ∈ range' s n ↔ s ≤ m ∧ m < s + n | s 0 := by simp | s (n+1) := have m = s → m < s + (n + 1), from λ e, e ▸ lt_succ_of_le (le_add_right _ _), have l : m = s ∨ s + 1 ≤ m ↔ s ≤ m, by simpa [eq_comm] using (@le_iff_eq_or_lt _ _ s m).symm, by simp [@mem_range' (s+1) n, or_and_distrib_left, or_iff_right_of_imp this, l] theorem chain_succ_range' : ∀ s n : ℕ, chain (λ a b, b = succ a) s (range' (s+1) n) | s 0 := chain.nil _ _ | s (n+1) := (chain_succ_range' (s+1) n).cons rfl theorem chain_lt_range' (s n : ℕ) : chain (<) s (range' (s+1) n) := (chain_succ_range' s n).imp (λ a b e, e.symm ▸ lt_succ_self _) theorem pairwise_lt_range' : ∀ s n : ℕ, pairwise (<) (range' s n) | s 0 := pairwise.nil _ | s (n+1) := (chain_iff_pairwise (by exact λ a b c, lt_trans)).1 (chain_lt_range' s n) theorem nodup_range' (s n : ℕ) : nodup (range' s n) := (pairwise_lt_range' s n).imp (λ a b, ne_of_lt) theorem range'_append : ∀ s m n : ℕ, range' s m ++ range' (s+m) n = range' s (n+m) | s 0 n := rfl | s (m+1) n := show s :: (range' (s+1) m ++ range' (s+m+1) n) = s :: range' (s+1) (n+m), by rw [add_right_comm, range'_append] theorem range'_sublist_right {s m n : ℕ} : range' s m <+ range' s n ↔ m ≤ n := ⟨λ h, by simpa using length_le_of_sublist h, λ h, by rw [← nat.sub_add_cancel h, ← range'_append]; apply sublist_append_left⟩ theorem range'_subset_right {s m n : ℕ} : range' s m ⊆ range' s n ↔ m ≤ n := ⟨λ h, le_of_not_lt $ λ hn, lt_irrefl (s+n) $ (mem_range'.1 $ h $ mem_range'.2 ⟨le_add_right _ _, nat.add_lt_add_left hn s⟩).2, λ h, subset_of_sublist (range'_sublist_right.2 h)⟩ theorem range'_concat (s n : ℕ) : range' s (n + 1) = range' s n ++ [s+n] := by rw add_comm n 1; exact (range'_append s n 1).symm theorem range_core_range' : ∀ s n : ℕ, range_core s (range' s n) = range' 0 (n + s) | 0 n := rfl | (s+1) n := by rw [show n+(s+1) = n+1+s, by simp]; exact range_core_range' s (n+1) theorem range_eq_range' (n : ℕ) : range n = range' 0 n := (range_core_range' n 0).trans $ by rw zero_add @[simp] theorem length_range (n : ℕ) : length (range n) = n := by simp [range_eq_range'] theorem pairwise_lt_range (n : ℕ) : pairwise (<) (range n) := by simp [range_eq_range', pairwise_lt_range'] theorem nodup_range (n : ℕ) : nodup (range n) := by simp [range_eq_range', nodup_range'] theorem range_sublist {m n : ℕ} : range m <+ range n ↔ m ≤ n := by simp [range_eq_range', range'_sublist_right] theorem range_subset {m n : ℕ} : range m ⊆ range n ↔ m ≤ n := by simp [range_eq_range', range'_subset_right] @[simp] theorem mem_range {m n : ℕ} : m ∈ range n ↔ m < n := by simp [range_eq_range', zero_le] @[simp] theorem not_mem_range_self {n : ℕ} : n ∉ range n := mt mem_range.1 $ lt_irrefl _ theorem iota_eq_reverse_range' : ∀ n : ℕ, iota n = reverse (range' 1 n) | 0 := rfl | (n+1) := by simp [iota, range'_concat, iota_eq_reverse_range' n] @[simp] theorem length_iota (n : ℕ) : length (iota n) = n := by simp [iota_eq_reverse_range'] theorem pairwise_gt_iota (n : ℕ) : pairwise (>) (iota n) := by simp [iota_eq_reverse_range', pairwise_lt_range'] theorem nodup_iota (n : ℕ) : nodup (iota n) := by simp [iota_eq_reverse_range', nodup_range'] theorem mem_iota {m n : ℕ} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n := by simp [iota_eq_reverse_range', lt_succ_iff] end list
addd6a1c08a24e2db694fb582be4455fb6e2e6f6
2c096fdfecf64e46ea7bc6ce5521f142b5926864
/src/Lean/Server/FileWorker/RequestHandling.lean
f30cc076b401791be8926d0559674fc2d998c5d5
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
Kha/lean4
1005785d2c8797ae266a303968848e5f6ce2fe87
b99e11346948023cd6c29d248cd8f3e3fb3474cf
refs/heads/master
1,693,355,498,027
1,669,080,461,000
1,669,113,138,000
184,748,176
0
0
Apache-2.0
1,665,995,520,000
1,556,884,930,000
Lean
UTF-8
Lean
false
false
25,464
lean
/- Copyright (c) 2021 Wojciech Nawrocki. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki, Marc Huisinga -/ import Lean.DeclarationRange import Lean.Data.Json import Lean.Data.Lsp import Lean.Server.FileWorker.Utils import Lean.Server.Requests import Lean.Server.Completion import Lean.Server.References import Lean.Server.GoTo import Lean.Widget.InteractiveGoal import Lean.Widget.Diff namespace Lean.Server.FileWorker open Lsp open RequestM open Snapshots def handleCompletion (p : CompletionParams) : RequestM (RequestTask CompletionList) := do let doc ← readDoc let text := doc.meta.text let pos := text.lspPosToUtf8Pos p.position let caps := (← read).initParams.capabilities -- dbg_trace ">> handleCompletion invoked {pos}" -- NOTE: use `+ 1` since we sometimes want to consider invalid input technically after the command, -- such as a trailing dot after an option name. This shouldn't be a problem since any subsequent -- command starts with a keyword that (currently?) does not participate in completion. withWaitFindSnap doc (·.endPos + ' ' >= pos) (notFoundX := pure { items := #[], isIncomplete := true }) fun snap => do if let some r ← Completion.find? doc.meta.text pos snap.infoTree caps then return r return { items := #[ ], isIncomplete := true } open Elab in def handleHover (p : HoverParams) : RequestM (RequestTask (Option Hover)) := do let doc ← readDoc let text := doc.meta.text let mkHover (s : String) (r : String.Range) : Hover := { contents := { kind := MarkupKind.markdown value := s } range? := r.toLspRange text } let hoverPos := text.lspPosToUtf8Pos p.position withWaitFindSnap doc (fun s => s.endPos > hoverPos) (notFoundX := pure none) fun snap => do -- try to find parser docstring from syntax tree let stack? := snap.stx.findStack? (·.getRange?.any (·.contains hoverPos)) let stxDoc? ← match stack? with | some stack => stack.findSomeM? fun (stx, _) => do return (← findDocString? snap.env stx.getKind).map (·, stx.getRange?.get!) | none => pure none -- now try info tree if let some (ci, i) := snap.infoTree.hoverableInfoAt? hoverPos then if let some range := i.range? then -- prefer info tree if at least as specific as parser docstring if stxDoc?.all fun (_, stxRange) => stxRange.includes range then if let some hoverFmt ← i.fmtHover? ci then return mkHover (toString hoverFmt) range if let some (doc, range) := stxDoc? then return mkHover doc range return none open Elab GoToKind in def locationLinksOfInfo (kind : GoToKind) (ci : Elab.ContextInfo) (i : Elab.Info) (infoTree? : Option InfoTree := none) : RequestM (Array LocationLink) := do let rc ← read let doc ← readDoc let text := doc.meta.text let locationLinksFromDecl (i : Elab.Info) (n : Name) := locationLinksFromDecl rc.srcSearchPath doc.meta.uri n <| (·.toLspRange text) <$> i.range? let locationLinksFromBinder (i : Elab.Info) (id : FVarId) := do if let some i' := infoTree? >>= InfoTree.findInfo? fun | Info.ofTermInfo { isBinder := true, expr := Expr.fvar id' .., .. } => id' == id | _ => false then if let some r := i'.range? then let r := r.toLspRange text let ll : LocationLink := { originSelectionRange? := (·.toLspRange text) <$> i.range? targetUri := doc.meta.uri targetRange := r targetSelectionRange := r } return #[ll] return #[] let locationLinksFromImport (i : Elab.Info) := do let name := i.stx[2].getId if let some modUri ← documentUriFromModule rc.srcSearchPath name then let range := { start := ⟨0, 0⟩, «end» := ⟨0, 0⟩ : Range } let ll : LocationLink := { originSelectionRange? := (·.toLspRange text) <$> i.stx[2].getRange? (canonicalOnly := true) targetUri := modUri targetRange := range targetSelectionRange := range } return #[ll] return #[] match i with | .ofTermInfo ti => let mut expr := ti.expr if kind == type then expr ← ci.runMetaM i.lctx do return Expr.getAppFn (← instantiateMVars (← Meta.inferType expr)) match expr with | Expr.const n .. => return ← ci.runMetaM i.lctx <| locationLinksFromDecl i n | Expr.fvar id .. => return ← ci.runMetaM i.lctx <| locationLinksFromBinder i id | _ => pure () | .ofFieldInfo fi => if kind == type then let expr ← ci.runMetaM i.lctx do instantiateMVars (← Meta.inferType fi.val) if let some n := expr.getAppFn.constName? then return ← ci.runMetaM i.lctx <| locationLinksFromDecl i n else return ← ci.runMetaM i.lctx <| locationLinksFromDecl i fi.projName | .ofOptionInfo oi => return ← ci.runMetaM i.lctx <| locationLinksFromDecl i oi.declName | .ofCommandInfo ⟨`import, _⟩ => if kind == definition || kind == declaration then return ← ci.runMetaM i.lctx <| locationLinksFromImport i | _ => pure () -- If other go-tos fail, we try to show the elaborator or parser if let some ei := i.toElabInfo? then if kind == declaration && ci.env.contains ei.stx.getKind then return ← ci.runMetaM i.lctx <| locationLinksFromDecl i ei.stx.getKind if kind == definition && ci.env.contains ei.elaborator then return ← ci.runMetaM i.lctx <| locationLinksFromDecl i ei.elaborator return #[] open Elab GoToKind in def handleDefinition (kind : GoToKind) (p : TextDocumentPositionParams) : RequestM (RequestTask (Array LocationLink)) := do let doc ← readDoc let text := doc.meta.text let hoverPos := text.lspPosToUtf8Pos p.position withWaitFindSnap doc (fun s => s.endPos > hoverPos) (notFoundX := pure #[]) fun snap => do if let some (ci, i) := snap.infoTree.hoverableInfoAt? (includeStop := true /- #767 -/) hoverPos then locationLinksOfInfo kind ci i snap.infoTree else return #[] open RequestM in def getInteractiveGoals (p : Lsp.PlainGoalParams) : RequestM (RequestTask (Option Widget.InteractiveGoals)) := do let doc ← readDoc let text := doc.meta.text let hoverPos := text.lspPosToUtf8Pos p.position -- NOTE: use `>=` since the cursor can be *after* the input withWaitFindSnap doc (fun s => s.endPos >= hoverPos) (notFoundX := return none) fun snap => do if let rs@(_ :: _) := snap.infoTree.goalsAt? doc.meta.text hoverPos then let goals : List Widget.InteractiveGoals ← rs.mapM fun { ctxInfo := ci, tacticInfo := ti, useAfter := useAfter, .. } => do let ciAfter := { ci with mctx := ti.mctxAfter } let ci := if useAfter then ciAfter else { ci with mctx := ti.mctxBefore } -- compute the interactive goals let goals ← ci.runMetaM {} (do let goals := List.toArray <| if useAfter then ti.goalsAfter else ti.goalsBefore let goals ← goals.mapM Widget.goalToInteractive return {goals} ) -- compute the goal diff let goals ← ciAfter.runMetaM {} (do try Widget.diffInteractiveGoals useAfter ti goals catch _ => -- fail silently, since this is just a bonus feature return goals ) return goals return some <| goals.foldl (· ++ ·) ∅ else return none open Elab in def handlePlainGoal (p : PlainGoalParams) : RequestM (RequestTask (Option PlainGoal)) := do let t ← getInteractiveGoals p return t.map <| Except.map <| Option.map <| fun {goals, ..} => if goals.isEmpty then { goals := #[], rendered := "no goals" } else let goalStrs := goals.map (toString ·.pretty) let goalBlocks := goalStrs.map fun goal => s!"```lean {goal} ```" let md := String.intercalate "\n---\n" goalBlocks.toList { goals := goalStrs, rendered := md } def getInteractiveTermGoal (p : Lsp.PlainTermGoalParams) : RequestM (RequestTask (Option Widget.InteractiveTermGoal)) := do let doc ← readDoc let text := doc.meta.text let hoverPos := text.lspPosToUtf8Pos p.position withWaitFindSnap doc (fun s => s.endPos > hoverPos) (notFoundX := pure none) fun snap => do if let some (ci, i@(Elab.Info.ofTermInfo ti)) := snap.infoTree.termGoalAt? hoverPos then let ty ← ci.runMetaM i.lctx do instantiateMVars <| ti.expectedType?.getD (← Meta.inferType ti.expr) -- for binders, hide the last hypothesis (the binder itself) let lctx' := if ti.isBinder then i.lctx.pop else i.lctx let goal ← ci.runMetaM lctx' do Widget.goalToInteractive (← Meta.mkFreshExprMVar ty).mvarId! let range := if let some r := i.range? then r.toLspRange text else ⟨p.position, p.position⟩ return some { goal with range } else return none def handlePlainTermGoal (p : PlainTermGoalParams) : RequestM (RequestTask (Option PlainTermGoal)) := do let t ← getInteractiveTermGoal p return t.map <| Except.map <| Option.map fun goal => { goal := toString goal.toInteractiveGoal.pretty range := goal.range } partial def handleDocumentHighlight (p : DocumentHighlightParams) : RequestM (RequestTask (Array DocumentHighlight)) := do let doc ← readDoc let text := doc.meta.text let pos := text.lspPosToUtf8Pos p.position let rec highlightReturn? (doRange? : Option Range) : Syntax → Option DocumentHighlight | `(doElem|return%$i $e) => Id.run do if let some range := i.getRange? then if range.contains pos then return some { range := doRange?.getD (range.toLspRange text), kind? := DocumentHighlightKind.text } highlightReturn? doRange? e | `(do%$i $elems) => highlightReturn? (i.getRange?.get!.toLspRange text) elems | stx => stx.getArgs.findSome? (highlightReturn? doRange?) let highlightRefs? (snaps : Array Snapshot) : Option (Array DocumentHighlight) := Id.run do let trees := snaps.map (·.infoTree) let refs : Lsp.ModuleRefs := findModuleRefs text trees let mut ranges := #[] for ident in ← refs.findAt p.position do if let some info ← refs.find? ident then if let some definition := info.definition then ranges := ranges.push definition ranges := ranges.append info.usages if ranges.isEmpty then return none some <| ranges.map ({ range := ·, kind? := DocumentHighlightKind.text }) withWaitFindSnap doc (fun s => s.endPos > pos) (notFoundX := pure #[]) fun snap => do let (snaps, _) ← doc.cmdSnaps.getFinishedPrefix if let some his := highlightRefs? snaps.toArray then return his if let some hi := highlightReturn? none snap.stx then return #[hi] return #[] structure NamespaceEntry where /-- The list of the name components introduced by this namespace command, in reverse order so that `end` will peel them off from the front. -/ name : List Name stx : Syntax selection : Syntax prevSiblings : Array DocumentSymbol def NamespaceEntry.finish (text : FileMap) (syms : Array DocumentSymbol) (endStx : Option Syntax) : NamespaceEntry → Array DocumentSymbol | { name, stx, selection, prevSiblings, .. } => -- we can assume that commands always have at least one position (see `parseCommand`) let range := match endStx with | some endStx => (mkNullNode #[stx, endStx]).getRange?.get! | none => { stx.getRange?.get! with stop := text.source.endPos } let name := name.foldr (fun x y => y ++ x) Name.anonymous prevSiblings.push <| DocumentSymbol.mk { -- anonymous sections are represented by `«»` name components name := if name == `«» then "<section>" else name.toString kind := .namespace range := range.toLspRange text selectionRange := selection.getRange?.getD range |>.toLspRange text children? := syms } open Parser.Command in partial def handleDocumentSymbol (_ : DocumentSymbolParams) : RequestM (RequestTask DocumentSymbolResult) := do let doc ← readDoc -- bad: we have to wait on elaboration of the entire file before we can report document symbols let t := doc.cmdSnaps.waitAll mapTask t fun (snaps, _) => do let mut stxs := snaps.map (·.stx) return { syms := toDocumentSymbols doc.meta.text stxs #[] [] } where toDocumentSymbols (text : FileMap) (stxs : List Syntax) (syms : Array DocumentSymbol) (stack : List NamespaceEntry) : Array DocumentSymbol := match stxs with | [] => stack.foldl (fun syms entry => entry.finish text syms none) syms | stx::stxs => match stx with | `(namespace $id) => let entry := { name := id.getId.componentsRev, stx, selection := id, prevSiblings := syms } toDocumentSymbols text stxs #[] (entry :: stack) | `(section $(id)?) => let name := id.map (·.getId.componentsRev) |>.getD [`«»] let entry := { name, stx, selection := id.map (·.raw) |>.getD stx, prevSiblings := syms } toDocumentSymbols text stxs #[] (entry :: stack) | `(end $(id)?) => let rec popStack n syms | [] => toDocumentSymbols text stxs syms [] | entry :: stack => if entry.name.length == n then let syms := entry.finish text syms stx toDocumentSymbols text stxs syms stack else if entry.name.length > n then let syms := { entry with name := entry.name.take n, prevSiblings := #[] }.finish text syms stx toDocumentSymbols text stxs syms ({ entry with name := entry.name.drop n } :: stack) else let syms := entry.finish text syms stx popStack (n - entry.name.length) syms stack popStack (id.map (·.getId.getNumParts) |>.getD 1) syms stack | _ => Id.run do unless stx.isOfKind ``Lean.Parser.Command.declaration do return toDocumentSymbols text stxs syms stack if let some stxRange := stx.getRange? then let (name, selection) := match stx with | `($_:declModifiers $_:attrKind instance $[$np:namedPrio]? $[$id$[.{$ls,*}]?]? $sig:declSig $_) => ((·.getId.toString) <$> id |>.getD s!"instance {sig.raw.reprint.getD ""}", id.map (·.raw) |>.getD sig) | _ => match stx.getArg 1 |>.getArg 1 with | `(declId|$id$[.{$ls,*}]?) => (id.raw.getId.toString, id) | _ => let stx10 : Syntax := (stx.getArg 1).getArg 0 -- TODO: stx[1][0] times out (stx10.isIdOrAtom?.getD "<unknown>", stx10) if let some selRange := selection.getRange? then let sym := DocumentSymbol.mk { name := name kind := SymbolKind.method range := stxRange.toLspRange text selectionRange := selRange.toLspRange text } return toDocumentSymbols text stxs (syms.push sym) stack toDocumentSymbols text stxs syms stack def noHighlightKinds : Array SyntaxNodeKind := #[ -- usually have special highlighting by the client ``Lean.Parser.Term.sorry, ``Lean.Parser.Term.type, ``Lean.Parser.Term.prop, -- not really keywords `antiquotName, ``Lean.Parser.Command.docComment, ``Lean.Parser.Command.moduleDoc] structure SemanticTokensContext where beginPos : String.Pos endPos : String.Pos text : FileMap snap : Snapshot structure SemanticTokensState where data : Array Nat lastLspPos : Lsp.Position partial def handleSemanticTokens (beginPos endPos : String.Pos) : RequestM (RequestTask SemanticTokens) := do let doc ← readDoc let text := doc.meta.text let t := doc.cmdSnaps.waitAll (·.beginPos < endPos) mapTask t fun (snaps, _) => StateT.run' (s := { data := #[], lastLspPos := ⟨0, 0⟩ : SemanticTokensState }) do for s in snaps do if s.endPos <= beginPos then continue ReaderT.run (r := SemanticTokensContext.mk beginPos endPos text s) <| go s.stx return { data := (← get).data } where go (stx : Syntax) := do match stx with | `($e.$id:ident) => go e; addToken id SemanticTokenType.property -- indistinguishable from next pattern --| `(level|$id:ident) => addToken id SemanticTokenType.variable | `($id:ident) => highlightId id | _ => if !noHighlightKinds.contains stx.getKind then highlightKeyword stx if stx.isOfKind choiceKind then go stx[0] else stx.getArgs.forM go highlightId (stx : Syntax) : ReaderT SemanticTokensContext (StateT SemanticTokensState RequestM) _ := do if let some range := stx.getRange? then let mut lastPos := range.start for ti in (← read).snap.infoTree.deepestNodes (fun | _, i@(Elab.Info.ofTermInfo ti), _ => match i.pos? with | some ipos => if range.contains ipos then some ti else none | _ => none | _, _, _ => none) do let pos := ti.stx.getPos?.get! -- avoid reporting same position twice; the info node can occur multiple times if -- e.g. the term is elaborated multiple times if pos < lastPos then continue if let Expr.fvar fvarId .. := ti.expr then if let some localDecl := ti.lctx.find? fvarId then -- Recall that `isAuxDecl` is an auxiliary declaration used to elaborate a recursive definition. if localDecl.isAuxDecl then if ti.isBinder then addToken ti.stx SemanticTokenType.function else addToken ti.stx SemanticTokenType.variable else if ti.stx.getPos?.get! > lastPos then -- any info after the start position: must be projection notation addToken ti.stx SemanticTokenType.property lastPos := ti.stx.getPos?.get! highlightKeyword stx := do if let Syntax.atom _ val := stx then if (val.length > 0 && val.front.isAlpha) || -- Support for keywords of the form `#<alpha>...` (val.length > 1 && val.front == '#' && (val.get ⟨1⟩).isAlpha) then addToken stx SemanticTokenType.keyword addToken stx type := do let ⟨beginPos, endPos, text, _⟩ ← read if let (some pos, some tailPos) := (stx.getPos?, stx.getTailPos?) then if beginPos <= pos && pos < endPos then let lspPos := (← get).lastLspPos let lspPos' := text.utf8PosToLspPos pos let deltaLine := lspPos'.line - lspPos.line let deltaStart := lspPos'.character - (if lspPos'.line == lspPos.line then lspPos.character else 0) let length := (text.utf8PosToLspPos tailPos).character - lspPos'.character let tokenType := type.toNat let tokenModifiers := 0 modify fun st => { data := st.data ++ #[deltaLine, deltaStart, length, tokenType, tokenModifiers] lastLspPos := lspPos' } def handleSemanticTokensFull (_ : SemanticTokensParams) : RequestM (RequestTask SemanticTokens) := do handleSemanticTokens 0 ⟨1 <<< 16⟩ def handleSemanticTokensRange (p : SemanticTokensRangeParams) : RequestM (RequestTask SemanticTokens) := do let doc ← readDoc let text := doc.meta.text let beginPos := text.lspPosToUtf8Pos p.range.start let endPos := text.lspPosToUtf8Pos p.range.end handleSemanticTokens beginPos endPos partial def handleFoldingRange (_ : FoldingRangeParams) : RequestM (RequestTask (Array FoldingRange)) := do let doc ← readDoc let t := doc.cmdSnaps.waitAll mapTask t fun (snaps, _) => do let stxs := snaps.map (·.stx) let (_, ranges) ← StateT.run (addRanges doc.meta.text [] stxs) #[] return ranges where isImport stx := stx.isOfKind ``Lean.Parser.Module.header || stx.isOfKind ``Lean.Parser.Command.open addRanges (text : FileMap) sections | [] => do if let (_, start)::rest := sections then addRange text FoldingRangeKind.region start text.source.endPos addRanges text rest [] | stx::stxs => match stx with | `(namespace $id) => addRanges text ((id.getId.getNumParts, stx.getPos?)::sections) stxs | `(section $(id)?) => addRanges text ((id.map (·.getId.getNumParts) |>.getD 1, stx.getPos?)::sections) stxs | `(end $(id)?) => do let rec popRanges n sections := do if let (size, start)::rest := sections then if size == n then addRange text FoldingRangeKind.region start stx.getTailPos? addRanges text rest stxs else if size > n then -- we don't add a range here because vscode doesn't like -- multiple folding regions with the same start line addRanges text ((size - n, start)::rest) stxs else addRange text FoldingRangeKind.region start stx.getTailPos? popRanges (n - size) rest else addRanges text sections stxs popRanges (id.map (·.getId.getNumParts) |>.getD 1) sections | `(mutual $body* end) => do addRangeFromSyntax text FoldingRangeKind.region stx addRanges text [] body.raw.toList addRanges text sections stxs | _ => do if isImport stx then let (imports, stxs) := stxs.span isImport let last := imports.getLastD stx addRange text FoldingRangeKind.imports stx.getPos? last.getTailPos? addRanges text sections stxs else addCommandRange text stx addRanges text sections stxs addCommandRange text stx := match stx.getKind with | `Lean.Parser.Command.moduleDoc => addRangeFromSyntax text FoldingRangeKind.comment stx | ``Lean.Parser.Command.declaration => do -- When visiting a declaration, attempt to fold the doc comment -- separately to the main definition. -- We never fold other modifiers, such as annotations. if let `($dm:declModifiers $decl) := stx then if let some comment := dm.raw[0].getOptional? then addRangeFromSyntax text FoldingRangeKind.comment comment addRangeFromSyntax text FoldingRangeKind.region decl else addRangeFromSyntax text FoldingRangeKind.region stx | _ => addRangeFromSyntax text FoldingRangeKind.region stx addRangeFromSyntax (text : FileMap) kind stx := addRange text kind stx.getPos? stx.getTailPos? addRange (text : FileMap) kind start? stop? := do if let (some startP, some endP) := (start?, stop?) then let startP := text.utf8PosToLspPos startP let endP := text.utf8PosToLspPos endP if startP.line != endP.line then modify fun st => st.push { startLine := startP.line endLine := endP.line kind? := some kind } partial def handleWaitForDiagnostics (p : WaitForDiagnosticsParams) : RequestM (RequestTask WaitForDiagnostics) := do let rec waitLoop : RequestM EditableDocument := do let doc ← readDoc if p.version ≤ doc.meta.version then return doc else IO.sleep 50 waitLoop let t ← RequestM.asTask waitLoop RequestM.bindTask t fun doc? => do let doc ← liftExcept doc? let t₁ := doc.cmdSnaps.waitAll return t₁.map fun _ => pure WaitForDiagnostics.mk builtin_initialize registerLspRequestHandler "textDocument/waitForDiagnostics" WaitForDiagnosticsParams WaitForDiagnostics handleWaitForDiagnostics registerLspRequestHandler "textDocument/completion" CompletionParams CompletionList handleCompletion registerLspRequestHandler "textDocument/hover" HoverParams (Option Hover) handleHover registerLspRequestHandler "textDocument/declaration" TextDocumentPositionParams (Array LocationLink) (handleDefinition GoToKind.declaration) registerLspRequestHandler "textDocument/definition" TextDocumentPositionParams (Array LocationLink) (handleDefinition GoToKind.definition) registerLspRequestHandler "textDocument/typeDefinition" TextDocumentPositionParams (Array LocationLink) (handleDefinition GoToKind.type) registerLspRequestHandler "textDocument/documentHighlight" DocumentHighlightParams DocumentHighlightResult handleDocumentHighlight registerLspRequestHandler "textDocument/documentSymbol" DocumentSymbolParams DocumentSymbolResult handleDocumentSymbol registerLspRequestHandler "textDocument/semanticTokens/full" SemanticTokensParams SemanticTokens handleSemanticTokensFull registerLspRequestHandler "textDocument/semanticTokens/range" SemanticTokensRangeParams SemanticTokens handleSemanticTokensRange registerLspRequestHandler "textDocument/foldingRange" FoldingRangeParams (Array FoldingRange) handleFoldingRange registerLspRequestHandler "$/lean/plainGoal" PlainGoalParams (Option PlainGoal) handlePlainGoal registerLspRequestHandler "$/lean/plainTermGoal" PlainTermGoalParams (Option PlainTermGoal) handlePlainTermGoal end Lean.Server.FileWorker
024c049183053d4af656ee7e88ae356e9a114971
7cef822f3b952965621309e88eadf618da0c8ae9
/src/tactic/monotonicity/basic.lean
a12231b35f7e7caeeae661ec98929b10ea31f385
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
5,485
lean
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Simon Hudon -/ import tactic.core import category.basic import algebra.order_functions import algebra.order import meta.rb_map namespace tactic.interactive open tactic list open lean lean.parser interactive open interactive.types structure mono_cfg := (unify := ff) @[derive [decidable_eq,has_reflect]] inductive mono_selection : Type | left : mono_selection | right : mono_selection | both : mono_selection section compare parameter opt : mono_cfg meta def compare (e₀ e₁ : expr) : tactic unit := do if opt.unify then do guard (¬ e₀.is_mvar ∧ ¬ e₁.is_mvar), unify e₀ e₁ else is_def_eq e₀ e₁ meta def find_one_difference : list expr → list expr → tactic (list expr × expr × expr × list expr) | (x :: xs) (y :: ys) := do c ← try_core (compare x y), if c.is_some then prod.map (cons x) id <$> find_one_difference xs ys else do guard (xs.length = ys.length), mzip_with' compare xs ys, return ([],x,y,xs) | xs ys := fail format!"find_one_difference: {xs}, {ys}" end compare def last_two {α : Type*} (l : list α) : option (α × α) := match l.reverse with | (x₁ :: x₀ :: _) := some (x₀, x₁) | _ := none end meta def match_imp : expr → tactic (expr × expr) | `(%%e₀ → %%e₁) := do guard (¬ e₁.has_var), return (e₀,e₁) | _ := failed open expr meta def same_operator : expr → expr → bool | (app e₀ _) (app e₁ _) := let fn₀ := e₀.get_app_fn, fn₁ := e₁.get_app_fn in fn₀.is_constant ∧ fn₀.const_name = fn₁.const_name | (pi _ _ _ _) (pi _ _ _ _) := tt | _ _ := ff meta def get_operator (e : expr) : option name := guard (¬ e.is_pi) >> pure e.get_app_fn.const_name meta def monotoncity.check_rel (xs : list expr) (l r : expr) : tactic (option name) := do guard (same_operator l r) <|> do { fail format!"{l} and {r} should be the f x and f y for some f" }, if l.is_pi then pure none else pure r.get_app_fn.const_name @[reducible] def mono_key := (with_bot name × with_bot name) open nat meta def mono_head_candidates : ℕ → list expr → expr → tactic mono_key | 0 _ h := failed | (succ n) xs h := do { (rel,l,r) ← if h.is_arrow then pure (none,h.binding_domain,h.binding_body) else guard h.get_app_fn.is_constant >> prod.mk (some h.get_app_fn.const_name) <$> last_two h.get_app_args, prod.mk <$> monotoncity.check_rel xs.reverse l r <*> pure rel } <|> match xs with | [] := fail format!"oh? {h}" | (x::xs) := mono_head_candidates n xs (h.pis [x]) end meta def monotoncity.check (lm_n : name) (prio : ℕ) (persistent : bool) : tactic mono_key := do lm ← mk_const lm_n, lm_t ← infer_type lm, (xs,h) ← mk_local_pis lm_t, mono_head_candidates 3 xs.reverse h meta instance : has_to_format mono_selection := ⟨ λ x, match x with | mono_selection.left := "left" | mono_selection.right := "right" | mono_selection.both := "both" end ⟩ meta def side : lean.parser mono_selection := with_desc "expecting 'left', 'right' or 'both' (default)" $ do some n ← optional ident | pure mono_selection.both, if n = `left then pure $ mono_selection.left else if n = `right then pure $ mono_selection.right else if n = `both then pure $ mono_selection.both else fail format!"invalid argument: {n}, expecting 'left', 'right' or 'both' (default)" open function @[user_attribute] meta def monotonicity.attr : user_attribute (native.rb_lmap mono_key (name)) (option mono_key × mono_selection) := { name := `mono , descr := "monotonicity of function `f` wrt relations `R₀` and `R₁`: R₀ x y → R₁ (f x) (f y)" , cache_cfg := { dependencies := [], mk_cache := λ ls, do ps ← ls.mmap monotonicity.attr.get_param, let ps := ps.filter_map prod.fst, pure $ (ps.zip ls).foldl (flip $ uncurry (λ k n m, m.insert k n)) (native.rb_lmap.mk mono_key _) } , after_set := some $ λ n prio p, do { (none,v) ← monotonicity.attr.get_param n | pure (), k ← monotoncity.check n prio p, monotonicity.attr.set n (some k,v) p } , parser := prod.mk none <$> side } meta def filter_instances (e : mono_selection) (ns : list name) : tactic (list name) := ns.mfilter $ λ n, do d ← user_attribute.get_param_untyped monotonicity.attr n, (_,d) ← to_expr ``(id %%d) >>= eval_expr (option mono_key × mono_selection), return (e = d : bool) meta def get_monotonicity_lemmas (k : expr) (e : mono_selection) : tactic (list name) := do ns ← monotonicity.attr.get_cache, k' ← if k.is_pi then pure (get_operator k.binding_domain,none) else do { (x₀,x₁) ← last_two k.get_app_args, pure (get_operator x₀,some k.get_app_fn.const_name) }, let ns := ns.find_def [] k', ns' ← filter_instances e ns, if e ≠ mono_selection.both then (++) ns' <$> filter_instances mono_selection.both ns else pure ns' end tactic.interactive attribute [mono] add_le_add mul_le_mul neg_le_neg mul_lt_mul_of_pos_left mul_lt_mul_of_pos_right imp_imp_imp le_implies_le_of_le_of_le sub_le_sub abs_le_abs attribute [mono left] add_lt_add_of_le_of_lt mul_lt_mul' attribute [mono right] add_lt_add_of_lt_of_le mul_lt_mul open tactic.interactive
19dc81e3d6ef13d30b22dc2e7ffd862d5f20ecbe
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
/src/Lean/Util/Trace.lean
a34d0d983216492fdbfd0ee2ce38db2a74838fb8
[ "Apache-2.0" ]
permissive
dupuisf/lean4
d082d13b01243e1de29ae680eefb476961221eef
6a39c65bd28eb0e28c3870188f348c8914502718
refs/heads/master
1,676,948,755,391
1,610,665,114,000
1,610,665,114,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,522
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich, Leonardo de Moura -/ import Lean.Message import Lean.MonadEnv universe u namespace Lean open Std (PersistentArray) structure TraceElem where ref : Syntax msg : MessageData deriving Inhabited structure TraceState where enabled : Bool := true traces : PersistentArray TraceElem := {} deriving Inhabited namespace TraceState private def toFormat (traces : PersistentArray TraceElem) (sep : Format) : IO Format := traces.size.foldM (fun i r => do let curr ← (traces.get! i).msg.format pure $ if i > 0 then r ++ sep ++ curr else r ++ curr) Format.nil end TraceState class MonadTrace (m : Type → Type) where modifyTraceState : (TraceState → TraceState) → m Unit getTraceState : m TraceState export MonadTrace (getTraceState modifyTraceState) instance (m n) [MonadLift m n] [MonadTrace m] : MonadTrace n where modifyTraceState := fun f => liftM (modifyTraceState f : m _) getTraceState := liftM (getTraceState : m _) variables {α : Type} {m : Type → Type} [Monad m] [MonadTrace m] def printTraces {m} [Monad m] [MonadTrace m] [MonadLiftT IO m] : m Unit := do let traceState ← getTraceState traceState.traces.forM fun m => do let d ← m.msg.format IO.println d def resetTraceState {m} [MonadTrace m] : m Unit := modifyTraceState (fun _ => {}) private def checkTraceOptionAux (opts : Options) : Name → Bool | n@(Name.str p _ _) => opts.getBool n || (!opts.contains n && checkTraceOptionAux opts p) | _ => false def checkTraceOption (opts : Options) (cls : Name) : Bool := if opts.isEmpty then false else checkTraceOptionAux opts (`trace ++ cls) private def checkTraceOptionM [MonadOptions m] (cls : Name) : m Bool := do let opts ← getOptions pure $ checkTraceOption opts cls @[inline] def isTracingEnabledFor [MonadOptions m] (cls : Name) : m Bool := do let s ← getTraceState if !s.enabled then pure false else checkTraceOptionM cls @[inline] def enableTracing (b : Bool) : m Bool := do let s ← getTraceState let oldEnabled := s.enabled modifyTraceState fun s => { s with enabled := b } pure oldEnabled @[inline] def getTraces : m (PersistentArray TraceElem) := do let s ← getTraceState pure s.traces @[inline] def modifyTraces (f : PersistentArray TraceElem → PersistentArray TraceElem) : m Unit := modifyTraceState fun s => { s with traces := f s.traces } @[inline] def setTraceState (s : TraceState) : m Unit := modifyTraceState fun _ => s private def addNode (oldTraces : PersistentArray TraceElem) (cls : Name) (ref : Syntax) : m Unit := modifyTraces fun traces => if traces.isEmpty then oldTraces else let d := MessageData.tagged cls (MessageData.node (traces.toArray.map fun elem => elem.msg)) oldTraces.push { ref := ref, msg := d } private def getResetTraces : m (PersistentArray TraceElem) := do let oldTraces ← getTraces modifyTraces fun _ => {} pure oldTraces section variables [MonadRef m] [AddMessageContext m] [MonadOptions m] def addTrace (cls : Name) (msg : MessageData) : m Unit := do let ref ← getRef let msg ← addMessageContext msg modifyTraces fun traces => traces.push { ref := ref, msg := MessageData.tagged cls msg } @[inline] def trace (cls : Name) (msg : Unit → MessageData) : m Unit := do if (← isTracingEnabledFor cls) then addTrace cls (msg ()) @[inline] def traceM (cls : Name) (mkMsg : m MessageData) : m Unit := do if (← isTracingEnabledFor cls) then let msg ← mkMsg addTrace cls msg @[inline] def traceCtx [MonadFinally m] (cls : Name) (ctx : m α) : m α := do let b ← isTracingEnabledFor cls if !b then let old ← enableTracing false try ctx finally enableTracing old else let ref ← getRef let oldCurrTraces ← getResetTraces try ctx finally addNode oldCurrTraces cls ref -- TODO: delete after fix old frontend def MonadTracer.trace (cls : Name) (msg : Unit → MessageData) : m Unit := Lean.trace cls msg end def registerTraceClass (traceClassName : Name) : IO Unit := registerOption (`trace ++ traceClassName) { group := "trace", defValue := false, descr := "enable/disable tracing for the given module and submodules" } macro:max "trace!" id:term:max msg:term : term => `(trace $id fun _ => ($msg : MessageData)) syntax "trace[" ident "]!" (interpolatedStr(term) <|> term) : term macro_rules | `(trace[$id]! $s) => if s.getKind == interpolatedStrKind then `(Lean.trace $(quote id.getId) fun _ => m! $s) else `(Lean.trace $(quote id.getId) fun _ => ($s : MessageData)) variables {α : Type} {m : Type → Type} [Monad m] [MonadTrace m] [MonadOptions m] [MonadRef m] def withNestedTraces [MonadFinally m] (x : m α) : m α := do let s ← getTraceState if !s.enabled then x else let currTraces ← getTraces modifyTraces fun _ => {} let ref ← getRef try x finally modifyTraces fun traces => if traces.size == 0 then currTraces else if traces.size == 1 && traces[0].msg.isNest then currTraces ++ traces -- No nest of nest else let d := traces.foldl (init := MessageData.nil) fun d elem => if d.isNil then elem.msg else m!"{d}\n{elem.msg}" currTraces.push { ref := ref, msg := MessageData.nestD d } end Lean
d0323e8478505bb15f160f6a024141e95a90b78c
4727251e0cd73359b15b664c3170e5d754078599
/src/tactic/ring_exp.lean
42f2f55f91f72415bd685202c2bacea6c7025279
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
57,195
lean
/- Copyright (c) 2019 Tim Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tim Baanen -/ import tactic.norm_num import control.traversable.basic /-! # `ring_exp` tactic A tactic for solving equations in commutative (semi)rings, where the exponents can also contain variables. More precisely, expressions of the following form are supported: - constants (non-negative integers) - variables - coefficients (any rational number, embedded into the (semi)ring) - addition of expressions - multiplication of expressions - exponentiation of expressions (the exponent must have type `ℕ`) - subtraction and negation of expressions (if the base is a full ring) The motivating example is proving `2 * 2^n * b = b * 2^(n+1)`, something that the `ring` tactic cannot do, but `ring_exp` can. ## Implementation notes The basic approach to prove equalities is to normalise both sides and check for equality. The normalisation is guided by building a value in the type `ex` at the meta level, together with a proof (at the base level) that the original value is equal to the normalised version. The normalised version and normalisation proofs are also stored in the `ex` type. The outline of the file: - Define an inductive family of types `ex`, parametrised over `ex_type`, which can represent expressions with `+`, `*`, `^` and rational numerals. The parametrisation over `ex_type` ensures that associativity and distributivity are applied, by restricting which kinds of subexpressions appear as arguments to the various operators. - Represent addition, multiplication and exponentiation in the `ex` type, thus allowing us to map expressions to `ex` (the `eval` function drives this). We apply associativity and distributivity of the operators here (helped by `ex_type`) and commutativity as well (by sorting the subterms; unfortunately not helped by anything). Any expression not of the above formats is treated as an atom (the same as a variable). There are some details we glossed over which make the plan more complicated: - The order on atoms is not initially obvious. We construct a list containing them in order of initial appearance in the expression, then use the index into the list as a key to order on. - In the tactic, a normalized expression `ps : ex` lives in the meta-world, but the normalization proofs live in the real world. Thus, we cannot directly say `ps.orig = ps.pretty` anywhere, but we have to carefully construct the proof when we compute `ps`. This was a major source of bugs in development! - For `pow`, the exponent must be a natural number, while the base can be any semiring `α`. We swap out operations for the base ring `α` with those for the exponent ring `ℕ` as soon as we deal with exponents. This is accomplished by the `in_exponent` function and is relatively painless since we work in a `reader` monad. - The normalized form of an expression is the one that is useful for the tactic, but not as nice to read. To remedy this, the user-facing normalization calls `ex.simp`. ## Caveats and future work Subtraction cancels out identical terms, but division does not. That is: `a - a = 0 := by ring_exp` solves the goal, but `a / a := 1 by ring_exp` doesn't. Note that `0 / 0` is generally defined to be `0`, so division cancelling out is not true in general. Multiplication of powers can be simplified a little bit further: `2 ^ n * 2 ^ n = 4 ^ n := by ring_exp` could be implemented in a similar way that `2 * a + 2 * a = 4 * a := by ring_exp` already works. This feature wasn't needed yet, so it's not implemented yet. ## Tags ring, semiring, exponent, power -/ -- The base ring `α` will have a universe level `u`. -- We do not introduce `α` as a variable yet, -- in order to make it explicit or implicit as required. universes u namespace tactic.ring_exp open nat /-- The `atom` structure is used to represent atomic expressions: those which `ring_exp` cannot parse any further. For instance, `a + (a % b)` has `a` and `(a % b)` as atoms. The `ring_exp_eq` tactic does not normalize the subexpressions in atoms, but `ring_exp` does if `ring_exp_eq` was not sufficient. Atoms in fact represent equivalence classes of expressions, modulo definitional equality. The field `index : ℕ` should be a unique number for each class, while `value : expr` contains a representative of this class. The function `resolve_atom` determines the appropriate atom for a given expression. -/ meta structure atom : Type := (value : expr) (index : ℕ) namespace atom /-- The `eq` operation on `atom`s works modulo definitional equality, ignoring their `value`s. The invariants on `atom` ensure indices are unique per value. Thus, `eq` indicates equality as long as the `atom`s come from the same context. -/ meta def eq (a b : atom) : bool := a.index = b.index /-- We order `atom`s on the order of appearance in the main expression. -/ meta def lt (a b : atom) : bool := a.index < b.index meta instance : has_repr atom := ⟨λ x, "(atom " ++ repr x.2 ++ ")"⟩ end atom section expression /-! ### `expression` section In this section, we define the `ex` type and its basic operations. First, we introduce the supporting types `coeff`, `ex_type` and `ex_info`. For understanding the code, it's easier to check out `ex` itself first, then refer back to the supporting types. The arithmetic operations on `ex` need additional definitions, so they are defined in a later section. -/ /-- Coefficients in the expression are stored in a wrapper structure, allowing for easier modification of the data structures. The modifications might be caching of the result of `expr.of_rat`, or using a different meta representation of numerals. -/ @[derive decidable_eq, derive inhabited] structure coeff : Type := (value : ℚ) /-- The values in `ex_type` are used as parameters to `ex` to control the expression's structure. -/ @[derive decidable_eq, derive inhabited] inductive ex_type : Type | base : ex_type | sum : ex_type | prod : ex_type | exp : ex_type open ex_type /-- Each `ex` stores information for its normalization proof. The `orig` expression is the expression that was passed to `eval`. The `pretty` expression is the normalised form that the `ex` represents. (I didn't call this something like `norm`, because there are already too many things called `norm` in mathematics!) The field `proof` contains an optional proof term of type `%%orig = %%pretty`. The value `none` for the proof indicates that everything reduces to reflexivity. (Which saves space in quite a lot of cases.) -/ meta structure ex_info : Type := (orig : expr) (pretty : expr) (proof : option expr) /-- The `ex` type is an abstract representation of an expression with `+`, `*` and `^`. Those operators are mapped to the `sum`, `prod` and `exp` constructors respectively. The `zero` constructor is the base case for `ex sum`, e.g. `1 + 2` is represented by (something along the lines of) `sum 1 (sum 2 zero)`. The `coeff` constructor is the base case for `ex prod`, and is used for numerals. The code maintains the invariant that the coefficient is never `0`. The `var` constructor is the base case for `ex exp`, and is used for atoms. The `sum_b` constructor allows for addition in the base of an exponentiation; it serves a similar purpose as the parentheses in `(a + b)^c`. The code maintains the invariant that the argument to `sum_b` is not `zero` or `sum _ zero`. All of the constructors contain an `ex_info` field, used to carry around (arguments to) proof terms. While the `ex_type` parameter enforces some simplification invariants, the following ones must be manually maintained at the risk of insufficient power: - the argument to `coeff` must be nonzero (to ensure `0 = 0 * 1`) - the argument to `sum_b` must be of the form `sum a (sum b bs)` (to ensure `(a + 0)^n = a^n`) - normalisation proofs of subexpressions must be `refl ps.pretty` - if we replace `sum` with `cons` and `zero` with `nil`, the resulting list is sorted according to the `lt` relation defined further down; similarly for `prod` and `coeff` (to ensure `a + b = b + a`). The first two invariants could be encoded in a subtype of `ex`, but aren't (yet) to spare some implementation burden. The other invariants cannot be encoded because we need the `tactic` monad to check them. (For example, the correct equality check of `expr` is `is_def_eq : expr → expr → tactic unit`.) -/ meta inductive ex : ex_type → Type | zero (info : ex_info) : ex sum | sum (info : ex_info) : ex prod → ex sum → ex sum | coeff (info : ex_info) : coeff → ex prod | prod (info : ex_info) : ex exp → ex prod → ex prod | var (info : ex_info) : atom → ex base | sum_b (info : ex_info) : ex sum → ex base | exp (info : ex_info) : ex base → ex prod → ex exp /-- Return the proof information associated to the `ex`. -/ meta def ex.info : Π {et : ex_type} (ps : ex et), ex_info | sum (ex.zero i) := i | sum (ex.sum i _ _) := i | prod (ex.coeff i _) := i | prod (ex.prod i _ _) := i | base (ex.var i _) := i | base (ex.sum_b i _) := i | exp (ex.exp i _ _) := i /-- Return the original, non-normalized version of this `ex`. Note that arguments to another `ex` are always "pre-normalized": their `orig` and `pretty` are equal, and their `proof` is reflexivity. -/ meta def ex.orig {et : ex_type} (ps : ex et) : expr := ps.info.orig /-- Return the normalized version of this `ex`. -/ meta def ex.pretty {et : ex_type} (ps : ex et) : expr := ps.info.pretty /-- Return the normalisation proof of the given expression. If the proof is `refl`, we give `none` instead, which helps to control the size of proof terms. To get an actual term, use `ex.proof_term`, or use `mk_proof` with the correct set of arguments. -/ meta def ex.proof {et : ex_type} (ps : ex et) : option expr := ps.info.proof /-- Update the `orig` and `proof` fields of the `ex_info`. Intended for use in `ex.set_info`. -/ meta def ex_info.set (i : ex_info) (o : option expr) (pf : option expr) : ex_info := {orig := o.get_or_else i.pretty, proof := pf, .. i} /-- Update the `ex_info` of the given expression. We use this to combine intermediate normalisation proofs. Since `pretty` only depends on the subexpressions, which do not change, we do not set `pretty`. -/ meta def ex.set_info : Π {et : ex_type} (ps : ex et), option expr → option expr → ex et | sum (ex.zero i) o pf := ex.zero (i.set o pf) | sum (ex.sum i p ps) o pf := ex.sum (i.set o pf) p ps | prod (ex.coeff i x) o pf := ex.coeff (i.set o pf) x | prod (ex.prod i p ps) o pf := ex.prod (i.set o pf) p ps | base (ex.var i x) o pf := ex.var (i.set o pf) x | base (ex.sum_b i ps) o pf := ex.sum_b (i.set o pf) ps | exp (ex.exp i p ps) o pf := ex.exp (i.set o pf) p ps instance coeff_has_repr : has_repr coeff := ⟨λ x, repr x.1⟩ /-- Convert an `ex` to a `string`. -/ meta def ex.repr : Π {et : ex_type}, ex et → string | sum (ex.zero _) := "0" | sum (ex.sum _ p ps) := ex.repr p ++ " + " ++ ex.repr ps | prod (ex.coeff _ x) := repr x | prod (ex.prod _ p ps) := ex.repr p ++ " * " ++ ex.repr ps | base (ex.var _ x) := repr x | base (ex.sum_b _ ps) := "(" ++ ex.repr ps ++ ")" | exp (ex.exp _ p ps) := ex.repr p ++ " ^ " ++ ex.repr ps meta instance {et : ex_type} : has_repr (ex et) := ⟨ex.repr⟩ /-- Equality test for expressions. Since equivalence of `atom`s is not the same as equality, we cannot make a true `(=)` operator for `ex` either. -/ meta def ex.eq : Π {et : ex_type}, ex et → ex et → bool | sum (ex.zero _) (ex.zero _) := tt | sum (ex.zero _) (ex.sum _ _ _) := ff | sum (ex.sum _ _ _) (ex.zero _) := ff | sum (ex.sum _ p ps) (ex.sum _ q qs) := p.eq q && ps.eq qs | prod (ex.coeff _ x) (ex.coeff _ y) := x = y | prod (ex.coeff _ _) (ex.prod _ _ _) := ff | prod (ex.prod _ _ _) (ex.coeff _ _) := ff | prod (ex.prod _ p ps) (ex.prod _ q qs) := p.eq q && ps.eq qs | base (ex.var _ x) (ex.var _ y) := x.eq y | base (ex.var _ _) (ex.sum_b _ _) := ff | base (ex.sum_b _ _) (ex.var _ _) := ff | base (ex.sum_b _ ps) (ex.sum_b _ qs) := ps.eq qs | exp (ex.exp _ p ps) (ex.exp _ q qs) := p.eq q && ps.eq qs /-- The ordering on expressions. As for `ex.eq`, this is a linear order only in one context. -/ meta def ex.lt : Π {et : ex_type}, ex et → ex et → bool | sum _ (ex.zero _) := ff | sum (ex.zero _) _ := tt | sum (ex.sum _ p ps) (ex.sum _ q qs) := p.lt q || (p.eq q && ps.lt qs) | prod (ex.coeff _ x) (ex.coeff _ y) := x.1 < y.1 | prod (ex.coeff _ _) _ := tt | prod _ (ex.coeff _ _) := ff | prod (ex.prod _ p ps) (ex.prod _ q qs) := p.lt q || (p.eq q && ps.lt qs) | base (ex.var _ x) (ex.var _ y) := x.lt y | base (ex.var _ _) (ex.sum_b _ _) := tt | base (ex.sum_b _ _) (ex.var _ _) := ff | base (ex.sum_b _ ps) (ex.sum_b _ qs) := ps.lt qs | exp (ex.exp _ p ps) (ex.exp _ q qs) := p.lt q || (p.eq q && ps.lt qs) end expression section operations /-! ### `operations` section This section defines the operations (on `ex`) that use tactics. They live in the `ring_exp_m` monad, which adds a cache and a list of encountered atoms to the `tactic` monad. Throughout this section, we will be constructing proof terms. The lemmas used in the construction are all defined over a commutative semiring α. -/ variables {α : Type u} [comm_semiring α] open tactic open ex_type /-- Stores the information needed in the `eval` function and its dependencies, so they can (re)construct expressions. The `eval_info` structure stores this information for one type, and the `context` combines the two types, one for bases and one for exponents. -/ meta structure eval_info := (α : expr) (univ : level) -- Cache the instances for optimization and consistency (csr_instance : expr) (ha_instance : expr) (hm_instance : expr) (hp_instance : expr) -- Optional instances (only required for (-) and (/) respectively) (ring_instance : option expr) (dr_instance : option expr) -- Cache common constants. (zero : expr) (one : expr) /-- The `context` contains the full set of information needed for the `eval` function. This structure has two copies of `eval_info`: one is for the base (typically some semiring `α`) and another for the exponent (always `ℕ`). When evaluating an exponent, we put `info_e` in `info_b`. -/ meta structure context := (info_b : eval_info) (info_e : eval_info) (transp : transparency) /-- The `ring_exp_m` monad is used instead of `tactic` to store the context. -/ @[derive [monad, alternative]] meta def ring_exp_m (α : Type) : Type := reader_t context (state_t (list atom) tactic) α /-- Access the instance cache. -/ meta def get_context : ring_exp_m context := reader_t.read /-- Lift an operation in the `tactic` monad to the `ring_exp_m` monad. This operation will not access the cache. -/ meta def lift {α} (m : tactic α) : ring_exp_m α := reader_t.lift (state_t.lift m) /-- Change the context of the given computation, so that expressions are evaluated in the exponent ring, instead of the base ring. -/ meta def in_exponent {α} (mx : ring_exp_m α) : ring_exp_m α := do ctx ← get_context, reader_t.lift $ mx.run ⟨ctx.info_e, ctx.info_e, ctx.transp⟩ /-- Specialized version of `mk_app` where the first two arguments are `{α}` `[some_class α]`. Should be faster because it can use the cached instances. -/ meta def mk_app_class (f : name) (inst : expr) (args : list expr) : ring_exp_m expr := do ctx ← get_context, pure $ (@expr.const tt f [ctx.info_b.univ] ctx.info_b.α inst).mk_app args /-- Specialized version of `mk_app` where the first two arguments are `{α}` `[comm_semiring α]`. Should be faster because it can use the cached instances. -/ meta def mk_app_csr (f : name) (args : list expr) : ring_exp_m expr := do ctx ← get_context, mk_app_class f (ctx.info_b.csr_instance) args /-- Specialized version of `mk_app ``has_add.add`. Should be faster because it can use the cached instances. -/ meta def mk_add (args : list expr) : ring_exp_m expr := do ctx ← get_context, mk_app_class ``has_add.add ctx.info_b.ha_instance args /-- Specialized version of `mk_app ``has_mul.mul`. Should be faster because it can use the cached instances. -/ meta def mk_mul (args : list expr) : ring_exp_m expr := do ctx ← get_context, mk_app_class ``has_mul.mul ctx.info_b.hm_instance args /-- Specialized version of `mk_app ``has_pow.pow`. Should be faster because it can use the cached instances. -/ meta def mk_pow (args : list expr) : ring_exp_m expr := do ctx ← get_context, pure $ (@expr.const tt ``has_pow.pow [ctx.info_b.univ, ctx.info_e.univ] ctx.info_b.α ctx.info_e.α ctx.info_b.hp_instance).mk_app args /-- Construct a normalization proof term or return the cached one. -/ meta def ex_info.proof_term (ps : ex_info) : ring_exp_m expr := match ps.proof with | none := lift $ tactic.mk_eq_refl ps.pretty | (some p) := pure p end /-- Construct a normalization proof term or return the cached one. -/ meta def ex.proof_term {et : ex_type} (ps : ex et) : ring_exp_m expr := ps.info.proof_term /-- If all `ex_info` have trivial proofs, return a trivial proof. Otherwise, construct all proof terms. Useful in applications where trivial proofs combine to another trivial proof, most importantly to pass to `mk_proof_or_refl`. -/ meta def none_or_proof_term : list ex_info → ring_exp_m (option (list expr)) | [] := pure none | (x :: xs) := do xs_pfs ← none_or_proof_term xs, match (x.proof, xs_pfs) with | (none, none) := pure none | (some x_pf, none) := do xs_pfs ← traverse ex_info.proof_term xs, pure (some (x_pf :: xs_pfs)) | (_, some xs_pfs) := do x_pf ← x.proof_term, pure (some (x_pf :: xs_pfs)) end /-- Use the proof terms as arguments to the given lemma. If the lemma could reduce to reflexivity, consider using `mk_proof_or_refl.` -/ meta def mk_proof (lem : name) (args : list expr) (hs : list ex_info) : ring_exp_m expr := do hs' ← traverse ex_info.proof_term hs, mk_app_csr lem (args ++ hs') /-- Use the proof terms as arguments to the given lemma. Often, we construct a proof term using congruence where reflexivity suffices. To solve this, the following function tries to get away with reflexivity. -/ meta def mk_proof_or_refl (term : expr) (lem : name) (args : list expr) (hs : list ex_info) : ring_exp_m expr := do hs_full ← none_or_proof_term hs, match hs_full with | none := lift $ mk_eq_refl term | (some hs') := mk_app_csr lem (args ++ hs') end /-- A shortcut for adding the original terms of two expressions. -/ meta def add_orig {et et'} (ps : ex et) (qs : ex et') : ring_exp_m expr := mk_add [ps.orig, qs.orig] /-- A shortcut for multiplying the original terms of two expressions. -/ meta def mul_orig {et et'} (ps : ex et) (qs : ex et') : ring_exp_m expr := mk_mul [ps.orig, qs.orig] /-- A shortcut for exponentiating the original terms of two expressions. -/ meta def pow_orig {et et'} (ps : ex et) (qs : ex et') : ring_exp_m expr := mk_pow [ps.orig, qs.orig] /-- Congruence lemma for constructing `ex.sum`. -/ lemma sum_congr {p p' ps ps' : α} : p = p' → ps = ps' → p + ps = p' + ps' := by cc /-- Congruence lemma for constructing `ex.prod`. -/ lemma prod_congr {p p' ps ps' : α} : p = p' → ps = ps' → p * ps = p' * ps' := by cc /-- Congruence lemma for constructing `ex.exp`. -/ lemma exp_congr {p p' : α} {ps ps' : ℕ} : p = p' → ps = ps' → p ^ ps = p' ^ ps' := by cc /-- Constructs `ex.zero` with the correct arguments. -/ meta def ex_zero : ring_exp_m (ex sum) := do ctx ← get_context, pure $ ex.zero ⟨ctx.info_b.zero, ctx.info_b.zero, none⟩ /-- Constructs `ex.sum` with the correct arguments. -/ meta def ex_sum (p : ex prod) (ps : ex sum) : ring_exp_m (ex sum) := do pps_o ← add_orig p ps, pps_p ← mk_add [p.pretty, ps.pretty], pps_pf ← mk_proof_or_refl pps_p ``sum_congr [p.orig, p.pretty, ps.orig, ps.pretty] [p.info, ps.info], pure (ex.sum ⟨pps_o, pps_p, pps_pf⟩ (p.set_info none none) (ps.set_info none none)) /-- Constructs `ex.coeff` with the correct arguments. There are more efficient constructors for specific numerals: if `x = 0`, you should use `ex_zero`; if `x = 1`, use `ex_one`. -/ meta def ex_coeff (x : rat) : ring_exp_m (ex prod) := do ctx ← get_context, x_p ← lift $ expr.of_rat ctx.info_b.α x, pure (ex.coeff ⟨x_p, x_p, none⟩ ⟨x⟩) /-- Constructs `ex.coeff 1` with the correct arguments. This is a special case for optimization purposes. -/ meta def ex_one : ring_exp_m (ex prod) := do ctx ← get_context, pure $ ex.coeff ⟨ctx.info_b.one, ctx.info_b.one, none⟩ ⟨1⟩ /-- Constructs `ex.prod` with the correct arguments. -/ meta def ex_prod (p : ex exp) (ps : ex prod) : ring_exp_m (ex prod) := do pps_o ← mul_orig p ps, pps_p ← mk_mul [p.pretty, ps.pretty], pps_pf ← mk_proof_or_refl pps_p ``prod_congr [p.orig, p.pretty, ps.orig, ps.pretty] [p.info, ps.info], pure (ex.prod ⟨pps_o, pps_p, pps_pf⟩ (p.set_info none none) (ps.set_info none none)) /-- Constructs `ex.var` with the correct arguments. -/ meta def ex_var (p : atom) : ring_exp_m (ex base) := pure (ex.var ⟨p.1, p.1, none⟩ p) /-- Constructs `ex.sum_b` with the correct arguments. -/ meta def ex_sum_b (ps : ex sum) : ring_exp_m (ex base) := pure (ex.sum_b ps.info (ps.set_info none none)) /-- Constructs `ex.exp` with the correct arguments. -/ meta def ex_exp (p : ex base) (ps : ex prod) : ring_exp_m (ex exp) := do ctx ← get_context, pps_o ← pow_orig p ps, pps_p ← mk_pow [p.pretty, ps.pretty], pps_pf ← mk_proof_or_refl pps_p ``exp_congr [p.orig, p.pretty, ps.orig, ps.pretty] [p.info, ps.info], pure (ex.exp ⟨pps_o, pps_p, pps_pf⟩ (p.set_info none none) (ps.set_info none none)) lemma base_to_exp_pf {p p' : α} : p = p' → p = p' ^ 1 := by simp /-- Conversion from `ex base` to `ex exp`. -/ meta def base_to_exp (p : ex base) : ring_exp_m (ex exp) := do o ← in_exponent $ ex_one, ps ← ex_exp p o, pf ← mk_proof ``base_to_exp_pf [p.orig, p.pretty] [p.info], pure $ ps.set_info p.orig pf lemma exp_to_prod_pf {p p' : α} : p = p' → p = p' * 1 := by simp /-- Conversion from `ex exp` to `ex prod`. -/ meta def exp_to_prod (p : ex exp) : ring_exp_m (ex prod) := do o ← ex_one, ps ← ex_prod p o, pf ← mk_proof ``exp_to_prod_pf [p.orig, p.pretty] [p.info], pure $ ps.set_info p.orig pf lemma prod_to_sum_pf {p p' : α} : p = p' → p = p' + 0 := by simp /-- Conversion from `ex prod` to `ex sum`. -/ meta def prod_to_sum (p : ex prod) : ring_exp_m (ex sum) := do z ← ex_zero, ps ← ex_sum p z, pf ← mk_proof ``prod_to_sum_pf [p.orig, p.pretty] [p.info], pure $ ps.set_info p.orig pf lemma atom_to_sum_pf (p : α) : p = p ^ 1 * 1 + 0 := by simp /-- A more efficient conversion from `atom` to `ex sum`. The result should be the same as `ex_var p >>= base_to_exp >>= exp_to_prod >>= prod_to_sum`, except we need to calculate less intermediate steps. -/ meta def atom_to_sum (p : atom) : ring_exp_m (ex sum) := do p' ← ex_var p, o ← in_exponent $ ex_one, p' ← ex_exp p' o, o ← ex_one, p' ← ex_prod p' o, z ← ex_zero, p' ← ex_sum p' z, pf ← mk_proof ``atom_to_sum_pf [p.1] [], pure $ p'.set_info p.1 pf /-- Compute the sum of two coefficients. Note that the result might not be a valid expression: if `p = -q`, then the result should be `ex.zero : ex sum` instead. The caller must detect when this happens! The returned value is of the form `ex.coeff _ (p + q)`, with the proof of `expr.of_rat p + expr.of_rat q = expr.of_rat (p + q)`. -/ meta def add_coeff (p_p q_p : expr) (p q : coeff) : ring_exp_m (ex prod) := do ctx ← get_context, pq_o ← mk_add [p_p, q_p], (pq_p, pq_pf) ← lift $ norm_num.eval_field pq_o, pure $ ex.coeff ⟨pq_o, pq_p, pq_pf⟩ ⟨p.1 + q.1⟩ lemma mul_coeff_pf_one_mul (q : α) : 1 * q = q := one_mul q lemma mul_coeff_pf_mul_one (p : α) : p * 1 = p := mul_one p /-- Compute the product of two coefficients. The returned value is of the form `ex.coeff _ (p * q)`, with the proof of `expr.of_rat p * expr.of_rat q = expr.of_rat (p * q)`. -/ meta def mul_coeff (p_p q_p : expr) (p q : coeff) : ring_exp_m (ex prod) := match p.1, q.1 with -- Special case to speed up multiplication with 1. | ⟨1, 1, _, _⟩, _ := do ctx ← get_context, pq_o ← mk_mul [p_p, q_p], pf ← mk_app_csr ``mul_coeff_pf_one_mul [q_p], pure $ ex.coeff ⟨pq_o, q_p, pf⟩ ⟨q.1⟩ | _, ⟨1, 1, _, _⟩ := do ctx ← get_context, pq_o ← mk_mul [p_p, q_p], pf ← mk_app_csr ``mul_coeff_pf_mul_one [p_p], pure $ ex.coeff ⟨pq_o, p_p, pf⟩ ⟨p.1⟩ | _, _ := do ctx ← get_context, pq' ← mk_mul [p_p, q_p], (pq_p, pq_pf) ← lift $ norm_num.eval_field pq', pure $ ex.coeff ⟨pq_p, pq_p, pq_pf⟩ ⟨p.1 * q.1⟩ end section rewrite /-! ### `rewrite` section In this section we deal with rewriting terms to fit in the basic grammar of `eval`. For example, `nat.succ n` is rewritten to `n + 1` before it is evaluated further. -/ /-- Given a proof that the expressions `ps_o` and `ps'.orig` are equal, show that `ps_o` and `ps'.pretty` are equal. Useful to deal with aliases in `eval`. For instance, `nat.succ p` can be handled as an alias of `p + 1` as follows: ``` | ps_o@`(nat.succ %%p_o) := do ps' ← eval `(%%p_o + 1), pf ← lift $ mk_app ``nat.succ_eq_add_one [p_o], rewrite ps_o ps' pf ``` -/ meta def rewrite (ps_o : expr) (ps' : ex sum) (pf : expr) : ring_exp_m (ex sum) := do ps'_pf ← ps'.info.proof_term, pf ← lift $ mk_eq_trans pf ps'_pf, pure $ ps'.set_info ps_o pf end rewrite /-- Represents the way in which two products are equal except coefficient. This type is used in the function `add_overlap`. In order to deal with equations of the form `a * 2 + a = 3 * a`, the `add` function will add up overlapping products, turning `a * 2 + a` into `a * 3`. We need to distinguish `a * 2 + a` from `a * 2 + b` in order to do this, and the `overlap` type carries the information on how it overlaps. The case `none` corresponds to non-overlapping products, e.g. `a * 2 + b`; the case `nonzero` to overlapping products adding to non-zero, e.g. `a * 2 + a` (the `ex prod` field will then look like `a * 3` with a proof that `a * 2 + a = a * 3`); the case `zero` to overlapping products adding to zero, e.g. `a * 2 + a * -2`. We distinguish those two cases because in the second, the whole product reduces to `0`. A potential extension to the tactic would also do this for the base of exponents, e.g. to show `2^n * 2^n = 4^n`. -/ meta inductive overlap : Type | none : overlap | nonzero : ex prod → overlap | zero : ex sum → overlap lemma add_overlap_pf {ps qs pq} (p : α) : ps + qs = pq → p * ps + p * qs = p * pq := λ pq_pf, calc p * ps + p * qs = p * (ps + qs) : symm (mul_add _ _ _) ... = p * pq : by rw pq_pf lemma add_overlap_pf_zero {ps qs} (p : α) : ps + qs = 0 → p * ps + p * qs = 0 := λ pq_pf, calc p * ps + p * qs = p * (ps + qs) : symm (mul_add _ _ _) ... = p * 0 : by rw pq_pf ... = 0 : mul_zero _ /-- Given arguments `ps`, `qs` of the form `ps' * x` and `ps' * y` respectively return `ps + qs = ps' * (x + y)` (with `x` and `y` arbitrary coefficients). For other arguments, return `overlap.none`. -/ meta def add_overlap : ex prod → ex prod → ring_exp_m overlap | (ex.coeff x_i x) (ex.coeff y_i y) := do xy@(ex.coeff _ xy_c) ← add_coeff x_i.pretty y_i.pretty x y | lift $ fail "internal error: add_coeff should return ex.coeff", if xy_c.1 = 0 then do z ← ex_zero, pure $ overlap.zero (z.set_info xy.orig xy.proof) else pure $ overlap.nonzero xy | (ex.prod _ _ _) (ex.coeff _ _) := pure overlap.none | (ex.coeff _ _) (ex.prod _ _ _) := pure overlap.none | pps@(ex.prod _ p ps) qqs@(ex.prod _ q qs) := if p.eq q then do pq_ol ← add_overlap ps qs, pqs_o ← add_orig pps qqs, match pq_ol with | overlap.none := pure overlap.none | (overlap.nonzero pq) := do pqs ← ex_prod p pq, pf ← mk_proof ``add_overlap_pf [ps.pretty, qs.pretty, pq.pretty, p.pretty] [pq.info], pure $ overlap.nonzero (pqs.set_info pqs_o pf) | (overlap.zero pq) := do z ← ex_zero, pf ← mk_proof ``add_overlap_pf_zero [ps.pretty, qs.pretty, p.pretty] [pq.info], pure $ overlap.zero (z.set_info pqs_o pf) end else pure overlap.none section addition lemma add_pf_z_sum {ps qs qs' : α} : ps = 0 → qs = qs' → ps + qs = qs' := λ ps_pf qs_pf, calc ps + qs = 0 + qs' : by rw [ps_pf, qs_pf] ... = qs' : zero_add _ lemma add_pf_sum_z {ps ps' qs : α} : ps = ps' → qs = 0 → ps + qs = ps' := λ ps_pf qs_pf, calc ps + qs = ps' + 0 : by rw [ps_pf, qs_pf] ... = ps' : add_zero _ lemma add_pf_sum_overlap {pps p ps qqs q qs pq pqs : α} : pps = p + ps → qqs = q + qs → p + q = pq → ps + qs = pqs → pps + qqs = pq + pqs := by cc lemma add_pf_sum_overlap_zero {pps p ps qqs q qs pqs : α} : pps = p + ps → qqs = q + qs → p + q = 0 → ps + qs = pqs → pps + qqs = pqs := λ pps_pf qqs_pf pq_pf pqs_pf, calc pps + qqs = (p + ps) + (q + qs) : by rw [pps_pf, qqs_pf] ... = (p + q) + (ps + qs) : by cc ... = 0 + pqs : by rw [pq_pf, pqs_pf] ... = pqs : zero_add _ lemma add_pf_sum_lt {pps p ps qqs pqs : α} : pps = p + ps → ps + qqs = pqs → pps + qqs = p + pqs := by cc lemma add_pf_sum_gt {pps qqs q qs pqs : α} : qqs = q + qs → pps + qs = pqs → pps + qqs = q + pqs := by cc /-- Add two expressions. * `0 + qs = 0` * `ps + 0 = 0` * `ps * x + ps * y = ps * (x + y)` (for `x`, `y` coefficients; uses `add_overlap`) * `(p + ps) + (q + qs) = p + (ps + (q + qs))` (if `p.lt q`) * `(p + ps) + (q + qs) = q + ((p + ps) + qs)` (if not `p.lt q`) -/ meta def add : ex sum → ex sum → ring_exp_m (ex sum) | ps@(ex.zero ps_i) qs := do pf ← mk_proof ``add_pf_z_sum [ps.orig, qs.orig, qs.pretty] [ps.info, qs.info], pqs_o ← add_orig ps qs, pure $ qs.set_info pqs_o pf | ps qs@(ex.zero qs_i) := do pf ← mk_proof ``add_pf_sum_z [ps.orig, ps.pretty, qs.orig] [ps.info, qs.info], pqs_o ← add_orig ps qs, pure $ ps.set_info pqs_o pf | pps@(ex.sum pps_i p ps) qqs@(ex.sum qqs_i q qs) := do ol ← add_overlap p q, ppqqs_o ← add_orig pps qqs, match ol with | (overlap.nonzero pq) := do pqs ← add ps qs, pqqs ← ex_sum pq pqs, qqs_pf ← qqs.proof_term, pf ← mk_proof ``add_pf_sum_overlap [pps.orig, p.pretty, ps.pretty, qqs.orig, q.pretty, qs.pretty, pq.pretty, pqs.pretty] [pps.info, qqs.info, pq.info, pqs.info], pure $ pqqs.set_info ppqqs_o pf | (overlap.zero pq) := do pqs ← add ps qs, pf ← mk_proof ``add_pf_sum_overlap_zero [pps.orig, p.pretty, ps.pretty, qqs.orig, q.pretty, qs.pretty, pqs.pretty] [pps.info, qqs.info, pq.info, pqs.info], pure $ pqs.set_info ppqqs_o pf | overlap.none := if p.lt q then do pqs ← add ps qqs, ppqs ← ex_sum p pqs, pf ← mk_proof ``add_pf_sum_lt [pps.orig, p.pretty, ps.pretty, qqs.orig, pqs.pretty] [pps.info, pqs.info], pure $ ppqs.set_info ppqqs_o pf else do pqs ← add pps qs, pqqs ← ex_sum q pqs, pf ← mk_proof ``add_pf_sum_gt [pps.orig, qqs.orig, q.pretty, qs.pretty, pqs.pretty] [qqs.info, pqs.info], pure $ pqqs.set_info ppqqs_o pf end end addition section multiplication lemma mul_pf_c_c {ps ps' qs qs' pq : α} : ps = ps' → qs = qs' → ps' * qs' = pq → ps * qs = pq := by cc lemma mul_pf_c_prod {ps qqs q qs pqs : α} : qqs = q * qs → ps * qs = pqs → ps * qqs = q * pqs := by cc lemma mul_pf_prod_c {pps p ps qs pqs : α} : pps = p * ps → ps * qs = pqs → pps * qs = p * pqs := by cc lemma mul_pp_pf_overlap {pps p_b ps qqs qs psqs : α} {p_e q_e : ℕ} : pps = p_b ^ p_e * ps → qqs = p_b ^ q_e * qs → p_b ^ (p_e + q_e) * (ps * qs) = psqs → pps * qqs = psqs := λ ps_pf qs_pf psqs_pf, by simp [symm psqs_pf, pow_add, ps_pf, qs_pf]; ac_refl lemma mul_pp_pf_prod_lt {pps p ps qqs pqs : α} : pps = p * ps → ps * qqs = pqs → pps * qqs = p * pqs := by cc lemma mul_pp_pf_prod_gt {pps qqs q qs pqs : α} : qqs = q * qs → pps * qs = pqs → pps * qqs = q * pqs := by cc /-- Multiply two expressions. * `x * y = (x * y)` (for `x`, `y` coefficients) * `x * (q * qs) = q * (qs * x)` (for `x` coefficient) * `(p * ps) * y = p * (ps * y)` (for `y` coefficient) * `(p_b^p_e * ps) * (p_b^q_e * qs) = p_b^(p_e + q_e) * (ps * qs)` (if `p_e` and `q_e` are identical except coefficient) * `(p * ps) * (q * qs) = p * (ps * (q * qs))` (if `p.lt q`) * `(p * ps) * (q * qs) = q * ((p * ps) * qs)` (if not `p.lt q`) -/ meta def mul_pp : ex prod → ex prod → ring_exp_m (ex prod) | ps@(ex.coeff _ x) qs@(ex.coeff _ y) := do pq ← mul_coeff ps.pretty qs.pretty x y, pq_o ← mul_orig ps qs, pf ← mk_proof_or_refl pq.pretty ``mul_pf_c_c [ps.orig, ps.pretty, qs.orig, qs.pretty, pq.pretty] [ps.info, qs.info, pq.info], pure $ pq.set_info pq_o pf | ps@(ex.coeff _ x) qqs@(ex.prod _ q qs) := do pqs ← mul_pp ps qs, pqqs ← ex_prod q pqs, pqqs_o ← mul_orig ps qqs, pf ← mk_proof ``mul_pf_c_prod [ps.orig, qqs.orig, q.pretty, qs.pretty, pqs.pretty] [qqs.info, pqs.info], pure $ pqqs.set_info pqqs_o pf | pps@(ex.prod _ p ps) qs@(ex.coeff _ y) := do pqs ← mul_pp ps qs, ppqs ← ex_prod p pqs, ppqs_o ← mul_orig pps qs, pf ← mk_proof ``mul_pf_prod_c [pps.orig, p.pretty, ps.pretty, qs.orig, pqs.pretty] [pps.info, pqs.info], pure $ ppqs.set_info ppqs_o pf | pps@(ex.prod _ p@(ex.exp _ p_b p_e) ps) qqs@(ex.prod _ q@(ex.exp _ q_b q_e) qs) := do ppqqs_o ← mul_orig pps qqs, pq_ol ← in_exponent $ add_overlap p_e q_e, match pq_ol, p_b.eq q_b with | (overlap.nonzero pq_e), tt := do psqs ← mul_pp ps qs, pq ← ex_exp p_b pq_e, ppsqqs ← ex_prod pq psqs, pf ← mk_proof ``mul_pp_pf_overlap [pps.orig, p_b.pretty, ps.pretty, qqs.orig, qs.pretty, ppsqqs.pretty, p_e.pretty, q_e.pretty] [pps.info, qqs.info, ppsqqs.info], pure $ ppsqqs.set_info ppqqs_o pf | _, _ := if p.lt q then do pqs ← mul_pp ps qqs, ppqs ← ex_prod p pqs, pf ← mk_proof ``mul_pp_pf_prod_lt [pps.orig, p.pretty, ps.pretty, qqs.orig, pqs.pretty] [pps.info, pqs.info], pure $ ppqs.set_info ppqqs_o pf else do pqs ← mul_pp pps qs, pqqs ← ex_prod q pqs, pf ← mk_proof ``mul_pp_pf_prod_gt [pps.orig, qqs.orig, q.pretty, qs.pretty, pqs.pretty] [qqs.info, pqs.info], pure $ pqqs.set_info ppqqs_o pf end lemma mul_p_pf_zero {ps qs : α} : ps = 0 → ps * qs = 0 := λ ps_pf, by rw [ps_pf, zero_mul] lemma mul_p_pf_sum {pps p ps qs ppsqs : α} : pps = p + ps → p * qs + ps * qs = ppsqs → pps * qs = ppsqs := λ pps_pf ppsqs_pf, calc pps * qs = (p + ps) * qs : by rw [pps_pf] ... = p * qs + ps * qs : add_mul _ _ _ ... = ppsqs : ppsqs_pf /-- Multiply two expressions. * `0 * qs = 0` * `(p + ps) * qs = (p * qs) + (ps * qs)` -/ meta def mul_p : ex sum → ex prod → ring_exp_m (ex sum) | ps@(ex.zero ps_i) qs := do z ← ex_zero, z_o ← mul_orig ps qs, pf ← mk_proof ``mul_p_pf_zero [ps.orig, qs.orig] [ps.info], pure $ z.set_info z_o pf | pps@(ex.sum pps_i p ps) qs := do pqs ← mul_pp p qs >>= prod_to_sum, psqs ← mul_p ps qs, ppsqs ← add pqs psqs, pps_pf ← pps.proof_term, ppsqs_o ← mul_orig pps qs, ppsqs_pf ← ppsqs.proof_term, pf ← mk_proof ``mul_p_pf_sum [pps.orig, p.pretty, ps.pretty, qs.orig, ppsqs.pretty] [pps.info, ppsqs.info], pure $ ppsqs.set_info ppsqs_o pf lemma mul_pf_zero {ps qs : α} : qs = 0 → ps * qs = 0 := λ qs_pf, by rw [qs_pf, mul_zero] lemma mul_pf_sum {ps qqs q qs psqqs : α} : qqs = q + qs → ps * q + ps * qs = psqqs → ps * qqs = psqqs := λ qs_pf psqqs_pf, calc ps * qqs = ps * (q + qs) : by rw [qs_pf] ... = ps * q + ps * qs : mul_add _ _ _ ... = psqqs : psqqs_pf /-- Multiply two expressions. * `ps * 0 = 0` * `ps * (q + qs) = (ps * q) + (ps * qs)` -/ meta def mul : ex sum → ex sum → ring_exp_m (ex sum) | ps qs@(ex.zero qs_i) := do z ← ex_zero, z_o ← mul_orig ps qs, pf ← mk_proof ``mul_pf_zero [ps.orig, qs.orig] [qs.info], pure $ z.set_info z_o pf | ps qqs@(ex.sum qqs_i q qs) := do psq ← mul_p ps q, psqs ← mul ps qs, psqqs ← add psq psqs, psqqs_o ← mul_orig ps qqs, pf ← mk_proof ``mul_pf_sum [ps.orig, qqs.orig, q.orig, qs.orig, psqqs.pretty] [qqs.info, psqqs.info], pure $ psqqs.set_info psqqs_o pf end multiplication section exponentiation lemma pow_e_pf_exp {pps p : α} {ps qs psqs : ℕ} : pps = p ^ ps → ps * qs = psqs → pps ^ qs = p ^ psqs := λ pps_pf psqs_pf, calc pps ^ qs = (p ^ ps) ^ qs : by rw [pps_pf] ... = p ^ (ps * qs) : symm (pow_mul _ _ _) ... = p ^ psqs : by rw [psqs_pf] /-- Compute the exponentiation of two coefficients. The returned value is of the form `ex.coeff _ (p ^ q)`, with the proof of `expr.of_rat p ^ expr.of_rat q = expr.of_rat (p ^ q)`. -/ meta def pow_coeff (p_p q_p : expr) (p q : coeff) : ring_exp_m (ex prod) := do ctx ← get_context, pq' ← mk_pow [p_p, q_p], (pq_p, pq_pf) ← lift $ norm_num.eval_pow pq', pure $ ex.coeff ⟨pq_p, pq_p, pq_pf⟩ ⟨p.1 * q.1⟩ /-- Exponentiate two expressions. * `(p ^ ps) ^ qs = p ^ (ps * qs)` -/ meta def pow_e : ex exp → ex prod → ring_exp_m (ex exp) | pps@(ex.exp pps_i p ps) qs := do psqs ← in_exponent $ mul_pp ps qs, ppsqs ← ex_exp p psqs, ppsqs_o ← pow_orig pps qs, pf ← mk_proof ``pow_e_pf_exp [pps.orig, p.pretty, ps.pretty, qs.orig, psqs.pretty] [pps.info, psqs.info], pure $ ppsqs.set_info ppsqs_o pf lemma pow_pp_pf_one {ps : α} {qs : ℕ} : ps = 1 → ps ^ qs = 1 := λ ps_pf, by rw [ps_pf, one_pow] lemma pow_pf_c_c {ps ps' pq : α} {qs qs' : ℕ} : ps = ps' → qs = qs' → ps' ^ qs' = pq → ps ^ qs = pq := by cc lemma pow_pp_pf_c {ps ps' pqs : α} {qs qs' : ℕ} : ps = ps' → qs = qs' → ps' ^ qs' = pqs → ps ^ qs = pqs * 1 := by simp; cc lemma pow_pp_pf_prod {pps p ps pqs psqs : α} {qs : ℕ} : pps = p * ps → p ^ qs = pqs → ps ^ qs = psqs → pps ^ qs = pqs * psqs := λ pps_pf pqs_pf psqs_pf, calc pps ^ qs = (p * ps) ^ qs : by rw [pps_pf] ... = p ^ qs * ps ^ qs : mul_pow _ _ _ ... = pqs * psqs : by rw [pqs_pf, psqs_pf] /-- Exponentiate two expressions. * `1 ^ qs = 1` * `x ^ qs = x ^ qs` (for `x` coefficient) * `(p * ps) ^ qs = p ^ qs + ps ^ qs` -/ meta def pow_pp : ex prod → ex prod → ring_exp_m (ex prod) | ps@(ex.coeff ps_i ⟨⟨1, 1, _, _⟩⟩) qs := do o ← ex_one, o_o ← pow_orig ps qs, pf ← mk_proof ``pow_pp_pf_one [ps.orig, qs.orig] [ps.info], pure $ o.set_info o_o pf | ps@(ex.coeff ps_i x) qs@(ex.coeff qs_i y) := do pq ← pow_coeff ps.pretty qs.pretty x y, pq_o ← pow_orig ps qs, pf ← mk_proof_or_refl pq.pretty ``pow_pf_c_c [ps.orig, ps.pretty, pq.pretty, qs.orig, qs.pretty] [ps.info, qs.info, pq.info], pure $ pq.set_info pq_o pf | ps@(ex.coeff ps_i x) qs := do ps'' ← pure ps >>= prod_to_sum >>= ex_sum_b, pqs ← ex_exp ps'' qs, pqs_o ← pow_orig ps qs, pf ← mk_proof_or_refl pqs.pretty ``pow_pp_pf_c [ps.orig, ps.pretty, pqs.pretty, qs.orig, qs.pretty] [ps.info, qs.info, pqs.info], pqs' ← exp_to_prod pqs, pure $ pqs'.set_info pqs_o pf | pps@(ex.prod pps_i p ps) qs := do pqs ← pow_e p qs, psqs ← pow_pp ps qs, ppsqs ← ex_prod pqs psqs, ppsqs_o ← pow_orig pps qs, pf ← mk_proof ``pow_pp_pf_prod [pps.orig, p.pretty, ps.pretty, pqs.pretty, psqs.pretty, qs.orig] [pps.info, pqs.info, psqs.info], pure $ ppsqs.set_info ppsqs_o pf lemma pow_p_pf_one {ps ps' : α} {qs : ℕ} : ps = ps' → qs = succ zero → ps ^ qs = ps' := λ ps_pf qs_pf, calc ps ^ qs = ps' ^ 1 : by rw [ps_pf, qs_pf] ... = ps' : pow_one _ lemma pow_p_pf_zero {ps : α} {qs qs' : ℕ} : ps = 0 → qs = succ qs' → ps ^ qs = 0 := λ ps_pf qs_pf, calc ps ^ qs = 0 ^ (succ qs') : by rw [ps_pf, qs_pf] ... = 0 : zero_pow (succ_pos qs') lemma pow_p_pf_succ {ps pqqs : α} {qs qs' : ℕ} : qs = succ qs' → ps * ps ^ qs' = pqqs → ps ^ qs = pqqs := λ qs_pf pqqs_pf, calc ps ^ qs = ps ^ succ qs' : by rw [qs_pf] ... = ps * ps ^ qs' : pow_succ _ _ ... = pqqs : by rw [pqqs_pf] lemma pow_p_pf_singleton {pps p pqs : α} {qs : ℕ} : pps = p + 0 → p ^ qs = pqs → pps ^ qs = pqs := λ pps_pf pqs_pf, by rw [pps_pf, add_zero, pqs_pf] lemma pow_p_pf_cons {ps ps' : α} {qs qs' : ℕ} : ps = ps' → qs = qs' → ps ^ qs = ps' ^ qs' := by cc /-- Exponentiate two expressions. * `ps ^ 1 = ps` * `0 ^ qs = 0` (note that this is handled *after* `ps ^ 0 = 1`) * `(p + 0) ^ qs = p ^ qs` * `ps ^ (qs + 1) = ps * ps ^ qs` (note that this is handled *after* `p + 0 ^ qs = p ^ qs`) * `ps ^ qs = ps ^ qs` (otherwise) -/ meta def pow_p : ex sum → ex prod → ring_exp_m (ex sum) | ps qs@(ex.coeff qs_i ⟨⟨1, 1, _, _⟩⟩) := do ps_o ← pow_orig ps qs, pf ← mk_proof ``pow_p_pf_one [ps.orig, ps.pretty, qs.orig] [ps.info, qs.info], pure $ ps.set_info ps_o pf | ps@(ex.zero ps_i) qs@(ex.coeff qs_i ⟨⟨succ y, 1, _, _⟩⟩) := do ctx ← get_context, z ← ex_zero, qs_pred ← lift $ expr.of_nat ctx.info_e.α y, pf ← mk_proof ``pow_p_pf_zero [ps.orig, qs.orig, qs_pred] [ps.info, qs.info], z_o ← pow_orig ps qs, pure $ z.set_info z_o pf | pps@(ex.sum pps_i p (ex.zero _)) qqs := do pqs ← pow_pp p qqs, pqs_o ← pow_orig pps qqs, pf ← mk_proof ``pow_p_pf_singleton [pps.orig, p.pretty, pqs.pretty, qqs.orig] [pps.info, pqs.info], prod_to_sum $ pqs.set_info pqs_o pf | ps qs@(ex.coeff qs_i ⟨⟨int.of_nat (succ n), 1, den_pos, _⟩⟩) := do qs' ← in_exponent $ ex_coeff ⟨int.of_nat n, 1, den_pos, coprime_one_right _⟩, pqs ← pow_p ps qs', pqqs ← mul ps pqs, pqqs_o ← pow_orig ps qs, pf ← mk_proof ``pow_p_pf_succ [ps.orig, pqqs.pretty, qs.orig, qs'.pretty] [qs.info, pqqs.info], pure $ pqqs.set_info pqqs_o pf | pps qqs := do -- fallback: treat them as atoms pps' ← ex_sum_b pps, psqs ← ex_exp pps' qqs, psqs_o ← pow_orig pps qqs, pf ← mk_proof_or_refl psqs.pretty ``pow_p_pf_cons [pps.orig, pps.pretty, qqs.orig, qqs.pretty] [pps.info, qqs.info], exp_to_prod (psqs.set_info psqs_o pf) >>= prod_to_sum lemma pow_pf_zero {ps : α} {qs : ℕ} : qs = 0 → ps ^ qs = 1 := λ qs_pf, calc ps ^ qs = ps ^ 0 : by rw [qs_pf] ... = 1 : pow_zero _ lemma pow_pf_sum {ps psqqs : α} {qqs q qs : ℕ} : qqs = q + qs → ps ^ q * ps ^ qs = psqqs → ps ^ qqs = psqqs := λ qqs_pf psqqs_pf, calc ps ^ qqs = ps ^ (q + qs) : by rw [qqs_pf] ... = ps ^ q * ps ^ qs : pow_add _ _ _ ... = psqqs : psqqs_pf /-- Exponentiate two expressions. * `ps ^ 0 = 1` * `ps ^ (q + qs) = ps ^ q * ps ^ qs` -/ meta def pow : ex sum → ex sum → ring_exp_m (ex sum) | ps qs@(ex.zero qs_i) := do o ← ex_one, o_o ← pow_orig ps qs, pf ← mk_proof ``pow_pf_zero [ps.orig, qs.orig] [qs.info], prod_to_sum $ o.set_info o_o pf | ps qqs@(ex.sum qqs_i q qs) := do psq ← pow_p ps q, psqs ← pow ps qs, psqqs ← mul psq psqs, psqqs_o ← pow_orig ps qqs, pf ← mk_proof ``pow_pf_sum [ps.orig, psqqs.pretty, qqs.orig, q.pretty, qs.pretty] [qqs.info, psqqs.info], pure $ psqqs.set_info psqqs_o pf end exponentiation lemma simple_pf_sum_zero {p p' : α} : p = p' → p + 0 = p' := by simp lemma simple_pf_prod_one {p p' : α} : p = p' → p * 1 = p' := by simp lemma simple_pf_prod_neg_one {α} [ring α] {p p' : α} : p = p' → p * -1 = - p' := by simp lemma simple_pf_var_one (p : α) : p ^ 1 = p := by simp lemma simple_pf_exp_one {p p' : α} : p = p' → p ^ 1 = p' := by simp /-- Give a simpler, more human-readable representation of the normalized expression. Normalized expressions might have the form `a^1 * 1 + 0`, since the dummy operations reduce special cases in pattern-matching. Humans prefer to read `a` instead. This tactic gets rid of the dummy additions, multiplications and exponentiations. Returns a normalized expression `e'` and a proof that `e.pretty = e'`. -/ meta def ex.simple : Π {et : ex_type}, ex et → ring_exp_m (expr × expr) | sum pps@(ex.sum pps_i p (ex.zero _)) := do (p_p, p_pf) ← p.simple, prod.mk p_p <$> mk_app_csr ``simple_pf_sum_zero [p.pretty, p_p, p_pf] | sum (ex.sum pps_i p ps) := do (p_p, p_pf) ← p.simple, (ps_p, ps_pf) ← ps.simple, prod.mk <$> mk_add [p_p, ps_p] <*> mk_app_csr ``sum_congr [p.pretty, p_p, ps.pretty, ps_p, p_pf, ps_pf] | prod (ex.prod pps_i p (ex.coeff _ ⟨⟨1, 1, _, _⟩⟩)) := do (p_p, p_pf) ← p.simple, prod.mk p_p <$> mk_app_csr ``simple_pf_prod_one [p.pretty, p_p, p_pf] | prod pps@(ex.prod pps_i p (ex.coeff _ ⟨⟨-1, 1, _, _⟩⟩)) := do ctx ← get_context, match ctx.info_b.ring_instance with | none := prod.mk pps.pretty <$> lift (mk_eq_refl pps.pretty) | (some ringi) := do (p_p, p_pf) ← p.simple, prod.mk <$> lift (mk_app ``has_neg.neg [p_p]) <*> mk_app_class ``simple_pf_prod_neg_one ringi [p.pretty, p_p, p_pf] end | prod (ex.prod pps_i p ps) := do (p_p, p_pf) ← p.simple, (ps_p, ps_pf) ← ps.simple, prod.mk <$> mk_mul [p_p, ps_p] <*> mk_app_csr ``prod_congr [p.pretty, p_p, ps.pretty, ps_p, p_pf, ps_pf] | base (ex.sum_b pps_i ps) := ps.simple | exp (ex.exp pps_i p (ex.coeff _ ⟨⟨1, 1, _, _⟩⟩)) := do (p_p, p_pf) ← p.simple, prod.mk p_p <$> mk_app_csr ``simple_pf_exp_one [p.pretty, p_p, p_pf] | exp (ex.exp pps_i p ps) := do (p_p, p_pf) ← p.simple, (ps_p, ps_pf) ← in_exponent $ ps.simple, prod.mk <$> mk_pow [p_p, ps_p] <*> mk_app_csr ``exp_congr [p.pretty, p_p, ps.pretty, ps_p, p_pf, ps_pf] | et ps := prod.mk ps.pretty <$> lift (mk_eq_refl ps.pretty) /-- Performs a lookup of the atom `a` in the list of known atoms, or allocates a new one. If `a` is not definitionally equal to any of the list's entries, a new atom is appended to the list and returned. The index of this atom is kept track of in the second inductive argument. This function is mostly useful in `resolve_atom`, which updates the state with the new list of atoms. -/ meta def resolve_atom_aux (a : expr) : list atom → ℕ → ring_exp_m (atom × list atom) | [] n := let atm : atom := ⟨a, n⟩ in pure (atm, [atm]) | bas@(b :: as) n := do ctx ← get_context, (lift $ is_def_eq a b.value ctx.transp >> pure (b , bas)) <|> do (atm, as') ← resolve_atom_aux as (succ n), pure (atm, b :: as') /-- Convert the expression to an atom: either look up a definitionally equal atom, or allocate it as a new atom. You probably want to use `eval_base` if `eval` doesn't work instead of directly calling `resolve_atom`, since `eval_base` can also handle numerals. -/ meta def resolve_atom (a : expr) : ring_exp_m atom := do atoms ← reader_t.lift $ state_t.get, (atm, atoms') ← resolve_atom_aux a atoms 0, reader_t.lift $ state_t.put atoms', pure atm /-- Treat the expression atomically: as a coefficient or atom. Handles cases where `eval` cannot treat the expression as a known operation because it is just a number or single variable. -/ meta def eval_base (ps : expr) : ring_exp_m (ex sum) := match ps.to_rat with | some ⟨0, 1, _, _⟩ := ex_zero | some x := ex_coeff x >>= prod_to_sum | none := do a ← resolve_atom ps, atom_to_sum a end lemma negate_pf {α} [ring α] {ps ps' : α} : (-1) * ps = ps' → -ps = ps' := by simp /-- Negate an expression by multiplying with `-1`. Only works if there is a `ring` instance; otherwise it will `fail`. -/ meta def negate (ps : ex sum) : ring_exp_m (ex sum) := do ctx ← get_context, match ctx.info_b.ring_instance with | none := lift $ fail "internal error: negate called in semiring" | (some ring_instance) := do minus_one ← ex_coeff (-1) >>= prod_to_sum, ps' ← mul minus_one ps, ps_pf ← ps'.proof_term, pf ← mk_app_class ``negate_pf ring_instance [ps.orig, ps'.pretty, ps_pf], ps'_o ← lift $ mk_app ``has_neg.neg [ps.orig], pure $ ps'.set_info ps'_o pf end lemma inverse_pf {α} [division_ring α] {ps ps_u ps_p e' e'' : α} : ps = ps_u → ps_u = ps_p → ps_p ⁻¹ = e' → e' = e'' → ps ⁻¹ = e'' := by cc /-- Invert an expression by simplifying, applying `has_inv.inv` and treating the result as an atom. Only works if there is a `division_ring` instance; otherwise it will `fail`. -/ meta def inverse (ps : ex sum) : ring_exp_m (ex sum) := do ctx ← get_context, dri ← match ctx.info_b.dr_instance with | none := lift $ fail "division is only supported in a division ring" | (some dri) := pure dri end, (ps_simple, ps_simple_pf) ← ps.simple, e ← lift $ mk_app ``has_inv.inv [ps_simple], (e', e_pf) ← lift (norm_num.derive e) <|> ((λ e_pf, (e, e_pf)) <$> lift (mk_eq_refl e)), e'' ← eval_base e', ps_pf ← ps.proof_term, e''_pf ← e''.proof_term, pf ← mk_app_class ``inverse_pf dri [ ps.orig, ps.pretty, ps_simple, e', e''.pretty, ps_pf, ps_simple_pf, e_pf, e''_pf], e''_o ← lift $ mk_app ``has_inv.inv [ps.orig], pure $ e''.set_info e''_o pf lemma sub_pf {α} [ring α] {ps qs psqs : α} (h : ps + -qs = psqs) : ps - qs = psqs := by rwa sub_eq_add_neg lemma div_pf {α} [division_ring α] {ps qs psqs : α} (h : ps * qs⁻¹ = psqs) : ps / qs = psqs := by rwa div_eq_mul_inv end operations section wiring /-! ### `wiring` section This section deals with going from `expr` to `ex` and back. The main attraction is `eval`, which uses `add`, `mul`, etc. to calculate an `ex` from a given `expr`. Other functions use `ex`es to produce `expr`s together with a proof, or produce the context to run `ring_exp_m` from an `expr`. -/ open tactic open ex_type /-- Compute a normalized form (of type `ex`) from an expression (of type `expr`). This is the main driver of the `ring_exp` tactic, calling out to `add`, `mul`, `pow`, etc. to parse the `expr`. -/ meta def eval : expr → ring_exp_m (ex sum) | e@`(%%ps + %%qs) := do ps' ← eval ps, qs' ← eval qs, add ps' qs' | ps_o@`(nat.succ %%p_o) := do ps' ← eval `(%%p_o + 1), pf ← lift $ mk_app ``nat.succ_eq_add_one [p_o], rewrite ps_o ps' pf | e@`(%%ps - %%qs) := (do ctx ← get_context, ri ← match ctx.info_b.ring_instance with | none := lift $ fail "subtraction is not directly supported in a semiring" | (some ri) := pure ri end, ps' ← eval ps, qs' ← eval qs >>= negate, psqs ← add ps' qs', psqs_pf ← psqs.proof_term, pf ← mk_app_class ``sub_pf ri [ps, qs, psqs.pretty, psqs_pf], pure (psqs.set_info e pf)) <|> eval_base e | e@`(- %%ps) := do ps' ← eval ps, negate ps' <|> eval_base e | e@`(%%ps * %%qs) := do ps' ← eval ps, qs' ← eval qs, mul ps' qs' | e@`(has_inv.inv %%ps) := do ps' ← eval ps, inverse ps' <|> eval_base e | e@`(%%ps / %%qs) := do ctx ← get_context, dri ← match ctx.info_b.dr_instance with | none := lift $ fail "division is only directly supported in a division ring" | (some dri) := pure dri end, ps' ← eval ps, qs' ← eval qs, (do qs'' ← inverse qs', psqs ← mul ps' qs'', psqs_pf ← psqs.proof_term, pf ← mk_app_class ``div_pf dri [ps, qs, psqs.pretty, psqs_pf], pure (psqs.set_info e pf)) <|> eval_base e | e@`(@has_pow.pow _ _ %%hp_instance %%ps %%qs) := do ps' ← eval ps, qs' ← in_exponent $ eval qs, psqs ← pow ps' qs', psqs_pf ← psqs.proof_term, (do has_pow_pf ← match hp_instance with | `(monoid.has_pow) := lift $ mk_eq_refl e | _ := lift $ fail "has_pow instance must be nat.has_pow or monoid.has_pow" end, pf ← lift $ mk_eq_trans has_pow_pf psqs_pf, pure $ psqs.set_info e pf) <|> eval_base e | ps := eval_base ps /-- Run `eval` on the expression and return the result together with normalization proof. See also `eval_simple` if you want something that behaves like `norm_num`. -/ meta def eval_with_proof (e : expr) : ring_exp_m (ex sum × expr) := do e' ← eval e, prod.mk e' <$> e'.proof_term /-- Run `eval` on the expression and simplify the result. Returns a simplified normalized expression, together with an equality proof. See also `eval_with_proof` if you just want to check the equality of two expressions. -/ meta def eval_simple (e : expr) : ring_exp_m (expr × expr) := do (complicated, complicated_pf) ← eval_with_proof e, (simple, simple_pf) ← complicated.simple, prod.mk simple <$> lift (mk_eq_trans complicated_pf simple_pf) /-- Compute the `eval_info` for a given type `α`. -/ meta def make_eval_info (α : expr) : tactic eval_info := do u ← mk_meta_univ, infer_type α >>= unify (expr.sort (level.succ u)), u ← get_univ_assignment u, csr_instance ← mk_app ``comm_semiring [α] >>= mk_instance, ring_instance ← (some <$> (mk_app ``ring [α] >>= mk_instance) <|> pure none), dr_instance ← (some <$> (mk_app ``division_ring [α] >>= mk_instance) <|> pure none), ha_instance ← mk_app ``has_add [α] >>= mk_instance, hm_instance ← mk_app ``has_mul [α] >>= mk_instance, hp_instance ← mk_mapp ``monoid.has_pow [some α, none], z ← mk_mapp ``has_zero.zero [α, none], o ← mk_mapp ``has_one.one [α, none], pure ⟨α, u, csr_instance, ha_instance, hm_instance, hp_instance, ring_instance, dr_instance, z, o⟩ /-- Use `e` to build the context for running `mx`. -/ meta def run_ring_exp {α} (transp : transparency) (e : expr) (mx : ring_exp_m α) : tactic α := do info_b ← infer_type e >>= make_eval_info, info_e ← mk_const ``nat >>= make_eval_info, (λ x : (_ × _), x.1) <$> (state_t.run (reader_t.run mx ⟨info_b, info_e, transp⟩) []) /-- Repeatedly apply `eval_simple` on (sub)expressions. -/ meta def normalize (transp : transparency) (e : expr) : tactic (expr × expr) := do (_, e', pf') ← ext_simplify_core () {} simp_lemmas.mk (λ _, failed) (λ _ _ _ _ e, do (e'', pf) ← run_ring_exp transp e $ eval_simple e, guard (¬ e'' =ₐ e), return ((), e'', some pf, ff)) (λ _ _ _ _ _, failed) `eq e, pure (e', pf') end wiring end tactic.ring_exp namespace tactic.interactive open interactive interactive.types lean.parser tactic tactic.ring_exp local postfix `?`:9001 := optional /-- Tactic for solving equations of *commutative* (semi)rings, allowing variables in the exponent. This version of `ring_exp` fails if the target is not an equality. The variant `ring_exp_eq!` will use a more aggressive reducibility setting to determine equality of atoms. -/ meta def ring_exp_eq (red : parse (tk "!")?) : tactic unit := do `(eq %%ps %%qs) ← target >>= whnf, let transp := if red.is_some then semireducible else reducible, ((ps', ps_pf), (qs', qs_pf)) ← run_ring_exp transp ps $ prod.mk <$> eval_with_proof ps <*> eval_with_proof qs, if ps'.eq qs' then do qs_pf_inv ← mk_eq_symm qs_pf, pf ← mk_eq_trans ps_pf qs_pf_inv, tactic.interactive.exact ``(%%pf) else fail "ring_exp failed to prove equality" /-- Tactic for evaluating expressions in *commutative* (semi)rings, allowing for variables in the exponent. This tactic extends `ring`: it should solve every goal that `ring` can solve. Additionally, it knows how to evaluate expressions with complicated exponents (where `ring` only understands constant exponents). The variants `ring_exp!` and `ring_exp_eq!` use a more aggessive reducibility setting to determine equality of atoms. For example: ```lean example (n : ℕ) (m : ℤ) : 2^(n+1) * m = 2 * 2^n * m := by ring_exp example (a b : ℤ) (n : ℕ) : (a + b)^(n + 2) = (a^2 + b^2 + a * b + b * a) * (a + b)^n := by ring_exp example (x y : ℕ) : x + id y = y + id x := by ring_exp! ``` -/ meta def ring_exp (red : parse (tk "!")?) (loc : parse location) : tactic unit := match loc with | interactive.loc.ns [none] := ring_exp_eq red | _ := failed end <|> do ns ← loc.get_locals, let transp := if red.is_some then semireducible else reducible, tt ← tactic.replace_at (normalize transp) ns loc.include_goal | fail "ring_exp failed to simplify", when loc.include_goal $ try tactic.reflexivity add_tactic_doc { name := "ring_exp", category := doc_category.tactic, decl_names := [`tactic.interactive.ring_exp], tags := ["arithmetic", "simplification", "decision procedure"] } end tactic.interactive namespace conv.interactive open conv interactive open tactic tactic.interactive (ring_exp_eq) open tactic.ring_exp (normalize) local postfix `?`:9001 := optional /-- Normalises expressions in commutative (semi-)rings inside of a `conv` block using the tactic `ring_exp`. -/ meta def ring_exp (red : parse (lean.parser.tk "!")?) : conv unit := let transp := if red.is_some then semireducible else reducible in discharge_eq_lhs (ring_exp_eq red) <|> replace_lhs (normalize transp) <|> fail "ring_exp failed to simplify" end conv.interactive
6cff566fb69407629ae13aebf9e5d44360807178
9dc8cecdf3c4634764a18254e94d43da07142918
/src/analysis/inner_product_space/projection.lean
65d4ad647837b2a9efff8945920d00a2895fa211
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
57,342
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Frédéric Dupuis, Heather Macbeth -/ import analysis.convex.basic import analysis.inner_product_space.symmetric import analysis.normed_space.is_R_or_C /-! # The orthogonal projection Given a nonempty complete subspace `K` of an inner product space `E`, this file constructs `orthogonal_projection K : E →L[𝕜] K`, the orthogonal projection of `E` onto `K`. This map satisfies: for any point `u` in `E`, the point `v = orthogonal_projection K u` in `K` minimizes the distance `∥u - v∥` to `u`. Also a linear isometry equivalence `reflection K : E ≃ₗᵢ[𝕜] E` is constructed, by choosing, for each `u : E`, the point `reflection K u` to satisfy `u + (reflection K u) = 2 • orthogonal_projection K u`. Basic API for `orthogonal_projection` and `reflection` is developed. Next, the orthogonal projection is used to prove a series of more subtle lemmas about the the orthogonal complement of complete subspaces of `E` (the orthogonal complement itself was defined in `analysis.inner_product_space.basic`); the lemma `submodule.sup_orthogonal_of_is_complete`, stating that for a complete subspace `K` of `E` we have `K ⊔ Kᗮ = ⊤`, is a typical example. ## References The orthogonal projection construction is adapted from * [Clément & Martin, *The Lax-Milgram Theorem. A detailed proof to be formalized in Coq*] * [Clément & Martin, *A Coq formal proof of the Lax–Milgram theorem*] The Coq code is available at the following address: <http://www.lri.fr/~sboldo/elfic/index.html> -/ noncomputable theory open is_R_or_C real filter open_locale big_operators topological_space variables {𝕜 E F : Type*} [is_R_or_C 𝕜] variables [inner_product_space 𝕜 E] [inner_product_space ℝ F] local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y local notation `absR` := has_abs.abs /-! ### Orthogonal projection in inner product spaces -/ /-- Existence of minimizers Let `u` be a point in a real inner product space, and let `K` be a nonempty complete convex subset. Then there exists a (unique) `v` in `K` that minimizes the distance `∥u - v∥` to `u`. -/ -- FIXME this monolithic proof causes a deterministic timeout with `-T50000` -- It should be broken in a sequence of more manageable pieces, -- perhaps with individual statements for the three steps below. theorem exists_norm_eq_infi_of_complete_convex {K : set F} (ne : K.nonempty) (h₁ : is_complete K) (h₂ : convex ℝ K) : ∀ u : F, ∃ v ∈ K, ∥u - v∥ = ⨅ w : K, ∥u - w∥ := assume u, begin let δ := ⨅ w : K, ∥u - w∥, letI : nonempty K := ne.to_subtype, have zero_le_δ : 0 ≤ δ := le_cinfi (λ _, norm_nonneg _), have δ_le : ∀ w : K, δ ≤ ∥u - w∥, from cinfi_le ⟨0, set.forall_range_iff.2 $ λ _, norm_nonneg _⟩, have δ_le' : ∀ w ∈ K, δ ≤ ∥u - w∥ := assume w hw, δ_le ⟨w, hw⟩, -- Step 1: since `δ` is the infimum, can find a sequence `w : ℕ → K` in `K` -- such that `∥u - w n∥ < δ + 1 / (n + 1)` (which implies `∥u - w n∥ --> δ`); -- maybe this should be a separate lemma have exists_seq : ∃ w : ℕ → K, ∀ n, ∥u - w n∥ < δ + 1 / (n + 1), { have hδ : ∀n:ℕ, δ < δ + 1 / (n + 1), from λ n, lt_add_of_le_of_pos le_rfl nat.one_div_pos_of_nat, have h := λ n, exists_lt_of_cinfi_lt (hδ n), let w : ℕ → K := λ n, classical.some (h n), exact ⟨w, λ n, classical.some_spec (h n)⟩ }, rcases exists_seq with ⟨w, hw⟩, have norm_tendsto : tendsto (λ n, ∥u - w n∥) at_top (nhds δ), { have h : tendsto (λ n:ℕ, δ) at_top (nhds δ) := tendsto_const_nhds, have h' : tendsto (λ n:ℕ, δ + 1 / (n + 1)) at_top (nhds δ), { convert h.add tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero] }, exact tendsto_of_tendsto_of_tendsto_of_le_of_le h h' (λ x, δ_le _) (λ x, le_of_lt (hw _)) }, -- Step 2: Prove that the sequence `w : ℕ → K` is a Cauchy sequence have seq_is_cauchy : cauchy_seq (λ n, ((w n):F)), { rw cauchy_seq_iff_le_tendsto_0, -- splits into three goals let b := λ n:ℕ, (8 * δ * (1/(n+1)) + 4 * (1/(n+1)) * (1/(n+1))), use (λn, sqrt (b n)), split, -- first goal : `∀ (n : ℕ), 0 ≤ sqrt (b n)` assume n, exact sqrt_nonneg _, split, -- second goal : `∀ (n m N : ℕ), N ≤ n → N ≤ m → dist ↑(w n) ↑(w m) ≤ sqrt (b N)` assume p q N hp hq, let wp := ((w p):F), let wq := ((w q):F), let a := u - wq, let b := u - wp, let half := 1 / (2:ℝ), let div := 1 / ((N:ℝ) + 1), have : 4 * ∥u - half • (wq + wp)∥ * ∥u - half • (wq + wp)∥ + ∥wp - wq∥ * ∥wp - wq∥ = 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) := calc 4 * ∥u - half•(wq + wp)∥ * ∥u - half•(wq + wp)∥ + ∥wp - wq∥ * ∥wp - wq∥ = (2*∥u - half•(wq + wp)∥) * (2 * ∥u - half•(wq + wp)∥) + ∥wp-wq∥*∥wp-wq∥ : by ring ... = (absR ((2:ℝ)) * ∥u - half•(wq + wp)∥) * (absR ((2:ℝ)) * ∥u - half•(wq+wp)∥) + ∥wp-wq∥*∥wp-wq∥ : by { rw _root_.abs_of_nonneg, exact zero_le_two } ... = ∥(2:ℝ) • (u - half • (wq + wp))∥ * ∥(2:ℝ) • (u - half • (wq + wp))∥ + ∥wp-wq∥ * ∥wp-wq∥ : by simp [norm_smul] ... = ∥a + b∥ * ∥a + b∥ + ∥a - b∥ * ∥a - b∥ : begin rw [smul_sub, smul_smul, mul_one_div_cancel (_root_.two_ne_zero : (2 : ℝ) ≠ 0), ← one_add_one_eq_two, add_smul], simp only [one_smul], have eq₁ : wp - wq = a - b, from (sub_sub_sub_cancel_left _ _ _).symm, have eq₂ : u + u - (wq + wp) = a + b, show u + u - (wq + wp) = (u - wq) + (u - wp), abel, rw [eq₁, eq₂], end ... = 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) : parallelogram_law_with_norm _ _, have eq : δ ≤ ∥u - half • (wq + wp)∥, { rw smul_add, apply δ_le', apply h₂, repeat {exact subtype.mem _}, repeat {exact le_of_lt one_half_pos}, exact add_halves 1 }, have eq₁ : 4 * δ * δ ≤ 4 * ∥u - half • (wq + wp)∥ * ∥u - half • (wq + wp)∥, { mono, mono, norm_num, apply mul_nonneg, norm_num, exact norm_nonneg _ }, have eq₂ : ∥a∥ * ∥a∥ ≤ (δ + div) * (δ + div) := mul_self_le_mul_self (norm_nonneg _) (le_trans (le_of_lt $ hw q) (add_le_add_left (nat.one_div_le_one_div hq) _)), have eq₂' : ∥b∥ * ∥b∥ ≤ (δ + div) * (δ + div) := mul_self_le_mul_self (norm_nonneg _) (le_trans (le_of_lt $ hw p) (add_le_add_left (nat.one_div_le_one_div hp) _)), rw dist_eq_norm, apply nonneg_le_nonneg_of_sq_le_sq, { exact sqrt_nonneg _ }, rw mul_self_sqrt, calc ∥wp - wq∥ * ∥wp - wq∥ = 2 * (∥a∥*∥a∥ + ∥b∥*∥b∥) - 4 * ∥u - half • (wq+wp)∥ * ∥u - half • (wq+wp)∥ : by { rw ← this, simp } ... ≤ 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * δ * δ : sub_le_sub_left eq₁ _ ... ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) - 4 * δ * δ : sub_le_sub_right (mul_le_mul_of_nonneg_left (add_le_add eq₂ eq₂') (by norm_num)) _ ... = 8 * δ * div + 4 * div * div : by ring, exact add_nonneg (mul_nonneg (mul_nonneg (by norm_num) zero_le_δ) (le_of_lt nat.one_div_pos_of_nat)) (mul_nonneg (mul_nonneg (by norm_num) nat.one_div_pos_of_nat.le) nat.one_div_pos_of_nat.le), -- third goal : `tendsto (λ (n : ℕ), sqrt (b n)) at_top (𝓝 0)` apply tendsto.comp, { convert continuous_sqrt.continuous_at, exact sqrt_zero.symm }, have eq₁ : tendsto (λ (n : ℕ), 8 * δ * (1 / (n + 1))) at_top (nhds (0:ℝ)), { convert (@tendsto_const_nhds _ _ _ (8 * δ) _).mul tendsto_one_div_add_at_top_nhds_0_nat, simp only [mul_zero] }, have : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1))) at_top (nhds (0:ℝ)), { convert (@tendsto_const_nhds _ _ _ (4:ℝ) _).mul tendsto_one_div_add_at_top_nhds_0_nat, simp only [mul_zero] }, have eq₂ : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1)) * (1 / (n + 1))) at_top (nhds (0:ℝ)), { convert this.mul tendsto_one_div_add_at_top_nhds_0_nat, simp only [mul_zero] }, convert eq₁.add eq₂, simp only [add_zero] }, -- Step 3: By completeness of `K`, let `w : ℕ → K` converge to some `v : K`. -- Prove that it satisfies all requirements. rcases cauchy_seq_tendsto_of_is_complete h₁ (λ n, _) seq_is_cauchy with ⟨v, hv, w_tendsto⟩, use v, use hv, have h_cont : continuous (λ v, ∥u - v∥) := continuous.comp continuous_norm (continuous.sub continuous_const continuous_id), have : tendsto (λ n, ∥u - w n∥) at_top (nhds ∥u - v∥), convert (tendsto.comp h_cont.continuous_at w_tendsto), exact tendsto_nhds_unique this norm_tendsto, exact subtype.mem _ end /-- Characterization of minimizers for the projection on a convex set in a real inner product space. -/ theorem norm_eq_infi_iff_real_inner_le_zero {K : set F} (h : convex ℝ K) {u : F} {v : F} (hv : v ∈ K) : ∥u - v∥ = (⨅ w : K, ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0 := iff.intro begin assume eq w hw, let δ := ⨅ w : K, ∥u - w∥, let p := ⟪u - v, w - v⟫_ℝ, let q := ∥w - v∥^2, letI : nonempty K := ⟨⟨v, hv⟩⟩, have zero_le_δ : 0 ≤ δ, apply le_cinfi, intro, exact norm_nonneg _, have δ_le : ∀ w : K, δ ≤ ∥u - w∥, assume w, apply cinfi_le, use (0:ℝ), rintros _ ⟨_, rfl⟩, exact norm_nonneg _, have δ_le' : ∀ w ∈ K, δ ≤ ∥u - w∥ := assume w hw, δ_le ⟨w, hw⟩, have : ∀θ:ℝ, 0 < θ → θ ≤ 1 → 2 * p ≤ θ * q, assume θ hθ₁ hθ₂, have : ∥u - v∥^2 ≤ ∥u - v∥^2 - 2 * θ * ⟪u - v, w - v⟫_ℝ + θ*θ*∥w - v∥^2 := calc ∥u - v∥^2 ≤ ∥u - (θ•w + (1-θ)•v)∥^2 : begin simp only [sq], apply mul_self_le_mul_self (norm_nonneg _), rw [eq], apply δ_le', apply h hw hv, exacts [le_of_lt hθ₁, sub_nonneg.2 hθ₂, add_sub_cancel'_right _ _], end ... = ∥(u - v) - θ • (w - v)∥^2 : begin have : u - (θ•w + (1-θ)•v) = (u - v) - θ • (w - v), { rw [smul_sub, sub_smul, one_smul], simp only [sub_eq_add_neg, add_comm, add_left_comm, add_assoc, neg_add_rev] }, rw this end ... = ∥u - v∥^2 - 2 * θ * inner (u - v) (w - v) + θ*θ*∥w - v∥^2 : begin rw [norm_sub_sq, inner_smul_right, norm_smul], simp only [sq], show ∥u-v∥*∥u-v∥-2*(θ*inner(u-v)(w-v))+absR (θ)*∥w-v∥*(absR (θ)*∥w-v∥)= ∥u-v∥*∥u-v∥-2*θ*inner(u-v)(w-v)+θ*θ*(∥w-v∥*∥w-v∥), rw abs_of_pos hθ₁, ring end, have eq₁ : ∥u-v∥^2-2*θ*inner(u-v)(w-v)+θ*θ*∥w-v∥^2=∥u-v∥^2+(θ*θ*∥w-v∥^2-2*θ*inner(u-v)(w-v)), by abel, rw [eq₁, le_add_iff_nonneg_right] at this, have eq₂ : θ*θ*∥w-v∥^2-2*θ*inner(u-v)(w-v)=θ*(θ*∥w-v∥^2-2*inner(u-v)(w-v)), ring, rw eq₂ at this, have := le_of_sub_nonneg (nonneg_of_mul_nonneg_right this hθ₁), exact this, by_cases hq : q = 0, { rw hq at this, have : p ≤ 0, have := this (1:ℝ) (by norm_num) (by norm_num), linarith, exact this }, { have q_pos : 0 < q, apply lt_of_le_of_ne, exact sq_nonneg _, intro h, exact hq h.symm, by_contradiction hp, rw not_le at hp, let θ := min (1:ℝ) (p / q), have eq₁ : θ*q ≤ p := calc θ*q ≤ (p/q) * q : mul_le_mul_of_nonneg_right (min_le_right _ _) (sq_nonneg _) ... = p : div_mul_cancel _ hq, have : 2 * p ≤ p := calc 2 * p ≤ θ*q : by { refine this θ (lt_min (by norm_num) (div_pos hp q_pos)) (by norm_num) } ... ≤ p : eq₁, linarith } end begin assume h, letI : nonempty K := ⟨⟨v, hv⟩⟩, apply le_antisymm, { apply le_cinfi, assume w, apply nonneg_le_nonneg_of_sq_le_sq (norm_nonneg _), have := h w w.2, calc ∥u - v∥ * ∥u - v∥ ≤ ∥u - v∥ * ∥u - v∥ - 2 * inner (u - v) ((w:F) - v) : by linarith ... ≤ ∥u - v∥^2 - 2 * inner (u - v) ((w:F) - v) + ∥(w:F) - v∥^2 : by { rw sq, refine le_add_of_nonneg_right _, exact sq_nonneg _ } ... = ∥(u - v) - (w - v)∥^2 : norm_sub_sq.symm ... = ∥u - w∥ * ∥u - w∥ : by { have : (u - v) - (w - v) = u - w, abel, rw [this, sq] } }, { show (⨅ (w : K), ∥u - w∥) ≤ (λw:K, ∥u - w∥) ⟨v, hv⟩, apply cinfi_le, use 0, rintros y ⟨z, rfl⟩, exact norm_nonneg _ } end variables (K : submodule 𝕜 E) /-- Existence of projections on complete subspaces. Let `u` be a point in an inner product space, and let `K` be a nonempty complete subspace. Then there exists a (unique) `v` in `K` that minimizes the distance `∥u - v∥` to `u`. This point `v` is usually called the orthogonal projection of `u` onto `K`. -/ theorem exists_norm_eq_infi_of_complete_subspace (h : is_complete (↑K : set E)) : ∀ u : E, ∃ v ∈ K, ∥u - v∥ = ⨅ w : (K : set E), ∥u - w∥ := begin letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E, letI : module ℝ E := restrict_scalars.module ℝ 𝕜 E, let K' : submodule ℝ E := submodule.restrict_scalars ℝ K, exact exists_norm_eq_infi_of_complete_convex ⟨0, K'.zero_mem⟩ h K'.convex end /-- Characterization of minimizers in the projection on a subspace, in the real case. Let `u` be a point in a real inner product space, and let `K` be a nonempty subspace. Then point `v` minimizes the distance `∥u - v∥` over points in `K` if and only if for all `w ∈ K`, `⟪u - v, w⟫ = 0` (i.e., `u - v` is orthogonal to the subspace `K`). This is superceded by `norm_eq_infi_iff_inner_eq_zero` that gives the same conclusion over any `is_R_or_C` field. -/ theorem norm_eq_infi_iff_real_inner_eq_zero (K : submodule ℝ F) {u : F} {v : F} (hv : v ∈ K) : ∥u - v∥ = (⨅ w : (↑K : set F), ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w⟫_ℝ = 0 := iff.intro begin assume h, have h : ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0, { rwa [norm_eq_infi_iff_real_inner_le_zero] at h, exacts [K.convex, hv] }, assume w hw, have le : ⟪u - v, w⟫_ℝ ≤ 0, let w' := w + v, have : w' ∈ K := submodule.add_mem _ hw hv, have h₁ := h w' this, have h₂ : w' - v = w, simp only [add_neg_cancel_right, sub_eq_add_neg], rw h₂ at h₁, exact h₁, have ge : ⟪u - v, w⟫_ℝ ≥ 0, let w'' := -w + v, have : w'' ∈ K := submodule.add_mem _ (submodule.neg_mem _ hw) hv, have h₁ := h w'' this, have h₂ : w'' - v = -w, simp only [neg_inj, add_neg_cancel_right, sub_eq_add_neg], rw [h₂, inner_neg_right] at h₁, linarith, exact le_antisymm le ge end begin assume h, have : ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0, assume w hw, let w' := w - v, have : w' ∈ K := submodule.sub_mem _ hw hv, have h₁ := h w' this, exact le_of_eq h₁, rwa norm_eq_infi_iff_real_inner_le_zero, exacts [submodule.convex _, hv] end /-- Characterization of minimizers in the projection on a subspace. Let `u` be a point in an inner product space, and let `K` be a nonempty subspace. Then point `v` minimizes the distance `∥u - v∥` over points in `K` if and only if for all `w ∈ K`, `⟪u - v, w⟫ = 0` (i.e., `u - v` is orthogonal to the subspace `K`) -/ theorem norm_eq_infi_iff_inner_eq_zero {u : E} {v : E} (hv : v ∈ K) : ∥u - v∥ = (⨅ w : K, ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w⟫ = 0 := begin letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E, letI : module ℝ E := restrict_scalars.module ℝ 𝕜 E, let K' : submodule ℝ E := K.restrict_scalars ℝ, split, { assume H, have A : ∀ w ∈ K, re ⟪u - v, w⟫ = 0 := (norm_eq_infi_iff_real_inner_eq_zero K' hv).1 H, assume w hw, apply ext, { simp [A w hw] }, { symmetry, calc im (0 : 𝕜) = 0 : im.map_zero ... = re ⟪u - v, (-I) • w⟫ : (A _ (K.smul_mem (-I) hw)).symm ... = re ((-I) * ⟪u - v, w⟫) : by rw inner_smul_right ... = im ⟪u - v, w⟫ : by simp } }, { assume H, have : ∀ w ∈ K', ⟪u - v, w⟫_ℝ = 0, { assume w hw, rw [real_inner_eq_re_inner, H w hw], exact zero_re' }, exact (norm_eq_infi_iff_real_inner_eq_zero K' hv).2 this } end section orthogonal_projection variables [complete_space K] /-- The orthogonal projection onto a complete subspace, as an unbundled function. This definition is only intended for use in setting up the bundled version `orthogonal_projection` and should not be used once that is defined. -/ def orthogonal_projection_fn (v : E) := (exists_norm_eq_infi_of_complete_subspace K (complete_space_coe_iff_is_complete.mp ‹_›) v).some variables {K} /-- The unbundled orthogonal projection is in the given subspace. This lemma is only intended for use in setting up the bundled version and should not be used once that is defined. -/ lemma orthogonal_projection_fn_mem (v : E) : orthogonal_projection_fn K v ∈ K := (exists_norm_eq_infi_of_complete_subspace K (complete_space_coe_iff_is_complete.mp ‹_›) v).some_spec.some /-- The characterization of the unbundled orthogonal projection. This lemma is only intended for use in setting up the bundled version and should not be used once that is defined. -/ lemma orthogonal_projection_fn_inner_eq_zero (v : E) : ∀ w ∈ K, ⟪v - orthogonal_projection_fn K v, w⟫ = 0 := begin rw ←norm_eq_infi_iff_inner_eq_zero K (orthogonal_projection_fn_mem v), exact (exists_norm_eq_infi_of_complete_subspace K (complete_space_coe_iff_is_complete.mp ‹_›) v).some_spec.some_spec end /-- The unbundled orthogonal projection is the unique point in `K` with the orthogonality property. This lemma is only intended for use in setting up the bundled version and should not be used once that is defined. -/ lemma eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero {u v : E} (hvm : v ∈ K) (hvo : ∀ w ∈ K, ⟪u - v, w⟫ = 0) : orthogonal_projection_fn K u = v := begin rw [←sub_eq_zero, ←inner_self_eq_zero], have hvs : orthogonal_projection_fn K u - v ∈ K := submodule.sub_mem K (orthogonal_projection_fn_mem u) hvm, have huo : ⟪u - orthogonal_projection_fn K u, orthogonal_projection_fn K u - v⟫ = 0 := orthogonal_projection_fn_inner_eq_zero u _ hvs, have huv : ⟪u - v, orthogonal_projection_fn K u - v⟫ = 0 := hvo _ hvs, have houv : ⟪(u - v) - (u - orthogonal_projection_fn K u), orthogonal_projection_fn K u - v⟫ = 0, { rw [inner_sub_left, huo, huv, sub_zero] }, rwa sub_sub_sub_cancel_left at houv end variables (K) lemma orthogonal_projection_fn_norm_sq (v : E) : ∥v∥ * ∥v∥ = ∥v - (orthogonal_projection_fn K v)∥ * ∥v - (orthogonal_projection_fn K v)∥ + ∥orthogonal_projection_fn K v∥ * ∥orthogonal_projection_fn K v∥ := begin set p := orthogonal_projection_fn K v, have h' : ⟪v - p, p⟫ = 0, { exact orthogonal_projection_fn_inner_eq_zero _ _ (orthogonal_projection_fn_mem v) }, convert norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero (v - p) p h' using 2; simp, end /-- The orthogonal projection onto a complete subspace. -/ def orthogonal_projection : E →L[𝕜] K := linear_map.mk_continuous { to_fun := λ v, ⟨orthogonal_projection_fn K v, orthogonal_projection_fn_mem v⟩, map_add' := λ x y, begin have hm : orthogonal_projection_fn K x + orthogonal_projection_fn K y ∈ K := submodule.add_mem K (orthogonal_projection_fn_mem x) (orthogonal_projection_fn_mem y), have ho : ∀ w ∈ K, ⟪x + y - (orthogonal_projection_fn K x + orthogonal_projection_fn K y), w⟫ = 0, { intros w hw, rw [add_sub_add_comm, inner_add_left, orthogonal_projection_fn_inner_eq_zero _ w hw, orthogonal_projection_fn_inner_eq_zero _ w hw, add_zero] }, ext, simp [eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hm ho] end, map_smul' := λ c x, begin have hm : c • orthogonal_projection_fn K x ∈ K := submodule.smul_mem K _ (orthogonal_projection_fn_mem x), have ho : ∀ w ∈ K, ⟪c • x - c • orthogonal_projection_fn K x, w⟫ = 0, { intros w hw, rw [←smul_sub, inner_smul_left, orthogonal_projection_fn_inner_eq_zero _ w hw, mul_zero] }, ext, simp [eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hm ho] end } 1 (λ x, begin simp only [one_mul, linear_map.coe_mk], refine le_of_pow_le_pow 2 (norm_nonneg _) (by norm_num) _, change ∥orthogonal_projection_fn K x∥ ^ 2 ≤ ∥x∥ ^ 2, nlinarith [orthogonal_projection_fn_norm_sq K x] end) variables {K} @[simp] lemma orthogonal_projection_fn_eq (v : E) : orthogonal_projection_fn K v = (orthogonal_projection K v : E) := rfl /-- The characterization of the orthogonal projection. -/ @[simp] lemma orthogonal_projection_inner_eq_zero (v : E) : ∀ w ∈ K, ⟪v - orthogonal_projection K v, w⟫ = 0 := orthogonal_projection_fn_inner_eq_zero v /-- The difference of `v` from its orthogonal projection onto `K` is in `Kᗮ`. -/ @[simp] lemma sub_orthogonal_projection_mem_orthogonal (v : E) : v - orthogonal_projection K v ∈ Kᗮ := begin intros w hw, rw inner_eq_zero_sym, exact orthogonal_projection_inner_eq_zero _ _ hw end /-- The orthogonal projection is the unique point in `K` with the orthogonality property. -/ lemma eq_orthogonal_projection_of_mem_of_inner_eq_zero {u v : E} (hvm : v ∈ K) (hvo : ∀ w ∈ K, ⟪u - v, w⟫ = 0) : (orthogonal_projection K u : E) = v := eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hvm hvo /-- The orthogonal projection of `y` on `U` minimizes the distance `∥y - x∥` for `x ∈ U`. -/ lemma orthogonal_projection_minimal {U : submodule 𝕜 E} [complete_space U] (y : E) : ∥y - orthogonal_projection U y∥ = ⨅ x : U, ∥y - x∥ := begin rw norm_eq_infi_iff_inner_eq_zero _ (submodule.coe_mem _), exact orthogonal_projection_inner_eq_zero _ end /-- The orthogonal projections onto equal subspaces are coerced back to the same point in `E`. -/ lemma eq_orthogonal_projection_of_eq_submodule {K' : submodule 𝕜 E} [complete_space K'] (h : K = K') (u : E) : (orthogonal_projection K u : E) = (orthogonal_projection K' u : E) := begin change orthogonal_projection_fn K u = orthogonal_projection_fn K' u, congr, exact h end /-- The orthogonal projection sends elements of `K` to themselves. -/ @[simp] lemma orthogonal_projection_mem_subspace_eq_self (v : K) : orthogonal_projection K v = v := by { ext, apply eq_orthogonal_projection_of_mem_of_inner_eq_zero; simp } /-- A point equals its orthogonal projection if and only if it lies in the subspace. -/ lemma orthogonal_projection_eq_self_iff {v : E} : (orthogonal_projection K v : E) = v ↔ v ∈ K := begin refine ⟨λ h, _, λ h, eq_orthogonal_projection_of_mem_of_inner_eq_zero h _⟩, { rw ← h, simp }, { simp } end lemma linear_isometry.map_orthogonal_projection {E E' : Type*} [inner_product_space 𝕜 E] [inner_product_space 𝕜 E'] (f : E →ₗᵢ[𝕜] E') (p : submodule 𝕜 E) [complete_space p] (x : E) : f (orthogonal_projection p x) = orthogonal_projection (p.map f.to_linear_map) (f x) := begin refine (eq_orthogonal_projection_of_mem_of_inner_eq_zero _ $ λ y hy, _).symm, refine submodule.apply_coe_mem_map _ _, rcases hy with ⟨x', hx', rfl : f x' = y⟩, rw [← f.map_sub, f.inner_map_map, orthogonal_projection_inner_eq_zero x x' hx'] end lemma linear_isometry.map_orthogonal_projection' {E E' : Type*} [inner_product_space 𝕜 E] [inner_product_space 𝕜 E'] (f : E →ₗᵢ[𝕜] E') (p : submodule 𝕜 E) [complete_space p] (x : E) : f (orthogonal_projection p x) = orthogonal_projection (p.map f) (f x) := begin refine (eq_orthogonal_projection_of_mem_of_inner_eq_zero _ $ λ y hy, _).symm, refine submodule.apply_coe_mem_map _ _, rcases hy with ⟨x', hx', rfl : f x' = y⟩, rw [← f.map_sub, f.inner_map_map, orthogonal_projection_inner_eq_zero x x' hx'] end /-- Orthogonal projection onto the `submodule.map` of a subspace. -/ lemma orthogonal_projection_map_apply {E E' : Type*} [inner_product_space 𝕜 E] [inner_product_space 𝕜 E'] (f : E ≃ₗᵢ[𝕜] E') (p : submodule 𝕜 E) [complete_space p] (x : E') : (orthogonal_projection (p.map (f.to_linear_equiv : E →ₗ[𝕜] E')) x : E') = f (orthogonal_projection p (f.symm x)) := by simpa only [f.coe_to_linear_isometry, f.apply_symm_apply] using (f.to_linear_isometry.map_orthogonal_projection p (f.symm x)).symm /-- The orthogonal projection onto the trivial submodule is the zero map. -/ @[simp] lemma orthogonal_projection_bot : orthogonal_projection (⊥ : submodule 𝕜 E) = 0 := by ext variables (K) /-- The orthogonal projection has norm `≤ 1`. -/ lemma orthogonal_projection_norm_le : ∥orthogonal_projection K∥ ≤ 1 := linear_map.mk_continuous_norm_le _ (by norm_num) _ variables (𝕜) lemma smul_orthogonal_projection_singleton {v : E} (w : E) : (∥v∥ ^ 2 : 𝕜) • (orthogonal_projection (𝕜 ∙ v) w : E) = ⟪v, w⟫ • v := begin suffices : ↑(orthogonal_projection (𝕜 ∙ v) ((∥v∥ ^ 2 : 𝕜) • w)) = ⟪v, w⟫ • v, { simpa using this }, apply eq_orthogonal_projection_of_mem_of_inner_eq_zero, { rw submodule.mem_span_singleton, use ⟪v, w⟫ }, { intros x hx, obtain ⟨c, rfl⟩ := submodule.mem_span_singleton.mp hx, have hv : ↑∥v∥ ^ 2 = ⟪v, v⟫ := by { norm_cast, simp [norm_sq_eq_inner] }, simp [inner_sub_left, inner_smul_left, inner_smul_right, map_div₀, mul_comm, hv, inner_product_space.conj_sym, hv] } end /-- Formula for orthogonal projection onto a single vector. -/ lemma orthogonal_projection_singleton {v : E} (w : E) : (orthogonal_projection (𝕜 ∙ v) w : E) = (⟪v, w⟫ / ∥v∥ ^ 2) • v := begin by_cases hv : v = 0, { rw [hv, eq_orthogonal_projection_of_eq_submodule (submodule.span_zero_singleton 𝕜)], { simp }, { apply_instance } }, have hv' : ∥v∥ ≠ 0 := ne_of_gt (norm_pos_iff.mpr hv), have key : ((∥v∥ ^ 2 : 𝕜)⁻¹ * ∥v∥ ^ 2) • ↑(orthogonal_projection (𝕜 ∙ v) w) = ((∥v∥ ^ 2 : 𝕜)⁻¹ * ⟪v, w⟫) • v, { simp [mul_smul, smul_orthogonal_projection_singleton 𝕜 w] }, convert key; field_simp [hv'] end /-- Formula for orthogonal projection onto a single unit vector. -/ lemma orthogonal_projection_unit_singleton {v : E} (hv : ∥v∥ = 1) (w : E) : (orthogonal_projection (𝕜 ∙ v) w : E) = ⟪v, w⟫ • v := by { rw ← smul_orthogonal_projection_singleton 𝕜 w, simp [hv] } end orthogonal_projection section reflection variables {𝕜} (K) [complete_space K] /-- Auxiliary definition for `reflection`: the reflection as a linear equivalence. -/ def reflection_linear_equiv : E ≃ₗ[𝕜] E := linear_equiv.of_involutive (bit0 (K.subtype.comp (orthogonal_projection K).to_linear_map) - linear_map.id) (λ x, by simp [bit0]) /-- Reflection in a complete subspace of an inner product space. The word "reflection" is sometimes understood to mean specifically reflection in a codimension-one subspace, and sometimes more generally to cover operations such as reflection in a point. The definition here, of reflection in a subspace, is a more general sense of the word that includes both those common cases. -/ def reflection : E ≃ₗᵢ[𝕜] E := { norm_map' := begin intros x, let w : K := orthogonal_projection K x, let v := x - w, have : ⟪v, w⟫ = 0 := orthogonal_projection_inner_eq_zero x w w.2, convert norm_sub_eq_norm_add this using 2, { rw [linear_equiv.coe_mk, reflection_linear_equiv, linear_equiv.to_fun_eq_coe, linear_equiv.coe_of_involutive, linear_map.sub_apply, linear_map.id_apply, bit0, linear_map.add_apply, linear_map.comp_apply, submodule.subtype_apply, continuous_linear_map.to_linear_map_eq_coe, continuous_linear_map.coe_coe], dsimp [w, v], abel, }, { simp only [add_sub_cancel'_right, eq_self_iff_true], } end, ..reflection_linear_equiv K } variables {K} /-- The result of reflecting. -/ lemma reflection_apply (p : E) : reflection K p = bit0 ↑(orthogonal_projection K p) - p := rfl /-- Reflection is its own inverse. -/ @[simp] lemma reflection_symm : (reflection K).symm = reflection K := rfl /-- Reflection is its own inverse. -/ @[simp] lemma reflection_inv : (reflection K)⁻¹ = reflection K := rfl variables (K) /-- Reflecting twice in the same subspace. -/ @[simp] lemma reflection_reflection (p : E) : reflection K (reflection K p) = p := (reflection K).left_inv p /-- Reflection is involutive. -/ lemma reflection_involutive : function.involutive (reflection K) := reflection_reflection K /-- Reflection is involutive. -/ @[simp] lemma reflection_trans_reflection : (reflection K).trans (reflection K) = linear_isometry_equiv.refl 𝕜 E := linear_isometry_equiv.ext $ reflection_involutive K /-- Reflection is involutive. -/ @[simp] lemma reflection_mul_reflection : reflection K * reflection K = 1 := reflection_trans_reflection _ variables {K} /-- A point is its own reflection if and only if it is in the subspace. -/ lemma reflection_eq_self_iff (x : E) : reflection K x = x ↔ x ∈ K := begin rw [←orthogonal_projection_eq_self_iff, reflection_apply, sub_eq_iff_eq_add', ← two_smul 𝕜, ← two_smul' 𝕜], refine (smul_right_injective E _).eq_iff, exact two_ne_zero end lemma reflection_mem_subspace_eq_self {x : E} (hx : x ∈ K) : reflection K x = x := (reflection_eq_self_iff x).mpr hx /-- Reflection in the `submodule.map` of a subspace. -/ lemma reflection_map_apply {E E' : Type*} [inner_product_space 𝕜 E] [inner_product_space 𝕜 E'] (f : E ≃ₗᵢ[𝕜] E') (K : submodule 𝕜 E) [complete_space K] (x : E') : reflection (K.map (f.to_linear_equiv : E →ₗ[𝕜] E')) x = f (reflection K (f.symm x)) := by simp [bit0, reflection_apply, orthogonal_projection_map_apply f K x] /-- Reflection in the `submodule.map` of a subspace. -/ lemma reflection_map {E E' : Type*} [inner_product_space 𝕜 E] [inner_product_space 𝕜 E'] (f : E ≃ₗᵢ[𝕜] E') (K : submodule 𝕜 E) [complete_space K] : reflection (K.map (f.to_linear_equiv : E →ₗ[𝕜] E')) = f.symm.trans ((reflection K).trans f) := linear_isometry_equiv.ext $ reflection_map_apply f K /-- Reflection through the trivial subspace {0} is just negation. -/ @[simp] lemma reflection_bot : reflection (⊥ : submodule 𝕜 E) = linear_isometry_equiv.neg 𝕜 := by ext; simp [reflection_apply] end reflection section orthogonal /-- If `K₁` is complete and contained in `K₂`, `K₁` and `K₁ᗮ ⊓ K₂` span `K₂`. -/ lemma submodule.sup_orthogonal_inf_of_complete_space {K₁ K₂ : submodule 𝕜 E} (h : K₁ ≤ K₂) [complete_space K₁] : K₁ ⊔ (K₁ᗮ ⊓ K₂) = K₂ := begin ext x, rw submodule.mem_sup, let v : K₁ := orthogonal_projection K₁ x, have hvm : x - v ∈ K₁ᗮ := sub_orthogonal_projection_mem_orthogonal x, split, { rintro ⟨y, hy, z, hz, rfl⟩, exact K₂.add_mem (h hy) hz.2 }, { exact λ hx, ⟨v, v.prop, x - v, ⟨hvm, K₂.sub_mem hx (h v.prop)⟩, add_sub_cancel'_right _ _⟩ } end variables {K} /-- If `K` is complete, `K` and `Kᗮ` span the whole space. -/ lemma submodule.sup_orthogonal_of_complete_space [complete_space K] : K ⊔ Kᗮ = ⊤ := begin convert submodule.sup_orthogonal_inf_of_complete_space (le_top : K ≤ ⊤), simp end variables (K) /-- If `K` is complete, any `v` in `E` can be expressed as a sum of elements of `K` and `Kᗮ`. -/ lemma submodule.exists_sum_mem_mem_orthogonal [complete_space K] (v : E) : ∃ (y ∈ K) (z ∈ Kᗮ), v = y + z := begin have h_mem : v ∈ K ⊔ Kᗮ := by simp [submodule.sup_orthogonal_of_complete_space], obtain ⟨y, hy, z, hz, hyz⟩ := submodule.mem_sup.mp h_mem, exact ⟨y, hy, z, hz, hyz.symm⟩ end /-- If `K` is complete, then the orthogonal complement of its orthogonal complement is itself. -/ @[simp] lemma submodule.orthogonal_orthogonal [complete_space K] : Kᗮᗮ = K := begin ext v, split, { obtain ⟨y, hy, z, hz, rfl⟩ := K.exists_sum_mem_mem_orthogonal v, intros hv, have hz' : z = 0, { have hyz : ⟪z, y⟫ = 0 := by simp [hz y hy, inner_eq_zero_sym], simpa [inner_add_right, hyz] using hv z hz }, simp [hy, hz'] }, { intros hv w hw, rw inner_eq_zero_sym, exact hw v hv } end lemma submodule.orthogonal_orthogonal_eq_closure [complete_space E] : Kᗮᗮ = K.topological_closure := begin refine le_antisymm _ _, { convert submodule.orthogonal_orthogonal_monotone K.submodule_topological_closure, haveI : complete_space K.topological_closure := K.is_closed_topological_closure.complete_space_coe, rw K.topological_closure.orthogonal_orthogonal }, { exact K.topological_closure_minimal K.le_orthogonal_orthogonal Kᗮ.is_closed_orthogonal } end variables {K} /-- If `K` is complete, `K` and `Kᗮ` are complements of each other. -/ lemma submodule.is_compl_orthogonal_of_complete_space [complete_space K] : is_compl K Kᗮ := ⟨K.orthogonal_disjoint, le_of_eq submodule.sup_orthogonal_of_complete_space.symm⟩ @[simp] lemma submodule.orthogonal_eq_bot_iff [complete_space (K : set E)] : Kᗮ = ⊥ ↔ K = ⊤ := begin refine ⟨_, λ h, by rw [h, submodule.top_orthogonal_eq_bot] ⟩, intro h, have : K ⊔ Kᗮ = ⊤ := submodule.sup_orthogonal_of_complete_space, rwa [h, sup_comm, bot_sup_eq] at this, end /-- A point in `K` with the orthogonality property (here characterized in terms of `Kᗮ`) must be the orthogonal projection. -/ lemma eq_orthogonal_projection_of_mem_orthogonal [complete_space K] {u v : E} (hv : v ∈ K) (hvo : u - v ∈ Kᗮ) : (orthogonal_projection K u : E) = v := eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hv (λ w, inner_eq_zero_sym.mp ∘ (hvo w)) /-- A point in `K` with the orthogonality property (here characterized in terms of `Kᗮ`) must be the orthogonal projection. -/ lemma eq_orthogonal_projection_of_mem_orthogonal' [complete_space K] {u v z : E} (hv : v ∈ K) (hz : z ∈ Kᗮ) (hu : u = v + z) : (orthogonal_projection K u : E) = v := eq_orthogonal_projection_of_mem_orthogonal hv (by simpa [hu]) /-- The orthogonal projection onto `K` of an element of `Kᗮ` is zero. -/ lemma orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero [complete_space K] {v : E} (hv : v ∈ Kᗮ) : orthogonal_projection K v = 0 := by { ext, convert eq_orthogonal_projection_of_mem_orthogonal _ _; simp [hv] } /-- The reflection in `K` of an element of `Kᗮ` is its negation. -/ lemma reflection_mem_subspace_orthogonal_complement_eq_neg [complete_space K] {v : E} (hv : v ∈ Kᗮ) : reflection K v = - v := by simp [reflection_apply, orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero hv] /-- The orthogonal projection onto `Kᗮ` of an element of `K` is zero. -/ lemma orthogonal_projection_mem_subspace_orthogonal_precomplement_eq_zero [complete_space E] {v : E} (hv : v ∈ K) : orthogonal_projection Kᗮ v = 0 := orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero (K.le_orthogonal_orthogonal hv) /-- If `U ≤ V`, then projecting on `V` and then on `U` is the same as projecting on `U`. -/ lemma orthogonal_projection_orthogonal_projection_of_le {U V : submodule 𝕜 E} [complete_space U] [complete_space V] (h : U ≤ V) (x : E) : orthogonal_projection U (orthogonal_projection V x) = orthogonal_projection U x := eq.symm $ by simpa only [sub_eq_zero, map_sub] using orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero (submodule.orthogonal_le h (sub_orthogonal_projection_mem_orthogonal x)) /-- Given a monotone family `U` of complete submodules of `E` and a fixed `x : E`, the orthogonal projection of `x` on `U i` tends to the orthogonal projection of `x` on `(⨆ i, U i).topological_closure` along `at_top`. -/ lemma orthogonal_projection_tendsto_closure_supr [complete_space E] {ι : Type*} [semilattice_sup ι] (U : ι → submodule 𝕜 E) [∀ i, complete_space (U i)] (hU : monotone U) (x : E) : filter.tendsto (λ i, (orthogonal_projection (U i) x : E)) at_top (𝓝 (orthogonal_projection (⨆ i, U i).topological_closure x : E)) := begin casesI is_empty_or_nonempty ι, { rw filter_eq_bot_of_is_empty (at_top : filter ι), exact tendsto_bot }, let y := (orthogonal_projection (⨆ i, U i).topological_closure x : E), have proj_x : ∀ i, orthogonal_projection (U i) x = orthogonal_projection (U i) y := λ i, (orthogonal_projection_orthogonal_projection_of_le ((le_supr U i).trans (supr U).submodule_topological_closure) _).symm, suffices : ∀ ε > 0, ∃ I, ∀ i ≥ I, ∥(orthogonal_projection (U i) y : E) - y∥ < ε, { simpa only [proj_x, normed_add_comm_group.tendsto_at_top] using this }, intros ε hε, obtain ⟨a, ha, hay⟩ : ∃ a ∈ ⨆ i, U i, dist y a < ε, { have y_mem : y ∈ (⨆ i, U i).topological_closure := submodule.coe_mem _, rw [← set_like.mem_coe, submodule.topological_closure_coe, metric.mem_closure_iff] at y_mem, exact y_mem ε hε }, rw dist_eq_norm at hay, obtain ⟨I, hI⟩ : ∃ I, a ∈ U I, { rwa [submodule.mem_supr_of_directed _ (hU.directed_le)] at ha }, refine ⟨I, λ i (hi : I ≤ i), _⟩, rw [norm_sub_rev, orthogonal_projection_minimal], refine lt_of_le_of_lt _ hay, change _ ≤ ∥y - (⟨a, hU hi hI⟩ : U i)∥, exact cinfi_le ⟨0, set.forall_range_iff.mpr $ λ _, norm_nonneg _⟩ _, end /-- Given a monotone family `U` of complete submodules of `E` with dense span supremum, and a fixed `x : E`, the orthogonal projection of `x` on `U i` tends to `x` along `at_top`. -/ lemma orthogonal_projection_tendsto_self [complete_space E] {ι : Type*} [semilattice_sup ι] (U : ι → submodule 𝕜 E) [∀ t, complete_space (U t)] (hU : monotone U) (x : E) (hU' : ⊤ ≤ (⨆ t, U t).topological_closure) : filter.tendsto (λ t, (orthogonal_projection (U t) x : E)) at_top (𝓝 x) := begin rw ← eq_top_iff at hU', convert orthogonal_projection_tendsto_closure_supr U hU x, rw orthogonal_projection_eq_self_iff.mpr _, rw hU', trivial end /-- The orthogonal complement satisfies `Kᗮᗮᗮ = Kᗮ`. -/ lemma submodule.triorthogonal_eq_orthogonal [complete_space E] : Kᗮᗮᗮ = Kᗮ := begin rw Kᗮ.orthogonal_orthogonal_eq_closure, exact K.is_closed_orthogonal.submodule_topological_closure_eq, end /-- The closure of `K` is the full space iff `Kᗮ` is trivial. -/ lemma submodule.topological_closure_eq_top_iff [complete_space E] : K.topological_closure = ⊤ ↔ Kᗮ = ⊥ := begin rw ←submodule.orthogonal_orthogonal_eq_closure, split; intro h, { rw [←submodule.triorthogonal_eq_orthogonal, h, submodule.top_orthogonal_eq_bot] }, { rw [h, submodule.bot_orthogonal_eq_top] } end /-- The reflection in `Kᗮ` of an element of `K` is its negation. -/ lemma reflection_mem_subspace_orthogonal_precomplement_eq_neg [complete_space E] {v : E} (hv : v ∈ K) : reflection Kᗮ v = -v := reflection_mem_subspace_orthogonal_complement_eq_neg (K.le_orthogonal_orthogonal hv) /-- The orthogonal projection onto `(𝕜 ∙ v)ᗮ` of `v` is zero. -/ lemma orthogonal_projection_orthogonal_complement_singleton_eq_zero [complete_space E] (v : E) : orthogonal_projection (𝕜 ∙ v)ᗮ v = 0 := orthogonal_projection_mem_subspace_orthogonal_precomplement_eq_zero (submodule.mem_span_singleton_self v) /-- The reflection in `(𝕜 ∙ v)ᗮ` of `v` is `-v`. -/ lemma reflection_orthogonal_complement_singleton_eq_neg [complete_space E] (v : E) : reflection (𝕜 ∙ v)ᗮ v = -v := reflection_mem_subspace_orthogonal_precomplement_eq_neg (submodule.mem_span_singleton_self v) lemma reflection_sub [complete_space F] {v w : F} (h : ∥v∥ = ∥w∥) : reflection (ℝ ∙ (v - w))ᗮ v = w := begin set R : F ≃ₗᵢ[ℝ] F := reflection (ℝ ∙ (v - w))ᗮ, suffices : R v + R v = w + w, { apply smul_right_injective F (by norm_num : (2:ℝ) ≠ 0), simpa [two_smul] using this }, have h₁ : R (v - w) = -(v - w) := reflection_orthogonal_complement_singleton_eq_neg (v - w), have h₂ : R (v + w) = v + w, { apply reflection_mem_subspace_eq_self, apply mem_orthogonal_singleton_of_inner_left, rw real_inner_add_sub_eq_zero_iff, exact h }, convert congr_arg2 (+) h₂ h₁ using 1, { simp }, { abel } end variables (K) /-- In a complete space `E`, a vector splits as the sum of its orthogonal projections onto a complete submodule `K` and onto the orthogonal complement of `K`.-/ lemma eq_sum_orthogonal_projection_self_orthogonal_complement [complete_space E] [complete_space K] (w : E) : w = (orthogonal_projection K w : E) + (orthogonal_projection Kᗮ w : E) := begin obtain ⟨y, hy, z, hz, hwyz⟩ := K.exists_sum_mem_mem_orthogonal w, convert hwyz, { exact eq_orthogonal_projection_of_mem_orthogonal' hy hz hwyz }, { rw add_comm at hwyz, refine eq_orthogonal_projection_of_mem_orthogonal' hz _ hwyz, simp [hy] } end /-- The Pythagorean theorem, for an orthogonal projection.-/ lemma norm_sq_eq_add_norm_sq_projection (x : E) (S : submodule 𝕜 E) [complete_space E] [complete_space S] : ∥x∥^2 = ∥orthogonal_projection S x∥^2 + ∥orthogonal_projection Sᗮ x∥^2 := begin let p1 := orthogonal_projection S, let p2 := orthogonal_projection Sᗮ, have x_decomp : x = p1 x + p2 x := eq_sum_orthogonal_projection_self_orthogonal_complement S x, have x_orth : ⟪ (p1 x : E), p2 x ⟫ = 0 := submodule.inner_right_of_mem_orthogonal (set_like.coe_mem (p1 x)) (set_like.coe_mem (p2 x)), nth_rewrite 0 [x_decomp], simp only [sq, norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero ((p1 x) : E) (p2 x) x_orth, add_left_inj, mul_eq_mul_left_iff, norm_eq_zero, true_or, eq_self_iff_true, submodule.coe_norm, submodule.coe_eq_zero] end /-- In a complete space `E`, the projection maps onto a complete subspace `K` and its orthogonal complement sum to the identity. -/ lemma id_eq_sum_orthogonal_projection_self_orthogonal_complement [complete_space E] [complete_space K] : continuous_linear_map.id 𝕜 E = K.subtypeL.comp (orthogonal_projection K) + Kᗮ.subtypeL.comp (orthogonal_projection Kᗮ) := by { ext w, exact eq_sum_orthogonal_projection_self_orthogonal_complement K w } @[simp] lemma inner_orthogonal_projection_eq_of_mem_right [complete_space K] (u : K) (v : E) : ⟪orthogonal_projection K v, u⟫ = ⟪v, u⟫ := calc ⟪orthogonal_projection K v, u⟫ = ⟪(orthogonal_projection K v : E), u⟫ : K.coe_inner _ _ ... = ⟪(orthogonal_projection K v : E), u⟫ + ⟪v - orthogonal_projection K v, u⟫ : by rw [orthogonal_projection_inner_eq_zero _ _ (submodule.coe_mem _), add_zero] ... = ⟪v, u⟫ : by rw [← inner_add_left, add_sub_cancel'_right] @[simp] lemma inner_orthogonal_projection_eq_of_mem_left [complete_space K] (u : K) (v : E) : ⟪u, orthogonal_projection K v⟫ = ⟪(u : E), v⟫ := by rw [← inner_conj_sym, ← inner_conj_sym (u : E), inner_orthogonal_projection_eq_of_mem_right] /-- The orthogonal projection is self-adjoint. -/ lemma inner_orthogonal_projection_left_eq_right [complete_space K] (u v : E) : ⟪↑(orthogonal_projection K u), v⟫ = ⟪u, orthogonal_projection K v⟫ := by rw [← inner_orthogonal_projection_eq_of_mem_left, inner_orthogonal_projection_eq_of_mem_right] /-- The orthogonal projection is symmetric. -/ lemma orthogonal_projection_is_symmetric [complete_space K] : (K.subtypeL ∘L orthogonal_projection K : E →ₗ[𝕜] E).is_symmetric := inner_orthogonal_projection_left_eq_right K open finite_dimensional /-- Given a finite-dimensional subspace `K₂`, and a subspace `K₁` containined in it, the dimensions of `K₁` and the intersection of its orthogonal subspace with `K₂` add to that of `K₂`. -/ lemma submodule.finrank_add_inf_finrank_orthogonal {K₁ K₂ : submodule 𝕜 E} [finite_dimensional 𝕜 K₂] (h : K₁ ≤ K₂) : finrank 𝕜 K₁ + finrank 𝕜 (K₁ᗮ ⊓ K₂ : submodule 𝕜 E) = finrank 𝕜 K₂ := begin haveI := submodule.finite_dimensional_of_le h, haveI := proper_is_R_or_C 𝕜 K₁, have hd := submodule.dim_sup_add_dim_inf_eq K₁ (K₁ᗮ ⊓ K₂), rw [←inf_assoc, (submodule.orthogonal_disjoint K₁).eq_bot, bot_inf_eq, finrank_bot, submodule.sup_orthogonal_inf_of_complete_space h] at hd, rw add_zero at hd, exact hd.symm end /-- Given a finite-dimensional subspace `K₂`, and a subspace `K₁` containined in it, the dimensions of `K₁` and the intersection of its orthogonal subspace with `K₂` add to that of `K₂`. -/ lemma submodule.finrank_add_inf_finrank_orthogonal' {K₁ K₂ : submodule 𝕜 E} [finite_dimensional 𝕜 K₂] (h : K₁ ≤ K₂) {n : ℕ} (h_dim : finrank 𝕜 K₁ + n = finrank 𝕜 K₂) : finrank 𝕜 (K₁ᗮ ⊓ K₂ : submodule 𝕜 E) = n := by { rw ← add_right_inj (finrank 𝕜 K₁), simp [submodule.finrank_add_inf_finrank_orthogonal h, h_dim] } /-- Given a finite-dimensional space `E` and subspace `K`, the dimensions of `K` and `Kᗮ` add to that of `E`. -/ lemma submodule.finrank_add_finrank_orthogonal [finite_dimensional 𝕜 E] (K : submodule 𝕜 E) : finrank 𝕜 K + finrank 𝕜 Kᗮ = finrank 𝕜 E := begin convert submodule.finrank_add_inf_finrank_orthogonal (le_top : K ≤ ⊤) using 1, { rw inf_top_eq }, { simp } end /-- Given a finite-dimensional space `E` and subspace `K`, the dimensions of `K` and `Kᗮ` add to that of `E`. -/ lemma submodule.finrank_add_finrank_orthogonal' [finite_dimensional 𝕜 E] {K : submodule 𝕜 E} {n : ℕ} (h_dim : finrank 𝕜 K + n = finrank 𝕜 E) : finrank 𝕜 Kᗮ = n := by { rw ← add_right_inj (finrank 𝕜 K), simp [submodule.finrank_add_finrank_orthogonal, h_dim] } local attribute [instance] fact_finite_dimensional_of_finrank_eq_succ /-- In a finite-dimensional inner product space, the dimension of the orthogonal complement of the span of a nonzero vector is one less than the dimension of the space. -/ lemma finrank_orthogonal_span_singleton {n : ℕ} [_i : fact (finrank 𝕜 E = n + 1)] {v : E} (hv : v ≠ 0) : finrank 𝕜 (𝕜 ∙ v)ᗮ = n := submodule.finrank_add_finrank_orthogonal' $ by simp [finrank_span_singleton hv, _i.elim, add_comm] /-- An element `φ` of the orthogonal group of `F` can be factored as a product of reflections, and specifically at most as many reflections as the dimension of the complement of the fixed subspace of `φ`. -/ lemma linear_isometry_equiv.reflections_generate_dim_aux [finite_dimensional ℝ F] {n : ℕ} (φ : F ≃ₗᵢ[ℝ] F) (hn : finrank ℝ (continuous_linear_map.id ℝ F - φ.to_continuous_linear_equiv).kerᗮ ≤ n) : ∃ l : list F, l.length ≤ n ∧ φ = (l.map (λ v, reflection (ℝ ∙ v)ᗮ)).prod := begin -- We prove this by strong induction on `n`, the dimension of the orthogonal complement of the -- fixed subspace of the endomorphism `φ` induction n with n IH generalizing φ, { -- Base case: `n = 0`, the fixed subspace is the whole space, so `φ = id` refine ⟨[], rfl.le, show φ = 1, from _⟩, have : (continuous_linear_map.id ℝ F - φ.to_continuous_linear_equiv).ker = ⊤, { rwa [le_zero_iff, finrank_eq_zero, submodule.orthogonal_eq_bot_iff] at hn }, symmetry, ext x, have := linear_map.congr_fun (linear_map.ker_eq_top.mp this) x, rwa [continuous_linear_map.coe_sub, linear_map.zero_apply, linear_map.sub_apply, sub_eq_zero] at this }, { -- Inductive step. Let `W` be the fixed subspace of `φ`. We suppose its complement to have -- dimension at most n + 1. let W := (continuous_linear_map.id ℝ F - φ.to_continuous_linear_equiv).ker, have hW : ∀ w ∈ W, φ w = w := λ w hw, (sub_eq_zero.mp hw).symm, by_cases hn' : finrank ℝ Wᗮ ≤ n, { obtain ⟨V, hV₁, hV₂⟩ := IH φ hn', exact ⟨V, hV₁.trans n.le_succ, hV₂⟩ }, -- Take a nonzero element `v` of the orthogonal complement of `W`. haveI : nontrivial Wᗮ := nontrivial_of_finrank_pos (by linarith [zero_le n] : 0 < finrank ℝ Wᗮ), obtain ⟨v, hv⟩ := exists_ne (0 : Wᗮ), have hφv : φ v ∈ Wᗮ, { intros w hw, rw [← hW w hw, linear_isometry_equiv.inner_map_map], exact v.prop w hw }, have hv' : (v:F) ∉ W, { intros h, exact hv ((submodule.mem_left_iff_eq_zero_of_disjoint W.orthogonal_disjoint).mp h) }, -- Let `ρ` be the reflection in `v - φ v`; this is designed to swap `v` and `φ v` let x : F := v - φ v, let ρ := reflection (ℝ ∙ x)ᗮ, -- Notation: Let `V` be the fixed subspace of `φ.trans ρ` let V := (continuous_linear_map.id ℝ F - (φ.trans ρ).to_continuous_linear_equiv).ker, have hV : ∀ w, ρ (φ w) = w → w ∈ V, { intros w hw, change w - ρ (φ w) = 0, rw [sub_eq_zero, hw] }, -- Everything fixed by `φ` is fixed by `φ.trans ρ` have H₂V : W ≤ V, { intros w hw, apply hV, rw hW w hw, refine reflection_mem_subspace_eq_self _, apply mem_orthogonal_singleton_of_inner_left, exact submodule.sub_mem _ v.prop hφv _ hw }, -- `v` is also fixed by `φ.trans ρ` have H₁V : (v : F) ∈ V, { apply hV, have : ρ v = φ v := reflection_sub (φ.norm_map v).symm, rw ←this, exact reflection_reflection _ _, }, -- By dimension-counting, the complement of the fixed subspace of `φ.trans ρ` has dimension at -- most `n` have : finrank ℝ Vᗮ ≤ n, { change finrank ℝ Wᗮ ≤ n + 1 at hn, have : finrank ℝ W + 1 ≤ finrank ℝ V := submodule.finrank_lt_finrank_of_lt (set_like.lt_iff_le_and_exists.2 ⟨H₂V, v, H₁V, hv'⟩), have : finrank ℝ V + finrank ℝ Vᗮ = finrank ℝ F := V.finrank_add_finrank_orthogonal, have : finrank ℝ W + finrank ℝ Wᗮ = finrank ℝ F := W.finrank_add_finrank_orthogonal, linarith }, -- So apply the inductive hypothesis to `φ.trans ρ` obtain ⟨l, hl, hφl⟩ := IH (ρ * φ) this, -- Prepend `ρ` to the factorization into reflections obtained for `φ.trans ρ`; this gives a -- factorization into reflections for `φ`. refine ⟨x :: l, nat.succ_le_succ hl, _⟩, rw [list.map_cons, list.prod_cons], have := congr_arg ((*) ρ) hφl, rwa [←mul_assoc, reflection_mul_reflection, one_mul] at this, } end /-- The orthogonal group of `F` is generated by reflections; specifically each element `φ` of the orthogonal group is a product of at most as many reflections as the dimension of `F`. Special case of the **Cartan–Dieudonné theorem**. -/ lemma linear_isometry_equiv.reflections_generate_dim [finite_dimensional ℝ F] (φ : F ≃ₗᵢ[ℝ] F) : ∃ l : list F, l.length ≤ finrank ℝ F ∧ φ = (l.map (λ v, reflection (ℝ ∙ v)ᗮ)).prod := let ⟨l, hl₁, hl₂⟩ := φ.reflections_generate_dim_aux le_rfl in ⟨l, hl₁.trans (submodule.finrank_le _), hl₂⟩ /-- The orthogonal group of `F` is generated by reflections. -/ lemma linear_isometry_equiv.reflections_generate [finite_dimensional ℝ F] : subgroup.closure (set.range (λ v : F, reflection (ℝ ∙ v)ᗮ)) = ⊤ := begin rw subgroup.eq_top_iff', intros φ, rcases φ.reflections_generate_dim with ⟨l, _, rfl⟩, apply (subgroup.closure _).list_prod_mem, intros x hx, rcases list.mem_map.mp hx with ⟨a, _, hax⟩, exact subgroup.subset_closure ⟨a, hax⟩, end end orthogonal section orthogonal_family variables {ι : Type*} /-- An orthogonal family of subspaces of `E` satisfies `direct_sum.is_internal` (that is, they provide an internal direct sum decomposition of `E`) if and only if their span has trivial orthogonal complement. -/ lemma orthogonal_family.is_internal_iff_of_is_complete [decidable_eq ι] {V : ι → submodule 𝕜 E} (hV : @orthogonal_family 𝕜 _ _ _ _ (λ i, V i) _ (λ i, (V i).subtypeₗᵢ)) (hc : is_complete (↑(supr V) : set E)) : direct_sum.is_internal V ↔ (supr V)ᗮ = ⊥ := begin haveI : complete_space ↥(supr V) := hc.complete_space_coe, simp only [direct_sum.is_internal_submodule_iff_independent_and_supr_eq_top, hV.independent, true_and, submodule.orthogonal_eq_bot_iff] end /-- An orthogonal family of subspaces of `E` satisfies `direct_sum.is_internal` (that is, they provide an internal direct sum decomposition of `E`) if and only if their span has trivial orthogonal complement. -/ lemma orthogonal_family.is_internal_iff [decidable_eq ι] [finite_dimensional 𝕜 E] {V : ι → submodule 𝕜 E} (hV : @orthogonal_family 𝕜 _ _ _ _ (λ i, V i) _ (λ i, (V i).subtypeₗᵢ)) : direct_sum.is_internal V ↔ (supr V)ᗮ = ⊥ := begin haveI h := finite_dimensional.proper_is_R_or_C 𝕜 ↥(supr V), exact hV.is_internal_iff_of_is_complete (complete_space_coe_iff_is_complete.mp infer_instance) end end orthogonal_family section orthonormal_basis variables {𝕜 E} {v : set E} open finite_dimensional submodule set /-- An orthonormal set in an `inner_product_space` is maximal, if and only if the orthogonal complement of its span is empty. -/ lemma maximal_orthonormal_iff_orthogonal_complement_eq_bot (hv : orthonormal 𝕜 (coe : v → E)) : (∀ u ⊇ v, orthonormal 𝕜 (coe : u → E) → u = v) ↔ (span 𝕜 v)ᗮ = ⊥ := begin rw submodule.eq_bot_iff, split, { contrapose!, -- ** direction 1: nonempty orthogonal complement implies nonmaximal rintros ⟨x, hx', hx⟩, -- take a nonzero vector and normalize it let e := (∥x∥⁻¹ : 𝕜) • x, have he : ∥e∥ = 1 := by simp [e, norm_smul_inv_norm hx], have he' : e ∈ (span 𝕜 v)ᗮ := smul_mem' _ _ hx', have he'' : e ∉ v, { intros hev, have : e = 0, { have : e ∈ (span 𝕜 v) ⊓ (span 𝕜 v)ᗮ := ⟨subset_span hev, he'⟩, simpa [(span 𝕜 v).inf_orthogonal_eq_bot] using this }, have : e ≠ 0 := hv.ne_zero ⟨e, hev⟩, contradiction }, -- put this together with `v` to provide a candidate orthonormal basis for the whole space refine ⟨insert e v, v.subset_insert e, ⟨_, _⟩, (v.ne_insert_of_not_mem he'').symm⟩, { -- show that the elements of `insert e v` have unit length rintros ⟨a, ha'⟩, cases eq_or_mem_of_mem_insert ha' with ha ha, { simp [ha, he] }, { exact hv.1 ⟨a, ha⟩ } }, { -- show that the elements of `insert e v` are orthogonal have h_end : ∀ a ∈ v, ⟪a, e⟫ = 0, { intros a ha, exact he' a (submodule.subset_span ha) }, rintros ⟨a, ha'⟩, cases eq_or_mem_of_mem_insert ha' with ha ha, { rintros ⟨b, hb'⟩ hab', have hb : b ∈ v, { refine mem_of_mem_insert_of_ne hb' _, intros hbe', apply hab', simp [ha, hbe'] }, rw inner_eq_zero_sym, simpa [ha] using h_end b hb }, rintros ⟨b, hb'⟩ hab', cases eq_or_mem_of_mem_insert hb' with hb hb, { simpa [hb] using h_end a ha }, have : (⟨a, ha⟩ : v) ≠ ⟨b, hb⟩, { intros hab'', apply hab', simpa using hab'' }, exact hv.2 this } }, { -- ** direction 2: empty orthogonal complement implies maximal simp only [subset.antisymm_iff], rintros h u (huv : v ⊆ u) hu, refine ⟨_, huv⟩, intros x hxu, refine ((mt (h x)) (hu.ne_zero ⟨x, hxu⟩)).imp_symm _, intros hxv y hy, have hxv' : (⟨x, hxu⟩ : u) ∉ (coe ⁻¹' v : set u) := by simp [huv, hxv], obtain ⟨l, hl, rfl⟩ : ∃ l ∈ finsupp.supported 𝕜 𝕜 (coe ⁻¹' v : set u), (finsupp.total ↥u E 𝕜 coe) l = y, { rw ← finsupp.mem_span_image_iff_total, simp [huv, inter_eq_self_of_subset_left, hy] }, exact hu.inner_finsupp_eq_zero hxv' hl } end variables [finite_dimensional 𝕜 E] /-- An orthonormal set in a finite-dimensional `inner_product_space` is maximal, if and only if it is a basis. -/ lemma maximal_orthonormal_iff_basis_of_finite_dimensional (hv : orthonormal 𝕜 (coe : v → E)) : (∀ u ⊇ v, orthonormal 𝕜 (coe : u → E) → u = v) ↔ ∃ b : basis v 𝕜 E, ⇑b = coe := begin haveI := proper_is_R_or_C 𝕜 (span 𝕜 v), rw maximal_orthonormal_iff_orthogonal_complement_eq_bot hv, have hv_compl : is_complete (span 𝕜 v : set E) := (span 𝕜 v).complete_of_finite_dimensional, rw submodule.orthogonal_eq_bot_iff, have hv_coe : range (coe : v → E) = v := by simp, split, { refine λ h, ⟨basis.mk hv.linear_independent _, basis.coe_mk _ _⟩, convert h.ge }, { rintros ⟨h, coe_h⟩, rw [← h.span_eq, coe_h, hv_coe] } end end orthonormal_basis
8555c35574f91d29e0ca46b7e601e99b4312e0ab
a047a4718edfa935d17231e9e6ecec8c7b701e05
/src/data/finsupp.lean
b923bcd89d2c4daca5d5711dd5081e9e93c04ea5
[ "Apache-2.0" ]
permissive
utensil-contrib/mathlib
bae0c9fafe5e2bdb516efc89d6f8c1502ecc9767
b91909e77e219098a2f8cc031f89d595fe274bd2
refs/heads/master
1,668,048,976,965
1,592,442,701,000
1,592,442,701,000
273,197,855
0
0
null
1,592,472,812,000
1,592,472,811,000
null
UTF-8
Lean
false
false
70,968
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Scott Morrison -/ import algebra.module import data.fintype.card /-! # Type of functions with finite support For any type `α` and a type `β` with zero, we define the type `finsupp α β` of finitely supported functions from `α` to `β`, i.e. the functions which are zero everywhere on `α` except on a finite set. We write this in infix notation as `α →₀ β`. Functions with finite support provide the basis for the following concrete instances: * `ℕ →₀ α`: Polynomials (where `α` is a ring) * `(σ →₀ ℕ) →₀ α`: Multivariate Polynomials (again `α` is a ring, and `σ` are variable names) * `α →₀ ℕ`: Multisets * `α →₀ ℤ`: Abelian groups freely generated by `α` * `β →₀ α`: Linear combinations over `β` where `α` is the scalar ring Most of the theory assumes that the range is a commutative monoid. This gives us the big sum operator as a powerful way to construct `finsupp` elements. A general piece of advice is to not use `α →₀ β` directly, as the type class setup might not be a good fit. Defining a copy and selecting the instances that are best suited for the application works better. ## Implementation notes This file is a `noncomputable theory` and uses classical logic throughout. ## Notation This file defines `α →₀ β` as notation for `finsupp α β`. -/ noncomputable theory open_locale classical big_operators open finset variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} {ι : Type*} {α₁ : Type*} {α₂ : Type*} {β₁ : Type*} {β₂ : Type*} /-- `finsupp α β`, denoted `α →₀ β`, is the type of functions `f : α → β` such that `f x = 0` for all but finitely many `x`. -/ structure finsupp (α : Type*) (β : Type*) [has_zero β] := (support : finset α) (to_fun : α → β) (mem_support_to_fun : ∀a, a ∈ support ↔ to_fun a ≠ 0) infixr ` →₀ `:25 := finsupp namespace finsupp /-! ### Basic declarations about `finsupp` -/ section basic variable [has_zero β] instance : has_coe_to_fun (α →₀ β) := ⟨λ_, α → β, to_fun⟩ instance : has_zero (α →₀ β) := ⟨⟨∅, (λ_, 0), λ _, ⟨false.elim, λ H, H rfl⟩⟩⟩ @[simp] lemma zero_apply {a : α} : (0 : α →₀ β) a = 0 := rfl @[simp] lemma support_zero : (0 : α →₀ β).support = ∅ := rfl instance : inhabited (α →₀ β) := ⟨0⟩ @[simp] lemma mem_support_iff {f : α →₀ β} : ∀{a:α}, a ∈ f.support ↔ f a ≠ 0 := f.mem_support_to_fun lemma not_mem_support_iff {f : α →₀ β} {a} : a ∉ f.support ↔ f a = 0 := not_iff_comm.1 mem_support_iff.symm @[ext] lemma ext : ∀{f g : α →₀ β}, (∀a, f a = g a) → f = g | ⟨s, f, hf⟩ ⟨t, g, hg⟩ h := begin have : f = g, { funext a, exact h a }, subst this, have : s = t, { ext a, exact (hf a).trans (hg a).symm }, subst this end lemma ext_iff {f g : α →₀ β} : f = g ↔ (∀a:α, f a = g a) := ⟨by rintros rfl a; refl, ext⟩ @[simp] lemma support_eq_empty {f : α →₀ β} : f.support = ∅ ↔ f = 0 := ⟨assume h, ext $ assume a, by_contradiction $ λ H, (finset.ext_iff.1 h a).1 $ mem_support_iff.2 H, by rintro rfl; refl⟩ instance finsupp.decidable_eq [decidable_eq α] [decidable_eq β] : decidable_eq (α →₀ β) := assume f g, decidable_of_iff (f.support = g.support ∧ (∀a∈f.support, f a = g a)) ⟨assume ⟨h₁, h₂⟩, ext $ assume a, if h : a ∈ f.support then h₂ a h else have hf : f a = 0, by rwa [mem_support_iff, not_not] at h, have hg : g a = 0, by rwa [h₁, mem_support_iff, not_not] at h, by rw [hf, hg], by rintro rfl; exact ⟨rfl, λ _ _, rfl⟩⟩ lemma finite_supp (f : α →₀ β) : set.finite {a | f a ≠ 0} := ⟨fintype.of_finset f.support (λ _, mem_support_iff)⟩ lemma support_subset_iff {s : set α} {f : α →₀ β} : ↑f.support ⊆ s ↔ (∀a∉s, f a = 0) := by simp only [set.subset_def, mem_coe, mem_support_iff]; exact forall_congr (assume a, @not_imp_comm _ _ (classical.dec _) (classical.dec _)) /-- Given `fintype α`, `equiv_fun_on_fintype` is the `equiv` between `α →₀ β` and `α → β`. (All functions on a finite type are finitely supported.) -/ def equiv_fun_on_fintype [fintype α] : (α →₀ β) ≃ (α → β) := ⟨λf a, f a, λf, mk (finset.univ.filter $ λa, f a ≠ 0) f (by simp only [true_and, finset.mem_univ, iff_self, finset.mem_filter, finset.filter_congr_decidable, forall_true_iff]), begin intro f, ext a, refl end, begin intro f, ext a, refl end⟩ end basic /-! ### Declarations about `single` -/ section single variables [has_zero β] {a a' : α} {b : β} /-- `single a b` is the finitely supported function which has value `b` at `a` and zero otherwise. -/ def single (a : α) (b : β) : α →₀ β := ⟨if b = 0 then ∅ else {a}, λ a', if a = a' then b else 0, λ a', begin by_cases hb : b = 0; by_cases a = a'; simp only [hb, h, if_pos, if_false, mem_singleton], { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨false.elim, λ H, H rfl⟩ }, { exact ⟨λ _, hb, λ _, rfl⟩ }, { exact ⟨λ H _, h H.symm, λ H, (H rfl).elim⟩ } end⟩ lemma single_apply : (single a b : α →₀ β) a' = if a = a' then b else 0 := rfl @[simp] lemma single_eq_same : (single a b : α →₀ β) a = b := if_pos rfl @[simp] lemma single_eq_of_ne (h : a ≠ a') : (single a b : α →₀ β) a' = 0 := if_neg h @[simp] lemma single_zero : (single a 0 : α →₀ β) = 0 := ext $ assume a', begin by_cases h : a = a', { rw [h, single_eq_same, zero_apply] }, { rw [single_eq_of_ne h, zero_apply] } end lemma support_single_ne_zero (hb : b ≠ 0) : (single a b).support = {a} := if_neg hb lemma support_single_subset : (single a b).support ⊆ {a} := show ite _ _ _ ⊆ _, by split_ifs; [exact empty_subset _, exact subset.refl _] lemma injective_single (a : α) : function.injective (single a : β → α →₀ β) := assume b₁ b₂ eq, have (single a b₁ : α →₀ β) a = (single a b₂ : α →₀ β) a, by rw eq, by rwa [single_eq_same, single_eq_same] at this lemma single_eq_single_iff (a₁ a₂ : α) (b₁ b₂ : β) : single a₁ b₁ = single a₂ b₂ ↔ ((a₁ = a₂ ∧ b₁ = b₂) ∨ (b₁ = 0 ∧ b₂ = 0)) := begin split, { assume eq, by_cases a₁ = a₂, { refine or.inl ⟨h, _⟩, rwa [h, (injective_single a₂).eq_iff] at eq }, { rw [ext_iff] at eq, have h₁ := eq a₁, have h₂ := eq a₂, simp only [single_eq_same, single_eq_of_ne h, single_eq_of_ne (ne.symm h)] at h₁ h₂, exact or.inr ⟨h₁, h₂.symm⟩ } }, { rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩), { refl }, { rw [single_zero, single_zero] } } end lemma single_left_inj (h : b ≠ 0) : single a b = single a' b ↔ a = a' := ⟨λ H, by simpa only [h, single_eq_single_iff, and_false, or_false, eq_self_iff_true, and_true] using H, λ H, by rw [H]⟩ lemma single_eq_zero : single a b = 0 ↔ b = 0 := ⟨λ h, by { rw ext_iff at h, simpa only [single_eq_same, zero_apply] using h a }, λ h, by rw [h, single_zero]⟩ lemma single_swap {α β : Type*} [has_zero β] (a₁ a₂ : α) (b : β) : (single a₁ b : α → β) a₂ = (single a₂ b : α → β) a₁ := by simp only [single_apply]; ac_refl lemma unique_single [unique α] (x : α →₀ β) : x = single (default α) (x (default α)) := by ext i; simp only [unique.eq_default i, single_eq_same] @[simp] lemma unique_single_eq_iff [unique α] {b' : β} : single a b = single a' b' ↔ b = b' := begin rw [single_eq_single_iff], split, { rintros (⟨_, rfl⟩ | ⟨rfl, rfl⟩); refl }, { intro h, left, exact ⟨subsingleton.elim _ _, h⟩ } end end single /-! ### Declarations about `on_finset` -/ section on_finset variables [has_zero β] /-- `on_finset s f hf` is the finsupp function representing `f` restricted to the finset `s`. The function needs to be `0` outside of `s`. Use this when the set needs to be filtered anyways, otherwise a better set representation is often available. -/ def on_finset (s : finset α) (f : α → β) (hf : ∀a, f a ≠ 0 → a ∈ s) : α →₀ β := ⟨s.filter (λa, f a ≠ 0), f, assume a, classical.by_cases (assume h : f a = 0, by rw mem_filter; exact ⟨and.right, λ H, (H h).elim⟩) (assume h : f a ≠ 0, by rw mem_filter; simp only [iff_true_intro h, hf a h, true_and])⟩ @[simp] lemma on_finset_apply {s : finset α} {f : α → β} {hf a} : (on_finset s f hf : α →₀ β) a = f a := rfl @[simp] lemma support_on_finset_subset {s : finset α} {f : α → β} {hf} : (on_finset s f hf).support ⊆ s := filter_subset _ end on_finset /-! ### Declarations about `map_range` -/ section map_range variables [has_zero β₁] [has_zero β₂] /-- The composition of `f : β₁ → β₂` and `g : α →₀ β₁` is `map_range f hf g : α →₀ β₂`, well-defined when `f 0 = 0`. -/ def map_range (f : β₁ → β₂) (hf : f 0 = 0) (g : α →₀ β₁) : α →₀ β₂ := on_finset g.support (f ∘ g) $ assume a, by rw [mem_support_iff, not_imp_not]; exact λ H, (congr_arg f H).trans hf @[simp] lemma map_range_apply {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} {a : α} : map_range f hf g a = f (g a) := rfl @[simp] lemma map_range_zero {f : β₁ → β₂} {hf : f 0 = 0} : map_range f hf (0 : α →₀ β₁) = 0 := ext $ λ a, by simp only [hf, zero_apply, map_range_apply] lemma support_map_range {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} : (map_range f hf g).support ⊆ g.support := support_on_finset_subset @[simp] lemma map_range_single {f : β₁ → β₂} {hf : f 0 = 0} {a : α} {b : β₁} : map_range f hf (single a b) = single a (f b) := ext $ λ a', show f (ite _ _ _) = ite _ _ _, by split_ifs; [refl, exact hf] end map_range /-! ### Declarations about `emb_domain` -/ section emb_domain variables [has_zero β] /-- Given `f : α₁ ↪ α₂` and `v : α₁ →₀ β`, `emb_domain f v : α₂ →₀ β` is the finitely supported function whose value at `f a : α₂` is `v a`. For a `b : α₂` outside the range of `f`, it is zero. -/ def emb_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : α₂ →₀ β := begin refine ⟨v.support.map f, λa₂, if h : a₂ ∈ v.support.map f then v (v.support.choose (λa₁, f a₁ = a₂) _) else 0, _⟩, { rcases finset.mem_map.1 h with ⟨a, ha, rfl⟩, exact exists_unique.intro a ⟨ha, rfl⟩ (assume b ⟨_, hb⟩, f.inj hb) }, { assume a₂, split_ifs, { simp only [h, true_iff, ne.def], rw [← not_mem_support_iff, not_not], apply finset.choose_mem }, { simp only [h, ne.def, ne_self_iff_false] } } end lemma support_emb_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : (emb_domain f v).support = v.support.map f := rfl lemma emb_domain_zero (f : α₁ ↪ α₂) : (emb_domain f 0 : α₂ →₀ β) = 0 := rfl lemma emb_domain_apply (f : α₁ ↪ α₂) (v : α₁ →₀ β) (a : α₁) : emb_domain f v (f a) = v a := begin change dite _ _ _ = _, split_ifs; rw [finset.mem_map' f] at h, { refine congr_arg (v : α₁ → β) (f.inj' _), exact finset.choose_property (λa₁, f a₁ = f a) _ _ }, { exact (not_mem_support_iff.1 h).symm } end lemma emb_domain_notin_range (f : α₁ ↪ α₂) (v : α₁ →₀ β) (a : α₂) (h : a ∉ set.range f) : emb_domain f v a = 0 := begin refine dif_neg (mt (assume h, _) h), rcases finset.mem_map.1 h with ⟨a, h, rfl⟩, exact set.mem_range_self a end lemma emb_domain_inj {f : α₁ ↪ α₂} {l₁ l₂ : α₁ →₀ β} : emb_domain f l₁ = emb_domain f l₂ ↔ l₁ = l₂ := ⟨λ h, ext $ λ a, by simpa only [emb_domain_apply] using ext_iff.1 h (f a), λ h, by rw h⟩ lemma emb_domain_map_range {β₁ β₂ : Type*} [has_zero β₁] [has_zero β₂] (f : α₁ ↪ α₂) (g : β₁ → β₂) (p : α₁ →₀ β₁) (hg : g 0 = 0) : emb_domain f (map_range g hg p) = map_range g hg (emb_domain f p) := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a', rfl⟩, rw [map_range_apply, emb_domain_apply, emb_domain_apply, map_range_apply] }, { rw [map_range_apply, emb_domain_notin_range, emb_domain_notin_range, ← hg]; assumption } end lemma single_of_emb_domain_single (l : α₁ →₀ β) (f : α₁ ↪ α₂) (a : α₂) (b : β) (hb : b ≠ 0) (h : l.emb_domain f = single a b) : ∃ x, l = single x b ∧ f x = a := begin have h_map_support : finset.map f (l.support) = {a}, by rw [←support_emb_domain, h, support_single_ne_zero hb]; refl, have ha : a ∈ finset.map f (l.support), by simp only [h_map_support, finset.mem_singleton], rcases finset.mem_map.1 ha with ⟨c, hc₁, hc₂⟩, use c, split, { ext d, rw [← emb_domain_apply f l, h], by_cases h_cases : c = d, { simp only [eq.symm h_cases, hc₂, single_eq_same] }, { rw [single_apply, single_apply, if_neg, if_neg h_cases], by_contra hfd, exact h_cases (f.inj (hc₂.trans hfd)) } }, { exact hc₂ } end end emb_domain /-! ### Declarations about `zip_with` -/ section zip_with variables [has_zero β] [has_zero β₁] [has_zero β₂] /-- `zip_with f hf g₁ g₂` is the finitely supported function satisfying `zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a)`, and it is well-defined when `f 0 0 = 0`. -/ def zip_with (f : β₁ → β₂ → β) (hf : f 0 0 = 0) (g₁ : α →₀ β₁) (g₂ : α →₀ β₂) : (α →₀ β) := on_finset (g₁.support ∪ g₂.support) (λa, f (g₁ a) (g₂ a)) $ λ a H, begin simp only [mem_union, mem_support_iff, ne], rw [← not_and_distrib], rintro ⟨h₁, h₂⟩, rw [h₁, h₂] at H, exact H hf end @[simp] lemma zip_with_apply {f : β₁ → β₂ → β} {hf : f 0 0 = 0} {g₁ : α →₀ β₁} {g₂ : α →₀ β₂} {a : α} : zip_with f hf g₁ g₂ a = f (g₁ a) (g₂ a) := rfl lemma support_zip_with {f : β₁ → β₂ → β} {hf : f 0 0 = 0} {g₁ : α →₀ β₁} {g₂ : α →₀ β₂} : (zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support := support_on_finset_subset end zip_with /-! ### Declarations about `erase` -/ section erase /-- `erase a f` is the finitely supported function equal to `f` except at `a` where it is equal to `0`. -/ def erase [has_zero β] (a : α) (f : α →₀ β) : α →₀ β := ⟨f.support.erase a, (λa', if a' = a then 0 else f a'), assume a', by rw [mem_erase, mem_support_iff]; split_ifs; [exact ⟨λ H _, H.1 h, λ H, (H rfl).elim⟩, exact and_iff_right h]⟩ @[simp] lemma support_erase [has_zero β] {a : α} {f : α →₀ β} : (f.erase a).support = f.support.erase a := rfl @[simp] lemma erase_same [has_zero β] {a : α} {f : α →₀ β} : (f.erase a) a = 0 := if_pos rfl @[simp] lemma erase_ne [has_zero β] {a a' : α} {f : α →₀ β} (h : a' ≠ a) : (f.erase a) a' = f a' := if_neg h @[simp] lemma erase_single [has_zero β] {a : α} {b : β} : (erase a (single a b)) = 0 := begin ext s, by_cases hs : s = a, { rw [hs, erase_same], refl }, { rw [erase_ne hs], exact single_eq_of_ne (ne.symm hs) } end lemma erase_single_ne [has_zero β] {a a' : α} {b : β} (h : a ≠ a') : (erase a (single a' b)) = single a' b := begin ext s, by_cases hs : s = a, { rw [hs, erase_same, single_eq_of_ne (h.symm)] }, { rw [erase_ne hs] } end end erase /-! ### Declarations about `sum` and `prod` In most of this section, the domain `β` is assumed to be an `add_monoid`. -/ -- [to_additive sum] for finsupp.prod doesn't work, the equation lemmas are not generated /-- `sum f g` is the sum of `g a (f a)` over the support of `f`. -/ def sum [has_zero β] [add_comm_monoid γ] (f : α →₀ β) (g : α → β → γ) : γ := ∑ a in f.support, g a (f a) /-- `prod f g` is the product of `g a (f a)` over the support of `f`. -/ @[to_additive] def prod [has_zero β] [comm_monoid γ] (f : α →₀ β) (g : α → β → γ) : γ := ∏ a in f.support, g a (f a) @[to_additive] lemma prod_fintype [fintype α] [has_zero β] [comm_monoid γ] (f : α →₀ β) (g : α → β → γ) (h : ∀ i, g i 0 = 1) : f.prod g = ∏ i, g i (f i) := begin classical, rw [finsupp.prod, ← fintype.prod_extend_by_one, finset.prod_congr rfl], intros i hi, split_ifs with hif hif, { refl }, { rw finsupp.not_mem_support_iff at hif, rw [hif, h] } end @[to_additive] lemma prod_map_range_index [has_zero β₁] [has_zero β₂] [comm_monoid γ] {f : β₁ → β₂} {hf : f 0 = 0} {g : α →₀ β₁} {h : α → β₂ → γ} (h0 : ∀a, h a 0 = 1) : (map_range f hf g).prod h = g.prod (λa b, h a (f b)) := finset.prod_subset support_map_range $ λ _ _ H, by rw [not_mem_support_iff.1 H, h0] @[to_additive] lemma prod_zero_index [add_comm_monoid β] [comm_monoid γ] {h : α → β → γ} : (0 : α →₀ β).prod h = 1 := rfl @[to_additive] lemma prod_comm {α' : Type*} [has_zero β] {β' : Type*} [has_zero β'] (f : α →₀ β) (g : α' →₀ β') [comm_monoid γ] (h : α → β → α' → β' → γ) : f.prod (λ x v, g.prod (λ x' v', h x v x' v')) = g.prod (λ x' v', f.prod (λ x v, h x v x' v')) := begin dsimp [finsupp.prod], rw finset.prod_comm, end @[simp, to_additive] lemma prod_ite_eq [has_zero β] [comm_monoid γ] (f : α →₀ β) (a : α) (b : α → β → γ) : f.prod (λ x v, ite (a = x) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by { dsimp [finsupp.prod], rw f.support.prod_ite_eq, } /-- A restatement of `prod_ite_eq` with the equality test reversed. -/ @[simp, to_additive "A restatement of `sum_ite_eq` with the equality test reversed."] lemma prod_ite_eq' [has_zero β] [comm_monoid γ] (f : α →₀ β) (a : α) (b : α → β → γ) : f.prod (λ x v, ite (x = a) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by { dsimp [finsupp.prod], rw f.support.prod_ite_eq', } @[simp] lemma prod_pow [fintype α] [comm_monoid γ] (f : α →₀ ℕ) (g : α → γ) : f.prod (λ a b, g a ^ b) = ∏ a, g a ^ (f a) := begin apply prod_subset (finset.subset_univ _), intros a _ ha, simp only [finsupp.not_mem_support_iff.mp ha, pow_zero] end section add_monoid variables [add_monoid β] @[to_additive] lemma prod_single_index [comm_monoid γ] {a : α} {b : β} {h : α → β → γ} (h_zero : h a 0 = 1) : (single a b).prod h = h a b := begin by_cases h : b = 0, { simp only [h, h_zero, single_zero]; refl }, { simp only [finsupp.prod, support_single_ne_zero h, prod_singleton, single_eq_same] } end instance : has_add (α →₀ β) := ⟨zip_with (+) (add_zero 0)⟩ @[simp] lemma add_apply {g₁ g₂ : α →₀ β} {a : α} : (g₁ + g₂) a = g₁ a + g₂ a := rfl lemma support_add {g₁ g₂ : α →₀ β} : (g₁ + g₂).support ⊆ g₁.support ∪ g₂.support := support_zip_with lemma support_add_eq {g₁ g₂ : α →₀ β} (h : disjoint g₁.support g₂.support) : (g₁ + g₂).support = g₁.support ∪ g₂.support := le_antisymm support_zip_with $ assume a ha, (finset.mem_union.1 ha).elim (assume ha, have a ∉ g₂.support, from disjoint_left.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, add_zero]) (assume ha, have a ∉ g₁.support, from disjoint_right.1 h ha, by simp only [mem_support_iff, not_not] at *; simpa only [add_apply, this, zero_add]) @[simp] lemma single_add {a : α} {b₁ b₂ : β} : single a (b₁ + b₂) = single a b₁ + single a b₂ := ext $ assume a', begin by_cases h : a = a', { rw [h, add_apply, single_eq_same, single_eq_same, single_eq_same] }, { rw [add_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h, zero_add] } end instance : add_monoid (α →₀ β) := { add_monoid . zero := 0, add := (+), add_assoc := assume ⟨s, f, hf⟩ ⟨t, g, hg⟩ ⟨u, h, hh⟩, ext $ assume a, add_assoc _ _ _, zero_add := assume ⟨s, f, hf⟩, ext $ assume a, zero_add _, add_zero := assume ⟨s, f, hf⟩, ext $ assume a, add_zero _ } /-- Evaluation of a function `f : α →₀ β` at a point as an additive monoid homomorphism. -/ def eval_add_hom (a : α) : (α →₀ β) →+ β := ⟨λ g, g a, zero_apply, λ _ _, add_apply⟩ @[simp] lemma eval_add_hom_apply (a : α) (g : α →₀ β) : eval_add_hom a g = g a := rfl lemma single_add_erase {a : α} {f : α →₀ β} : single a (f a) + f.erase a = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, add_zero] else by simp only [add_apply, single_eq_of_ne h, zero_add, erase_ne (ne.symm h)] lemma erase_add_single {a : α} {f : α →₀ β} : f.erase a + single a (f a) = f := ext $ λ a', if h : a = a' then by subst h; simp only [add_apply, single_eq_same, erase_same, zero_add] else by simp only [add_apply, single_eq_of_ne h, add_zero, erase_ne (ne.symm h)] @[simp] lemma erase_add (a : α) (f f' : α →₀ β) : erase a (f + f') = erase a f + erase a f' := begin ext s, by_cases hs : s = a, { rw [hs, add_apply, erase_same, erase_same, erase_same, add_zero] }, rw [add_apply, erase_ne hs, erase_ne hs, erase_ne hs, add_apply], end @[elab_as_eliminator] protected theorem induction {p : (α →₀ β) → Prop} (f : α →₀ β) (h0 : p 0) (ha : ∀a b (f : α →₀ β), a ∉ f.support → b ≠ 0 → p f → p (single a b + f)) : p f := suffices ∀s (f : α →₀ β), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (single a (f a) + f.erase a), by rwa [single_add_erase] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end lemma induction₂ {p : (α →₀ β) → Prop} (f : α →₀ β) (h0 : p 0) (ha : ∀a b (f : α →₀ β), a ∉ f.support → b ≠ 0 → p f → p (f + single a b)) : p f := suffices ∀s (f : α →₀ β), f.support = s → p f, from this _ _ rfl, assume s, finset.induction_on s (λ f hf, by rwa [support_eq_empty.1 hf]) $ assume a s has ih f hf, suffices p (f.erase a + single a (f a)), by rwa [erase_add_single] at this, begin apply ha, { rw [support_erase, mem_erase], exact λ H, H.1 rfl }, { rw [← mem_support_iff, hf], exact mem_insert_self _ _ }, { apply ih _ _, rw [support_erase, hf, finset.erase_insert has] } end lemma map_range_add [add_monoid β₁] [add_monoid β₂] {f : β₁ → β₂} {hf : f 0 = 0} (hf' : ∀ x y, f (x + y) = f x + f y) (v₁ v₂ : α →₀ β₁) : map_range f hf (v₁ + v₂) = map_range f hf v₁ + map_range f hf v₂ := ext $ λ a, by simp only [hf', add_apply, map_range_apply] end add_monoid section nat_sub instance nat_sub : has_sub (α →₀ ℕ) := ⟨zip_with (λ m n, m - n) (nat.sub_zero 0)⟩ @[simp] lemma nat_sub_apply {g₁ g₂ : α →₀ ℕ} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl @[simp] lemma single_sub {a : α} {n₁ n₂ : ℕ} : single a (n₁ - n₂) = single a n₁ - single a n₂ := begin ext f, by_cases h : (a = f), { rw [h, nat_sub_apply, single_eq_same, single_eq_same, single_eq_same] }, rw [nat_sub_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h] end -- These next two lemmas are used in developing -- the partial derivative on `mv_polynomial`. lemma sub_single_one_add {a : α} {u u' : α →₀ ℕ} (h : u a ≠ 0) : u - single a 1 + u' = u + u' - single a 1 := begin ext b, rw [add_apply, nat_sub_apply, nat_sub_apply, add_apply], by_cases h : a = b, { rw [←h, single_eq_same], cases (u a), { contradiction }, { simp }, }, { simp [h], } end lemma add_sub_single_one {a : α} {u u' : α →₀ ℕ} (h : u' a ≠ 0) : u + (u' - single a 1) = u + u' - single a 1 := begin ext b, rw [add_apply, nat_sub_apply, nat_sub_apply, add_apply], by_cases h : a = b, { rw [←h, single_eq_same], cases (u' a), { contradiction }, { simp }, }, { simp [h], } end end nat_sub instance [add_comm_monoid β] : add_comm_monoid (α →₀ β) := { add_comm := assume ⟨s, f, _⟩ ⟨t, g, _⟩, ext $ assume a, add_comm _ _, .. finsupp.add_monoid } instance [add_group β] : add_group (α →₀ β) := { neg := map_range (has_neg.neg) neg_zero, add_left_neg := assume ⟨s, f, _⟩, ext $ assume x, add_left_neg _, .. finsupp.add_monoid } lemma single_multiset_sum [add_comm_monoid β] (s : multiset β) (a : α) : single a s.sum = (s.map (single a)).sum := multiset.induction_on s single_zero $ λ a s ih, by rw [multiset.sum_cons, single_add, ih, multiset.map_cons, multiset.sum_cons] lemma single_finset_sum [add_comm_monoid β] (s : finset γ) (f : γ → β) (a : α) : single a (∑ b in s, f b) = ∑ b in s, single a (f b) := begin transitivity, apply single_multiset_sum, rw [multiset.map_map], refl end lemma single_sum [has_zero γ] [add_comm_monoid β] (s : δ →₀ γ) (f : δ → γ → β) (a : α) : single a (s.sum f) = s.sum (λd c, single a (f d c)) := single_finset_sum _ _ _ @[to_additive] lemma prod_neg_index [add_group β] [comm_monoid γ] {g : α →₀ β} {h : α → β → γ} (h0 : ∀a, h a 0 = 1) : (-g).prod h = g.prod (λa b, h a (- b)) := prod_map_range_index h0 @[simp] lemma neg_apply [add_group β] {g : α →₀ β} {a : α} : (- g) a = - g a := rfl @[simp] lemma sub_apply [add_group β] {g₁ g₂ : α →₀ β} {a : α} : (g₁ - g₂) a = g₁ a - g₂ a := rfl @[simp] lemma support_neg [add_group β] {f : α →₀ β} : support (-f) = support f := finset.subset.antisymm support_map_range (calc support f = support (- (- f)) : congr_arg support (neg_neg _).symm ... ⊆ support (- f) : support_map_range) instance [add_comm_group β] : add_comm_group (α →₀ β) := { add_comm := add_comm, ..finsupp.add_group } @[simp] lemma sum_apply [has_zero β₁] [add_comm_monoid β] {f : α₁ →₀ β₁} {g : α₁ → β₁ → α →₀ β} {a₂ : α} : (f.sum g) a₂ = f.sum (λa₁ b, g a₁ b a₂) := (eval_add_hom a₂ : (α →₀ β) →+ _).map_sum _ _ lemma support_sum [has_zero β₁] [add_comm_monoid β] {f : α₁ →₀ β₁} {g : α₁ → β₁ → (α →₀ β)} : (f.sum g).support ⊆ f.support.bind (λa, (g a (f a)).support) := have ∀a₁ : α, f.sum (λ (a : α₁) (b : β₁), (g a b) a₁) ≠ 0 → (∃ (a : α₁), f a ≠ 0 ∧ ¬ (g a (f a)) a₁ = 0), from assume a₁ h, let ⟨a, ha, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in ⟨a, mem_support_iff.mp ha, ne⟩, by simpa only [finset.subset_iff, mem_support_iff, finset.mem_bind, sum_apply, exists_prop] using this @[simp] lemma sum_zero [add_comm_monoid β] [add_comm_monoid γ] {f : α →₀ β} : f.sum (λa b, (0 : γ)) = 0 := finset.sum_const_zero @[simp] lemma sum_add [add_comm_monoid β] [add_comm_monoid γ] {f : α →₀ β} {h₁ h₂ : α → β → γ} : f.sum (λa b, h₁ a b + h₂ a b) = f.sum h₁ + f.sum h₂ := finset.sum_add_distrib @[simp] lemma sum_neg [add_comm_monoid β] [add_comm_group γ] {f : α →₀ β} {h : α → β → γ} : f.sum (λa b, - h a b) = - f.sum h := f.support.sum_hom (@has_neg.neg γ _) @[simp] lemma sum_sub [add_comm_monoid β] [add_comm_group γ] {f : α →₀ β} {h₁ h₂ : α → β → γ} : f.sum (λa b, h₁ a b - h₂ a b) = f.sum h₁ - f.sum h₂ := by rw [sub_eq_add_neg, ←sum_neg, ←sum_add]; refl @[simp] lemma sum_single [add_comm_monoid β] (f : α →₀ β) : f.sum single = f := have ∀a:α, f.sum (λa' b, ite (a' = a) b 0) = ∑ a' in {a}, ite (a' = a) (f a') 0, begin intro a, by_cases h : a ∈ f.support, { have : ({a} : finset α) ⊆ f.support, { simpa only [finset.subset_iff, mem_singleton, forall_eq] }, refine (finset.sum_subset this (λ _ _ H, _)).symm, exact if_neg (mt mem_singleton.2 H) }, { transitivity (∑ a in f.support, (0 : β)), { refine (finset.sum_congr rfl $ λ a' ha', if_neg _), rintro rfl, exact h ha' }, { rw [sum_const_zero, sum_singleton, if_pos rfl, not_mem_support_iff.1 h] } } end, ext $ assume a, by simp only [sum_apply, single_apply, this, sum_singleton, if_pos] @[to_additive] lemma prod_add_index [add_comm_monoid β] [comm_monoid γ] {f g : α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f + g).prod h = f.prod h * g.prod h := have f_eq : ∏ a in f.support ∪ g.support, h a (f a) = f.prod h, from (finset.prod_subset (finset.subset_union_left _ _) $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero]).symm, have g_eq : ∏ a in f.support ∪ g.support, h a (g a) = g.prod h, from (finset.prod_subset (finset.subset_union_right _ _) $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero]).symm, calc ∏ a in (f + g).support, h a ((f + g) a) = ∏ a in f.support ∪ g.support, h a ((f + g) a) : finset.prod_subset support_add $ by intros _ _ H; rw [not_mem_support_iff.1 H, h_zero] ... = (∏ a in f.support ∪ g.support, h a (f a)) * (∏ a in f.support ∪ g.support, h a (g a)) : by simp only [add_apply, h_add, finset.prod_mul_distrib] ... = _ : by rw [f_eq, g_eq] lemma sum_sub_index [add_comm_group β] [add_comm_group γ] {f g : α →₀ β} {h : α → β → γ} (h_sub : ∀a b₁ b₂, h a (b₁ - b₂) = h a b₁ - h a b₂) : (f - g).sum h = f.sum h - g.sum h := have h_zero : ∀a, h a 0 = 0, from assume a, have h a (0 - 0) = h a 0 - h a 0, from h_sub a 0 0, by simpa only [sub_self] using this, have h_neg : ∀a b, h a (- b) = - h a b, from assume a b, have h a (0 - b) = h a 0 - h a b, from h_sub a 0 b, by simpa only [h_zero, zero_sub] using this, have h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ + h a b₂, from assume a b₁ b₂, have h a (b₁ - (- b₂)) = h a b₁ - h a (- b₂), from h_sub a b₁ (-b₂), by simpa only [h_neg, sub_neg_eq_add] using this, calc (f - g).sum h = (f + - g).sum h : rfl ... = f.sum h + - g.sum h : by simp only [sum_add_index h_zero h_add, sum_neg_index h_zero, h_neg, sum_neg] ... = f.sum h - g.sum h : rfl @[to_additive] lemma prod_finset_sum_index [add_comm_monoid β] [comm_monoid γ] {s : finset ι} {g : ι → α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : ∏ i in s, (g i).prod h = (∑ i in s, g i).prod h := finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih, sum_insert has, prod_add_index h_zero h_add] @[to_additive] lemma prod_sum_index [add_comm_monoid β₁] [add_comm_monoid β] [comm_monoid γ] {f : α₁ →₀ β₁} {g : α₁ → β₁ → α →₀ β} {h : α → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (f.sum g).prod h = f.prod (λa b, (g a b).prod h) := (prod_finset_sum_index h_zero h_add).symm lemma multiset_sum_sum_index [add_comm_monoid β] [add_comm_monoid γ] (f : multiset (α →₀ β)) (h : α → β → γ) (h₀ : ∀a, h a 0 = 0) (h₁ : ∀ (a : α) (b₁ b₂ : β), h a (b₁ + b₂) = h a b₁ + h a b₂) : (f.sum.sum h) = (f.map $ λg:α →₀ β, g.sum h).sum := multiset.induction_on f rfl $ assume a s ih, by rw [multiset.sum_cons, multiset.map_cons, multiset.sum_cons, sum_add_index h₀ h₁, ih] lemma multiset_map_sum [has_zero β] {f : α →₀ β} {m : γ → δ} {h : α → β → multiset γ} : multiset.map m (f.sum h) = f.sum (λa b, (h a b).map m) := (f.support.sum_hom _).symm lemma multiset_sum_sum [has_zero β] [add_comm_monoid γ] {f : α →₀ β} {h : α → β → multiset γ} : multiset.sum (f.sum h) = f.sum (λa b, multiset.sum (h a b)) := (f.support.sum_hom multiset.sum).symm section map_range variables [add_comm_monoid β₁] [add_comm_monoid β₂] (f : β₁ → β₂) [hf : is_add_monoid_hom f] instance is_add_monoid_hom_map_range : is_add_monoid_hom (map_range f hf.map_zero : (α →₀ β₁) → (α →₀ β₂)) := { map_zero := map_range_zero, map_add := λ a b, map_range_add hf.map_add _ _ } lemma map_range_multiset_sum (m : multiset (α →₀ β₁)) : map_range f hf.map_zero m.sum = (m.map $ λx, map_range f hf.map_zero x).sum := (m.sum_hom (map_range f hf.map_zero)).symm lemma map_range_finset_sum {ι : Type*} (s : finset ι) (g : ι → (α →₀ β₁)) : map_range f hf.map_zero (∑ x in s, g x) = ∑ x in s, map_range f hf.map_zero (g x) := by rw [finset.sum.equations._eqn_1, map_range_multiset_sum, multiset.map_map]; refl end map_range /-! ### Declarations about `map_domain` -/ section map_domain variables [add_comm_monoid β] {v v₁ v₂ : α →₀ β} /-- Given `f : α₁ → α₂` and `v : α₁ →₀ β`, `map_domain f v : α₂ →₀ β` is the finitely supported function whose value at `a : α₂` is the sum of `v x` over all `x` such that `f x = a`. -/ def map_domain (f : α₁ → α₂) (v : α₁ →₀ β) : α₂ →₀ β := v.sum $ λa, single (f a) lemma map_domain_apply {f : α₁ → α₂} (hf : function.injective f) (x : α₁ →₀ β) (a : α₁) : map_domain f x (f a) = x a := begin rw [map_domain, sum_apply, sum, finset.sum_eq_single a, single_eq_same], { assume b _ hba, exact single_eq_of_ne (hf.ne hba) }, { simp only [(∉), (≠), not_not, mem_support_iff], assume h, rw [h, single_zero], refl } end lemma map_domain_notin_range {f : α₁ → α₂} (x : α₁ →₀ β) (a : α₂) (h : a ∉ set.range f) : map_domain f x a = 0 := begin rw [map_domain, sum_apply, sum], exact finset.sum_eq_zero (assume a' h', single_eq_of_ne $ assume eq, h $ eq ▸ set.mem_range_self _) end lemma map_domain_id : map_domain id v = v := sum_single _ lemma map_domain_comp {f : α → α₁} {g : α₁ → α₂} : map_domain (g ∘ f) v = map_domain g (map_domain f v) := begin refine ((sum_sum_index _ _).trans _).symm, { intros, exact single_zero }, { intros, exact single_add }, refine sum_congr rfl (λ _ _, sum_single_index _), { exact single_zero } end lemma map_domain_single {f : α → α₁} {a : α} {b : β} : map_domain f (single a b) = single (f a) b := sum_single_index single_zero @[simp] lemma map_domain_zero {f : α → α₂} : map_domain f 0 = (0 : α₂ →₀ β) := sum_zero_index lemma map_domain_congr {f g : α → α₂} (h : ∀x∈v.support, f x = g x) : v.map_domain f = v.map_domain g := finset.sum_congr rfl $ λ _ H, by simp only [h _ H] lemma map_domain_add {f : α → α₂} : map_domain f (v₁ + v₂) = map_domain f v₁ + map_domain f v₂ := sum_add_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_finset_sum {f : α → α₂} {s : finset ι} {v : ι → α →₀ β} : map_domain f (∑ i in s, v i) = ∑ i in s, map_domain f (v i) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_sum [has_zero β₁] {f : α → α₂} {s : α →₀ β₁} {v : α → β₁ → α →₀ β} : map_domain f (s.sum v) = s.sum (λa b, map_domain f (v a b)) := eq.symm $ sum_finset_sum_index (λ _, single_zero) (λ _ _ _, single_add) lemma map_domain_support {f : α → α₂} {s : α →₀ β} : (s.map_domain f).support ⊆ s.support.image f := finset.subset.trans support_sum $ finset.subset.trans (finset.bind_mono $ assume a ha, support_single_subset) $ by rw [finset.bind_singleton]; exact subset.refl _ @[to_additive] lemma prod_map_domain_index [comm_monoid γ] {f : α → α₂} {s : α →₀ β} {h : α₂ → β → γ} (h_zero : ∀a, h a 0 = 1) (h_add : ∀a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) : (s.map_domain f).prod h = s.prod (λa b, h (f a) b) := (prod_sum_index h_zero h_add).trans $ prod_congr rfl $ λ _ _, prod_single_index (h_zero _) lemma emb_domain_eq_map_domain (f : α₁ ↪ α₂) (v : α₁ →₀ β) : emb_domain f v = map_domain f v := begin ext a, by_cases a ∈ set.range f, { rcases h with ⟨a, rfl⟩, rw [map_domain_apply f.inj, emb_domain_apply] }, { rw [map_domain_notin_range, emb_domain_notin_range]; assumption } end lemma injective_map_domain {f : α₁ → α₂} (hf : function.injective f) : function.injective (map_domain f : (α₁ →₀ β) → (α₂ →₀ β)) := begin assume v₁ v₂ eq, ext a, have : map_domain f v₁ (f a) = map_domain f v₂ (f a), { rw eq }, rwa [map_domain_apply hf, map_domain_apply hf] at this, end end map_domain /-! ### Declarations about `comap_domain` -/ section comap_domain /-- Given `f : α₁ → α₂`, `l : α₂ →₀ γ` and a proof `hf` that `f` is injective on the preimage of `l.support`, `comap_domain f l hf` is the finitely supported function from `α₁` to `γ` given by composing `l` with `f`. -/ def comap_domain {α₁ α₂ γ : Type*} [has_zero γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : α₁ →₀ γ := { support := l.support.preimage hf, to_fun := (λ a, l (f a)), mem_support_to_fun := begin intros a, simp only [finset.mem_def.symm, finset.mem_preimage], exact l.mem_support_to_fun (f a), end } @[simp] lemma comap_domain_apply {α₁ α₂ γ : Type*} [has_zero γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.inj_on f (f ⁻¹' ↑l.support)) (a : α₁) : comap_domain f l hf a = l (f a) := rfl lemma sum_comap_domain {α₁ α₂ β γ : Type*} [has_zero β] [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ β) (g : α₂ → β → γ) (hf : set.bij_on f (f ⁻¹' ↑l.support) ↑l.support) : (comap_domain f l hf.inj_on).sum (g ∘ f) = l.sum g := begin simp [sum], simp [comap_domain, finset.sum_preimage f _ _ (λ (x : α₂), g x (l x))] end lemma eq_zero_of_comap_domain_eq_zero {α₁ α₂ γ : Type*} [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : set.bij_on f (f ⁻¹' ↑l.support) ↑l.support) : comap_domain f l hf.inj_on = 0 → l = 0 := begin rw [← support_eq_empty, ← support_eq_empty, comap_domain], simp only [finset.ext_iff, finset.not_mem_empty, iff_false, mem_preimage], assume h a ha, cases hf.2.2 ha with b hb, exact h b (hb.2.symm ▸ ha) end lemma map_domain_comap_domain {α₁ α₂ γ : Type*} [add_comm_monoid γ] (f : α₁ → α₂) (l : α₂ →₀ γ) (hf : function.injective f) (hl : ↑l.support ⊆ set.range f): map_domain f (comap_domain f l (hf.inj_on _)) = l := begin ext a, by_cases h_cases: a ∈ set.range f, { rcases set.mem_range.1 h_cases with ⟨b, hb⟩, rw [hb.symm, map_domain_apply hf, comap_domain_apply] }, { rw map_domain_notin_range _ _ h_cases, by_contra h_contr, apply h_cases (hl $ finset.mem_coe.2 $ mem_support_iff.2 $ λ h, h_contr h.symm) } end end comap_domain /-! ### Declarations about `filter` -/ section filter section has_zero variables [has_zero β] (p : α → Prop) (f : α →₀ β) /-- `filter p f` is the function which is `f a` if `p a` is true and 0 otherwise. -/ def filter (p : α → Prop) (f : α →₀ β) : α →₀ β := on_finset f.support (λa, if p a then f a else 0) $ λ a H, mem_support_iff.2 $ λ h, by rw [h, if_t_t] at H; exact H rfl @[simp] lemma filter_apply_pos {a : α} (h : p a) : f.filter p a = f a := if_pos h @[simp] lemma filter_apply_neg {a : α} (h : ¬ p a) : f.filter p a = 0 := if_neg h @[simp] lemma support_filter : (f.filter p).support = f.support.filter p := finset.ext $ assume a, if H : p a then by simp only [mem_support_iff, filter_apply_pos _ _ H, mem_filter, H, and_true] else by simp only [mem_support_iff, filter_apply_neg _ _ H, mem_filter, H, and_false, ne.def, ne_self_iff_false] lemma filter_zero : (0 : α →₀ β).filter p = 0 := by rw [← support_eq_empty, support_filter, support_zero, finset.filter_empty] @[simp] lemma filter_single_of_pos {a : α} {b : β} (h : p a) : (single a b).filter p = single a b := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos] }, { simp only [h', filter_apply_neg, not_false_iff], rw single_eq_of_ne, rintro rfl, exact h' h } end @[simp] lemma filter_single_of_neg {a : α} {b : β} (h : ¬ p a) : (single a b).filter p = 0 := ext $ λ x, begin by_cases h' : p x, { simp only [h', filter_apply_pos, zero_apply], rw single_eq_of_ne, rintro rfl, exact h h' }, { simp only [h', finsupp.zero_apply, not_false_iff, filter_apply_neg] } end end has_zero lemma filter_pos_add_filter_neg [add_monoid β] (f : α →₀ β) (p : α → Prop) : f.filter p + f.filter (λa, ¬ p a) = f := ext $ assume a, if H : p a then by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_not, add_zero] else by simp only [add_apply, filter_apply_pos, filter_apply_neg, H, not_false_iff, zero_add] end filter /-! ### Declarations about `frange` -/ section frange variables [has_zero β] /-- `frange f` is the image of `f` on the support of `f`. -/ def frange (f : α →₀ β) : finset β := finset.image f f.support theorem mem_frange {f : α →₀ β} {y : β} : y ∈ f.frange ↔ y ≠ 0 ∧ ∃ x, f x = y := finset.mem_image.trans ⟨λ ⟨x, hx1, hx2⟩, ⟨hx2 ▸ mem_support_iff.1 hx1, x, hx2⟩, λ ⟨hy, x, hx⟩, ⟨x, mem_support_iff.2 (hx.symm ▸ hy), hx⟩⟩ theorem zero_not_mem_frange {f : α →₀ β} : (0:β) ∉ f.frange := λ H, (mem_frange.1 H).1 rfl theorem frange_single {x : α} {y : β} : frange (single x y) ⊆ {y} := λ r hr, let ⟨t, ht1, ht2⟩ := mem_frange.1 hr in ht2 ▸ (by rw single_apply at ht2 ⊢; split_ifs at ht2 ⊢; [exact finset.mem_singleton_self _, cc]) end frange /-! ### Declarations about `subtype_domain` -/ section subtype_domain variables {α' : Type*} [has_zero δ] {p : α → Prop} section zero variables [has_zero β] {v v' : α' →₀ β} /-- `subtype_domain p f` is the restriction of the finitely supported function `f` to the subtype `p`. -/ def subtype_domain (p : α → Prop) (f : α →₀ β) : (subtype p →₀ β) := ⟨f.support.subtype p, f ∘ subtype.val, λ a, by simp only [mem_subtype, mem_support_iff]⟩ @[simp] lemma support_subtype_domain {f : α →₀ β} : (subtype_domain p f).support = f.support.subtype p := rfl @[simp] lemma subtype_domain_apply {a : subtype p} {v : α →₀ β} : (subtype_domain p v) a = v (a.val) := rfl @[simp] lemma subtype_domain_zero : subtype_domain p (0 : α →₀ β) = 0 := rfl @[to_additive] lemma prod_subtype_domain_index [comm_monoid γ] {v : α →₀ β} {h : α → β → γ} (hp : ∀x∈v.support, p x) : (v.subtype_domain p).prod (λa b, h a.1 b) = v.prod h := prod_bij (λp _, p.val) (λ _, mem_subtype.1) (λ _ _, rfl) (λ _ _ _ _, subtype.eq) (λ b hb, ⟨⟨b, hp b hb⟩, mem_subtype.2 hb, rfl⟩) end zero section monoid variables [add_monoid β] {v v' : α' →₀ β} @[simp] lemma subtype_domain_add {v v' : α →₀ β} : (v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p := ext $ λ _, rfl instance subtype_domain.is_add_monoid_hom : is_add_monoid_hom (subtype_domain p : (α →₀ β) → subtype p →₀ β) := { map_add := λ _ _, subtype_domain_add, map_zero := subtype_domain_zero } @[simp] lemma filter_add {v v' : α →₀ β} : (v + v').filter p = v.filter p + v'.filter p := ext $ λ a, begin by_cases p a, { simp only [h, filter_apply_pos, add_apply] }, { simp only [h, add_zero, add_apply, not_false_iff, filter_apply_neg] } end instance filter.is_add_monoid_hom (p : α → Prop) : is_add_monoid_hom (filter p : (α →₀ β) → (α →₀ β)) := { map_zero := filter_zero p, map_add := λ x y, filter_add } end monoid section comm_monoid variables [add_comm_monoid β] lemma subtype_domain_sum {s : finset γ} {h : γ → α →₀ β} : (∑ c in s, h c).subtype_domain p = ∑ c in s, (h c).subtype_domain p := eq.symm (s.sum_hom _) lemma subtype_domain_finsupp_sum {s : γ →₀ δ} {h : γ → δ → α →₀ β} : (s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) := subtype_domain_sum lemma filter_sum (s : finset γ) (f : γ → α →₀ β) : (∑ a in s, f a).filter p = ∑ a in s, filter p (f a) := (s.sum_hom (filter p)).symm end comm_monoid section group variables [add_group β] {v v' : α' →₀ β} @[simp] lemma subtype_domain_neg {v : α →₀ β} : (- v).subtype_domain p = - v.subtype_domain p := ext $ λ _, rfl @[simp] lemma subtype_domain_sub {v v' : α →₀ β} : (v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p := ext $ λ _, rfl end group end subtype_domain /-! ### Declarations relating `finsupp` to `multiset` -/ section multiset /-- Given `f : α →₀ ℕ`, `f.to_multiset` is the multiset with multiplicities given by the values of `f` on the elements of `α`. -/ def to_multiset (f : α →₀ ℕ) : multiset α := f.sum (λa n, n •ℕ {a}) lemma to_multiset_zero : (0 : α →₀ ℕ).to_multiset = 0 := rfl lemma to_multiset_add (m n : α →₀ ℕ) : (m + n).to_multiset = m.to_multiset + n.to_multiset := sum_add_index (assume a, zero_nsmul _) (assume a b₁ b₂, add_nsmul _ _ _) lemma to_multiset_single (a : α) (n : ℕ) : to_multiset (single a n) = n •ℕ {a} := by rw [to_multiset, sum_single_index]; apply zero_nsmul instance is_add_monoid_hom.to_multiset : is_add_monoid_hom (to_multiset : _ → multiset α) := { map_zero := to_multiset_zero, map_add := to_multiset_add } lemma card_to_multiset (f : α →₀ ℕ) : f.to_multiset.card = f.sum (λa, id) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.card_zero, sum_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.card_add, ih, sum_add_index, to_multiset_single, sum_single_index, multiset.card_smul, multiset.singleton_eq_singleton, multiset.card_singleton, mul_one]; intros; refl } end lemma to_multiset_map (f : α →₀ ℕ) (g : α → β) : f.to_multiset.map g = (f.map_domain g).to_multiset := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.map_zero, map_domain_zero, to_multiset_zero] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.map_add, ih, map_domain_add, map_domain_single, to_multiset_single, to_multiset_add, to_multiset_single, is_add_monoid_hom.map_nsmul (multiset.map g)], refl } end lemma prod_to_multiset [comm_monoid α] (f : α →₀ ℕ) : f.to_multiset.prod = f.prod (λa n, a ^ n) := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.prod_zero, finsupp.prod_zero_index] }, { assume a n f _ _ ih, rw [to_multiset_add, multiset.prod_add, ih, to_multiset_single, finsupp.prod_add_index, finsupp.prod_single_index, multiset.prod_smul, multiset.singleton_eq_singleton, multiset.prod_singleton], { exact pow_zero a }, { exact pow_zero }, { exact pow_add } } end lemma to_finset_to_multiset (f : α →₀ ℕ) : f.to_multiset.to_finset = f.support := begin refine f.induction _ _, { rw [to_multiset_zero, multiset.to_finset_zero, support_zero] }, { assume a n f ha hn ih, rw [to_multiset_add, multiset.to_finset_add, ih, to_multiset_single, support_add_eq, support_single_ne_zero hn, multiset.to_finset_nsmul _ _ hn, multiset.singleton_eq_singleton, multiset.to_finset_cons, multiset.to_finset_zero], refl, refine disjoint.mono_left support_single_subset _, rwa [finset.singleton_disjoint] } end @[simp] lemma count_to_multiset (f : α →₀ ℕ) (a : α) : f.to_multiset.count a = f a := calc f.to_multiset.count a = f.sum (λx n, (n •ℕ {x} : multiset α).count a) : (f.support.sum_hom $ multiset.count a).symm ... = f.sum (λx n, n * ({x} : multiset α).count a) : by simp only [multiset.count_smul] ... = f.sum (λx n, n * (x :: 0 : multiset α).count a) : rfl ... = f a * (a :: 0 : multiset α).count a : sum_eq_single _ (λ a' _ H, by simp only [multiset.count_cons_of_ne (ne.symm H), multiset.count_zero, mul_zero]) (λ H, by simp only [not_mem_support_iff.1 H, zero_mul]) ... = f a : by simp only [multiset.count_singleton, mul_one] /-- Given `m : multiset α`, `of_multiset m` is the finitely supported function from `α` to `ℕ` given by the multiplicities of the elements of `α` in `m`. -/ def of_multiset (m : multiset α) : α →₀ ℕ := on_finset m.to_finset (λa, m.count a) $ λ a H, multiset.mem_to_finset.2 $ by_contradiction (mt multiset.count_eq_zero.2 H) @[simp] lemma of_multiset_apply (m : multiset α) (a : α) : of_multiset m a = m.count a := rfl /-- `equiv_multiset` defines an `equiv` between finitely supported functions from `α` to `ℕ` and multisets on `α`. -/ def equiv_multiset : (α →₀ ℕ) ≃ (multiset α) := ⟨ to_multiset, of_multiset, assume f, finsupp.ext $ λ a, by rw [of_multiset_apply, count_to_multiset], assume m, multiset.ext.2 $ λ a, by rw [count_to_multiset, of_multiset_apply] ⟩ lemma mem_support_multiset_sum [add_comm_monoid β] {s : multiset (α →₀ β)} (a : α) : a ∈ s.sum.support → ∃f∈s, a ∈ (f : α →₀ β).support := multiset.induction_on s false.elim begin assume f s ih ha, by_cases a ∈ f.support, { exact ⟨f, multiset.mem_cons_self _ _, h⟩ }, { simp only [multiset.sum_cons, mem_support_iff, add_apply, not_mem_support_iff.1 h, zero_add] at ha, rcases ih (mem_support_iff.2 ha) with ⟨f', h₀, h₁⟩, exact ⟨f', multiset.mem_cons_of_mem h₀, h₁⟩ } end lemma mem_support_finset_sum [add_comm_monoid β] {s : finset γ} {h : γ → α →₀ β} (a : α) (ha : a ∈ (∑ c in s, h c).support) : ∃c∈s, a ∈ (h c).support := let ⟨f, hf, hfa⟩ := mem_support_multiset_sum a ha in let ⟨c, hc, eq⟩ := multiset.mem_map.1 hf in ⟨c, hc, eq.symm ▸ hfa⟩ lemma mem_support_single [has_zero β] (a a' : α) (b : β) : a ∈ (single a' b).support ↔ a = a' ∧ b ≠ 0 := ⟨λ H : (a ∈ ite _ _ _), if h : b = 0 then by rw if_pos h at H; exact H.elim else ⟨by rw if_neg h at H; exact mem_singleton.1 H, h⟩, λ ⟨h1, h2⟩, show a ∈ ite _ _ _, by rw [if_neg h2]; exact mem_singleton.2 h1⟩ end multiset /-! ### Declarations about `curry` and `uncurry` -/ section curry_uncurry /-- Given a finitely supported function `f` from a product type `α × β` to `γ`, `curry f` is the "curried" finitely supported function from `α` to the type of finitely supported functions from `β` to `γ`. -/ protected def curry [add_comm_monoid γ] (f : (α × β) →₀ γ) : α →₀ (β →₀ γ) := f.sum $ λp c, single p.1 (single p.2 c) lemma sum_curry_index [add_comm_monoid γ] [add_comm_monoid δ] (f : (α × β) →₀ γ) (g : α → β → γ → δ) (hg₀ : ∀ a b, g a b 0 = 0) (hg₁ : ∀a b c₀ c₁, g a b (c₀ + c₁) = g a b c₀ + g a b c₁) : f.curry.sum (λa f, f.sum (g a)) = f.sum (λp c, g p.1 p.2 c) := begin rw [finsupp.curry], transitivity, { exact sum_sum_index (assume a, sum_zero_index) (assume a b₀ b₁, sum_add_index (assume a, hg₀ _ _) (assume c d₀ d₁, hg₁ _ _ _ _)) }, congr, funext p c, transitivity, { exact sum_single_index sum_zero_index }, exact sum_single_index (hg₀ _ _) end /-- Given a finitely supported function `f` from `α` to the type of finitely supported functions from `β` to `γ`, `uncurry f` is the "uncurried" finitely supported function from `α × β` to `γ`. -/ protected def uncurry [add_comm_monoid γ] (f : α →₀ (β →₀ γ)) : (α × β) →₀ γ := f.sum $ λa g, g.sum $ λb c, single (a, b) c /-- `finsupp_prod_equiv` defines the `equiv` between `((α × β) →₀ γ)` and `(α →₀ (β →₀ γ))` given by currying and uncurrying. -/ def finsupp_prod_equiv [add_comm_monoid γ] : ((α × β) →₀ γ) ≃ (α →₀ (β →₀ γ)) := by refine ⟨finsupp.curry, finsupp.uncurry, λ f, _, λ f, _⟩; simp only [ finsupp.curry, finsupp.uncurry, sum_sum_index, sum_zero_index, sum_add_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, prod.mk.eta, (single_sum _ _ _).symm, sum_single] lemma filter_curry [add_comm_monoid β] (f : α₁ × α₂ →₀ β) (p : α₁ → Prop) : (f.filter (λa:α₁×α₂, p a.1)).curry = f.curry.filter p := begin rw [finsupp.curry, finsupp.curry, finsupp.sum, finsupp.sum, @filter_sum _ (α₂ →₀ β) _ p _ f.support _], rw [support_filter, sum_filter], refine finset.sum_congr rfl _, rintros ⟨a₁, a₂⟩ ha, dsimp only, split_ifs, { rw [filter_apply_pos, filter_single_of_pos]; exact h }, { rwa [filter_single_of_neg] } end lemma support_curry [add_comm_monoid β] (f : α₁ × α₂ →₀ β) : f.curry.support ⊆ f.support.image prod.fst := begin rw ← finset.bind_singleton, refine finset.subset.trans support_sum _, refine finset.bind_mono (assume a _, support_single_subset) end end curry_uncurry section variables [group γ] [mul_action γ α] [add_comm_monoid β] /-- Scalar multiplication by a group element g, given by precomposition with the action of g⁻¹ on the domain. -/ def comap_has_scalar : has_scalar γ (α →₀ β) := { smul := λ g f, f.comap_domain (λ a, g⁻¹ • a) (λ a a' m m' h, by simpa [←mul_smul] using (congr_arg (λ a, g • a) h)) } local attribute [instance] comap_has_scalar /-- Scalar multiplication by a group element, given by precomposition with the action of g⁻¹ on the domain, is multiplicative in g. -/ def comap_mul_action : mul_action γ (α →₀ β) := { one_smul := λ f, by { ext, dsimp [(•)], simp, }, mul_smul := λ g g' f, by { ext, dsimp [(•)], simp [mul_smul], }, } local attribute [instance] comap_mul_action /-- Scalar multiplication by a group element, given by precomposition with the action of g⁻¹ on the domain, is additive in the second argument. -/ def comap_distrib_mul_action : distrib_mul_action γ (α →₀ β) := { smul_zero := λ g, by { ext, dsimp [(•)], simp, }, smul_add := λ g f f', by { ext, dsimp [(•)], simp, }, } /-- Scalar multiplication by a group element on finitely supported functions on a group, given by precomposition with the action of g⁻¹. -/ def comap_distrib_mul_action_self : distrib_mul_action γ (γ →₀ β) := @finsupp.comap_distrib_mul_action γ β γ _ (mul_action.regular γ) _ @[simp] lemma comap_smul_single (g : γ) (a : α) (b : β) : g • single a b = single (g • a) b := begin ext a', dsimp [(•)], by_cases h : g • a = a', { subst h, simp [←mul_smul], }, { simp [single_eq_of_ne h], rw [single_eq_of_ne], rintro rfl, simpa [←mul_smul] using h, } end @[simp] lemma comap_smul_apply (g : γ) (f : α →₀ β) (a : α) : (g • f) a = f (g⁻¹ • a) := rfl end section instance [semiring γ] [add_comm_monoid β] [semimodule γ β] : has_scalar γ (α →₀ β) := ⟨λa v, v.map_range ((•) a) (smul_zero _)⟩ variables (α β) @[simp] lemma smul_apply' {R:semiring γ} [add_comm_monoid β] [semimodule γ β] {a : α} {b : γ} {v : α →₀ β} : (b • v) a = b • (v a) := rfl instance [semiring γ] [add_comm_monoid β] [semimodule γ β] : semimodule γ (α →₀ β) := { smul := (•), smul_add := λ a x y, ext $ λ _, smul_add _ _ _, add_smul := λ a x y, ext $ λ _, add_smul _ _ _, one_smul := λ x, ext $ λ _, one_smul _ _, mul_smul := λ r s x, ext $ λ _, mul_smul _ _ _, zero_smul := λ x, ext $ λ _, zero_smul _ _, smul_zero := λ x, ext $ λ _, smul_zero _ } variables {α β} (γ) /-- Evaluation at point as a linear map. This version assumes that the codomain is a semimodule over some semiring. See also `leval`. -/ def leval' [semiring γ] [add_comm_monoid β] [semimodule γ β] (a : α) : (α →₀ β) →ₗ[γ] β := ⟨λ g, g a, λ _ _, add_apply, λ _ _, rfl⟩ @[simp] lemma coe_leval' [semiring γ] [add_comm_monoid β] [semimodule γ β] (a : α) (g : α →₀ β) : leval' γ a g = g a := rfl variable {γ} /-- Evaluation at point as a linear map. This version assumes that the codomain is a semiring. -/ def leval [semiring β] (a : α) : (α →₀ β) →ₗ[β] β := leval' β a @[simp] lemma coe_leval [semiring β] (a : α) (g : α →₀ β) : leval a g = g a := rfl lemma support_smul {R:semiring γ} [add_comm_monoid β] [semimodule γ β] {b : γ} {g : α →₀ β} : (b • g).support ⊆ g.support := λ a, by simp only [smul_apply', mem_support_iff, ne.def]; exact mt (λ h, h.symm ▸ smul_zero _) section variables {α' : Type*} [has_zero δ] {p : α → Prop} @[simp] lemma filter_smul {R : semiring γ} [add_comm_monoid β] [semimodule γ β] {b : γ} {v : α →₀ β} : (b • v).filter p = b • v.filter p := ext $ λ a, begin by_cases p a, { simp only [h, smul_apply', filter_apply_pos] }, { simp only [h, smul_apply', not_false_iff, filter_apply_neg, smul_zero] } end end lemma map_domain_smul {α'} {R : semiring γ} [add_comm_monoid β] [semimodule γ β] {f : α → α'} (b : γ) (v : α →₀ β) : map_domain f (b • v) = b • map_domain f v := begin change map_domain f (map_range _ _ _) = map_range _ _ _, apply finsupp.induction v, { simp only [map_domain_zero, map_range_zero] }, intros a b v' hv₁ hv₂ IH, rw [map_range_add, map_domain_add, IH, map_domain_add, map_range_add, map_range_single, map_domain_single, map_domain_single, map_range_single]; apply smul_add end @[simp] lemma smul_single {R : semiring γ} [add_comm_monoid β] [semimodule γ β] (c : γ) (a : α) (b : β) : c • finsupp.single a b = finsupp.single a (c • b) := ext $ λ a', by by_cases a = a'; [{ subst h, simp only [smul_apply', single_eq_same] }, simp only [h, smul_apply', ne.def, not_false_iff, single_eq_of_ne, smul_zero]] @[simp] lemma smul_single' {R : semiring γ} (c : γ) (a : α) (b : γ) : c • finsupp.single a b = finsupp.single a (c * b) := smul_single _ _ _ end @[simp] lemma smul_apply [semiring β] {a : α} {b : β} {v : α →₀ β} : (b • v) a = b • (v a) := rfl lemma sum_smul_index [ring β] [add_comm_monoid γ] {g : α →₀ β} {b : β} {h : α → β → γ} (h0 : ∀i, h i 0 = 0) : (b • g).sum h = g.sum (λi a, h i (b * a)) := finsupp.sum_map_range_index h0 section variables [semiring β] [semiring γ] lemma sum_mul (b : γ) (s : α →₀ β) {f : α → β → γ} : (s.sum f) * b = s.sum (λ a c, (f a (s a)) * b) := by simp only [finsupp.sum, finset.sum_mul] lemma mul_sum (b : γ) (s : α →₀ β) {f : α → β → γ} : b * (s.sum f) = s.sum (λ a c, b * (f a (s a))) := by simp only [finsupp.sum, finset.mul_sum] protected lemma eq_zero_of_zero_eq_one (zero_eq_one : (0 : β) = 1) (l : α →₀ β) : l = 0 := by ext i; simp only [eq_zero_of_zero_eq_one β zero_eq_one (l i), finsupp.zero_apply] end /-- Given an `add_comm_monoid β` and `s : set α`, `restrict_support_equiv s β` is the `equiv` between the subtype of finitely supported functions with support contained in `s` and the type of finitely supported functions from `s`. -/ def restrict_support_equiv (s : set α) (β : Type*) [add_comm_monoid β] : {f : α →₀ β // ↑f.support ⊆ s } ≃ (s →₀ β):= begin refine ⟨λf, subtype_domain (λx, x ∈ s) f.1, λ f, ⟨f.map_domain subtype.val, _⟩, _, _⟩, { refine set.subset.trans (finset.coe_subset.2 map_domain_support) _, rw [finset.coe_image, set.image_subset_iff], exact assume x hx, x.2 }, { rintros ⟨f, hf⟩, apply subtype.eq, ext a, dsimp only, refine classical.by_cases (assume h : a ∈ set.range (subtype.val : s → α), _) (assume h, _), { rcases h with ⟨x, rfl⟩, rw [map_domain_apply subtype.val_injective, subtype_domain_apply] }, { convert map_domain_notin_range _ _ h, rw [← not_mem_support_iff], refine mt _ h, exact assume ha, ⟨⟨a, hf ha⟩, rfl⟩ } }, { assume f, ext ⟨a, ha⟩, dsimp only, rw [subtype_domain_apply, map_domain_apply subtype.val_injective] } end /-- Given `add_comm_monoid β` and `e : α₁ ≃ α₂`, `dom_congr e` is the corresponding `equiv` between `α₁ →₀ β` and `α₂ →₀ β`. -/ protected def dom_congr [add_comm_monoid β] (e : α₁ ≃ α₂) : (α₁ →₀ β) ≃ (α₂ →₀ β) := ⟨map_domain e, map_domain e.symm, begin assume v, simp only [map_domain_comp.symm, (∘), equiv.symm_apply_apply], exact map_domain_id end, begin assume v, simp only [map_domain_comp.symm, (∘), equiv.apply_symm_apply], exact map_domain_id end⟩ /-! ### Declarations about sigma types -/ section sigma variables {αs : ι → Type*} [has_zero β] (l : (Σ i, αs i) →₀ β) /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `β` and an index element `i : ι`, `split l i` is the `i`th component of `l`, a finitely supported function from `as i` to `β`. -/ def split (i : ι) : αs i →₀ β := l.comap_domain (sigma.mk i) (λ x1 x2 _ _ hx, heq_iff_eq.1 (sigma.mk.inj hx).2) lemma split_apply (i : ι) (x : αs i) : split l i x = l ⟨i, x⟩ := begin dunfold split, rw comap_domain_apply end /-- Given `l`, a finitely supported function from the sigma type `Σ (i : ι), αs i` to `β`, `split_support l` is the finset of indices in `ι` that appear in the support of `l`. -/ def split_support : finset ι := l.support.image sigma.fst lemma mem_split_support_iff_nonzero (i : ι) : i ∈ split_support l ↔ split l i ≠ 0 := begin rw [split_support, mem_image, ne.def, ← support_eq_empty, ← ne.def, ← finset.nonempty_iff_ne_empty, split, comap_domain, finset.nonempty], simp only [exists_prop, finset.mem_preimage, exists_and_distrib_right, exists_eq_right, mem_support_iff, sigma.exists, ne.def] end /-- Given `l`, a finitely supported function from the sigma type `Σ i, αs i` to `β` and an `ι`-indexed family `g` of functions from `(αs i →₀ β)` to `γ`, `split_comp` defines a finitely supported function from the index type `ι` to `γ` given by composing `g i` with `split l i`. -/ def split_comp [has_zero γ] (g : Π i, (αs i →₀ β) → γ) (hg : ∀ i x, x = 0 ↔ g i x = 0) : ι →₀ γ := { support := split_support l, to_fun := λ i, g i (split l i), mem_support_to_fun := begin intros i, rw [mem_split_support_iff_nonzero, not_iff_not, hg], end } lemma sigma_support : l.support = l.split_support.sigma (λ i, (l.split i).support) := by simp only [finset.ext_iff, split_support, split, comap_domain, mem_image, mem_preimage, sigma.forall, mem_sigma]; tauto lemma sigma_sum [add_comm_monoid γ] (f : (Σ (i : ι), αs i) → β → γ) : l.sum f = ∑ i in split_support l, (split l i).sum (λ (a : αs i) b, f ⟨i, a⟩ b) := by simp only [sum, sigma_support, sum_sigma, split_apply] end sigma end finsupp /-! ### Declarations relating `multiset` to `finsupp` -/ namespace multiset /-- Given a multiset `s`, `s.to_finsupp` returns the finitely supported function on `ℕ` given by the multiplicities of the elements of `s`. -/ def to_finsupp (s : multiset α) : α →₀ ℕ := { support := s.to_finset, to_fun := λ a, s.count a, mem_support_to_fun := λ a, begin rw mem_to_finset, convert not_iff_not_of_iff (count_eq_zero.symm), rw not_not end } @[simp] lemma to_finsupp_support (s : multiset α) : s.to_finsupp.support = s.to_finset := rfl @[simp] lemma to_finsupp_apply (s : multiset α) (a : α) : s.to_finsupp a = s.count a := rfl @[simp] lemma to_finsupp_zero : to_finsupp (0 : multiset α) = 0 := finsupp.ext $ λ a, count_zero a @[simp] lemma to_finsupp_add (s t : multiset α) : to_finsupp (s + t) = to_finsupp s + to_finsupp t := finsupp.ext $ λ a, count_add a s t lemma to_finsupp_singleton (a : α) : to_finsupp {a} = finsupp.single a 1 := finsupp.ext $ λ b, if h : a = b then by rw [to_finsupp_apply, finsupp.single_apply, h, if_pos rfl, singleton_eq_singleton, count_singleton] else begin rw [to_finsupp_apply, finsupp.single_apply, if_neg h, count_eq_zero, singleton_eq_singleton, mem_singleton], rintro rfl, exact h rfl end namespace to_finsupp instance : is_add_monoid_hom (to_finsupp : multiset α → α →₀ ℕ) := { map_zero := to_finsupp_zero, map_add := to_finsupp_add } end to_finsupp @[simp] lemma to_finsupp_to_multiset (s : multiset α) : s.to_finsupp.to_multiset = s := ext.2 $ λ a, by rw [finsupp.count_to_multiset, to_finsupp_apply] end multiset /-! ### Declarations about order(ed) instances on `finsupp` -/ namespace finsupp variables {σ : Type*} instance [preorder α] [has_zero α] : preorder (σ →₀ α) := { le := λ f g, ∀ s, f s ≤ g s, le_refl := λ f s, le_refl _, le_trans := λ f g h Hfg Hgh s, le_trans (Hfg s) (Hgh s) } instance [partial_order α] [has_zero α] : partial_order (σ →₀ α) := { le_antisymm := λ f g hfg hgf, ext $ λ s, le_antisymm (hfg s) (hgf s), .. finsupp.preorder } instance [ordered_cancel_add_comm_monoid α] : add_left_cancel_semigroup (σ →₀ α) := { add_left_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_left_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_add_comm_monoid α] : add_right_cancel_semigroup (σ →₀ α) := { add_right_cancel := λ a b c h, ext $ λ s, by { rw ext_iff at h, exact add_right_cancel (h s) }, .. finsupp.add_monoid } instance [ordered_cancel_add_comm_monoid α] : ordered_cancel_add_comm_monoid (σ →₀ α) := { add_le_add_left := λ a b h c s, add_le_add_left (h s) (c s), le_of_add_le_add_left := λ a b c h s, le_of_add_le_add_left (h s), .. finsupp.add_comm_monoid, .. finsupp.partial_order, .. finsupp.add_left_cancel_semigroup, .. finsupp.add_right_cancel_semigroup } lemma le_iff [canonically_ordered_add_monoid α] (f g : σ →₀ α) : f ≤ g ↔ ∀ s ∈ f.support, f s ≤ g s := ⟨λ h s hs, h s, λ h s, if H : s ∈ f.support then h s H else (not_mem_support_iff.1 H).symm ▸ zero_le (g s)⟩ @[simp] lemma add_eq_zero_iff [canonically_ordered_add_monoid α] (f g : σ →₀ α) : f + g = 0 ↔ f = 0 ∧ g = 0 := begin split, { assume h, split, all_goals { ext s, suffices H : f s + g s = 0, { rw add_eq_zero_iff at H, cases H, assumption }, show (f + g) s = 0, rw h, refl } }, { rintro ⟨rfl, rfl⟩, rw add_zero } end attribute [simp] to_multiset_zero to_multiset_add @[simp] lemma to_multiset_to_finsupp (f : σ →₀ ℕ) : f.to_multiset.to_finsupp = f := ext $ λ s, by rw [multiset.to_finsupp_apply, count_to_multiset] lemma to_multiset_strict_mono : strict_mono (@to_multiset σ) := λ m n h, begin rw lt_iff_le_and_ne at h ⊢, cases h with h₁ h₂, split, { rw multiset.le_iff_count, intro s, erw [count_to_multiset m s, count_to_multiset], exact h₁ s }, { intro H, apply h₂, replace H := congr_arg multiset.to_finsupp H, simpa only [to_multiset_to_finsupp] using H } end lemma sum_id_lt_of_lt (m n : σ →₀ ℕ) (h : m < n) : m.sum (λ _, id) < n.sum (λ _, id) := begin rw [← card_to_multiset, ← card_to_multiset], apply multiset.card_lt_of_lt, exact to_multiset_strict_mono h end variable (σ) /-- The order on `σ →₀ ℕ` is well-founded.-/ lemma lt_wf : well_founded (@has_lt.lt (σ →₀ ℕ) _) := subrelation.wf (sum_id_lt_of_lt) $ inv_image.wf _ nat.lt_wf instance decidable_le : decidable_rel (@has_le.le (σ →₀ ℕ) _) := λ m n, by rw le_iff; apply_instance variable {σ} /-- The `finsupp` counterpart of `multiset.antidiagonal`: the antidiagonal of `s : σ →₀ ℕ` consists of all pairs `(t₁, t₂) : (σ →₀ ℕ) × (σ →₀ ℕ)` such that `t₁ + t₂ = s`. The finitely supported function `antidiagonal s` is equal to the multiplicities of these pairs. -/ def antidiagonal (f : σ →₀ ℕ) : ((σ →₀ ℕ) × (σ →₀ ℕ)) →₀ ℕ := (f.to_multiset.antidiagonal.map (prod.map multiset.to_finsupp multiset.to_finsupp)).to_finsupp lemma mem_antidiagonal_support {f : σ →₀ ℕ} {p : (σ →₀ ℕ) × (σ →₀ ℕ)} : p ∈ (antidiagonal f).support ↔ p.1 + p.2 = f := begin erw [multiset.mem_to_finset, multiset.mem_map], split, { rintros ⟨⟨a, b⟩, h, rfl⟩, rw multiset.mem_antidiagonal at h, simpa only [to_multiset_to_finsupp, multiset.to_finsupp_add] using congr_arg multiset.to_finsupp h}, { intro h, refine ⟨⟨p.1.to_multiset, p.2.to_multiset⟩, _, _⟩, { simpa only [multiset.mem_antidiagonal, to_multiset_add] using congr_arg to_multiset h}, { rw [prod.map, to_multiset_to_finsupp, to_multiset_to_finsupp, prod.mk.eta] } } end @[simp] lemma antidiagonal_zero : antidiagonal (0 : σ →₀ ℕ) = single (0,0) 1 := by rw [← multiset.to_finsupp_singleton]; refl lemma swap_mem_antidiagonal_support {n : σ →₀ ℕ} {f} (hf : f ∈ (antidiagonal n).support) : f.swap ∈ (antidiagonal n).support := by simpa only [mem_antidiagonal_support, add_comm, prod.swap] using hf /-- Let `n : σ →₀ ℕ` be a finitely supported function. The set of `m : σ →₀ ℕ` that are coordinatewise less than or equal to `n`, is a finite set. -/ lemma finite_le_nat (n : σ →₀ ℕ) : set.finite {m | m ≤ n} := begin let I := {i // i ∈ n.support}, let k : ℕ := ∑ i in n.support, n i, let f : (σ →₀ ℕ) → (I → fin (k + 1)) := λ m i, m i, have hf : ∀ m ≤ n, ∀ i, (f m i : ℕ) = m i, { intros m hm i, apply fin.coe_coe_of_lt, calc m i ≤ n i : hm i ... < k + 1 : nat.lt_succ_iff.mpr (single_le_sum (λ _ _, nat.zero_le _) i.2) }, have f_im : set.finite (f '' {m | m ≤ n}) := set.finite.of_fintype _, suffices f_inj : set.inj_on f {m | m ≤ n}, { exact set.finite_of_finite_image f_inj f_im }, intros m₁ m₂ h₁ h₂ h, ext i, by_cases hi : i ∈ n.support, { replace h := congr_fun h ⟨i, hi⟩, rwa [fin.ext_iff, ← fin.coe_eq_val, ← fin.coe_eq_val, hf m₁ h₁, hf m₂ h₂] at h }, { rw not_mem_support_iff at hi, specialize h₁ i, specialize h₂ i, rw [hi, nat.le_zero_iff] at h₁ h₂, rw [h₁, h₂] } end /-- Let `n : σ →₀ ℕ` be a finitely supported function. The set of `m : σ →₀ ℕ` that are coordinatewise less than or equal to `n`, but not equal to `n` everywhere, is a finite set. -/ lemma finite_lt_nat (n : σ →₀ ℕ) : set.finite {m | m < n} := set.finite_subset (finite_le_nat n) $ λ m, le_of_lt end finsupp
321dd4c1b51a13ab02006b68638a97439f709c82
b2fe74b11b57d362c13326bc5651244f111fa6f4
/src/data/int/basic.lean
2015b2070ce701b6e85b485688ef0f89aa2298cc
[ "Apache-2.0" ]
permissive
midfield/mathlib
c4db5fa898b5ac8f2f80ae0d00c95eb6f745f4c7
775edc615ecec631d65b6180dbcc7bc26c3abc26
refs/heads/master
1,675,330,551,921
1,608,304,514,000
1,608,304,514,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
51,281
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad The integers, with addition, multiplication, and subtraction. -/ import data.nat.basic import algebra.order_functions open nat namespace int instance : inhabited ℤ := ⟨int.zero⟩ instance : nontrivial ℤ := ⟨⟨0, 1, int.zero_ne_one⟩⟩ instance : comm_ring int := { add := int.add, add_assoc := int.add_assoc, zero := int.zero, zero_add := int.zero_add, add_zero := int.add_zero, neg := int.neg, add_left_neg := int.add_left_neg, add_comm := int.add_comm, mul := int.mul, mul_assoc := int.mul_assoc, one := int.one, one_mul := int.one_mul, mul_one := int.mul_one, sub := int.sub, left_distrib := int.distrib_left, right_distrib := int.distrib_right, mul_comm := int.mul_comm } /-! ### Extra instances to short-circuit type class resolution -/ -- instance : has_sub int := by apply_instance -- This is in core instance : add_comm_monoid int := by apply_instance instance : add_monoid int := by apply_instance instance : monoid int := by apply_instance instance : comm_monoid int := by apply_instance instance : comm_semigroup int := by apply_instance instance : semigroup int := by apply_instance instance : add_comm_semigroup int := by apply_instance instance : add_semigroup int := by apply_instance instance : comm_semiring int := by apply_instance instance : semiring int := by apply_instance instance : ring int := by apply_instance instance : distrib int := by apply_instance instance : linear_ordered_comm_ring int := { add_le_add_left := @int.add_le_add_left, mul_pos := @int.mul_pos, zero_le_one := le_of_lt int.zero_lt_one, .. int.comm_ring, .. int.linear_order, .. int.nontrivial } instance : linear_ordered_add_comm_group int := by apply_instance theorem abs_eq_nat_abs : ∀ a : ℤ, abs a = nat_abs a | (n : ℕ) := abs_of_nonneg $ coe_zero_le _ | -[1+ n] := abs_of_nonpos $ le_of_lt $ neg_succ_lt_zero _ theorem nat_abs_abs (a : ℤ) : nat_abs (abs a) = nat_abs a := by rw [abs_eq_nat_abs]; refl theorem sign_mul_abs (a : ℤ) : sign a * abs a = a := by rw [abs_eq_nat_abs, sign_mul_nat_abs] @[simp] lemma default_eq_zero : default ℤ = 0 := rfl meta instance : has_to_format ℤ := ⟨λ z, to_string z⟩ meta instance : has_reflect ℤ := by tactic.mk_has_reflect_instance attribute [simp] int.coe_nat_add int.coe_nat_mul int.coe_nat_zero int.coe_nat_one int.coe_nat_succ attribute [simp] int.of_nat_eq_coe int.bodd @[simp] theorem add_def {a b : ℤ} : int.add a b = a + b := rfl @[simp] theorem mul_def {a b : ℤ} : int.mul a b = a * b := rfl @[simp] theorem coe_nat_mul_neg_succ (m n : ℕ) : (m : ℤ) * -[1+ n] = -(m * succ n) := rfl @[simp] theorem neg_succ_mul_coe_nat (m n : ℕ) : -[1+ m] * n = -(succ m * n) := rfl @[simp] theorem neg_succ_mul_neg_succ (m n : ℕ) : -[1+ m] * -[1+ n] = succ m * succ n := rfl @[simp, norm_cast] theorem coe_nat_le {m n : ℕ} : (↑m : ℤ) ≤ ↑n ↔ m ≤ n := coe_nat_le_coe_nat_iff m n @[simp, norm_cast] theorem coe_nat_lt {m n : ℕ} : (↑m : ℤ) < ↑n ↔ m < n := coe_nat_lt_coe_nat_iff m n @[simp, norm_cast] theorem coe_nat_inj' {m n : ℕ} : (↑m : ℤ) = ↑n ↔ m = n := int.coe_nat_eq_coe_nat_iff m n @[simp] theorem coe_nat_pos {n : ℕ} : (0 : ℤ) < n ↔ 0 < n := by rw [← int.coe_nat_zero, coe_nat_lt] @[simp] theorem coe_nat_eq_zero {n : ℕ} : (n : ℤ) = 0 ↔ n = 0 := by rw [← int.coe_nat_zero, coe_nat_inj'] theorem coe_nat_ne_zero {n : ℕ} : (n : ℤ) ≠ 0 ↔ n ≠ 0 := not_congr coe_nat_eq_zero @[simp] lemma coe_nat_nonneg (n : ℕ) : 0 ≤ (n : ℤ) := coe_nat_le.2 (nat.zero_le _) lemma coe_nat_ne_zero_iff_pos {n : ℕ} : (n : ℤ) ≠ 0 ↔ 0 < n := ⟨λ h, nat.pos_of_ne_zero (coe_nat_ne_zero.1 h), λ h, (ne_of_lt (coe_nat_lt.2 h)).symm⟩ lemma coe_nat_succ_pos (n : ℕ) : 0 < (n.succ : ℤ) := int.coe_nat_pos.2 (succ_pos n) @[simp, norm_cast] theorem coe_nat_abs (n : ℕ) : abs (n : ℤ) = n := abs_of_nonneg (coe_nat_nonneg n) /-! ### succ and pred -/ /-- Immediate successor of an integer: `succ n = n + 1` -/ def succ (a : ℤ) := a + 1 /-- Immediate predecessor of an integer: `pred n = n - 1` -/ def pred (a : ℤ) := a - 1 theorem nat_succ_eq_int_succ (n : ℕ) : (nat.succ n : ℤ) = int.succ n := rfl theorem pred_succ (a : ℤ) : pred (succ a) = a := add_sub_cancel _ _ theorem succ_pred (a : ℤ) : succ (pred a) = a := sub_add_cancel _ _ theorem neg_succ (a : ℤ) : -succ a = pred (-a) := neg_add _ _ theorem succ_neg_succ (a : ℤ) : succ (-succ a) = -a := by rw [neg_succ, succ_pred] theorem neg_pred (a : ℤ) : -pred a = succ (-a) := by rw [eq_neg_of_eq_neg (neg_succ (-a)).symm, neg_neg] theorem pred_neg_pred (a : ℤ) : pred (-pred a) = -a := by rw [neg_pred, pred_succ] theorem pred_nat_succ (n : ℕ) : pred (nat.succ n) = n := pred_succ n theorem neg_nat_succ (n : ℕ) : -(nat.succ n : ℤ) = pred (-n) := neg_succ n theorem succ_neg_nat_succ (n : ℕ) : succ (-nat.succ n) = -n := succ_neg_succ n theorem lt_succ_self (a : ℤ) : a < succ a := lt_add_of_pos_right _ zero_lt_one theorem pred_self_lt (a : ℤ) : pred a < a := sub_lt_self _ zero_lt_one theorem add_one_le_iff {a b : ℤ} : a + 1 ≤ b ↔ a < b := iff.rfl theorem lt_add_one_iff {a b : ℤ} : a < b + 1 ↔ a ≤ b := @add_le_add_iff_right _ _ a b 1 lemma le_add_one {a b : ℤ} (h : a ≤ b) : a ≤ b + 1 := le_of_lt (int.lt_add_one_iff.mpr h) theorem sub_one_lt_iff {a b : ℤ} : a - 1 < b ↔ a ≤ b := sub_lt_iff_lt_add.trans lt_add_one_iff theorem le_sub_one_iff {a b : ℤ} : a ≤ b - 1 ↔ a < b := le_sub_iff_add_le @[elab_as_eliminator] protected lemma induction_on {p : ℤ → Prop} (i : ℤ) (hz : p 0) (hp : ∀i : ℕ, p i → p (i + 1)) (hn : ∀i : ℕ, p (-i) → p (-i - 1)) : p i := begin induction i, { induction i, { exact hz }, { exact hp _ i_ih } }, { have : ∀n:ℕ, p (- n), { intro n, induction n, { simp [hz] }, { convert hn _ n_ih using 1, simp [sub_eq_neg_add] } }, exact this (i + 1) } end /-- Inductively define a function on `ℤ` by defining it at `b`, for the `succ` of a number greater than `b`, and the `pred` of a number less than `b`. -/ protected def induction_on' {C : ℤ → Sort*} (z : ℤ) (b : ℤ) : C b → (∀ k, b ≤ k → C k → C (k + 1)) → (∀ k ≤ b, C k → C (k - 1)) → C z := λ H0 Hs Hp, begin rw ←sub_add_cancel z b, induction (z - b) with n n, { induction n with n ih, { rwa [of_nat_zero, zero_add] }, rw [of_nat_succ, add_assoc, add_comm 1 b, ←add_assoc], exact Hs _ (le_add_of_nonneg_left (of_nat_nonneg _)) ih }, { induction n with n ih, { rw [neg_succ_of_nat_eq, ←of_nat_eq_coe, of_nat_zero, zero_add, neg_add_eq_sub], exact Hp _ (le_refl _) H0 }, { rw [neg_succ_of_nat_coe', nat.succ_eq_add_one, ←neg_succ_of_nat_coe, sub_add_eq_add_sub], exact Hp _ (le_of_lt (add_lt_of_neg_of_le (neg_succ_lt_zero _) (le_refl _))) ih } } end /-! ### nat abs -/ attribute [simp] nat_abs nat_abs_of_nat nat_abs_zero nat_abs_one theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b := begin have : ∀ (a b : ℕ), nat_abs (sub_nat_nat a (nat.succ b)) ≤ nat.succ (a + b), { refine (λ a b : ℕ, sub_nat_nat_elim a b.succ (λ m n i, n = b.succ → nat_abs i ≤ (m + b).succ) _ _ rfl); intros i n e, { subst e, rw [add_comm _ i, add_assoc], exact nat.le_add_right i (b.succ + b).succ }, { apply succ_le_succ, rw [← succ.inj e, ← add_assoc, add_comm], apply nat.le_add_right } }, cases a; cases b with b b; simp [nat_abs, nat.succ_add]; try {refl}; [skip, rw add_comm a b]; apply this end theorem nat_abs_neg_of_nat (n : ℕ) : nat_abs (neg_of_nat n) = n := by cases n; refl theorem nat_abs_mul (a b : ℤ) : nat_abs (a * b) = (nat_abs a) * (nat_abs b) := by cases a; cases b; simp only [← int.mul_def, int.mul, nat_abs_neg_of_nat, eq_self_iff_true, int.nat_abs] lemma nat_abs_mul_nat_abs_eq {a b : ℤ} {c : ℕ} (h : a * b = (c : ℤ)) : a.nat_abs * b.nat_abs = c := by rw [← nat_abs_mul, h, nat_abs_of_nat] @[simp] lemma nat_abs_mul_self' (a : ℤ) : (nat_abs a * nat_abs a : ℤ) = a * a := by rw [← int.coe_nat_mul, nat_abs_mul_self] theorem neg_succ_of_nat_eq' (m : ℕ) : -[1+ m] = -m - 1 := by simp [neg_succ_of_nat_eq, sub_eq_neg_add] lemma nat_abs_ne_zero_of_ne_zero {z : ℤ} (hz : z ≠ 0) : z.nat_abs ≠ 0 := λ h, hz $ int.eq_zero_of_nat_abs_eq_zero h @[simp] lemma nat_abs_eq_zero {a : ℤ} : a.nat_abs = 0 ↔ a = 0 := ⟨int.eq_zero_of_nat_abs_eq_zero, λ h, h.symm ▸ rfl⟩ lemma nat_abs_lt_nat_abs_of_nonneg_of_lt {a b : ℤ} (w₁ : 0 ≤ a) (w₂ : a < b) : a.nat_abs < b.nat_abs := begin lift b to ℕ using le_trans w₁ (le_of_lt w₂), lift a to ℕ using w₁, simpa using w₂, end lemma nat_abs_eq_iff_mul_self_eq {a b : ℤ} : a.nat_abs = b.nat_abs ↔ a * a = b * b := begin rw [← abs_eq_iff_mul_self_eq, abs_eq_nat_abs, abs_eq_nat_abs], exact int.coe_nat_inj'.symm end lemma nat_abs_lt_iff_mul_self_lt {a b : ℤ} : a.nat_abs < b.nat_abs ↔ a * a < b * b := begin rw [← abs_lt_iff_mul_self_lt, abs_eq_nat_abs, abs_eq_nat_abs], exact int.coe_nat_lt.symm end lemma nat_abs_le_iff_mul_self_le {a b : ℤ} : a.nat_abs ≤ b.nat_abs ↔ a * a ≤ b * b := begin rw [← abs_le_iff_mul_self_le, abs_eq_nat_abs, abs_eq_nat_abs], exact int.coe_nat_le.symm end lemma nat_abs_eq_iff_sq_eq {a b : ℤ} : a.nat_abs = b.nat_abs ↔ a ^ 2 = b ^ 2 := by { rw [pow_two, pow_two], exact nat_abs_eq_iff_mul_self_eq } lemma nat_abs_lt_iff_sq_lt {a b : ℤ} : a.nat_abs < b.nat_abs ↔ a ^ 2 < b ^ 2 := by { rw [pow_two, pow_two], exact nat_abs_lt_iff_mul_self_lt } lemma nat_abs_le_iff_sq_le {a b : ℤ} : a.nat_abs ≤ b.nat_abs ↔ a ^ 2 ≤ b ^ 2 := by { rw [pow_two, pow_two], exact nat_abs_le_iff_mul_self_le } /-! ### `/` -/ @[simp] theorem of_nat_div (m n : ℕ) : of_nat (m / n) = (of_nat m) / (of_nat n) := rfl @[simp, norm_cast] theorem coe_nat_div (m n : ℕ) : ((m / n : ℕ) : ℤ) = m / n := rfl theorem neg_succ_of_nat_div (m : ℕ) {b : ℤ} (H : 0 < b) : -[1+m] / b = -(m / b + 1) := match b, eq_succ_of_zero_lt H with ._, ⟨n, rfl⟩ := rfl end @[simp] protected theorem div_neg : ∀ (a b : ℤ), a / -b = -(a / b) | (m : ℕ) 0 := show of_nat (m / 0) = -(m / 0 : ℕ), by rw nat.div_zero; refl | (m : ℕ) (n+1:ℕ) := rfl | 0 -[1+ n] := rfl | (m+1:ℕ) -[1+ n] := (neg_neg _).symm | -[1+ m] 0 := rfl | -[1+ m] (n+1:ℕ) := rfl | -[1+ m] -[1+ n] := rfl theorem div_of_neg_of_pos {a b : ℤ} (Ha : a < 0) (Hb : 0 < b) : a / b = -((-a - 1) / b + 1) := match a, b, eq_neg_succ_of_lt_zero Ha, eq_succ_of_zero_lt Hb with | ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ := by change (- -[1+ m] : ℤ) with (m+1 : ℤ); rw add_sub_cancel; refl end protected theorem div_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a / b := match a, b, eq_coe_of_zero_le Ha, eq_coe_of_zero_le Hb with | ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ := coe_zero_le _ end protected theorem div_nonpos {a b : ℤ} (Ha : 0 ≤ a) (Hb : b ≤ 0) : a / b ≤ 0 := nonpos_of_neg_nonneg $ by rw [← int.div_neg]; exact int.div_nonneg Ha (neg_nonneg_of_nonpos Hb) theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : 0 < b) : a / b < 0 := match a, b, eq_neg_succ_of_lt_zero Ha, eq_succ_of_zero_lt Hb with | ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩ := neg_succ_lt_zero _ end -- Will be generalized to Euclidean domains. protected theorem zero_div : ∀ (b : ℤ), 0 / b = 0 | 0 := rfl | (n+1:ℕ) := rfl | -[1+ n] := rfl local attribute [simp] -- Will be generalized to Euclidean domains. protected theorem div_zero : ∀ (a : ℤ), a / 0 = 0 | 0 := rfl | (n+1:ℕ) := rfl | -[1+ n] := rfl @[simp] protected theorem div_one : ∀ (a : ℤ), a / 1 = a | 0 := rfl | (n+1:ℕ) := congr_arg of_nat (nat.div_one _) | -[1+ n] := congr_arg neg_succ_of_nat (nat.div_one _) theorem div_eq_zero_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a / b = 0 := match a, b, eq_coe_of_zero_le H1, eq_succ_of_zero_lt (lt_of_le_of_lt H1 H2), H2 with | ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩, H2 := congr_arg of_nat $ nat.div_eq_of_lt $ lt_of_coe_nat_lt_coe_nat H2 end theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a / b = 0 := match b, abs b, abs_eq_nat_abs b, H2 with | (n : ℕ), ._, rfl, H2 := div_eq_zero_of_lt H1 H2 | -[1+ n], ._, rfl, H2 := neg_injective $ by rw [← int.div_neg]; exact div_eq_zero_of_lt H1 H2 end protected theorem add_mul_div_right (a b : ℤ) {c : ℤ} (H : c ≠ 0) : (a + b * c) / c = a / c + b := have ∀ {k n : ℕ} {a : ℤ}, (a + n * k.succ) / k.succ = a / k.succ + n, from λ k n a, match a with | (m : ℕ) := congr_arg of_nat $ nat.add_mul_div_right _ _ k.succ_pos | -[1+ m] := show ((n * k.succ:ℕ) - m.succ : ℤ) / k.succ = n - (m / k.succ + 1 : ℕ), begin cases lt_or_ge m (n*k.succ) with h h, { rw [← int.coe_nat_sub h, ← int.coe_nat_sub ((nat.div_lt_iff_lt_mul _ _ k.succ_pos).2 h)], apply congr_arg of_nat, rw [mul_comm, nat.mul_sub_div], rwa mul_comm }, { change (↑(n * nat.succ k) - (m + 1) : ℤ) / ↑(nat.succ k) = ↑n - ((m / nat.succ k : ℕ) + 1), rw [← sub_sub, ← sub_sub, ← neg_sub (m:ℤ), ← neg_sub _ (n:ℤ), ← int.coe_nat_sub h, ← int.coe_nat_sub ((nat.le_div_iff_mul_le _ _ k.succ_pos).2 h), ← neg_succ_of_nat_coe', ← neg_succ_of_nat_coe'], { apply congr_arg neg_succ_of_nat, rw [mul_comm, nat.sub_mul_div], rwa mul_comm } } end end, have ∀ {a b c : ℤ}, 0 < c → (a + b * c) / c = a / c + b, from λ a b c H, match c, eq_succ_of_zero_lt H, b with | ._, ⟨k, rfl⟩, (n : ℕ) := this | ._, ⟨k, rfl⟩, -[1+ n] := show (a - n.succ * k.succ) / k.succ = (a / k.succ) - n.succ, from eq_sub_of_add_eq $ by rw [← this, sub_add_cancel] end, match lt_trichotomy c 0 with | or.inl hlt := neg_inj.1 $ by rw [← int.div_neg, neg_add, ← int.div_neg, ← neg_mul_neg]; apply this (neg_pos_of_neg hlt) | or.inr (or.inl heq) := absurd heq H | or.inr (or.inr hgt) := this hgt end protected theorem add_mul_div_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b ≠ 0) : (a + b * c) / b = a / b + c := by rw [mul_comm, int.add_mul_div_right _ _ H] @[simp] protected theorem mul_div_cancel (a : ℤ) {b : ℤ} (H : b ≠ 0) : a * b / b = a := by have := int.add_mul_div_right 0 a H; rwa [zero_add, int.zero_div, zero_add] at this @[simp] protected theorem mul_div_cancel_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : a * b / a = b := by rw [mul_comm, int.mul_div_cancel _ H] @[simp] protected theorem div_self {a : ℤ} (H : a ≠ 0) : a / a = 1 := by have := int.mul_div_cancel 1 H; rwa one_mul at this /-! ### mod -/ theorem of_nat_mod (m n : nat) : (m % n : ℤ) = of_nat (m % n) := rfl @[simp, norm_cast] theorem coe_nat_mod (m n : ℕ) : (↑(m % n) : ℤ) = ↑m % ↑n := rfl theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : 0 < b) : -[1+m] % b = b - 1 - m % b := by rw [sub_sub, add_comm]; exact match b, eq_succ_of_zero_lt bpos with ._, ⟨n, rfl⟩ := rfl end @[simp] theorem mod_neg : ∀ (a b : ℤ), a % -b = a % b | (m : ℕ) n := @congr_arg ℕ ℤ _ _ (λ i, ↑(m % i)) (nat_abs_neg _) | -[1+ m] n := @congr_arg ℕ ℤ _ _ (λ i, sub_nat_nat i (nat.succ (m % i))) (nat_abs_neg _) @[simp] theorem mod_abs (a b : ℤ) : a % (abs b) = a % b := abs_by_cases (λ i, a % i = a % b) rfl (mod_neg _ _) local attribute [simp] -- Will be generalized to Euclidean domains. theorem zero_mod (b : ℤ) : 0 % b = 0 := congr_arg of_nat $ nat.zero_mod _ local attribute [simp] -- Will be generalized to Euclidean domains. theorem mod_zero : ∀ (a : ℤ), a % 0 = a | (m : ℕ) := congr_arg of_nat $ nat.mod_zero _ | -[1+ m] := congr_arg neg_succ_of_nat $ nat.mod_zero _ local attribute [simp] -- Will be generalized to Euclidean domains. theorem mod_one : ∀ (a : ℤ), a % 1 = 0 | (m : ℕ) := congr_arg of_nat $ nat.mod_one _ | -[1+ m] := show (1 - (m % 1).succ : ℤ) = 0, by rw nat.mod_one; refl theorem mod_eq_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a % b = a := match a, b, eq_coe_of_zero_le H1, eq_coe_of_zero_le (le_trans H1 (le_of_lt H2)), H2 with | ._, ._, ⟨m, rfl⟩, ⟨n, rfl⟩, H2 := congr_arg of_nat $ nat.mod_eq_of_lt (lt_of_coe_nat_lt_coe_nat H2) end theorem mod_nonneg : ∀ (a : ℤ) {b : ℤ}, b ≠ 0 → 0 ≤ a % b | (m : ℕ) n H := coe_zero_le _ | -[1+ m] n H := sub_nonneg_of_le $ coe_nat_le_coe_nat_of_le $ nat.mod_lt _ (nat_abs_pos_of_ne_zero H) theorem mod_lt_of_pos (a : ℤ) {b : ℤ} (H : 0 < b) : a % b < b := match a, b, eq_succ_of_zero_lt H with | (m : ℕ), ._, ⟨n, rfl⟩ := coe_nat_lt_coe_nat_of_lt (nat.mod_lt _ (nat.succ_pos _)) | -[1+ m], ._, ⟨n, rfl⟩ := sub_lt_self _ (coe_nat_lt_coe_nat_of_lt $ nat.succ_pos _) end theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a % b < abs b := by rw [← mod_abs]; exact mod_lt_of_pos _ (abs_pos.2 H) theorem mod_add_div_aux (m n : ℕ) : (n - (m % n + 1) - (n * (m / n) + n) : ℤ) = -[1+ m] := begin rw [← sub_sub, neg_succ_of_nat_coe, sub_sub (n:ℤ)], apply eq_neg_of_eq_neg, rw [neg_sub, sub_sub_self, add_right_comm], exact @congr_arg ℕ ℤ _ _ (λi, (i + 1 : ℤ)) (nat.mod_add_div _ _).symm end theorem mod_add_div : ∀ (a b : ℤ), a % b + b * (a / b) = a | (m : ℕ) 0 := congr_arg of_nat (nat.mod_add_div _ _) | (m : ℕ) (n+1:ℕ) := congr_arg of_nat (nat.mod_add_div _ _) | 0 -[1+ n] := rfl | (m+1:ℕ) -[1+ n] := show (_ + -(n+1) * -((m + 1) / (n + 1) : ℕ) : ℤ) = _, by rw [neg_mul_neg]; exact congr_arg of_nat (nat.mod_add_div _ _) | -[1+ m] 0 := by rw [mod_zero, int.div_zero]; refl | -[1+ m] (n+1:ℕ) := mod_add_div_aux m n.succ | -[1+ m] -[1+ n] := mod_add_div_aux m n.succ theorem mod_def (a b : ℤ) : a % b = a - b * (a / b) := eq_sub_of_add_eq (mod_add_div _ _) @[simp] theorem add_mul_mod_self {a b c : ℤ} : (a + b * c) % c = a % c := if cz : c = 0 then by rw [cz, mul_zero, add_zero] else by rw [mod_def, mod_def, int.add_mul_div_right _ _ cz, mul_add, mul_comm, add_sub_add_right_eq_sub] @[simp] theorem add_mul_mod_self_left (a b c : ℤ) : (a + b * c) % b = a % b := by rw [mul_comm, add_mul_mod_self] @[simp] theorem add_mod_self {a b : ℤ} : (a + b) % b = a % b := by have := add_mul_mod_self_left a b 1; rwa mul_one at this @[simp] theorem add_mod_self_left {a b : ℤ} : (a + b) % a = b % a := by rw [add_comm, add_mod_self] @[simp] theorem mod_add_mod (m n k : ℤ) : (m % n + k) % n = (m + k) % n := by have := (add_mul_mod_self_left (m % n + k) n (m / n)).symm; rwa [add_right_comm, mod_add_div] at this @[simp] theorem add_mod_mod (m n k : ℤ) : (m + n % k) % k = (m + n) % k := by rw [add_comm, mod_add_mod, add_comm] lemma add_mod (a b n : ℤ) : (a + b) % n = ((a % n) + (b % n)) % n := by rw [add_mod_mod, mod_add_mod] theorem add_mod_eq_add_mod_right {m n k : ℤ} (i : ℤ) (H : m % n = k % n) : (m + i) % n = (k + i) % n := by rw [← mod_add_mod, ← mod_add_mod k, H] theorem add_mod_eq_add_mod_left {m n k : ℤ} (i : ℤ) (H : m % n = k % n) : (i + m) % n = (i + k) % n := by rw [add_comm, add_mod_eq_add_mod_right _ H, add_comm] theorem mod_add_cancel_right {m n k : ℤ} (i) : (m + i) % n = (k + i) % n ↔ m % n = k % n := ⟨λ H, by have := add_mod_eq_add_mod_right (-i) H; rwa [add_neg_cancel_right, add_neg_cancel_right] at this, add_mod_eq_add_mod_right _⟩ theorem mod_add_cancel_left {m n k i : ℤ} : (i + m) % n = (i + k) % n ↔ m % n = k % n := by rw [add_comm, add_comm i, mod_add_cancel_right] theorem mod_sub_cancel_right {m n k : ℤ} (i) : (m - i) % n = (k - i) % n ↔ m % n = k % n := mod_add_cancel_right _ theorem mod_eq_mod_iff_mod_sub_eq_zero {m n k : ℤ} : m % n = k % n ↔ (m - k) % n = 0 := (mod_sub_cancel_right k).symm.trans $ by simp @[simp] theorem mul_mod_left (a b : ℤ) : (a * b) % b = 0 := by rw [← zero_add (a * b), add_mul_mod_self, zero_mod] @[simp] theorem mul_mod_right (a b : ℤ) : (a * b) % a = 0 := by rw [mul_comm, mul_mod_left] lemma mul_mod (a b n : ℤ) : (a * b) % n = ((a % n) * (b % n)) % n := begin conv_lhs { rw [←mod_add_div a n, ←mod_add_div b n, right_distrib, left_distrib, left_distrib, mul_assoc, mul_assoc, ←left_distrib n _ _, add_mul_mod_self_left, mul_comm _ (n * (b / n)), mul_assoc, add_mul_mod_self_left] } end @[simp] lemma neg_mod_two (i : ℤ) : (-i) % 2 = i % 2 := begin apply int.mod_eq_mod_iff_mod_sub_eq_zero.mpr, convert int.mul_mod_right 2 (-i), simp only [two_mul, sub_eq_add_neg] end local attribute [simp] -- Will be generalized to Euclidean domains. theorem mod_self {a : ℤ} : a % a = 0 := by have := mul_mod_left 1 a; rwa one_mul at this @[simp] theorem mod_mod_of_dvd (n : int) {m k : int} (h : m ∣ k) : n % k % m = n % m := begin conv { to_rhs, rw ←mod_add_div n k }, rcases h with ⟨t, rfl⟩, rw [mul_assoc, add_mul_mod_self_left] end @[simp] theorem mod_mod (a b : ℤ) : a % b % b = a % b := by conv {to_rhs, rw [← mod_add_div a b, add_mul_mod_self_left]} lemma sub_mod (a b n : ℤ) : (a - b) % n = ((a % n) - (b % n)) % n := begin apply (mod_add_cancel_right b).mp, rw [sub_add_cancel, ← add_mod_mod, sub_add_cancel, mod_mod] end /-! ### properties of `/` and `%` -/ @[simp] theorem mul_div_mul_of_pos {a : ℤ} (b c : ℤ) (H : 0 < a) : a * b / (a * c) = b / c := suffices ∀ (m k : ℕ) (b : ℤ), (m.succ * b / (m.succ * k) : ℤ) = b / k, from match a, eq_succ_of_zero_lt H, c, eq_coe_or_neg c with | ._, ⟨m, rfl⟩, ._, ⟨k, or.inl rfl⟩ := this _ _ _ | ._, ⟨m, rfl⟩, ._, ⟨k, or.inr rfl⟩ := by rw [← neg_mul_eq_mul_neg, int.div_neg, int.div_neg]; apply congr_arg has_neg.neg; apply this end, λ m k b, match b, k with | (n : ℕ), k := congr_arg of_nat (nat.mul_div_mul _ _ m.succ_pos) | -[1+ n], 0 := by rw [int.coe_nat_zero, mul_zero, int.div_zero, int.div_zero] | -[1+ n], k+1 := congr_arg neg_succ_of_nat $ show (m.succ * n + m) / (m.succ * k.succ) = n / k.succ, begin apply nat.div_eq_of_lt_le, { refine le_trans _ (nat.le_add_right _ _), rw [← nat.mul_div_mul _ _ m.succ_pos], apply nat.div_mul_le_self }, { change m.succ * n.succ ≤ _, rw [mul_left_comm], apply nat.mul_le_mul_left, apply (nat.div_lt_iff_lt_mul _ _ k.succ_pos).1, apply nat.lt_succ_self } end end @[simp] theorem mul_div_mul_of_pos_left (a : ℤ) {b : ℤ} (c : ℤ) (H : 0 < b) : a * b / (c * b) = a / c := by rw [mul_comm, mul_comm c, mul_div_mul_of_pos _ _ H] @[simp] theorem mul_mod_mul_of_pos {a : ℤ} (b c : ℤ) (H : 0 < a) : a * b % (a * c) = a * (b % c) := by rw [mod_def, mod_def, mul_div_mul_of_pos _ _ H, mul_sub_left_distrib, mul_assoc] theorem lt_div_add_one_mul_self (a : ℤ) {b : ℤ} (H : 0 < b) : a < (a / b + 1) * b := by rw [add_mul, one_mul, mul_comm]; apply lt_add_of_sub_left_lt; rw [← mod_def]; apply mod_lt_of_pos _ H theorem abs_div_le_abs : ∀ (a b : ℤ), abs (a / b) ≤ abs a := suffices ∀ (a : ℤ) (n : ℕ), abs (a / n) ≤ abs a, from λ a b, match b, eq_coe_or_neg b with | ._, ⟨n, or.inl rfl⟩ := this _ _ | ._, ⟨n, or.inr rfl⟩ := by rw [int.div_neg, abs_neg]; apply this end, λ a n, by rw [abs_eq_nat_abs, abs_eq_nat_abs]; exact coe_nat_le_coe_nat_of_le (match a, n with | (m : ℕ), n := nat.div_le_self _ _ | -[1+ m], 0 := nat.zero_le _ | -[1+ m], n+1 := nat.succ_le_succ (nat.div_le_self _ _) end) theorem div_le_self {a : ℤ} (b : ℤ) (Ha : 0 ≤ a) : a / b ≤ a := by have := le_trans (le_abs_self _) (abs_div_le_abs a b); rwa [abs_of_nonneg Ha] at this theorem mul_div_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : b * (a / b) = a := by have := mod_add_div a b; rwa [H, zero_add] at this theorem div_mul_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : a / b * b = a := by rw [mul_comm, mul_div_cancel_of_mod_eq_zero H] lemma mod_two_eq_zero_or_one (n : ℤ) : n % 2 = 0 ∨ n % 2 = 1 := have h : n % 2 < 2 := abs_of_nonneg (show 0 ≤ (2 : ℤ), from dec_trivial) ▸ int.mod_lt _ dec_trivial, have h₁ : 0 ≤ n % 2 := int.mod_nonneg _ dec_trivial, match (n % 2), h, h₁ with | (0 : ℕ) := λ _ _, or.inl rfl | (1 : ℕ) := λ _ _, or.inr rfl | (k + 2 : ℕ) := λ h _, absurd h dec_trivial | -[1+ a] := λ _ h₁, absurd h₁ dec_trivial end /-! ### dvd -/ @[norm_cast] theorem coe_nat_dvd {m n : ℕ} : (↑m : ℤ) ∣ ↑n ↔ m ∣ n := ⟨λ ⟨a, ae⟩, m.eq_zero_or_pos.elim (λm0, by simp [m0] at ae; simp [ae, m0]) (λm0l, by { cases eq_coe_of_zero_le (@nonneg_of_mul_nonneg_left ℤ _ m a (by simp [ae.symm]) (by simpa using m0l)) with k e, subst a, exact ⟨k, int.coe_nat_inj ae⟩ }), λ ⟨k, e⟩, dvd.intro k $ by rw [e, int.coe_nat_mul]⟩ theorem coe_nat_dvd_left {n : ℕ} {z : ℤ} : (↑n : ℤ) ∣ z ↔ n ∣ z.nat_abs := by rcases nat_abs_eq z with eq | eq; rw eq; simp [coe_nat_dvd] theorem coe_nat_dvd_right {n : ℕ} {z : ℤ} : z ∣ (↑n : ℤ) ↔ z.nat_abs ∣ n := by rcases nat_abs_eq z with eq | eq; rw eq; simp [coe_nat_dvd] theorem dvd_antisymm {a b : ℤ} (H1 : 0 ≤ a) (H2 : 0 ≤ b) : a ∣ b → b ∣ a → a = b := begin rw [← abs_of_nonneg H1, ← abs_of_nonneg H2, abs_eq_nat_abs, abs_eq_nat_abs], rw [coe_nat_dvd, coe_nat_dvd, coe_nat_inj'], apply nat.dvd_antisymm end theorem dvd_of_mod_eq_zero {a b : ℤ} (H : b % a = 0) : a ∣ b := ⟨b / a, (mul_div_cancel_of_mod_eq_zero H).symm⟩ theorem mod_eq_zero_of_dvd : ∀ {a b : ℤ}, a ∣ b → b % a = 0 | a ._ ⟨c, rfl⟩ := mul_mod_right _ _ theorem dvd_iff_mod_eq_zero (a b : ℤ) : a ∣ b ↔ b % a = 0 := ⟨mod_eq_zero_of_dvd, dvd_of_mod_eq_zero⟩ /-- If `a % b = c` then `b` divides `a - c`. -/ lemma dvd_sub_of_mod_eq {a b c : ℤ} (h : a % b = c) : b ∣ a - c := begin have hx : a % b % b = c % b, { rw h }, rw [mod_mod, ←mod_sub_cancel_right c, sub_self, zero_mod] at hx, exact dvd_of_mod_eq_zero hx end theorem nat_abs_dvd {a b : ℤ} : (a.nat_abs : ℤ) ∣ b ↔ a ∣ b := (nat_abs_eq a).elim (λ e, by rw ← e) (λ e, by rw [← neg_dvd_iff_dvd, ← e]) theorem dvd_nat_abs {a b : ℤ} : a ∣ b.nat_abs ↔ a ∣ b := (nat_abs_eq b).elim (λ e, by rw ← e) (λ e, by rw [← dvd_neg_iff_dvd, ← e]) instance decidable_dvd : @decidable_rel ℤ (∣) := assume a n, decidable_of_decidable_of_iff (by apply_instance) (dvd_iff_mod_eq_zero _ _).symm protected theorem div_mul_cancel {a b : ℤ} (H : b ∣ a) : a / b * b = a := div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H) protected theorem mul_div_cancel' {a b : ℤ} (H : a ∣ b) : a * (b / a) = b := by rw [mul_comm, int.div_mul_cancel H] protected theorem mul_div_assoc (a : ℤ) : ∀ {b c : ℤ}, c ∣ b → (a * b) / c = a * (b / c) | ._ c ⟨d, rfl⟩ := if cz : c = 0 then by simp [cz] else by rw [mul_left_comm, int.mul_div_cancel_left _ cz, int.mul_div_cancel_left _ cz] theorem div_dvd_div : ∀ {a b c : ℤ} (H1 : a ∣ b) (H2 : b ∣ c), b / a ∣ c / a | a ._ ._ ⟨b, rfl⟩ ⟨c, rfl⟩ := if az : a = 0 then by simp [az] else by rw [int.mul_div_cancel_left _ az, mul_assoc, int.mul_div_cancel_left _ az]; apply dvd_mul_right protected theorem eq_mul_of_div_eq_right {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) : a = b * c := by rw [← H2, int.mul_div_cancel' H1] protected theorem div_eq_of_eq_mul_right {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = b * c) : a / b = c := by rw [H2, int.mul_div_cancel_left _ H1] protected theorem eq_div_of_mul_eq_right {a b c : ℤ} (H1 : a ≠ 0) (H2 : a * b = c) : b = c / a := eq.symm $ int.div_eq_of_eq_mul_right H1 H2.symm protected theorem div_eq_iff_eq_mul_right {a b c : ℤ} (H : b ≠ 0) (H' : b ∣ a) : a / b = c ↔ a = b * c := ⟨int.eq_mul_of_div_eq_right H', int.div_eq_of_eq_mul_right H⟩ protected theorem div_eq_iff_eq_mul_left {a b c : ℤ} (H : b ≠ 0) (H' : b ∣ a) : a / b = c ↔ a = c * b := by rw mul_comm; exact int.div_eq_iff_eq_mul_right H H' protected theorem eq_mul_of_div_eq_left {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) : a = c * b := by rw [mul_comm, int.eq_mul_of_div_eq_right H1 H2] protected theorem div_eq_of_eq_mul_left {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = c * b) : a / b = c := int.div_eq_of_eq_mul_right H1 (by rw [mul_comm, H2]) theorem neg_div_of_dvd : ∀ {a b : ℤ} (H : b ∣ a), -a / b = -(a / b) | ._ b ⟨c, rfl⟩ := if bz : b = 0 then by simp [bz] else by rw [neg_mul_eq_mul_neg, int.mul_div_cancel_left _ bz, int.mul_div_cancel_left _ bz] lemma add_div_of_dvd {a b c : ℤ} : c ∣ a → c ∣ b → (a + b) / c = a / c + b / c := begin intros h1 h2, by_cases h3 : c = 0, { rw [h3, zero_dvd_iff] at *, rw [h1, h2, h3], refl }, { apply mul_right_cancel' h3, rw add_mul, repeat {rw [int.div_mul_cancel]}; try {apply dvd_add}; assumption } end theorem div_sign : ∀ a b, a / sign b = a * sign b | a (n+1:ℕ) := by unfold sign; simp | a 0 := by simp [sign] | a -[1+ n] := by simp [sign] @[simp] theorem sign_mul : ∀ a b, sign (a * b) = sign a * sign b | a 0 := by simp | 0 b := by simp | (m+1:ℕ) (n+1:ℕ) := rfl | (m+1:ℕ) -[1+ n] := rfl | -[1+ m] (n+1:ℕ) := rfl | -[1+ m] -[1+ n] := rfl protected theorem sign_eq_div_abs (a : ℤ) : sign a = a / (abs a) := if az : a = 0 then by simp [az] else (int.div_eq_of_eq_mul_left (mt abs_eq_zero.1 az) (sign_mul_abs _).symm).symm theorem mul_sign : ∀ (i : ℤ), i * sign i = nat_abs i | (n+1:ℕ) := mul_one _ | 0 := mul_zero _ | -[1+ n] := mul_neg_one _ theorem le_of_dvd {a b : ℤ} (bpos : 0 < b) (H : a ∣ b) : a ≤ b := match a, b, eq_succ_of_zero_lt bpos, H with | (m : ℕ), ._, ⟨n, rfl⟩, H := coe_nat_le_coe_nat_of_le $ nat.le_of_dvd n.succ_pos $ coe_nat_dvd.1 H | -[1+ m], ._, ⟨n, rfl⟩, _ := le_trans (le_of_lt $ neg_succ_lt_zero _) (coe_zero_le _) end theorem eq_one_of_dvd_one {a : ℤ} (H : 0 ≤ a) (H' : a ∣ 1) : a = 1 := match a, eq_coe_of_zero_le H, H' with | ._, ⟨n, rfl⟩, H' := congr_arg coe $ nat.eq_one_of_dvd_one $ coe_nat_dvd.1 H' end theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : 0 ≤ a) (H' : a * b = 1) : a = 1 := eq_one_of_dvd_one H ⟨b, H'.symm⟩ theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : 0 ≤ b) (H' : a * b = 1) : b = 1 := eq_one_of_mul_eq_one_right H (by rw [mul_comm, H']) lemma of_nat_dvd_of_dvd_nat_abs {a : ℕ} : ∀ {z : ℤ} (haz : a ∣ z.nat_abs), ↑a ∣ z | (int.of_nat _) haz := int.coe_nat_dvd.2 haz | -[1+k] haz := begin change ↑a ∣ -(k+1 : ℤ), apply dvd_neg_of_dvd, apply int.coe_nat_dvd.2, exact haz end lemma dvd_nat_abs_of_of_nat_dvd {a : ℕ} : ∀ {z : ℤ} (haz : ↑a ∣ z), a ∣ z.nat_abs | (int.of_nat _) haz := int.coe_nat_dvd.1 (int.dvd_nat_abs.2 haz) | -[1+k] haz := have haz' : (↑a:ℤ) ∣ (↑(k+1):ℤ), from dvd_of_dvd_neg haz, int.coe_nat_dvd.1 haz' lemma pow_dvd_of_le_of_pow_dvd {p m n : ℕ} {k : ℤ} (hmn : m ≤ n) (hdiv : ↑(p ^ n) ∣ k) : ↑(p ^ m) ∣ k := begin induction k, { apply int.coe_nat_dvd.2, apply pow_dvd_of_le_of_pow_dvd hmn, apply int.coe_nat_dvd.1 hdiv }, { change -[1+k] with -(↑(k+1) : ℤ), apply dvd_neg_of_dvd, apply int.coe_nat_dvd.2, apply pow_dvd_of_le_of_pow_dvd hmn, apply int.coe_nat_dvd.1, apply dvd_of_dvd_neg, exact hdiv } end lemma dvd_of_pow_dvd {p k : ℕ} {m : ℤ} (hk : 1 ≤ k) (hpk : ↑(p^k) ∣ m) : ↑p ∣ m := by rw ←pow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk /-- If `n > 0` then `m` is not divisible by `n` iff it is between `n * k` and `n * (k + 1)` for some `k`. -/ lemma exists_lt_and_lt_iff_not_dvd (m : ℤ) {n : ℤ} (hn : 0 < n) : (∃ k, n * k < m ∧ m < n * (k + 1)) ↔ ¬ n ∣ m := begin split, { rintro ⟨k, h1k, h2k⟩ ⟨l, rfl⟩, rw [mul_lt_mul_left hn] at h1k h2k, rw [lt_add_one_iff, ← not_lt] at h2k, exact h2k h1k }, { intro h, rw [dvd_iff_mod_eq_zero, ← ne.def] at h, have := (mod_nonneg m hn.ne.symm).lt_of_ne h.symm, simp only [← mod_add_div m n] {single_pass := tt}, refine ⟨m / n, lt_add_of_pos_left _ this, _⟩, rw [add_comm _ (1 : ℤ), left_distrib, mul_one], exact add_lt_add_right (mod_lt_of_pos _ hn) _ } end /-! ### `/` and ordering -/ protected theorem div_mul_le (a : ℤ) {b : ℤ} (H : b ≠ 0) : a / b * b ≤ a := le_of_sub_nonneg $ by rw [mul_comm, ← mod_def]; apply mod_nonneg _ H protected theorem div_le_of_le_mul {a b c : ℤ} (H : 0 < c) (H' : a ≤ b * c) : a / c ≤ b := le_of_mul_le_mul_right (le_trans (int.div_mul_le _ (ne_of_gt H)) H') H protected theorem mul_lt_of_lt_div {a b c : ℤ} (H : 0 < c) (H3 : a < b / c) : a * c < b := lt_of_not_ge $ mt (int.div_le_of_le_mul H) (not_le_of_gt H3) protected theorem mul_le_of_le_div {a b c : ℤ} (H1 : 0 < c) (H2 : a ≤ b / c) : a * c ≤ b := le_trans (mul_le_mul_of_nonneg_right H2 (le_of_lt H1)) (int.div_mul_le _ (ne_of_gt H1)) protected theorem le_div_of_mul_le {a b c : ℤ} (H1 : 0 < c) (H2 : a * c ≤ b) : a ≤ b / c := le_of_lt_add_one $ lt_of_mul_lt_mul_right (lt_of_le_of_lt H2 (lt_div_add_one_mul_self _ H1)) (le_of_lt H1) protected theorem le_div_iff_mul_le {a b c : ℤ} (H : 0 < c) : a ≤ b / c ↔ a * c ≤ b := ⟨int.mul_le_of_le_div H, int.le_div_of_mul_le H⟩ protected theorem div_le_div {a b c : ℤ} (H : 0 < c) (H' : a ≤ b) : a / c ≤ b / c := int.le_div_of_mul_le H (le_trans (int.div_mul_le _ (ne_of_gt H)) H') protected theorem div_lt_of_lt_mul {a b c : ℤ} (H : 0 < c) (H' : a < b * c) : a / c < b := lt_of_not_ge $ mt (int.mul_le_of_le_div H) (not_le_of_gt H') protected theorem lt_mul_of_div_lt {a b c : ℤ} (H1 : 0 < c) (H2 : a / c < b) : a < b * c := lt_of_not_ge $ mt (int.le_div_of_mul_le H1) (not_le_of_gt H2) protected theorem div_lt_iff_lt_mul {a b c : ℤ} (H : 0 < c) : a / c < b ↔ a < b * c := ⟨int.lt_mul_of_div_lt H, int.div_lt_of_lt_mul H⟩ protected theorem le_mul_of_div_le {a b c : ℤ} (H1 : 0 ≤ b) (H2 : b ∣ a) (H3 : a / b ≤ c) : a ≤ c * b := by rw [← int.div_mul_cancel H2]; exact mul_le_mul_of_nonneg_right H3 H1 protected theorem lt_div_of_mul_lt {a b c : ℤ} (H1 : 0 ≤ b) (H2 : b ∣ c) (H3 : a * b < c) : a < c / b := lt_of_not_ge $ mt (int.le_mul_of_div_le H1 H2) (not_le_of_gt H3) protected theorem lt_div_iff_mul_lt {a b : ℤ} (c : ℤ) (H : 0 < c) (H' : c ∣ b) : a < b / c ↔ a * c < b := ⟨int.mul_lt_of_lt_div H, int.lt_div_of_mul_lt (le_of_lt H) H'⟩ theorem div_pos_of_pos_of_dvd {a b : ℤ} (H1 : 0 < a) (H2 : 0 ≤ b) (H3 : b ∣ a) : 0 < a / b := int.lt_div_of_mul_lt H2 H3 (by rwa zero_mul) theorem div_eq_div_of_mul_eq_mul {a b c d : ℤ} (H2 : d ∣ c) (H3 : b ≠ 0) (H4 : d ≠ 0) (H5 : a * d = b * c) : a / b = c / d := int.div_eq_of_eq_mul_right H3 $ by rw [← int.mul_div_assoc _ H2]; exact (int.div_eq_of_eq_mul_left H4 H5.symm).symm theorem eq_mul_div_of_mul_eq_mul_of_dvd_left {a b c d : ℤ} (hb : b ≠ 0) (hbc : b ∣ c) (h : b * a = c * d) : a = c / b * d := begin cases hbc with k hk, subst hk, rw [int.mul_div_cancel_left _ hb], rw mul_assoc at h, apply mul_left_cancel' hb h end /-- If an integer with larger absolute value divides an integer, it is zero. -/ lemma eq_zero_of_dvd_of_nat_abs_lt_nat_abs {a b : ℤ} (w : a ∣ b) (h : nat_abs b < nat_abs a) : b = 0 := begin rw [←nat_abs_dvd, ←dvd_nat_abs, coe_nat_dvd] at w, rw ←nat_abs_eq_zero, exact eq_zero_of_dvd_of_lt w h end lemma eq_zero_of_dvd_of_nonneg_of_lt {a b : ℤ} (w₁ : 0 ≤ a) (w₂ : a < b) (h : b ∣ a) : a = 0 := eq_zero_of_dvd_of_nat_abs_lt_nat_abs h (nat_abs_lt_nat_abs_of_nonneg_of_lt w₁ w₂) /-- If two integers are congruent to a sufficiently large modulus, they are equal. -/ lemma eq_of_mod_eq_of_nat_abs_sub_lt_nat_abs {a b c : ℤ} (h1 : a % b = c) (h2 : nat_abs (a - c) < nat_abs b) : a = c := eq_of_sub_eq_zero (eq_zero_of_dvd_of_nat_abs_lt_nat_abs (dvd_sub_of_mod_eq h1) h2) theorem of_nat_add_neg_succ_of_nat_of_lt {m n : ℕ} (h : m < n.succ) : of_nat m + -[1+n] = -[1+ n - m] := begin change sub_nat_nat _ _ = _, have h' : n.succ - m = (n - m).succ, apply succ_sub, apply le_of_lt_succ h, simp [*, sub_nat_nat] end theorem of_nat_add_neg_succ_of_nat_of_ge {m n : ℕ} (h : n.succ ≤ m) : of_nat m + -[1+n] = of_nat (m - n.succ) := begin change sub_nat_nat _ _ = _, have h' : n.succ - m = 0, apply sub_eq_zero_of_le h, simp [*, sub_nat_nat] end @[simp] theorem neg_add_neg (m n : ℕ) : -[1+m] + -[1+n] = -[1+nat.succ(m+n)] := rfl /-! ### to_nat -/ theorem to_nat_eq_max : ∀ (a : ℤ), (to_nat a : ℤ) = max a 0 | (n : ℕ) := (max_eq_left (coe_zero_le n)).symm | -[1+ n] := (max_eq_right (le_of_lt (neg_succ_lt_zero n))).symm @[simp] lemma to_nat_zero : (0 : ℤ).to_nat = 0 := rfl @[simp] lemma to_nat_one : (1 : ℤ).to_nat = 1 := rfl @[simp] theorem to_nat_of_nonneg {a : ℤ} (h : 0 ≤ a) : (to_nat a : ℤ) = a := by rw [to_nat_eq_max, max_eq_left h] @[simp] lemma to_nat_sub_of_le (a b : ℤ) (h : b ≤ a) : (to_nat (a + -b) : ℤ) = a + - b := int.to_nat_of_nonneg (sub_nonneg_of_le h) @[simp] theorem to_nat_coe_nat (n : ℕ) : to_nat ↑n = n := rfl @[simp] lemma to_nat_coe_nat_add_one {n : ℕ} : ((n : ℤ) + 1).to_nat = n + 1 := rfl theorem le_to_nat (a : ℤ) : a ≤ to_nat a := by rw [to_nat_eq_max]; apply le_max_left @[simp] theorem to_nat_le {a : ℤ} {n : ℕ} : to_nat a ≤ n ↔ a ≤ n := by rw [(coe_nat_le_coe_nat_iff _ _).symm, to_nat_eq_max, max_le_iff]; exact and_iff_left (coe_zero_le _) @[simp] theorem lt_to_nat {n : ℕ} {a : ℤ} : n < to_nat a ↔ (n : ℤ) < a := le_iff_le_iff_lt_iff_lt.1 to_nat_le theorem to_nat_le_to_nat {a b : ℤ} (h : a ≤ b) : to_nat a ≤ to_nat b := by rw to_nat_le; exact le_trans h (le_to_nat b) theorem to_nat_lt_to_nat {a b : ℤ} (hb : 0 < b) : to_nat a < to_nat b ↔ a < b := ⟨λ h, begin cases a, exact lt_to_nat.1 h, exact lt_trans (neg_succ_of_nat_lt_zero a) hb, end, λ h, begin rw lt_to_nat, cases a, exact h, exact hb end⟩ theorem lt_of_to_nat_lt {a b : ℤ} (h : to_nat a < to_nat b) : a < b := (to_nat_lt_to_nat $ lt_to_nat.1 $ lt_of_le_of_lt (nat.zero_le _) h).1 h lemma to_nat_add {a b : ℤ} (ha : 0 ≤ a) (hb : 0 ≤ b) : (a + b).to_nat = a.to_nat + b.to_nat := begin lift a to ℕ using ha, lift b to ℕ using hb, norm_cast, end lemma to_nat_add_one {a : ℤ} (h : 0 ≤ a) : (a + 1).to_nat = a.to_nat + 1 := to_nat_add h (zero_le_one) /-- If `n : ℕ`, then `int.to_nat' n = some n`, if `n : ℤ` is negative, then `int.to_nat' n = none`. -/ def to_nat' : ℤ → option ℕ | (n : ℕ) := some n | -[1+ n] := none theorem mem_to_nat' : ∀ (a : ℤ) (n : ℕ), n ∈ to_nat' a ↔ a = n | (m : ℕ) n := option.some_inj.trans coe_nat_inj'.symm | -[1+ m] n := by split; intro h; cases h lemma to_nat_zero_of_neg : ∀ {z : ℤ}, z < 0 → z.to_nat = 0 | (-[1+n]) _ := rfl | (int.of_nat n) h := (not_le_of_gt h $ int.of_nat_nonneg n).elim /-! ### units -/ @[simp] theorem units_nat_abs (u : units ℤ) : nat_abs u = 1 := units.ext_iff.1 $ nat.units_eq_one ⟨nat_abs u, nat_abs ↑u⁻¹, by rw [← nat_abs_mul, units.mul_inv]; refl, by rw [← nat_abs_mul, units.inv_mul]; refl⟩ theorem units_eq_one_or (u : units ℤ) : u = 1 ∨ u = -1 := by simpa only [units.ext_iff, units_nat_abs] using nat_abs_eq u lemma units_inv_eq_self (u : units ℤ) : u⁻¹ = u := (units_eq_one_or u).elim (λ h, h.symm ▸ rfl) (λ h, h.symm ▸ rfl) @[simp] lemma units_mul_self (u : units ℤ) : u * u = 1 := (units_eq_one_or u).elim (λ h, h.symm ▸ rfl) (λ h, h.symm ▸ rfl) -- `units.coe_mul` is a "wrong turn" for the simplifier, this undoes it and simplifies further @[simp] lemma units_coe_mul_self (u : units ℤ) : (u * u : ℤ) = 1 := by rw [←units.coe_mul, units_mul_self, units.coe_one] /-! ### bitwise ops -/ @[simp] lemma bodd_zero : bodd 0 = ff := rfl @[simp] lemma bodd_one : bodd 1 = tt := rfl lemma bodd_two : bodd 2 = ff := rfl @[simp, norm_cast] lemma bodd_coe (n : ℕ) : int.bodd n = nat.bodd n := rfl @[simp] lemma bodd_sub_nat_nat (m n : ℕ) : bodd (sub_nat_nat m n) = bxor m.bodd n.bodd := by apply sub_nat_nat_elim m n (λ m n i, bodd i = bxor m.bodd n.bodd); intros; simp; cases i.bodd; simp @[simp] lemma bodd_neg_of_nat (n : ℕ) : bodd (neg_of_nat n) = n.bodd := by cases n; simp; refl @[simp] lemma bodd_neg (n : ℤ) : bodd (-n) = bodd n := by cases n; simp [has_neg.neg, int.coe_nat_eq, int.neg, bodd, -of_nat_eq_coe] @[simp] lemma bodd_add (m n : ℤ) : bodd (m + n) = bxor (bodd m) (bodd n) := by cases m with m m; cases n with n n; unfold has_add.add; simp [int.add, -of_nat_eq_coe, bool.bxor_comm] @[simp] lemma bodd_mul (m n : ℤ) : bodd (m * n) = bodd m && bodd n := by cases m with m m; cases n with n n; simp [← int.mul_def, int.mul, -of_nat_eq_coe, bool.bxor_comm] theorem bodd_add_div2 : ∀ n, cond (bodd n) 1 0 + 2 * div2 n = n | (n : ℕ) := by rw [show (cond (bodd n) 1 0 : ℤ) = (cond (bodd n) 1 0 : ℕ), by cases bodd n; refl]; exact congr_arg of_nat n.bodd_add_div2 | -[1+ n] := begin refine eq.trans _ (congr_arg neg_succ_of_nat n.bodd_add_div2), dsimp [bodd], cases nat.bodd n; dsimp [cond, bnot, div2, int.mul], { change -[1+ 2 * nat.div2 n] = _, rw zero_add }, { rw [zero_add, add_comm], refl } end theorem div2_val : ∀ n, div2 n = n / 2 | (n : ℕ) := congr_arg of_nat n.div2_val | -[1+ n] := congr_arg neg_succ_of_nat n.div2_val lemma bit0_val (n : ℤ) : bit0 n = 2 * n := (two_mul _).symm lemma bit1_val (n : ℤ) : bit1 n = 2 * n + 1 := congr_arg (+(1:ℤ)) (bit0_val _) lemma bit_val (b n) : bit b n = 2 * n + cond b 1 0 := by { cases b, apply (bit0_val n).trans (add_zero _).symm, apply bit1_val } lemma bit_decomp (n : ℤ) : bit (bodd n) (div2 n) = n := (bit_val _ _).trans $ (add_comm _ _).trans $ bodd_add_div2 _ /-- Defines a function from `ℤ` conditionally, if it is defined for odd and even integers separately using `bit`. -/ def {u} bit_cases_on {C : ℤ → Sort u} (n) (h : ∀ b n, C (bit b n)) : C n := by rw [← bit_decomp n]; apply h @[simp] lemma bit_zero : bit ff 0 = 0 := rfl @[simp] lemma bit_coe_nat (b) (n : ℕ) : bit b n = nat.bit b n := by rw [bit_val, nat.bit_val]; cases b; refl @[simp] lemma bit_neg_succ (b) (n : ℕ) : bit b -[1+ n] = -[1+ nat.bit (bnot b) n] := by rw [bit_val, nat.bit_val]; cases b; refl @[simp] lemma bodd_bit (b n) : bodd (bit b n) = b := by rw bit_val; simp; cases b; cases bodd n; refl @[simp] lemma bodd_bit0 (n : ℤ) : bodd (bit0 n) = ff := bodd_bit ff n @[simp] lemma bodd_bit1 (n : ℤ) : bodd (bit1 n) = tt := bodd_bit tt n @[simp] lemma div2_bit (b n) : div2 (bit b n) = n := begin rw [bit_val, div2_val, add_comm, int.add_mul_div_left, (_ : (_/2:ℤ) = 0), zero_add], cases b, all_goals {exact dec_trivial} end lemma bit0_ne_bit1 (m n : ℤ) : bit0 m ≠ bit1 n := mt (congr_arg bodd) $ by simp lemma bit1_ne_bit0 (m n : ℤ) : bit1 m ≠ bit0 n := (bit0_ne_bit1 _ _).symm lemma bit1_ne_zero (m : ℤ) : bit1 m ≠ 0 := by simpa only [bit0_zero] using bit1_ne_bit0 m 0 @[simp] lemma test_bit_zero (b) : ∀ n, test_bit (bit b n) 0 = b | (n : ℕ) := by rw [bit_coe_nat]; apply nat.test_bit_zero | -[1+ n] := by rw [bit_neg_succ]; dsimp [test_bit]; rw [nat.test_bit_zero]; clear test_bit_zero; cases b; refl @[simp] lemma test_bit_succ (m b) : ∀ n, test_bit (bit b n) (nat.succ m) = test_bit n m | (n : ℕ) := by rw [bit_coe_nat]; apply nat.test_bit_succ | -[1+ n] := by rw [bit_neg_succ]; dsimp [test_bit]; rw [nat.test_bit_succ] private meta def bitwise_tac : tactic unit := `[ funext m, funext n, cases m with m m; cases n with n n; try {refl}, all_goals { apply congr_arg of_nat <|> apply congr_arg neg_succ_of_nat, try {dsimp [nat.land, nat.ldiff, nat.lor]}, try {rw [ show nat.bitwise (λ a b, a && bnot b) n m = nat.bitwise (λ a b, b && bnot a) m n, from congr_fun (congr_fun (@nat.bitwise_swap (λ a b, b && bnot a) rfl) n) m]}, apply congr_arg (λ f, nat.bitwise f m n), funext a, funext b, cases a; cases b; refl }, all_goals {unfold nat.land nat.ldiff nat.lor} ] theorem bitwise_or : bitwise bor = lor := by bitwise_tac theorem bitwise_and : bitwise band = land := by bitwise_tac theorem bitwise_diff : bitwise (λ a b, a && bnot b) = ldiff := by bitwise_tac theorem bitwise_xor : bitwise bxor = lxor := by bitwise_tac @[simp] lemma bitwise_bit (f : bool → bool → bool) (a m b n) : bitwise f (bit a m) (bit b n) = bit (f a b) (bitwise f m n) := begin cases m with m m; cases n with n n; repeat { rw [← int.coe_nat_eq] <|> rw bit_coe_nat <|> rw bit_neg_succ }; unfold bitwise nat_bitwise bnot; [ induction h : f ff ff, induction h : f ff tt, induction h : f tt ff, induction h : f tt tt ], all_goals { unfold cond, rw nat.bitwise_bit, repeat { rw bit_coe_nat <|> rw bit_neg_succ <|> rw bnot_bnot } }, all_goals { unfold bnot {fail_if_unchanged := ff}; rw h; refl } end @[simp] lemma lor_bit (a m b n) : lor (bit a m) (bit b n) = bit (a || b) (lor m n) := by rw [← bitwise_or, bitwise_bit] @[simp] lemma land_bit (a m b n) : land (bit a m) (bit b n) = bit (a && b) (land m n) := by rw [← bitwise_and, bitwise_bit] @[simp] lemma ldiff_bit (a m b n) : ldiff (bit a m) (bit b n) = bit (a && bnot b) (ldiff m n) := by rw [← bitwise_diff, bitwise_bit] @[simp] lemma lxor_bit (a m b n) : lxor (bit a m) (bit b n) = bit (bxor a b) (lxor m n) := by rw [← bitwise_xor, bitwise_bit] @[simp] lemma lnot_bit (b) : ∀ n, lnot (bit b n) = bit (bnot b) (lnot n) | (n : ℕ) := by simp [lnot] | -[1+ n] := by simp [lnot] @[simp] lemma test_bit_bitwise (f : bool → bool → bool) (m n k) : test_bit (bitwise f m n) k = f (test_bit m k) (test_bit n k) := begin induction k with k IH generalizing m n; apply bit_cases_on m; intros a m'; apply bit_cases_on n; intros b n'; rw bitwise_bit, { simp [test_bit_zero] }, { simp [test_bit_succ, IH] } end @[simp] lemma test_bit_lor (m n k) : test_bit (lor m n) k = test_bit m k || test_bit n k := by rw [← bitwise_or, test_bit_bitwise] @[simp] lemma test_bit_land (m n k) : test_bit (land m n) k = test_bit m k && test_bit n k := by rw [← bitwise_and, test_bit_bitwise] @[simp] lemma test_bit_ldiff (m n k) : test_bit (ldiff m n) k = test_bit m k && bnot (test_bit n k) := by rw [← bitwise_diff, test_bit_bitwise] @[simp] lemma test_bit_lxor (m n k) : test_bit (lxor m n) k = bxor (test_bit m k) (test_bit n k) := by rw [← bitwise_xor, test_bit_bitwise] @[simp] lemma test_bit_lnot : ∀ n k, test_bit (lnot n) k = bnot (test_bit n k) | (n : ℕ) k := by simp [lnot, test_bit] | -[1+ n] k := by simp [lnot, test_bit] lemma shiftl_add : ∀ (m : ℤ) (n : ℕ) (k : ℤ), shiftl m (n + k) = shiftl (shiftl m n) k | (m : ℕ) n (k:ℕ) := congr_arg of_nat (nat.shiftl_add _ _ _) | -[1+ m] n (k:ℕ) := congr_arg neg_succ_of_nat (nat.shiftl'_add _ _ _ _) | (m : ℕ) n -[1+k] := sub_nat_nat_elim n k.succ (λ n k i, shiftl ↑m i = nat.shiftr (nat.shiftl m n) k) (λ i n, congr_arg coe $ by rw [← nat.shiftl_sub, nat.add_sub_cancel_left]; apply nat.le_add_right) (λ i n, congr_arg coe $ by rw [add_assoc, nat.shiftr_add, ← nat.shiftl_sub, nat.sub_self]; refl) | -[1+ m] n -[1+k] := sub_nat_nat_elim n k.succ (λ n k i, shiftl -[1+ m] i = -[1+ nat.shiftr (nat.shiftl' tt m n) k]) (λ i n, congr_arg neg_succ_of_nat $ by rw [← nat.shiftl'_sub, nat.add_sub_cancel_left]; apply nat.le_add_right) (λ i n, congr_arg neg_succ_of_nat $ by rw [add_assoc, nat.shiftr_add, ← nat.shiftl'_sub, nat.sub_self]; refl) lemma shiftl_sub (m : ℤ) (n : ℕ) (k : ℤ) : shiftl m (n - k) = shiftr (shiftl m n) k := shiftl_add _ _ _ @[simp] lemma shiftl_neg (m n : ℤ) : shiftl m (-n) = shiftr m n := rfl @[simp] lemma shiftr_neg (m n : ℤ) : shiftr m (-n) = shiftl m n := by rw [← shiftl_neg, neg_neg] @[simp] lemma shiftl_coe_nat (m n : ℕ) : shiftl m n = nat.shiftl m n := rfl @[simp] lemma shiftr_coe_nat (m n : ℕ) : shiftr m n = nat.shiftr m n := by cases n; refl @[simp] lemma shiftl_neg_succ (m n : ℕ) : shiftl -[1+ m] n = -[1+ nat.shiftl' tt m n] := rfl @[simp] lemma shiftr_neg_succ (m n : ℕ) : shiftr -[1+ m] n = -[1+ nat.shiftr m n] := by cases n; refl lemma shiftr_add : ∀ (m : ℤ) (n k : ℕ), shiftr m (n + k) = shiftr (shiftr m n) k | (m : ℕ) n k := by rw [shiftr_coe_nat, shiftr_coe_nat, ← int.coe_nat_add, shiftr_coe_nat, nat.shiftr_add] | -[1+ m] n k := by rw [shiftr_neg_succ, shiftr_neg_succ, ← int.coe_nat_add, shiftr_neg_succ, nat.shiftr_add] lemma shiftl_eq_mul_pow : ∀ (m : ℤ) (n : ℕ), shiftl m n = m * ↑(2 ^ n) | (m : ℕ) n := congr_arg coe (nat.shiftl_eq_mul_pow _ _) | -[1+ m] n := @congr_arg ℕ ℤ _ _ (λi, -i) (nat.shiftl'_tt_eq_mul_pow _ _) lemma shiftr_eq_div_pow : ∀ (m : ℤ) (n : ℕ), shiftr m n = m / ↑(2 ^ n) | (m : ℕ) n := by rw shiftr_coe_nat; exact congr_arg coe (nat.shiftr_eq_div_pow _ _) | -[1+ m] n := begin rw [shiftr_neg_succ, neg_succ_of_nat_div, nat.shiftr_eq_div_pow], refl, exact coe_nat_lt_coe_nat_of_lt (pow_pos dec_trivial _) end lemma one_shiftl (n : ℕ) : shiftl 1 n = (2 ^ n : ℕ) := congr_arg coe (nat.one_shiftl _) @[simp] lemma zero_shiftl : ∀ n : ℤ, shiftl 0 n = 0 | (n : ℕ) := congr_arg coe (nat.zero_shiftl _) | -[1+ n] := congr_arg coe (nat.zero_shiftr _) @[simp] lemma zero_shiftr (n) : shiftr 0 n = 0 := zero_shiftl _ /-! ### Least upper bound property for integers -/ section classical open_locale classical theorem exists_least_of_bdd {P : ℤ → Prop} (Hbdd : ∃ b : ℤ, ∀ z : ℤ, P z → b ≤ z) (Hinh : ∃ z : ℤ, P z) : ∃ lb : ℤ, P lb ∧ (∀ z : ℤ, P z → lb ≤ z) := let ⟨b, Hb⟩ := Hbdd in have EX : ∃ n : ℕ, P (b + n), from let ⟨elt, Helt⟩ := Hinh in match elt, le.dest (Hb _ Helt), Helt with | ._, ⟨n, rfl⟩, Hn := ⟨n, Hn⟩ end, ⟨b + (nat.find EX : ℤ), nat.find_spec EX, λ z h, match z, le.dest (Hb _ h), h with | ._, ⟨n, rfl⟩, h := add_le_add_left (int.coe_nat_le.2 $ nat.find_min' _ h) _ end⟩ theorem exists_greatest_of_bdd {P : ℤ → Prop} (Hbdd : ∃ b : ℤ, ∀ z : ℤ, P z → z ≤ b) (Hinh : ∃ z : ℤ, P z) : ∃ ub : ℤ, P ub ∧ (∀ z : ℤ, P z → z ≤ ub) := have Hbdd' : ∃ (b : ℤ), ∀ (z : ℤ), P (-z) → b ≤ z, from let ⟨b, Hb⟩ := Hbdd in ⟨-b, λ z h, neg_le.1 (Hb _ h)⟩, have Hinh' : ∃ z : ℤ, P (-z), from let ⟨elt, Helt⟩ := Hinh in ⟨-elt, by rw [neg_neg]; exact Helt⟩, let ⟨lb, Plb, al⟩ := exists_least_of_bdd Hbdd' Hinh' in ⟨-lb, Plb, λ z h, le_neg.1 $ al _ $ by rwa neg_neg⟩ end classical end int attribute [irreducible] int.nonneg
5c32c655ae66350e14aa6664b28e3c96737b66d3
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/group_theory/sylow.lean
9f1ca8f9382e0a4cb459662ecbfd9c7888fdf9f2
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
26,718
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import data.set_like.fintype import group_theory.group_action.conj_act import group_theory.p_group /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `is_p_group.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modeq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open fintype mul_action subgroup section infinite_sylow variables (p : ℕ) (G : Type*) [group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure sylow extends subgroup G := (is_p_group' : is_p_group p to_subgroup) (is_maximal' : ∀ {Q : subgroup G}, is_p_group p Q → to_subgroup ≤ Q → Q = to_subgroup) variables {p} {G} namespace sylow instance : has_coe (sylow p G) (subgroup G) := ⟨sylow.to_subgroup⟩ @[simp] lemma to_subgroup_eq_coe {P : sylow p G} : P.to_subgroup = ↑P := rfl @[ext] lemma ext {P Q : sylow p G} (h : (P : subgroup G) = Q) : P = Q := by cases P; cases Q; congr' lemma ext_iff {P Q : sylow p G} : P = Q ↔ (P : subgroup G) = Q := ⟨congr_arg coe, ext⟩ instance : set_like (sylow p G) G := { coe := coe, coe_injective' := λ P Q h, ext (set_like.coe_injective h) } end sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ lemma is_p_group.exists_le_sylow {P : subgroup G} (hP : is_p_group p P) : ∃ Q : sylow p G, P ≤ Q := exists.elim (zorn.zorn_nonempty_partial_order₀ {Q : subgroup G | is_p_group p Q} (λ c hc1 hc2 Q hQ, ⟨ { carrier := ⋃ (R : c), R, one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩, inv_mem' := λ g ⟨_, ⟨R, rfl⟩, hg⟩, ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩, mul_mem' := λ g h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩, (hc2.total_of_refl R.2 S.2).elim (λ T, ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) (λ T, ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩) }, λ ⟨g, _, ⟨S, rfl⟩, hg⟩, by { refine exists_imp_exists (λ k hk, _) (hc1 S.2 ⟨g, hg⟩), rwa [subtype.ext_iff, coe_pow] at hk ⊢ }, λ M hM g hg, ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) (λ Q ⟨hQ1, hQ2, hQ3⟩, ⟨⟨Q, hQ1, hQ3⟩, hQ2⟩) instance sylow.nonempty : nonempty (sylow p G) := nonempty_of_exists is_p_group.of_bot.exists_le_sylow noncomputable instance sylow.inhabited : inhabited (sylow p G) := classical.inhabited_of_nonempty sylow.nonempty lemma sylow.exists_comap_eq_of_ker_is_p_group {H : Type*} [group H] (P : sylow p H) {f : H →* G} (hf : is_p_group p f.ker) : ∃ Q : sylow p G, Q.1.comap f = P := exists_imp_exists (λ Q hQ, P.3 (Q.2.comap_of_ker_is_p_group f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow lemma sylow.exists_comap_eq_of_injective {H : Type*} [group H] (P : sylow p H) {f : H →* G} (hf : function.injective f) : ∃ Q : sylow p G, Q.1.comap f = P := P.exists_comap_eq_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf) lemma sylow.exists_comap_subtype_eq {H : subgroup G} (P : sylow p H) : ∃ Q : sylow p G, Q.1.comap H.subtype = P := P.exists_comap_eq_of_injective subtype.coe_injective /-- If the kernel of `f : H →* G` is a `p`-group, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable def sylow.fintype_of_ker_is_p_group {H : Type*} [group H] {f : H →* G} (hf : is_p_group p f.ker) [fintype (sylow p G)] : fintype (sylow p H) := let h_exists := λ P : sylow p H, P.exists_comap_eq_of_ker_is_p_group hf, g : sylow p H → sylow p G := λ P, classical.some (h_exists P), hg : ∀ P : sylow p H, (g P).1.comap f = P := λ P, classical.some_spec (h_exists P) in fintype.of_injective g (λ P Q h, sylow.ext (by simp only [←hg, h])) /-- If `f : H →* G` is injective, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable def sylow.fintype_of_injective {H : Type*} [group H] {f : H →* G} (hf : function.injective f) [fintype (sylow p G)] : fintype (sylow p H) := sylow.fintype_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf) /-- If `H` is a subgroup of `G`, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable instance (H : subgroup G) [fintype (sylow p G)] : fintype (sylow p H) := sylow.fintype_of_injective (show function.injective H.subtype, from subtype.coe_injective) open_locale pointwise /-- `subgroup.pointwise_mul_action` preserves Sylow subgroups. -/ instance sylow.pointwise_mul_action {α : Type*} [group α] [mul_distrib_mul_action α G] : mul_action α (sylow p G) := { smul := λ g P, ⟨g • P, P.2.map _, λ Q hQ hS, inv_smul_eq_iff.mp (P.3 (hQ.map _) (λ s hs, (congr_arg (∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs)))))⟩, one_smul := λ P, sylow.ext (one_smul α P), mul_smul := λ g h P, sylow.ext (mul_smul g h P) } lemma sylow.pointwise_smul_def {α : Type*} [group α] [mul_distrib_mul_action α G] {g : α} {P : sylow p G} : ↑(g • P) = g • (P : subgroup G) := rfl instance sylow.mul_action : mul_action G (sylow p G) := comp_hom _ mul_aut.conj lemma sylow.smul_def {g : G} {P : sylow p G} : g • P = mul_aut.conj g • P := rfl lemma sylow.coe_subgroup_smul {g : G} {P : sylow p G} : ↑(g • P) = mul_aut.conj g • (P : subgroup G) := rfl lemma sylow.coe_smul {g : G} {P : sylow p G} : ↑(g • P) = mul_aut.conj g • (P : set G) := rfl lemma sylow.smul_eq_iff_mem_normalizer {g : G} {P : sylow p G} : g • P = P ↔ g ∈ (P : subgroup G).normalizer := begin rw [eq_comm, set_like.ext_iff, ←inv_mem_iff, mem_normalizer_iff, inv_inv], exact forall_congr (λ h, iff_congr iff.rfl ⟨λ ⟨a, b, c⟩, (congr_arg _ c).mp ((congr_arg (∈ P.1) (mul_aut.inv_apply_self G (mul_aut.conj g) a)).mpr b), λ hh, ⟨(mul_aut.conj g)⁻¹ h, hh, mul_aut.apply_inv_self G (mul_aut.conj g) h⟩⟩), end lemma sylow.smul_eq_of_normal {g : G} {P : sylow p G} [h : (P : subgroup G).normal] : g • P = P := by simp only [sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] lemma subgroup.sylow_mem_fixed_points_iff (H : subgroup G) {P : sylow p G} : P ∈ fixed_points H (sylow p G) ↔ H ≤ (P : subgroup G).normalizer := by simp_rw [set_like.le_def, ←sylow.smul_eq_iff_mem_normalizer]; exact subtype.forall lemma is_p_group.inf_normalizer_sylow {P : subgroup G} (hP : is_p_group p P) (Q : sylow p G) : P ⊓ (Q : subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) lemma is_p_group.sylow_mem_fixed_points_iff {P : subgroup G} (hP : is_p_group p P) {Q : sylow p G} : Q ∈ fixed_points P (sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixed_points_iff, ←inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : fact p.prime] [fintype (sylow p G)] : is_pretransitive G (sylow p G) := ⟨λ P Q, by { classical, have H := λ {R : sylow p G} {S : orbit G P}, calc S ∈ fixed_points R (orbit G P) ↔ S.1 ∈ fixed_points R (sylow p G) : forall_congr (λ a, subtype.ext_iff) ... ↔ R.1 ≤ S : R.2.sylow_mem_fixed_points_iff ... ↔ S.1.1 = R : ⟨λ h, R.3 S.1.2 h, ge_of_eq⟩, suffices : set.nonempty (fixed_points Q (orbit G P)), { exact exists.elim this (λ R hR, (congr_arg _ (sylow.ext (H.mp hR))).mp R.2) }, apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card, refine λ h, hp.out.not_dvd_one (nat.modeq_zero_iff_dvd.mp _), calc 1 = card (fixed_points P (orbit G P)) : _ ... ≡ card (orbit G P) [MOD p] : (P.2.card_modeq_card_fixed_points (orbit G P)).symm ... ≡ 0 [MOD p] : nat.modeq_zero_iff_dvd.mpr h, rw ← set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P), refine card_congr' (congr_arg _ (eq.symm _)), rw set.eq_singleton_iff_unique_mem, exact ⟨H.mpr rfl, λ R h, subtype.ext (sylow.ext (H.mp h))⟩ }⟩ variables (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ lemma card_sylow_modeq_one [fact p.prime] [fintype (sylow p G)] : card (sylow p G) ≡ 1 [MOD p] := begin refine sylow.nonempty.elim (λ P : sylow p G, _), have : fixed_points P.1 (sylow p G) = {P} := set.ext (λ Q : sylow p G, calc Q ∈ fixed_points P (sylow p G) ↔ P.1 ≤ Q : P.2.sylow_mem_fixed_points_iff ... ↔ Q.1 = P.1 : ⟨P.3 Q.2, ge_of_eq⟩ ... ↔ Q ∈ {P} : sylow.ext_iff.symm.trans set.mem_singleton_iff.symm), haveI : fintype (fixed_points P.1 (sylow p G)), { rw this, apply_instance }, have : card (fixed_points P.1 (sylow p G)) = 1, { simp [this] }, exact (P.2.card_modeq_card_fixed_points (sylow p G)).trans (by rw this), end variables {p} {G} /-- Sylow subgroups are isomorphic -/ def sylow.equiv_smul (P : sylow p G) (g : G) : P ≃* (g • P : sylow p G) := equiv_smul (mul_aut.conj g) P.1 /-- Sylow subgroups are isomorphic -/ noncomputable def sylow.equiv [fact p.prime] [fintype (sylow p G)] (P Q : sylow p G) : P ≃* Q := begin rw ← classical.some_spec (exists_smul_eq G P Q), exact P.equiv_smul (classical.some (exists_smul_eq G P Q)), end @[simp] lemma sylow.orbit_eq_top [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : orbit G P = ⊤ := top_le_iff.mp (λ Q hQ, exists_smul_eq G P Q) lemma sylow.stabilizer_eq_normalizer (P : sylow p G) : stabilizer G P = P.1.normalizer := ext (λ g, sylow.smul_eq_iff_mem_normalizer) /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def sylow.equiv_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : sylow p G ≃ G ⧸ P.1.normalizer := calc sylow p G ≃ (⊤ : set (sylow p G)) : (equiv.set.univ (sylow p G)).symm ... ≃ orbit G P : by rw P.orbit_eq_top ... ≃ G ⧸ (stabilizer G P) : orbit_equiv_quotient_stabilizer G P ... ≃ G ⧸ P.1.normalizer : by rw P.stabilizer_eq_normalizer noncomputable instance [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : fintype (G ⧸ P.1.normalizer) := of_equiv (sylow p G) P.equiv_quotient_normalizer lemma card_sylow_eq_card_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) = card (G ⧸ P.1.normalizer) := card_congr P.equiv_quotient_normalizer lemma card_sylow_eq_index_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) = P.1.normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans P.1.normalizer.index_eq_card.symm lemma card_sylow_dvd_index [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) ∣ P.1.index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) /-- Frattini's Argument: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ lemma sylow.normalizer_sup_eq_top {p : ℕ} [fact p.prime] {N : subgroup G} [N.normal] [fintype (sylow p N)] (P : sylow p N) : ((↑P : subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := begin refine top_le_iff.mp (λ g hg, _), obtain ⟨n, hn⟩ := exists_smul_eq N ((mul_aut.conj_normal g : mul_aut N) • P) P, rw [←inv_mul_cancel_left ↑n g, sup_comm], apply mul_mem_sup (N.inv_mem n.2), rw [sylow.smul_def, ←mul_smul, ←mul_aut.conj_normal_coe, ←mul_aut.conj_normal.map_mul, sylow.ext_iff, sylow.pointwise_smul_def, pointwise_smul_def] at hn, refine λ x, (mem_map_iff_mem (show function.injective (mul_aut.conj (↑n * g)).to_monoid_hom, from (mul_aut.conj (↑n * g)).injective)).symm.trans _, rw [map_map, ←(congr_arg (map N.subtype) hn), map_map], refl, end end infinite_sylow open equiv equiv.perm finset function list quotient_group open_locale big_operators universes u v w variables {G : Type u} {α : Type v} {β : Type w} [group G] local attribute [instance, priority 10] subtype.fintype set_fintype classical.prop_decidable lemma quotient_group.card_preimage_mk [fintype G] (s : subgroup G) (t : set (G ⧸ s)) : fintype.card (quotient_group.mk ⁻¹' t) = fintype.card s * fintype.card t := by rw [← fintype.card_prod, fintype.card_congr (preimage_mk_equiv_subgroup_times_set _ _)] namespace sylow open subgroup submonoid mul_action lemma mem_fixed_points_mul_left_cosets_iff_mem_normalizer {H : subgroup G} [fintype ((H : set G) : Type u)] {x : G} : (x : G ⧸ H) ∈ fixed_points H (G ⧸ H) ↔ x ∈ normalizer H := ⟨λ hx, have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x, from λ _, ((mem_fixed_points' _).1 hx _), (inv_mem_iff _).1 (@mem_normalizer_fintype _ _ _ _inst_2 _ (λ n (hn : n ∈ H), have (n⁻¹ * x)⁻¹ * x ∈ H := quotient_group.eq.1 (ha (mem_orbit _ ⟨n⁻¹, H.inv_mem hn⟩)), show _ ∈ H, by {rw [mul_inv_rev, inv_inv] at this, convert this, rw inv_inv} )), λ (hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H), (mem_fixed_points' _).2 $ λ y, quotient.induction_on' y $ λ y hy, quotient_group.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy in have hb₂ : (b * x)⁻¹ * y ∈ H := quotient_group.eq.1 hb₂, (inv_mem_iff H).1 $ (hx _).2 $ (mul_mem_cancel_left H (H.inv_mem hb₁)).1 $ by rw hx at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ def fixed_points_mul_left_cosets_equiv_quotient (H : subgroup G) [fintype (H : set G)] : mul_action.fixed_points H (G ⧸ H) ≃ normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := @subtype_quotient_equiv_quotient_subtype G (normalizer H : set G) (id _) (id _) (fixed_points _ _) (λ a, (@mem_fixed_points_mul_left_cosets_iff_mem_normalizer _ _ _ _inst_2 _).symm) (by intros; refl) /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ lemma card_quotient_normalizer_modeq_card_quotient [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] {H : subgroup G} (hH : fintype.card H = p ^ n) : card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) ≡ card (G ⧸ H) [MOD p] := begin rw [← fintype.card_congr (fixed_points_mul_left_cosets_equiv_quotient H)], exact ((is_p_group.of_card hH).card_modeq_card_fixed_points _).symm end /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ lemma card_normalizer_modeq_card [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] {H : subgroup G} (hH : fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := have subgroup.comap ((normalizer H).subtype : normalizer H →* G) H ≃ H, from set.bij_on.equiv (normalizer H).subtype ⟨λ _, id, λ _ _ _ _ h, subtype.val_injective h, λ x hx, ⟨⟨x, le_normalizer hx⟩, hx, rfl⟩⟩, begin rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H), fintype.card_congr this, hH, pow_succ], exact (card_quotient_normalizer_modeq_card_quotient hH).mul_right' _ end /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ lemma prime_dvd_card_quotient_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in have hcard : card (G ⧸ H) = s * p := (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2 ⟨⟨1, H.one_mem⟩⟩)).1 (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]), have hm : s * p % p = card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) % p := hcard ▸ (card_quotient_normalizer_modeq_card_quotient hH).symm, nat.dvd_of_mod_eq_zero (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ lemma prime_pow_dvd_card_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := nat.modeq_zero_iff_dvd.1 ((card_normalizer_modeq_card hH).trans hdvd.modeq_zero_nat) /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : ∃ K : subgroup G, fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in have hcard : card (G ⧸ H) = s * p := (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2 ⟨⟨1, H.one_mem⟩⟩)).1 (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]), have hm : s * p % p = card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) % p := card_congr (fixed_points_mul_left_cosets_equiv_quotient H) ▸ hcard ▸ (is_p_group.of_card hH).card_modeq_card_fixed_points _, have hm' : p ∣ card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) := nat.dvd_of_mod_eq_zero (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm), let ⟨x, hx⟩ := @exists_prime_order_of_dvd_card _ (quotient_group.quotient.group _) _ _ hp hm' in have hequiv : H ≃ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := ⟨λ a, ⟨⟨a.1, le_normalizer a.2⟩, a.2⟩, λ a, ⟨a.1.1, a.2⟩, λ ⟨_, _⟩, rfl, λ ⟨⟨_, _⟩, _⟩, rfl⟩, ⟨subgroup.map ((normalizer H).subtype) (subgroup.comap (quotient_group.mk' (comap H.normalizer.subtype H)) (zpowers x)), begin show card ↥(map H.normalizer.subtype (comap (mk' (comap H.normalizer.subtype H)) (subgroup.zpowers x))) = p ^ (n + 1), suffices : card ↥(subtype.val '' ((subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x)) : set (↥(H.normalizer)))) = p^(n+1), { convert this using 2 }, rw [set.card_image_of_injective (subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x) : set (H.normalizer)) subtype.val_injective, pow_succ', ← hH, fintype.card_congr hequiv, ← hx, order_eq_card_zpowers, ← fintype.card_prod], exact @fintype.card_congr _ _ (id _) (id _) (preimage_mk_equiv_subgroup_times_set _ _) end, begin assume y hy, simp only [exists_prop, subgroup.coe_subtype, mk'_apply, subgroup.mem_map, subgroup.mem_comap], refine ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩, rw [zpow_zero, eq_comm, quotient_group.eq_one_iff], simpa using hy end⟩ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [fintype G] (p : ℕ) : ∀ {n m : ℕ} [hp : fact p.prime] (hdvd : p ^ m ∣ card G) (H : subgroup G) (hH : card H = p ^ n) (hnm : n ≤ m), ∃ K : subgroup G, card K = p ^ m ∧ H ≤ K | n m := λ hp hdvd H hH hnm, (lt_or_eq_of_le hnm).elim (λ hnm : n < m, have h0m : 0 < m, from (lt_of_le_of_lt n.zero_le hnm), have wf : m - 1 < m, from nat.sub_lt h0m zero_lt_one, have hnm1 : n ≤ m - 1, from le_tsub_of_add_le_right hnm, let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le n (m - 1) hp (nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 in have hdvd' : p ^ ((m - 1) + 1) ∣ card G, by rwa [tsub_add_cancel_of_le h0m.nat_succ_le], let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ hp hdvd' K hK.1 in ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) (λ hnm : n = m, ⟨H, by simp [hH, hnm]⟩) /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [fintype G] (p : ℕ) {n : ℕ} [fact p.prime] (hdvd : p ^ n ∣ card G) : ∃ K : subgroup G, fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (by simp) n.zero_le in ⟨K, hK.1⟩ lemma pow_dvd_card_of_pow_dvd_card [fintype G] {p n : ℕ} [fact p.prime] (P : sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := begin obtain ⟨Q, hQ⟩ := exists_subgroup_card_pow_prime p hdvd, obtain ⟨R, hR⟩ := (is_p_group.of_card hQ).exists_le_sylow, obtain ⟨g, rfl⟩ := exists_smul_eq G R P, calc p ^ n = card Q : hQ.symm ... ∣ card R : card_dvd_of_le hR ... = card (g • R) : card_congr (R.equiv_smul g).to_equiv end lemma dvd_card_of_dvd_card [fintype G] {p : ℕ} [fact p.prime] (P : sylow p G) (hdvd : p ∣ card G) : p ∣ card P := begin rw ← pow_one p at hdvd, have key := P.pow_dvd_card_of_pow_dvd_card hdvd, rwa pow_one at key, end lemma ne_bot_of_dvd_card [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) (hdvd : p ∣ card G) : (P : subgroup G) ≠ ⊥ := begin refine λ h, hp.out.not_dvd_one _, have key : p ∣ card (P : subgroup G) := P.dvd_card_of_dvd_card hdvd, rwa [h, card_bot] at key, end lemma subsingleton_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (h : (P : subgroup G).normal) : subsingleton (sylow p G) := begin apply subsingleton.intro, intros Q R, obtain ⟨x, h1⟩ := exists_smul_eq G P Q, obtain ⟨x, h2⟩ := exists_smul_eq G P R, rw sylow.smul_eq_of_normal at h1 h2, rw [← h1, ← h2], end section pointwise open_locale pointwise lemma characteristic_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (h : (P : subgroup G).normal) : (P : subgroup G).characteristic := begin haveI := sylow.subsingleton_of_normal P h, rw characteristic_iff_map_eq, intros Φ, show (Φ • P).to_subgroup = P.to_subgroup, congr, end end pointwise /-- The preimage of a Sylow subgroup under a homomorphism with p-group-kernel is a Sylow subgroup -/ def comap_of_ker_is_p_group {p : ℕ} (P : sylow p G) {K : Type*} [group K] (ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) (h : P.1 ≤ ϕ.range) : sylow p K := { P.1.comap ϕ with is_p_group' := P.2.comap_of_ker_is_p_group ϕ hϕ, is_maximal' := λ Q hQ hle, by { rw ← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle)), exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm }, } @[simp] lemma coe_comap_of_ker_is_p_group {p : ℕ} {P : sylow p G} {K : Type*} [group K] (ϕ : K →* G) (hϕ : is_p_group p ϕ.ker) (h : P.1 ≤ ϕ.range) : ↑(P.comap_of_ker_is_p_group ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup -/ def comap_of_injective {p : ℕ} (P : sylow p G) {K : Type*} [group K] (ϕ : K →* G) (hϕ : function.injective ϕ) (h : P.1 ≤ ϕ.range) : sylow p K := P.comap_of_ker_is_p_group ϕ (is_p_group.ker_is_p_group_of_injective hϕ) h @[simp] lemma coe_comap_of_injective {p : ℕ} {P : sylow p G} {K : Type*} [group K] (ϕ : K →* G) (hϕ : function.injective ϕ) (h : P.1 ≤ ϕ.range) : ↑(P.comap_of_injective ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl /-- A sylow subgroup in G is also a sylow subgroup in a subgroup of G. -/ def subtype {p : ℕ} (P : sylow p G) (N : subgroup G) (h : ↑P ≤ N) : sylow p N := P.comap_of_injective N.subtype subtype.coe_injective (by simp [h]) @[simp] lemma coe_subtype {p : ℕ} {P : sylow p G} {N : subgroup G} {h : P.1 ≤ N} : ↑(P.subtype N h) = subgroup.comap N.subtype ↑P := rfl lemma normal_of_normalizer_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (hn : (↑P : subgroup G).normalizer.normal) : (↑P : subgroup G).normal := by rw [←normalizer_eq_top, ←normalizer_sup_eq_top (P.subtype _ le_normalizer), coe_subtype, map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), sup_idem] @[simp] lemma normalizer_normalizer {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : (↑P : subgroup G).normalizer.normalizer = (↑P : subgroup G).normalizer := begin have := normal_of_normalizer_normal (P.subtype _ (le_normalizer.trans le_normalizer)), simp_rw [←normalizer_eq_top, coe_subtype, ←comap_subtype_normalizer_eq le_normalizer, ←comap_subtype_normalizer_eq le_rfl, comap_subtype_self_eq_top] at this, rw [←subtype_range (P : subgroup G).normalizer.normalizer, monoid_hom.range_eq_map, ←this rfl], exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), end lemma normal_of_normalizer_condition (hnc : normalizer_condition G) {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : (↑P : subgroup G).normal := normalizer_eq_top.mp $ normalizer_condition_iff_only_full_group_self_normalizing.mp hnc _ $ normalizer_normalizer _ end sylow
0cca5f424bde22cb2e709cc5f521c318f018614c
57fdc8de88f5ea3bfde4325e6ecd13f93a274ab5
/tactic/alias.lean
d0e28e7e5022679ac2d16908e176d752d3430689
[ "Apache-2.0" ]
permissive
louisanu/mathlib
11f56f2d40dc792bc05ee2f78ea37d73e98ecbfe
2bd5e2159d20a8f20d04fc4d382e65eea775ed39
refs/heads/master
1,617,706,993,439
1,523,163,654,000
1,523,163,654,000
124,519,997
0
0
Apache-2.0
1,520,588,283,000
1,520,588,283,000
null
UTF-8
Lean
false
false
4,418
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro This file defines an alias command, which can be used to create copies of a theorem or definition with different names. Syntax: / -- doc string - / alias my_theorem ← alias1 alias2 ... This produces defs or theorems of the form: / -- doc string - / @[alias] theorem alias1 : <type of my_theorem> := my_theorem / -- doc string - / @[alias] theorem alias2 : <type of my_theorem> := my_theorem Iff alias syntax: alias A_iff_B ↔ B_of_A A_of_B alias A_iff_B ↔ .. This gets an existing biconditional theorem A_iff_B and produces the one-way implications B_of_A and A_of_B (with no change in implicit arguments). A blank _ can be used to avoid generating one direction. The .. notation attempts to generate the 'of'-names automatically when the input theorem has the form A_iff_B or A_iff_B_left etc. -/ import data.buffer.parser open lean.parser tactic interactive parser namespace tactic.alias @[user_attribute] meta def alias_attr : user_attribute := { name := `alias, descr := "This definition is an alias of another." } meta def alias_direct (d : declaration) (doc : string) (al : name) : tactic unit := do updateex_env $ λ env, env.add (match d.to_definition with | declaration.defn n ls t _ _ _ := declaration.defn al ls t (expr.const n (level.param <$> ls)) reducibility_hints.abbrev tt | declaration.thm n ls t _ := declaration.thm al ls t $ task.pure $ expr.const n (level.param <$> ls) | _ := undefined end), alias_attr.set al () tt, add_doc_string al doc meta def mk_iff_mp_app (iffmp : name) : expr → (nat → expr) → tactic expr | (expr.pi n bi e t) f := expr.lam n bi e <$> mk_iff_mp_app t (λ n, f (n+1) (expr.var n)) | `(%%a ↔ %%b) f := pure $ @expr.const tt iffmp [] a b (f 0) | _ f := fail "Target theorem must have the form `Π x y z, a ↔ b`" meta def alias_iff (d : declaration) (doc : string) (al : name) (iffmp : name) : tactic unit := (if al = `_ then skip else get_decl al >> skip) <|> do let ls := d.univ_params, let t := d.type, v ← mk_iff_mp_app iffmp t (λ_, expr.const d.to_name (level.param <$> ls)), t' ← infer_type v, updateex_env $ λ env, env.add (declaration.thm al ls t' $ task.pure v), alias_attr.set al () tt, add_doc_string al doc meta def make_left_right : name → tactic (name × name) | (name.mk_string s p) := do let buf : char_buffer := s.to_char_buffer, sum.inr parts ← pure $ run (sep_by1 (ch '_') (many_char (sat (≠ '_')))) s.to_char_buffer, (left, _::right) ← pure $ parts.span (≠ "iff"), let pfx (a b : string) := a.to_list.is_prefix_of b.to_list, (suffix', right') ← pure $ right.reverse.span (λ s, pfx "left" s ∨ pfx "right" s), let right := right'.reverse, let suffix := suffix'.reverse, pure (p <.> "_".intercalate (right ++ "of" :: left ++ suffix), p <.> "_".intercalate (left ++ "of" :: right ++ suffix)) | _ := failed @[user_command] meta def alias_cmd (meta_info : decl_meta_info) (_ : parse $ tk "alias") : lean.parser unit := do old ← ident, d ← (do old ← resolve_constant old, get_decl old) <|> fail ("declaration " ++ to_string old ++ " not found"), let doc := λ al : name, meta_info.doc_string.get_or_else $ "**Alias** of `" ++ to_string old ++ "`.", do { tk "←" <|> tk "<-", aliases ← many ident, ↑(aliases.mmap' $ λ al, alias_direct d (doc al) al) } <|> do { tk "↔" <|> tk "<->", (left, right) ← mcond ((tk "." *> tk "." >> pure tt) <|> pure ff) (make_left_right old <|> fail "invalid name for automatic name generation") (prod.mk <$> types.ident_ <*> types.ident_), alias_iff d (doc left) left `iff.mp, alias_iff d (doc right) right `iff.mpr } meta def get_lambda_body : expr → expr | (expr.lam _ _ _ b) := get_lambda_body b | a := a meta def get_alias_target (n : name) : tactic (option name) := do attr ← try_core (has_attribute `alias n), option.cases_on attr (pure none) $ λ_, do d ← get_decl n, let (head, args) := (get_lambda_body d.value).get_app_fn_args, let head := if head.is_constant_of `iff.mp ∨ head.is_constant_of `iff.mpr then expr.get_app_fn (head.ith_arg 2) else head, guardb $ head.is_constant, pure $ head.const_name end tactic.alias
226cdf4bb32e54e331d11495b297c15d9193091c
4dbc106f944ae08d9082a937156fe53f8241336c
/src/data/hashmap.lean
ab4f855b17db1af0452470fac19422b48b5dc993
[]
no_license
spl/lean-finmap
feff7ee53811b172531f84b20c02e50c787fe6fc
936d9caeb27631e3c6cf20e972de4837c9fe98fa
refs/heads/master
1,584,501,090,642
1,537,511,660,000
1,537,515,626,000
134,227,269
0
0
null
null
null
null
UTF-8
Lean
false
false
11,837
lean
import data.array.basic data.list.dict data.pnat universes u v /-- A hash map with an `n`-sized array of association list buckets, a hash function, and proofs that the buckets have no duplicate keys and that every bucket is correctly hashed. -/ structure hashmap {α : Type u} (β : α → Type v) := /- Number of buckets -/ (n : ℕ) /- Hash function from key to bucket index -/ (hash : α → fin n) /- Array of association list buckets -/ (buckets : array n (list (sigma β))) /- Each bucket has no duplicate keys. -/ (nodupkeys : ∀ (i : fin n), (buckets.read i).nodupkeys) /- Each bucket member has a hash equal to the bucket index. -/ (hash_index : ∀ {i : fin n} {s : sigma β}, s ∈ buckets.read i → hash s.1 = i) namespace hashmap open list /- default number of buckets -/ /-- Default number of buckets (8) -/ def default_n : ℕ := 8 /-- Default positive number of buckets (default_n) -/ def default_pn : ℕ+ := ⟨default_n, dec_trivial⟩ /- constructing empty hashmaps -/ /-- Construct an empty hashmap -/ def mk_empty {α} (β : α → Type v) (n : ℕ := default_n) (f : α → fin n) : hashmap β := ⟨n, f, mk_array n [], λ i, nodupkeys_nil, λ _ _ h, by cases h⟩ /-- Create a hash function from a function `f : α → ℕ` using the result modulo the number of buckets -/ def hash_mod {α} (n : ℕ+ := default_pn) (f : α → ℕ) (a : α) : fin n.val := ⟨f a % n.val, nat.mod_lt _ n.property⟩ /-- Construct an empty nat-modulo hashmap -/ def mk_empty_mod {α} (β : α → Type v) (n : ℕ+ := default_pn) (f : α → ℕ) : hashmap β := mk_empty β n (hash_mod n f) section αβ variables {α : Type u} {β : α → Type v} /- extensionality -/ theorem ext_core {m₁ m₂ : hashmap β} : m₁.n = m₂.n → m₁.hash == m₂.hash → m₁.buckets == m₂.buckets → m₁ = m₂ := begin cases m₁, cases m₂, dsimp, intros hn hh hb, congr, repeat { assumption }, { apply proof_irrel_heq, substs hn hb }, { apply proof_irrel_heq, substs hn hh hb } end theorem ext {m₁ m₂ : hashmap β} (hn : m₁.n = m₂.n) (hh : ∀ (a : α), (eq.rec_on hn (m₁.hash a) : fin m₂.n) = m₂.hash a) (hb : ∀ (i : fin m₁.n), m₁.buckets.read i = m₂.buckets.read (eq.rec_on hn i)) : m₁ = m₂ := ext_core hn (function.hfunext rfl (λ a₁ a₂ p, heq_of_eq_rec_left hn (by rw eq_of_heq p; apply hh))) (by cases m₁; cases m₂; dsimp at hn; subst hn; exact heq_of_eq (array.ext hb)) /- nodupkeys -/ theorem nodupkeys_of_mem_buckets {l : list (sigma β)} {m : hashmap β} (h : l ∈ m.buckets) : l.nodupkeys := let ⟨i, e⟩ := h in e ▸ m.nodupkeys i /- empty -/ /-- A hashmap is empty if all buckets are empty -/ def empty (m : hashmap β) : Prop := ∀ (i : fin m.n), m.buckets.read i = [] section empty variables {m : hashmap β} theorem empty_mk_empty (β) (n : ℕ) (f : α → fin n) : empty (mk_empty β n f) := λ _, rfl theorem empty_mk_empty_mod (β) (n : ℕ+) (f : α → ℕ) : empty (mk_empty_mod β n f) := λ _, rfl @[simp] theorem empty_zero (h : m.n = 0) : empty m := λ i, by cases (h.rec_on i : fin 0).is_lt end empty /- to_lists -/ /-- Bucket list of a hashmap -/ def to_lists (m : hashmap β) : list (list (sigma β)) := m.buckets.to_list section to_lists variables {m : hashmap β} {i : ℕ} {l : list (sigma β)} @[simp] theorem mem_to_lists : l ∈ m.to_lists ↔ l ∈ m.buckets := array.mem_to_list theorem hash_idx_of_to_lists_enum (he : (i, l) ∈ m.to_lists.enum) {s : sigma β} (hl : s ∈ l) : (m.hash s.1).1 = i := have e₁ : ∃ p, m.buckets.read ⟨i, p⟩ = l := array.mem_to_list_enum.1 he, have e₂ : ∃ p, m.hash s.1 = ⟨i, p⟩ := e₁.imp (λ _ h, m.hash_index $ h.symm ▸ hl), let ⟨_, h⟩ := e₂ in by rw h theorem disjoint_to_lists_map_keys (m : hashmap β) : pairwise disjoint (m.to_lists.map keys) := begin rw [←enum_map_snd m.to_lists, pairwise_map, pairwise_map], refine pairwise.imp_of_mem _ ((pairwise_map _).mp (nodup_enum_map_fst _)), rw prod.forall, intros n₁ l₁, rw prod.forall, intros n₂ l₂, intros me₁ me₂ e a mka₁ mka₂, apply e, cases exists_mem_of_mem_keys mka₁ with b₁ mab₁, cases exists_mem_of_mem_keys mka₂ with b₂ mab₂, rw [←hash_idx_of_to_lists_enum me₁ mab₁, ←hash_idx_of_to_lists_enum me₂ mab₂] end end to_lists /- to_list -/ /-- Association list of a hashmap -/ def to_list (m : hashmap β) : list (sigma β) := m.to_lists.join section to_list variables {m : hashmap β} {i : ℕ} {l : list (sigma β)} {s : sigma β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem to_list_val : (mk n h bs ndk hi).to_list = bs.to_list.join := rfl theorem empty_to_list : empty m ↔ m.to_list = [] := array.to_list_join_nil.symm end val theorem nodupkeys_to_list (m : hashmap β) : m.to_list.nodupkeys := nodupkeys_join.mpr $ and.intro (λ l ml, by simp [to_lists] at ml; cases ml with i e; induction e; exact m.nodupkeys i) m.disjoint_to_lists_map_keys end to_list /- foldl -/ /-- Left-fold of a hashmap -/ def foldl {γ : Type*} (m : hashmap β) (f : γ → sigma β → γ) (d : γ) : γ := m.buckets.foldl d (λ b r, b.foldl f r) /- keys -/ /-- List of keys in a hashmap -/ def keys (m : hashmap β) : list α := m.to_list.keys section keys variables {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem keys_val : (mk n h bs ndk hi).keys = bs.to_list.join.keys := rfl end val theorem nodup_keys (m : hashmap β) : m.keys.nodup := nodupkeys_iff.mpr m.nodupkeys_to_list end keys /- has_repr -/ instance [has_repr α] [∀ a, has_repr (β a)] : has_repr (hashmap β) := ⟨λ m, "{" ++ string.intercalate ", " (m.to_list.map repr) ++ "}"⟩ section decidable_eq_α variables [decidable_eq α] /- lookup -/ /-- Look up a key in a hashmap to find the value, if it exists -/ def lookup (a : α) (m : hashmap β) : option (β a) := klookup a $ m.buckets.read $ m.hash a section lookup variables {a : α} {s : sigma β} {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem lookup_val : lookup a (mk n h bs ndk hi) = klookup a (bs.read (h a)) := rfl end val @[simp] theorem lookup_empty (a : α) (h : empty m) : lookup a m = none := by simp [lookup, h (m.hash a)] theorem lookup_iff_mem_buckets : s.2 ∈ m.lookup s.1 ↔ ∃ l, l ∈ m.buckets ∧ s ∈ l := calc s.2 ∈ m.lookup s.1 ↔ s ∈ m.buckets.read (m.hash s.1) : by cases m with _ h _ ndk; simp [ndk (h s.1)] ... ↔ m.buckets.read (m.hash s.1) ∈ m.buckets ∧ s ∈ m.buckets.read (m.hash s.1) : ⟨λ h, ⟨array.read_mem _ _, h⟩, λ ⟨_, h⟩, h⟩ ... ↔ ∃ l, l ∈ m.buckets ∧ s ∈ l : ⟨λ ⟨p, q⟩, ⟨_, p, q⟩, λ ⟨_, ⟨i, p⟩, q⟩, by rw ←p at q; rw m.hash_index q; exact ⟨array.read_mem m.buckets i, q⟩⟩ end lookup /- mem -/ instance : has_mem (sigma β) (hashmap β) := ⟨λ s m, s.2 ∈ m.lookup s.1⟩ section mem variables {s : sigma β} {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem mem_val : s ∈ mk n h bs ndk hi ↔ s ∈ bs.read (h s.1) := mem_klookup_of_nodupkeys (ndk (h s.1)) end val theorem mem_def : s ∈ m ↔ s.2 ∈ m.lookup s.1 := iff.rfl @[simp] theorem mem_to_list : s ∈ m.to_list ↔ s ∈ m := calc s ∈ m.to_list ↔ ∃ l, l ∈ m.to_lists ∧ s ∈ l : mem_join ... ↔ ∃ l, l ∈ m.buckets ∧ s ∈ l : by simp only [mem_to_lists] ... ↔ s ∈ m : lookup_iff_mem_buckets.symm end mem /- has_key -/ /-- Test for the presence of a key in a hashmap -/ def has_key (m : hashmap β) (a : α) : bool := (m.lookup a).is_some section has_key variables {a : α} {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem has_key_val : (mk n h bs ndk hi).has_key a = (klookup a (bs.read (h a))).is_some := rfl end val theorem has_key_def : m.has_key a = (m.lookup a).is_some := rfl @[simp] theorem mem_keys_iff_has_key : a ∈ m.keys ↔ m.has_key a := calc a ∈ m.keys ↔ ∃ (b : β a), sigma.mk a b ∈ m.to_list : mem_keys ... ↔ ∃ (b : β a), b ∈ m.lookup a : exists_congr $ λ b, mem_to_list ... ↔ m.has_key a : klookup_is_some.symm end has_key /- erase -/ /-- Erase a hashmap entry with the given key -/ def erase (m : hashmap β) (a : α) : hashmap β := { buckets := m.buckets.modify (m.hash a) (kerase a), nodupkeys := λ i, by by_cases e : m.hash a = i; simp [e, m.nodupkeys i], hash_index := λ i s h, m.hash_index $ by by_cases e : m.hash a = i; simp [e] at h; [exact mem_of_mem_kerase h, exact h], ..m } section erase variables {a : α} {s : sigma β} {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem mem_erase_val : s ∈ (mk n h bs ndk hi).erase a ↔ s.1 ≠ a ∧ s ∈ bs.read (h s.1) := begin unfold erase, by_cases e : h s.1 = h a, { simp [e, ndk (h a)] }, { simp [ne.symm e, mt (congr_arg _) e] } end end val theorem lookup_erase (m : hashmap β) : (m.erase a).lookup a = none := by simp [erase, lookup, m.nodupkeys (m.hash a)] @[simp] theorem mem_erase : s ∈ m.erase a ↔ s.1 ≠ a ∧ s ∈ m := by cases m; simp end erase /- insert -/ /-- Insert a new entry in a hashmap -/ protected def insert (s : sigma β) (m : hashmap β) : hashmap β := { buckets := m.buckets.modify (m.hash s.1) (kinsert s), nodupkeys := λ i, by by_cases e : m.hash s.1 = i; simp [e, m.nodupkeys i], hash_index := λ i s' h, begin by_cases e : m.hash s.1 = i; simp [e] at h, { cases h with h h, { induction h, exact e }, { exact m.hash_index (mem_of_mem_kerase h) } }, { exact m.hash_index h } end, ..m } instance : has_insert (sigma β) (hashmap β) := ⟨hashmap.insert⟩ section insert variables {s t : sigma β} {m : hashmap β} section val variables {n : ℕ} {h : α → fin n} {bs : array n (list (sigma β))} {ndk : ∀ i, (bs.read i).nodupkeys} {hi : ∀ i (s : sigma β), s ∈ bs.read i → h s.1 = i} @[simp] theorem mem_insert_val : s ∈ insert t (mk n h bs ndk hi) ↔ s = t ∨ s.1 ≠ t.1 ∧ s ∈ bs.read (h s.1) := begin unfold insert has_insert.insert hashmap.insert, by_cases e : h s.1 = h t.1, { simp [e, ndk (h t.1)] }, { have e' : s.1 ≠ t.1 := mt (congr_arg _) e, simp [ne.symm e, e', mt sigma.eq_fst e'] } end end val @[simp] theorem mem_insert : s ∈ insert t m ↔ s = t ∨ s.1 ≠ t.1 ∧ s ∈ m := by cases m; simp end insert /-- Insert a list of entries in a hashmap -/ def insert_list (l : list (sigma β)) (m : hashmap β) : hashmap β := l.foldl (flip insert) m /-- Construct a hashmap from an association list -/ def of_list (n : ℕ := default_n) (f : α → fin n) (l : list (sigma β)) : hashmap β := insert_list l $ mk_empty _ n f /-- Construct a nat-modulo hashmap from an association list -/ def of_list_mod (n : ℕ+ := default_pn) (f : α → ℕ) (l : list (sigma β)) : hashmap β := insert_list l $ mk_empty_mod _ n f end decidable_eq_α end αβ end hashmap
bf7c08c40ffc183c8117c3f3b24762149ea22a12
77c5b91fae1b966ddd1db969ba37b6f0e4901e88
/src/set_theory/pgame.lean
e37e5d59a15d0fc154c99551c4063f720edcdbc4
[ "Apache-2.0" ]
permissive
dexmagic/mathlib
ff48eefc56e2412429b31d4fddd41a976eb287ce
7a5d15a955a92a90e1d398b2281916b9c41270b2
refs/heads/master
1,693,481,322,046
1,633,360,193,000
1,633,360,193,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
43,063
lean
/- Copyright (c) 2019 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison -/ import logic.embedding import data.nat.cast import data.fin /-! # Combinatorial (pre-)games. The basic theory of combinatorial games, following Conway's book `On Numbers and Games`. We construct "pregames", define an ordering and arithmetic operations on them, then show that the operations descend to "games", defined via the equivalence relation `p ≈ q ↔ p ≤ q ∧ q ≤ p`. The surreal numbers will be built as a quotient of a subtype of pregames. A pregame (`pgame` below) is axiomatised via an inductive type, whose sole constructor takes two types (thought of as indexing the the possible moves for the players Left and Right), and a pair of functions out of these types to `pgame` (thought of as describing the resulting game after making a move). Combinatorial games themselves, as a quotient of pregames, are constructed in `game.lean`. ## Conway induction By construction, the induction principle for pregames is exactly "Conway induction". That is, to prove some predicate `pgame → Prop` holds for all pregames, it suffices to prove that for every pregame `g`, if the predicate holds for every game resulting from making a move, then it also holds for `g`. While it is often convenient to work "by induction" on pregames, in some situations this becomes awkward, so we also define accessor functions `left_moves`, `right_moves`, `move_left` and `move_right`. There is a relation `subsequent p q`, saying that `p` can be reached by playing some non-empty sequence of moves starting from `q`, an instance `well_founded subsequent`, and a local tactic `pgame_wf_tac` which is helpful for discharging proof obligations in inductive proofs relying on this relation. ## Order properties Pregames have both a `≤` and a `<` relation, which are related in quite a subtle way. In particular, it is worth noting that in Lean's (perhaps unfortunate?) definition of a `preorder`, we have `lt_iff_le_not_le : ∀ a b : α, a < b ↔ (a ≤ b ∧ ¬ b ≤ a)`, but this is _not_ satisfied by the usual `≤` and `<` relations on pregames. (It is satisfied once we restrict to the surreal numbers.) In particular, `<` is not transitive; there is an example below showing `0 < star ∧ star < 0`. We do have ``` theorem not_le {x y : pgame} : ¬ x ≤ y ↔ y < x := ... theorem not_lt {x y : pgame} : ¬ x < y ↔ y ≤ x := ... ``` The statement `0 ≤ x` means that Left has a good response to any move by Right; in particular, the theorem `zero_le` below states ``` 0 ≤ x ↔ ∀ j : x.right_moves, ∃ i : (x.move_right j).left_moves, 0 ≤ (x.move_right j).move_left i ``` On the other hand the statement `0 < x` means that Left has a good move right now; in particular the theorem `zero_lt` below states ``` 0 < x ↔ ∃ i : left_moves x, ∀ j : right_moves (x.move_left i), 0 < (x.move_left i).move_right j ``` The theorems `le_def`, `lt_def`, give a recursive characterisation of each relation, in terms of themselves two moves later. The theorems `le_def_lt` and `lt_def_lt` give recursive characterisations of each relation in terms of the other relation one move later. We define an equivalence relation `equiv p q ↔ p ≤ q ∧ q ≤ p`. Later, games will be defined as the quotient by this relation. ## Algebraic structures We next turn to defining the operations necessary to make games into a commutative additive group. Addition is defined for $x = \{xL | xR\}$ and $y = \{yL | yR\}$ by $x + y = \{xL + y, x + yL | xR + y, x + yR\}$. Negation is defined by $\{xL | xR\} = \{-xR | -xL\}$. The order structures interact in the expected way with addition, so we have ``` theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x := sorry theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x := sorry ``` We show that these operations respect the equivalence relation, and hence descend to games. At the level of games, these operations satisfy all the laws of a commutative group. To prove the necessary equivalence relations at the level of pregames, we introduce the notion of a `relabelling` of a game, and show, for example, that there is a relabelling between `x + (y + z)` and `(x + y) + z`. ## Future work * The theory of dominated and reversible positions, and unique normal form for short games. * Analysis of basic domineering positions. * Hex. * Temperature. * The development of surreal numbers, based on this development of combinatorial games, is still quite incomplete. ## References The material here is all drawn from * [Conway, *On numbers and games*][conway2001] An interested reader may like to formalise some of the material from * [Andreas Blass, *A game semantics for linear logic*][MR1167694] * [André Joyal, *Remarques sur la théorie des jeux à deux personnes*][joyal1997] -/ universes u /-- The type of pre-games, before we have quotiented by extensionality. In ZFC, a combinatorial game is constructed from two sets of combinatorial games that have been constructed at an earlier stage. To do this in type theory, we say that a pre-game is built inductively from two families of pre-games indexed over any type in Type u. The resulting type `pgame.{u}` lives in `Type (u+1)`, reflecting that it is a proper class in ZFC. -/ inductive pgame : Type (u+1) | mk : ∀ α β : Type u, (α → pgame) → (β → pgame) → pgame namespace pgame /-- Construct a pre-game from list of pre-games describing the available moves for Left and Right. -/ -- TODO provide some API describing the interaction with -- `left_moves`, `right_moves`, `move_left` and `move_right` below. -- TODO define this at the level of games, as well, and perhaps also for finsets of games. def of_lists (L R : list pgame.{0}) : pgame.{0} := pgame.mk (fin L.length) (fin R.length) (λ i, L.nth_le i i.is_lt) (λ j, R.nth_le j.val j.is_lt) /-- The indexing type for allowable moves by Left. -/ def left_moves : pgame → Type u | (mk l _ _ _) := l /-- The indexing type for allowable moves by Right. -/ def right_moves : pgame → Type u | (mk _ r _ _) := r /-- The new game after Left makes an allowed move. -/ def move_left : Π (g : pgame), left_moves g → pgame | (mk l _ L _) i := L i /-- The new game after Right makes an allowed move. -/ def move_right : Π (g : pgame), right_moves g → pgame | (mk _ r _ R) j := R j @[simp] lemma left_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).left_moves = xl := rfl @[simp] lemma move_left_mk {xl xr xL xR i} : (⟨xl, xr, xL, xR⟩ : pgame).move_left i = xL i := rfl @[simp] lemma right_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).right_moves = xr := rfl @[simp] lemma move_right_mk {xl xr xL xR j} : (⟨xl, xr, xL, xR⟩ : pgame).move_right j = xR j := rfl /-- `subsequent p q` says that `p` can be obtained by playing some nonempty sequence of moves from `q`. -/ inductive subsequent : pgame → pgame → Prop | left : Π (x : pgame) (i : x.left_moves), subsequent (x.move_left i) x | right : Π (x : pgame) (j : x.right_moves), subsequent (x.move_right j) x | trans : Π (x y z : pgame), subsequent x y → subsequent y z → subsequent x z theorem wf_subsequent : well_founded subsequent := ⟨λ x, begin induction x with l r L R IHl IHr, refine ⟨_, λ y h, _⟩, generalize_hyp e : mk l r L R = x at h, induction h with _ i _ j a b _ h1 h2 IH1 IH2; subst e, { apply IHl }, { apply IHr }, { exact acc.inv (IH2 rfl) h1 } end⟩ instance : has_well_founded pgame := { r := subsequent, wf := wf_subsequent } /-- A move by Left produces a subsequent game. (For use in pgame_wf_tac.) -/ lemma subsequent.left_move {xl xr} {xL : xl → pgame} {xR : xr → pgame} {i : xl} : subsequent (xL i) (mk xl xr xL xR) := subsequent.left (mk xl xr xL xR) i /-- A move by Right produces a subsequent game. (For use in pgame_wf_tac.) -/ lemma subsequent.right_move {xl xr} {xL : xl → pgame} {xR : xr → pgame} {j : xr} : subsequent (xR j) (mk xl xr xL xR) := subsequent.right (mk xl xr xL xR) j /-- A local tactic for proving well-foundedness of recursive definitions involving pregames. -/ meta def pgame_wf_tac := `[solve_by_elim [psigma.lex.left, psigma.lex.right, subsequent.left_move, subsequent.right_move, subsequent.left, subsequent.right, subsequent.trans] { max_depth := 6 }] /-- The pre-game `zero` is defined by `0 = { | }`. -/ instance : has_zero pgame := ⟨⟨pempty, pempty, pempty.elim, pempty.elim⟩⟩ @[simp] lemma zero_left_moves : (0 : pgame).left_moves = pempty := rfl @[simp] lemma zero_right_moves : (0 : pgame).right_moves = pempty := rfl instance : inhabited pgame := ⟨0⟩ /-- The pre-game `one` is defined by `1 = { 0 | }`. -/ instance : has_one pgame := ⟨⟨punit, pempty, λ _, 0, pempty.elim⟩⟩ @[simp] lemma one_left_moves : (1 : pgame).left_moves = punit := rfl @[simp] lemma one_move_left : (1 : pgame).move_left punit.star = 0 := rfl @[simp] lemma one_right_moves : (1 : pgame).right_moves = pempty := rfl /-- Define simultaneously by mutual induction the `<=` and `<` relation on pre-games. The ZFC definition says that `x = {xL | xR}` is less or equal to `y = {yL | yR}` if `∀ x₁ ∈ xL, x₁ < y` and `∀ y₂ ∈ yR, x < y₂`, where `x < y` is the same as `¬ y <= x`. This is a tricky induction because it only decreases one side at a time, and it also swaps the arguments in the definition of `<`. The solution is to define `x < y` and `x <= y` simultaneously. -/ def le_lt : Π (x y : pgame), Prop × Prop | (mk xl xr xL xR) (mk yl yr yL yR) := -- the orderings of the clauses here are carefully chosen so that -- and.left/or.inl refer to moves by Left, and -- and.right/or.inr refer to moves by Right. ((∀ i : xl, (le_lt (xL i) ⟨yl, yr, yL, yR⟩).2) ∧ (∀ j : yr, (le_lt ⟨xl, xr, xL, xR⟩ (yR j)).2), (∃ i : yl, (le_lt ⟨xl, xr, xL, xR⟩ (yL i)).1) ∨ (∃ j : xr, (le_lt (xR j) ⟨yl, yr, yL, yR⟩).1)) using_well_founded { dec_tac := pgame_wf_tac } instance : has_le pgame := ⟨λ x y, (le_lt x y).1⟩ instance : has_lt pgame := ⟨λ x y, (le_lt x y).2⟩ /-- Definition of `x ≤ y` on pre-games built using the constructor. -/ @[simp] theorem mk_le_mk {xl xr xL xR yl yr yL yR} : (⟨xl, xr, xL, xR⟩ : pgame) ≤ ⟨yl, yr, yL, yR⟩ ↔ (∀ i, xL i < ⟨yl, yr, yL, yR⟩) ∧ (∀ j, (⟨xl, xr, xL, xR⟩ : pgame) < yR j) := show (le_lt _ _).1 ↔ _, by { rw le_lt, refl } /-- Definition of `x ≤ y` on pre-games, in terms of `<` -/ theorem le_def_lt {x y : pgame} : x ≤ y ↔ (∀ i : x.left_moves, x.move_left i < y) ∧ (∀ j : y.right_moves, x < y.move_right j) := by { cases x, cases y, rw mk_le_mk, refl } /-- Definition of `x < y` on pre-games built using the constructor. -/ @[simp] theorem mk_lt_mk {xl xr xL xR yl yr yL yR} : (⟨xl, xr, xL, xR⟩ : pgame) < ⟨yl, yr, yL, yR⟩ ↔ (∃ i, (⟨xl, xr, xL, xR⟩ : pgame) ≤ yL i) ∨ (∃ j, xR j ≤ ⟨yl, yr, yL, yR⟩) := show (le_lt _ _).2 ↔ _, by { rw le_lt, refl } /-- Definition of `x < y` on pre-games, in terms of `≤` -/ theorem lt_def_le {x y : pgame} : x < y ↔ (∃ i : y.left_moves, x ≤ y.move_left i) ∨ (∃ j : x.right_moves, x.move_right j ≤ y) := by { cases x, cases y, rw mk_lt_mk, refl } /-- The definition of `x ≤ y` on pre-games, in terms of `≤` two moves later. -/ theorem le_def {x y : pgame} : x ≤ y ↔ (∀ i : x.left_moves, (∃ i' : y.left_moves, x.move_left i ≤ y.move_left i') ∨ (∃ j : (x.move_left i).right_moves, (x.move_left i).move_right j ≤ y)) ∧ (∀ j : y.right_moves, (∃ i : (y.move_right j).left_moves, x ≤ (y.move_right j).move_left i) ∨ (∃ j' : x.right_moves, x.move_right j' ≤ y.move_right j)) := begin rw [le_def_lt], conv { to_lhs, simp only [lt_def_le] }, end /-- The definition of `x < y` on pre-games, in terms of `<` two moves later. -/ theorem lt_def {x y : pgame} : x < y ↔ (∃ i : y.left_moves, (∀ i' : x.left_moves, x.move_left i' < y.move_left i) ∧ (∀ j : (y.move_left i).right_moves, x < (y.move_left i).move_right j)) ∨ (∃ j : x.right_moves, (∀ i : (x.move_right j).left_moves, (x.move_right j).move_left i < y) ∧ (∀ j' : y.right_moves, x.move_right j < y.move_right j')) := begin rw [lt_def_le], conv { to_lhs, simp only [le_def_lt] }, end /-- The definition of `x ≤ 0` on pre-games, in terms of `≤ 0` two moves later. -/ theorem le_zero {x : pgame} : x ≤ 0 ↔ ∀ i : x.left_moves, ∃ j : (x.move_left i).right_moves, (x.move_left i).move_right j ≤ 0 := begin rw le_def, dsimp, simp [forall_pempty, exists_pempty] end /-- The definition of `0 ≤ x` on pre-games, in terms of `0 ≤` two moves later. -/ theorem zero_le {x : pgame} : 0 ≤ x ↔ ∀ j : x.right_moves, ∃ i : (x.move_right j).left_moves, 0 ≤ (x.move_right j).move_left i := begin rw le_def, dsimp, simp [forall_pempty, exists_pempty] end /-- The definition of `x < 0` on pre-games, in terms of `< 0` two moves later. -/ theorem lt_zero {x : pgame} : x < 0 ↔ ∃ j : x.right_moves, ∀ i : (x.move_right j).left_moves, (x.move_right j).move_left i < 0 := begin rw lt_def, dsimp, simp [forall_pempty, exists_pempty] end /-- The definition of `0 < x` on pre-games, in terms of `< x` two moves later. -/ theorem zero_lt {x : pgame} : 0 < x ↔ ∃ i : x.left_moves, ∀ j : (x.move_left i).right_moves, 0 < (x.move_left i).move_right j := begin rw lt_def, dsimp, simp [forall_pempty, exists_pempty] end /-- Given a right-player-wins game, provide a response to any move by left. -/ noncomputable def right_response {x : pgame} (h : x ≤ 0) (i : x.left_moves) : (x.move_left i).right_moves := classical.some $ (le_zero.1 h) i /-- Show that the response for right provided by `right_response` preserves the right-player-wins condition. -/ lemma right_response_spec {x : pgame} (h : x ≤ 0) (i : x.left_moves) : (x.move_left i).move_right (right_response h i) ≤ 0 := classical.some_spec $ (le_zero.1 h) i /-- Given a left-player-wins game, provide a response to any move by right. -/ noncomputable def left_response {x : pgame} (h : 0 ≤ x) (j : x.right_moves) : (x.move_right j).left_moves := classical.some $ (zero_le.1 h) j /-- Show that the response for left provided by `left_response` preserves the left-player-wins condition. -/ lemma left_response_spec {x : pgame} (h : 0 ≤ x) (j : x.right_moves) : 0 ≤ (x.move_right j).move_left (left_response h j) := classical.some_spec $ (zero_le.1 h) j theorem lt_of_le_mk {xl xr xL xR y i} : (⟨xl, xr, xL, xR⟩ : pgame) ≤ y → xL i < y := by { cases y, rw mk_le_mk, tauto } theorem lt_of_mk_le {x : pgame} {yl yr yL yR i} : x ≤ ⟨yl, yr, yL, yR⟩ → x < yR i := by { cases x, rw mk_le_mk, tauto } theorem mk_lt_of_le {xl xr xL xR y i} : (by exact xR i ≤ y) → (⟨xl, xr, xL, xR⟩ : pgame) < y := by { cases y, rw mk_lt_mk, tauto } theorem lt_mk_of_le {x : pgame} {yl yr yL yR i} : (by exact x ≤ yL i) → x < ⟨yl, yr, yL, yR⟩ := by { cases x, rw mk_lt_mk, exact λ h, or.inl ⟨_, h⟩ } theorem not_le_lt {x y : pgame} : (¬ x ≤ y ↔ y < x) ∧ (¬ x < y ↔ y ≤ x) := begin induction x with xl xr xL xR IHxl IHxr generalizing y, induction y with yl yr yL yR IHyl IHyr, classical, simp only [mk_le_mk, mk_lt_mk, not_and_distrib, not_or_distrib, not_forall, not_exists, and_comm, or_comm, IHxl, IHxr, IHyl, IHyr, iff_self, and_self] end theorem not_le {x y : pgame} : ¬ x ≤ y ↔ y < x := not_le_lt.1 theorem not_lt {x y : pgame} : ¬ x < y ↔ y ≤ x := not_le_lt.2 @[refl] protected theorem le_refl : ∀ x : pgame, x ≤ x | ⟨l, r, L, R⟩ := by rw mk_le_mk; exact ⟨λ i, lt_mk_of_le (le_refl _), λ i, mk_lt_of_le (le_refl _)⟩ protected theorem lt_irrefl (x : pgame) : ¬ x < x := not_lt.2 (pgame.le_refl _) protected theorem ne_of_lt : ∀ {x y : pgame}, x < y → x ≠ y | x _ h rfl := pgame.lt_irrefl x h theorem le_trans_aux {xl xr} {xL : xl → pgame} {xR : xr → pgame} {yl yr} {yL : yl → pgame} {yR : yr → pgame} {zl zr} {zL : zl → pgame} {zR : zr → pgame} (h₁ : ∀ i, mk yl yr yL yR ≤ mk zl zr zL zR → mk zl zr zL zR ≤ xL i → mk yl yr yL yR ≤ xL i) (h₂ : ∀ i, zR i ≤ mk xl xr xL xR → mk xl xr xL xR ≤ mk yl yr yL yR → zR i ≤ mk yl yr yL yR) : mk xl xr xL xR ≤ mk yl yr yL yR → mk yl yr yL yR ≤ mk zl zr zL zR → mk xl xr xL xR ≤ mk zl zr zL zR := by simp only [mk_le_mk] at *; exact λ ⟨xLy, xyR⟩ ⟨yLz, yzR⟩, ⟨ λ i, not_le.1 (λ h, not_lt.2 (h₁ _ ⟨yLz, yzR⟩ h) (xLy _)), λ i, not_le.1 (λ h, not_lt.2 (h₂ _ h ⟨xLy, xyR⟩) (yzR _))⟩ @[trans] theorem le_trans {x y z : pgame} : x ≤ y → y ≤ z → x ≤ z := suffices ∀ {x y z : pgame}, (x ≤ y → y ≤ z → x ≤ z) ∧ (y ≤ z → z ≤ x → y ≤ x) ∧ (z ≤ x → x ≤ y → z ≤ y), from this.1, begin clear x y z, intros, induction x with xl xr xL xR IHxl IHxr generalizing y z, induction y with yl yr yL yR IHyl IHyr generalizing z, induction z with zl zr zL zR IHzl IHzr, exact ⟨ le_trans_aux (λ i, (IHxl _).2.1) (λ i, (IHzr _).2.2), le_trans_aux (λ i, (IHyl _).2.2) (λ i, (IHxr _).1), le_trans_aux (λ i, (IHzl _).1) (λ i, (IHyr _).2.1)⟩, end @[trans] theorem lt_of_le_of_lt {x y z : pgame} (hxy : x ≤ y) (hyz : y < z) : x < z := begin rw ←not_le at ⊢ hyz, exact mt (λ H, le_trans H hxy) hyz end @[trans] theorem lt_of_lt_of_le {x y z : pgame} (hxy : x < y) (hyz : y ≤ z) : x < z := begin rw ←not_le at ⊢ hxy, exact mt (λ H, le_trans hyz H) hxy end /-- Define the equivalence relation on pre-games. Two pre-games `x`, `y` are equivalent if `x ≤ y` and `y ≤ x`. -/ def equiv (x y : pgame) : Prop := x ≤ y ∧ y ≤ x local infix ` ≈ ` := pgame.equiv @[refl, simp] theorem equiv_refl (x) : x ≈ x := ⟨pgame.le_refl _, pgame.le_refl _⟩ @[symm] theorem equiv_symm {x y} : x ≈ y → y ≈ x | ⟨xy, yx⟩ := ⟨yx, xy⟩ @[trans] theorem equiv_trans {x y z} : x ≈ y → y ≈ z → x ≈ z | ⟨xy, yx⟩ ⟨yz, zy⟩ := ⟨le_trans xy yz, le_trans zy yx⟩ @[trans] theorem lt_of_lt_of_equiv {x y z} (h₁ : x < y) (h₂ : y ≈ z) : x < z := lt_of_lt_of_le h₁ h₂.1 @[trans] theorem le_of_le_of_equiv {x y z} (h₁ : x ≤ y) (h₂ : y ≈ z) : x ≤ z := le_trans h₁ h₂.1 @[trans] theorem lt_of_equiv_of_lt {x y z} (h₁ : x ≈ y) (h₂ : y < z) : x < z := lt_of_le_of_lt h₁.1 h₂ @[trans] theorem le_of_equiv_of_le {x y z} (h₁ : x ≈ y) (h₂ : y ≤ z) : x ≤ z := le_trans h₁.1 h₂ theorem le_congr {x₁ y₁ x₂ y₂} : x₁ ≈ x₂ → y₁ ≈ y₂ → (x₁ ≤ y₁ ↔ x₂ ≤ y₂) | ⟨x12, x21⟩ ⟨y12, y21⟩ := ⟨λ h, le_trans x21 (le_trans h y12), λ h, le_trans x12 (le_trans h y21)⟩ theorem lt_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ < y₁ ↔ x₂ < y₂ := not_le.symm.trans $ (not_congr (le_congr hy hx)).trans not_le theorem equiv_congr_left {y₁ y₂} : y₁ ≈ y₂ ↔ ∀ x₁, x₁ ≈ y₁ ↔ x₁ ≈ y₂ := ⟨λ h x₁, ⟨λ h', equiv_trans h' h, λ h', equiv_trans h' (equiv_symm h)⟩, λ h, (h y₁).1 $ equiv_refl _⟩ theorem equiv_congr_right {x₁ x₂} : x₁ ≈ x₂ ↔ ∀ y₁, x₁ ≈ y₁ ↔ x₂ ≈ y₁ := ⟨λ h y₁, ⟨λ h', equiv_trans (equiv_symm h) h', λ h', equiv_trans h h'⟩, λ h, (h x₂).2 $ equiv_refl _⟩ theorem equiv_of_mk_equiv {x y : pgame} (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves) (hl : ∀ (i : x.left_moves), x.move_left i ≈ y.move_left (L i)) (hr : ∀ (j : y.right_moves), x.move_right (R.symm j) ≈ y.move_right j) : x ≈ y := begin fsplit; rw le_def, { exact ⟨λ i, or.inl ⟨L i, (hl i).1⟩, λ j, or.inr ⟨R.symm j, (hr j).1⟩⟩ }, { fsplit, { intro i, left, specialize hl (L.symm i), simp only [move_left_mk, equiv.apply_symm_apply] at hl, use ⟨L.symm i, hl.2⟩ }, { intro j, right, specialize hr (R j), simp only [move_right_mk, equiv.symm_apply_apply] at hr, use ⟨R j, hr.2⟩ } } end /-- `restricted x y` says that Left always has no more moves in `x` than in `y`, and Right always has no more moves in `y` than in `x` -/ inductive restricted : pgame.{u} → pgame.{u} → Type (u+1) | mk : Π {x y : pgame} (L : x.left_moves → y.left_moves) (R : y.right_moves → x.right_moves), (∀ (i : x.left_moves), restricted (x.move_left i) (y.move_left (L i))) → (∀ (j : y.right_moves), restricted (x.move_right (R j)) (y.move_right j)) → restricted x y /-- The identity restriction. -/ @[refl] def restricted.refl : Π (x : pgame), restricted x x | (mk xl xr xL xR) := restricted.mk id id (λ i, restricted.refl _) (λ j, restricted.refl _) using_well_founded { dec_tac := pgame_wf_tac } -- TODO trans for restricted theorem restricted.le : Π {x y : pgame} (r : restricted x y), x ≤ y | (mk xl xr xL xR) (mk yl yr yL yR) (restricted.mk L_embedding R_embedding L_restriction R_restriction) := begin rw le_def, exact ⟨λ i, or.inl ⟨L_embedding i, (L_restriction i).le⟩, λ i, or.inr ⟨R_embedding i, (R_restriction i).le⟩⟩ end /-- `relabelling x y` says that `x` and `y` are really the same game, just dressed up differently. Specifically, there is a bijection between the moves for Left in `x` and in `y`, and similarly for Right, and under these bijections we inductively have `relabelling`s for the consequent games. -/ inductive relabelling : pgame.{u} → pgame.{u} → Type (u+1) | mk : Π {x y : pgame} (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves), (∀ (i : x.left_moves), relabelling (x.move_left i) (y.move_left (L i))) → (∀ (j : y.right_moves), relabelling (x.move_right (R.symm j)) (y.move_right j)) → relabelling x y /-- If `x` is a relabelling of `y`, then Left and Right have the same moves in either game, so `x` is a restriction of `y`. -/ def relabelling.restricted: Π {x y : pgame} (r : relabelling x y), restricted x y | (mk xl xr xL xR) (mk yl yr yL yR) (relabelling.mk L_equiv R_equiv L_relabelling R_relabelling) := restricted.mk L_equiv.to_embedding R_equiv.symm.to_embedding (λ i, (L_relabelling i).restricted) (λ j, (R_relabelling j).restricted) -- It's not the case that `restricted x y → restricted y x → relabelling x y`, -- but if we insisted that the maps in a restriction were injective, then one -- could use Schröder-Bernstein for do this. /-- The identity relabelling. -/ @[refl] def relabelling.refl : Π (x : pgame), relabelling x x | (mk xl xr xL xR) := relabelling.mk (equiv.refl _) (equiv.refl _) (λ i, relabelling.refl _) (λ j, relabelling.refl _) using_well_founded { dec_tac := pgame_wf_tac } /-- Reverse a relabelling. -/ @[symm] def relabelling.symm : Π {x y : pgame}, relabelling x y → relabelling y x | (mk xl xr xL xR) (mk yl yr yL yR) (relabelling.mk L_equiv R_equiv L_relabelling R_relabelling) := begin refine relabelling.mk L_equiv.symm R_equiv.symm _ _, { intro i, simpa using (L_relabelling (L_equiv.symm i)).symm }, { intro j, simpa using (R_relabelling (R_equiv j)).symm } end /-- Transitivity of relabelling -/ @[trans] def relabelling.trans : Π {x y z : pgame}, relabelling x y → relabelling y z → relabelling x z | (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) (relabelling.mk L_equiv₁ R_equiv₁ L_relabelling₁ R_relabelling₁) (relabelling.mk L_equiv₂ R_equiv₂ L_relabelling₂ R_relabelling₂) := begin refine relabelling.mk (L_equiv₁.trans L_equiv₂) (R_equiv₁.trans R_equiv₂) _ _, { intro i, simpa using (L_relabelling₁ _).trans (L_relabelling₂ _) }, { intro j, simpa using (R_relabelling₁ _).trans (R_relabelling₂ _) }, end theorem relabelling.le {x y : pgame} (r : relabelling x y) : x ≤ y := r.restricted.le /-- A relabelling lets us prove equivalence of games. -/ theorem relabelling.equiv {x y : pgame} (r : relabelling x y) : x ≈ y := ⟨r.le, r.symm.le⟩ instance {x y : pgame} : has_coe (relabelling x y) (x ≈ y) := ⟨relabelling.equiv⟩ /-- Replace the types indexing the next moves for Left and Right by equivalent types. -/ def relabel {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') := pgame.mk xl' xr' (λ i, x.move_left (el.symm i)) (λ j, x.move_right (er.symm j)) @[simp] lemma relabel_move_left' {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') (i : xl') : move_left (relabel el er) i = x.move_left (el.symm i) := rfl @[simp] lemma relabel_move_left {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') (i : x.left_moves) : move_left (relabel el er) (el i) = x.move_left i := by simp @[simp] lemma relabel_move_right' {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') (j : xr') : move_right (relabel el er) j = x.move_right (er.symm j) := rfl @[simp] lemma relabel_move_right {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') (j : x.right_moves) : move_right (relabel el er) (er j) = x.move_right j := by simp /-- The game obtained by relabelling the next moves is a relabelling of the original game. -/ def relabel_relabelling {x : pgame} {xl' xr'} (el : x.left_moves ≃ xl') (er : x.right_moves ≃ xr') : relabelling x (relabel el er) := relabelling.mk el er (λ i, by simp) (λ j, by simp) /-- The negation of `{L | R}` is `{-R | -L}`. -/ def neg : pgame → pgame | ⟨l, r, L, R⟩ := ⟨r, l, λ i, neg (R i), λ i, neg (L i)⟩ instance : has_neg pgame := ⟨neg⟩ @[simp] lemma neg_def {xl xr xL xR} : -(mk xl xr xL xR) = mk xr xl (λ j, -(xR j)) (λ i, -(xL i)) := rfl @[simp] theorem neg_neg : Π {x : pgame}, -(-x) = x | (mk xl xr xL xR) := begin dsimp [has_neg.neg, neg], congr; funext i; apply neg_neg end @[simp] theorem neg_zero : -(0 : pgame) = 0 := begin dsimp [has_zero.zero, has_neg.neg, neg], congr; funext i; cases i end /-- An explicit equivalence between the moves for Left in `-x` and the moves for Right in `x`. -/ -- This equivalence is useful to avoid having to use `cases` unnecessarily. def left_moves_neg (x : pgame) : (-x).left_moves ≃ x.right_moves := by { cases x, refl } /-- An explicit equivalence between the moves for Right in `-x` and the moves for Left in `x`. -/ def right_moves_neg (x : pgame) : (-x).right_moves ≃ x.left_moves := by { cases x, refl } @[simp] lemma move_right_left_moves_neg {x : pgame} (i : left_moves (-x)) : move_right x ((left_moves_neg x) i) = -(move_left (-x) i) := begin induction x, exact neg_neg.symm end @[simp] lemma move_left_left_moves_neg_symm {x : pgame} (i : right_moves x) : move_left (-x) ((left_moves_neg x).symm i) = -(move_right x i) := by { cases x, refl } @[simp] lemma move_left_right_moves_neg {x : pgame} (i : right_moves (-x)) : move_left x ((right_moves_neg x) i) = -(move_right (-x) i) := begin induction x, exact neg_neg.symm end @[simp] lemma move_right_right_moves_neg_symm {x : pgame} (i : left_moves x) : move_right (-x) ((right_moves_neg x).symm i) = -(move_left x i) := by { cases x, refl } /-- If `x` has the same moves as `y`, then `-x` has the sames moves as `-y`. -/ def relabelling.neg_congr : ∀ {x y : pgame}, x.relabelling y → (-x).relabelling (-y) | (mk xl xr xL xR) (mk yl yr yL yR) ⟨L_equiv, R_equiv, L_relabelling, R_relabelling⟩ := ⟨R_equiv, L_equiv, λ i, relabelling.neg_congr (by simpa using R_relabelling (R_equiv i)), λ i, relabelling.neg_congr (by simpa using L_relabelling (L_equiv.symm i))⟩ theorem le_iff_neg_ge : Π {x y : pgame}, x ≤ y ↔ -y ≤ -x | (mk xl xr xL xR) (mk yl yr yL yR) := begin rw [le_def], rw [le_def], dsimp [neg], split, { intro h, split, { intro i, have t := h.right i, cases t, { right, cases t, use (@right_moves_neg (yR i)).symm t_w, convert le_iff_neg_ge.1 t_h, simp }, { left, cases t, use t_w, exact le_iff_neg_ge.1 t_h, } }, { intro j, have t := h.left j, cases t, { right, cases t, use t_w, exact le_iff_neg_ge.1 t_h, }, { left, cases t, use (@left_moves_neg (xL j)).symm t_w, convert le_iff_neg_ge.1 t_h, simp, } } }, { intro h, split, { intro i, have t := h.right i, cases t, { right, cases t, use (@left_moves_neg (xL i)) t_w, convert le_iff_neg_ge.2 _, convert t_h, simp, }, { left, cases t, use t_w, exact le_iff_neg_ge.2 t_h, } }, { intro j, have t := h.left j, cases t, { right, cases t, use t_w, exact le_iff_neg_ge.2 t_h, }, { left, cases t, use (@right_moves_neg (yR j)) t_w, convert le_iff_neg_ge.2 _, convert t_h, simp } } }, end using_well_founded { dec_tac := pgame_wf_tac } theorem neg_congr {x y : pgame} (h : x ≈ y) : -x ≈ -y := ⟨le_iff_neg_ge.1 h.2, le_iff_neg_ge.1 h.1⟩ theorem lt_iff_neg_gt : Π {x y : pgame}, x < y ↔ -y < -x := begin classical, intros, rw [←not_le, ←not_le, not_iff_not], apply le_iff_neg_ge end theorem zero_le_iff_neg_le_zero {x : pgame} : 0 ≤ x ↔ -x ≤ 0 := begin convert le_iff_neg_ge, rw neg_zero end theorem le_zero_iff_zero_le_neg {x : pgame} : x ≤ 0 ↔ 0 ≤ -x := begin convert le_iff_neg_ge, rw neg_zero end /-- The sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/ def add (x y : pgame) : pgame := begin induction x with xl xr xL xR IHxl IHxr generalizing y, induction y with yl yr yL yR IHyl IHyr, have y := mk yl yr yL yR, refine ⟨xl ⊕ yl, xr ⊕ yr, sum.rec _ _, sum.rec _ _⟩, { exact λ i, IHxl i y }, { exact λ i, IHyl i }, { exact λ i, IHxr i y }, { exact λ i, IHyr i } end instance : has_add pgame := ⟨add⟩ /-- `x + 0` has exactly the same moves as `x`. -/ def add_zero_relabelling : Π (x : pgame.{u}), relabelling (x + 0) x | (mk xl xr xL xR) := begin refine ⟨equiv.sum_empty xl pempty, equiv.sum_empty xr pempty, _, _⟩, { rintro (⟨i⟩|⟨⟨⟩⟩), apply add_zero_relabelling, }, { rintro j, apply add_zero_relabelling, } end /-- `x + 0` is equivalent to `x`. -/ lemma add_zero_equiv (x : pgame.{u}) : x + 0 ≈ x := (add_zero_relabelling x).equiv /-- `0 + x` has exactly the same moves as `x`. -/ def zero_add_relabelling : Π (x : pgame.{u}), relabelling (0 + x) x | (mk xl xr xL xR) := begin refine ⟨equiv.empty_sum pempty xl, equiv.empty_sum pempty xr, _, _⟩, { rintro (⟨⟨⟩⟩|⟨i⟩), apply zero_add_relabelling, }, { rintro j, apply zero_add_relabelling, } end /-- `0 + x` is equivalent to `x`. -/ lemma zero_add_equiv (x : pgame.{u}) : 0 + x ≈ x := (zero_add_relabelling x).equiv /-- An explicit equivalence between the moves for Left in `x + y` and the type-theory sum of the moves for Left in `x` and in `y`. -/ def left_moves_add (x y : pgame) : (x + y).left_moves ≃ x.left_moves ⊕ y.left_moves := by { cases x, cases y, refl, } /-- An explicit equivalence between the moves for Right in `x + y` and the type-theory sum of the moves for Right in `x` and in `y`. -/ def right_moves_add (x y : pgame) : (x + y).right_moves ≃ x.right_moves ⊕ y.right_moves := by { cases x, cases y, refl, } @[simp] lemma mk_add_move_left_inl {xl xr yl yr} {xL xR yL yR} {i} : (mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inl i) = (mk xl xr xL xR).move_left i + (mk yl yr yL yR) := rfl @[simp] lemma add_move_left_inl {x y : pgame} {i} : (x + y).move_left ((@left_moves_add x y).symm (sum.inl i)) = x.move_left i + y := by { cases x, cases y, refl, } @[simp] lemma mk_add_move_right_inl {xl xr yl yr} {xL xR yL yR} {i} : (mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inl i) = (mk xl xr xL xR).move_right i + (mk yl yr yL yR) := rfl @[simp] lemma add_move_right_inl {x y : pgame} {i} : (x + y).move_right ((@right_moves_add x y).symm (sum.inl i)) = x.move_right i + y := by { cases x, cases y, refl, } @[simp] lemma mk_add_move_left_inr {xl xr yl yr} {xL xR yL yR} {i} : (mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inr i) = (mk xl xr xL xR) + (mk yl yr yL yR).move_left i := rfl @[simp] lemma add_move_left_inr {x y : pgame} {i : y.left_moves} : (x + y).move_left ((@left_moves_add x y).symm (sum.inr i)) = x + y.move_left i := by { cases x, cases y, refl, } @[simp] lemma mk_add_move_right_inr {xl xr yl yr} {xL xR yL yR} {i} : (mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inr i) = (mk xl xr xL xR) + (mk yl yr yL yR).move_right i := rfl @[simp] lemma add_move_right_inr {x y : pgame} {i} : (x + y).move_right ((@right_moves_add x y).symm (sum.inr i)) = x + y.move_right i := by { cases x, cases y, refl, } /-- If `w` has the same moves as `x` and `y` has the same moves as `z`, then `w + y` has the same moves as `x + z`. -/ def relabelling.add_congr : ∀ {w x y z : pgame.{u}}, w.relabelling x → y.relabelling z → (w + y).relabelling (x + z) | (mk wl wr wL wR) (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) ⟨L_equiv₁, R_equiv₁, L_relabelling₁, R_relabelling₁⟩ ⟨L_equiv₂, R_equiv₂, L_relabelling₂, R_relabelling₂⟩ := begin refine ⟨equiv.sum_congr L_equiv₁ L_equiv₂, equiv.sum_congr R_equiv₁ R_equiv₂, _, _⟩, { rintro (i|j), { exact relabelling.add_congr (L_relabelling₁ i) (⟨L_equiv₂, R_equiv₂, L_relabelling₂, R_relabelling₂⟩) }, { exact relabelling.add_congr (⟨L_equiv₁, R_equiv₁, L_relabelling₁, R_relabelling₁⟩) (L_relabelling₂ j) }}, { rintro (i|j), { exact relabelling.add_congr (R_relabelling₁ i) (⟨L_equiv₂, R_equiv₂, L_relabelling₂, R_relabelling₂⟩) }, { exact relabelling.add_congr (⟨L_equiv₁, R_equiv₁, L_relabelling₁, R_relabelling₁⟩) (R_relabelling₂ j) }} end using_well_founded { dec_tac := pgame_wf_tac } instance : has_sub pgame := ⟨λ x y, x + -y⟩ /-- If `w` has the same moves as `x` and `y` has the same moves as `z`, then `w - y` has the same moves as `x - z`. -/ def relabelling.sub_congr {w x y z : pgame} (h₁ : w.relabelling x) (h₂ : y.relabelling z) : (w - y).relabelling (x - z) := h₁.add_congr h₂.neg_congr /-- `-(x+y)` has exactly the same moves as `-x + -y`. -/ def neg_add_relabelling : Π (x y : pgame), relabelling (-(x + y)) (-x + -y) | (mk xl xr xL xR) (mk yl yr yL yR) := ⟨equiv.refl _, equiv.refl _, λ j, sum.cases_on j (λ j, neg_add_relabelling (xR j) (mk yl yr yL yR)) (λ j, neg_add_relabelling (mk xl xr xL xR) (yR j)), λ i, sum.cases_on i (λ i, neg_add_relabelling (xL i) (mk yl yr yL yR)) (λ i, neg_add_relabelling (mk xl xr xL xR) (yL i))⟩ using_well_founded { dec_tac := pgame_wf_tac } theorem neg_add_le {x y : pgame} : -(x + y) ≤ -x + -y := (neg_add_relabelling x y).le /-- `x+y` has exactly the same moves as `y+x`. -/ def add_comm_relabelling : Π (x y : pgame.{u}), relabelling (x + y) (y + x) | (mk xl xr xL xR) (mk yl yr yL yR) := begin refine ⟨equiv.sum_comm _ _, equiv.sum_comm _ _, _, _⟩; rintros (_|_); { simp [left_moves_add, right_moves_add], apply add_comm_relabelling } end using_well_founded { dec_tac := pgame_wf_tac } theorem add_comm_le {x y : pgame} : x + y ≤ y + x := (add_comm_relabelling x y).le theorem add_comm_equiv {x y : pgame} : x + y ≈ y + x := (add_comm_relabelling x y).equiv /-- `(x + y) + z` has exactly the same moves as `x + (y + z)`. -/ def add_assoc_relabelling : Π (x y z : pgame.{u}), relabelling ((x + y) + z) (x + (y + z)) | (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) := begin refine ⟨equiv.sum_assoc _ _ _, equiv.sum_assoc _ _ _, _, _⟩, { rintro (⟨i|i⟩|i), { apply add_assoc_relabelling, }, { change relabelling (mk xl xr xL xR + yL i + mk zl zr zL zR) (mk xl xr xL xR + (yL i + mk zl zr zL zR)), apply add_assoc_relabelling, }, { change relabelling (mk xl xr xL xR + mk yl yr yL yR + zL i) (mk xl xr xL xR + (mk yl yr yL yR + zL i)), apply add_assoc_relabelling, } }, { rintro (j|⟨j|j⟩), { apply add_assoc_relabelling, }, { change relabelling (mk xl xr xL xR + yR j + mk zl zr zL zR) (mk xl xr xL xR + (yR j + mk zl zr zL zR)), apply add_assoc_relabelling, }, { change relabelling (mk xl xr xL xR + mk yl yr yL yR + zR j) (mk xl xr xL xR + (mk yl yr yL yR + zR j)), apply add_assoc_relabelling, } }, end using_well_founded { dec_tac := pgame_wf_tac } theorem add_assoc_equiv {x y z : pgame} : (x + y) + z ≈ x + (y + z) := (add_assoc_relabelling x y z).equiv theorem add_le_add_right : Π {x y z : pgame} (h : x ≤ y), x + z ≤ y + z | (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) := begin intros h, rw le_def, split, { -- if Left plays first intros i, change xl ⊕ zl at i, cases i, { -- either they play in x rw le_def at h, cases h, have t := h_left i, rcases t with ⟨i', ih⟩ | ⟨j, jh⟩, { left, refine ⟨(left_moves_add _ _).inv_fun (sum.inl i'), _⟩, exact add_le_add_right ih, }, { right, refine ⟨(right_moves_add _ _).inv_fun (sum.inl j), _⟩, convert add_le_add_right jh, apply add_move_right_inl } }, { -- or play in z left, refine ⟨(left_moves_add _ _).inv_fun (sum.inr i), _⟩, exact add_le_add_right h, }, }, { -- if Right plays first intros j, change yr ⊕ zr at j, cases j, { -- either they play in y rw le_def at h, cases h, have t := h_right j, rcases t with ⟨i, ih⟩ | ⟨j', jh⟩, { left, refine ⟨(left_moves_add _ _).inv_fun (sum.inl i), _⟩, convert add_le_add_right ih, apply add_move_left_inl }, { right, refine ⟨(right_moves_add _ _).inv_fun (sum.inl j'), _⟩, exact add_le_add_right jh } }, { -- or play in z right, refine ⟨(right_moves_add _ _).inv_fun (sum.inr j), _⟩, exact add_le_add_right h } } end using_well_founded { dec_tac := pgame_wf_tac } theorem add_le_add_left {x y z : pgame} (h : y ≤ z) : x + y ≤ x + z := calc x + y ≤ y + x : add_comm_le ... ≤ z + x : add_le_add_right h ... ≤ x + z : add_comm_le theorem add_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w + y ≈ x + z := ⟨calc w + y ≤ w + z : add_le_add_left h₂.1 ... ≤ x + z : add_le_add_right h₁.1, calc x + z ≤ x + y : add_le_add_left h₂.2 ... ≤ w + y : add_le_add_right h₁.2⟩ theorem sub_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w - y ≈ x - z := add_congr h₁ (neg_congr h₂) theorem add_left_neg_le_zero : Π {x : pgame}, (-x) + x ≤ 0 | ⟨xl, xr, xL, xR⟩ := begin rw [le_def], split, { intro i, change xr ⊕ xl at i, cases i, { -- If Left played in -x, Right responds with the same move in x. right, refine ⟨(right_moves_add _ _).inv_fun (sum.inr i), _⟩, convert @add_left_neg_le_zero (xR i), exact add_move_right_inr }, { -- If Left in x, Right responds with the same move in -x. right, dsimp, refine ⟨(right_moves_add _ _).inv_fun (sum.inl i), _⟩, convert @add_left_neg_le_zero (xL i), exact add_move_right_inl }, }, { rintro ⟨⟩, } end using_well_founded { dec_tac := pgame_wf_tac } theorem zero_le_add_left_neg : Π {x : pgame}, 0 ≤ (-x) + x := begin intro x, rw [le_iff_neg_ge, neg_zero], exact le_trans neg_add_le add_left_neg_le_zero end theorem add_left_neg_equiv {x : pgame} : (-x) + x ≈ 0 := ⟨add_left_neg_le_zero, zero_le_add_left_neg⟩ theorem add_right_neg_le_zero {x : pgame} : x + (-x) ≤ 0 := calc x + (-x) ≤ (-x) + x : add_comm_le ... ≤ 0 : add_left_neg_le_zero theorem zero_le_add_right_neg {x : pgame} : 0 ≤ x + (-x) := calc 0 ≤ (-x) + x : zero_le_add_left_neg ... ≤ x + (-x) : add_comm_le theorem add_right_neg_equiv {x : pgame} : x + (-x) ≈ 0 := ⟨add_right_neg_le_zero, zero_le_add_right_neg⟩ theorem add_lt_add_right {x y z : pgame} (h : x < y) : x + z < y + z := suffices y + z ≤ x + z → y ≤ x, by { rw ←not_le at ⊢ h, exact mt this h }, assume w, calc y ≤ y + 0 : (add_zero_relabelling _).symm.le ... ≤ y + (z + -z) : add_le_add_left zero_le_add_right_neg ... ≤ (y + z) + (-z) : (add_assoc_relabelling _ _ _).symm.le ... ≤ (x + z) + (-z) : add_le_add_right w ... ≤ x + (z + -z) : (add_assoc_relabelling _ _ _).le ... ≤ x + 0 : add_le_add_left add_right_neg_le_zero ... ≤ x : (add_zero_relabelling _).le theorem add_lt_add_left {x y z : pgame} (h : y < z) : x + y < x + z := calc x + y ≤ y + x : add_comm_le ... < z + x : add_lt_add_right h ... ≤ x + z : add_comm_le theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x := ⟨λ h, le_trans zero_le_add_right_neg (add_le_add_right h), λ h, calc x ≤ 0 + x : (zero_add_relabelling x).symm.le ... ≤ (y - x) + x : add_le_add_right h ... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le ... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero) ... ≤ y : (add_zero_relabelling y).le⟩ theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x := ⟨λ h, lt_of_le_of_lt zero_le_add_right_neg (add_lt_add_right h), λ h, calc x ≤ 0 + x : (zero_add_relabelling x).symm.le ... < (y - x) + x : add_lt_add_right h ... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le ... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero) ... ≤ y : (add_zero_relabelling y).le⟩ /-- The pre-game `star`, which is fuzzy/confused with zero. -/ def star : pgame := pgame.of_lists [0] [0] theorem star_lt_zero : star < 0 := by rw lt_def; exact or.inr ⟨⟨0, zero_lt_one⟩, (by split; rintros ⟨⟩)⟩ theorem zero_lt_star : 0 < star := by rw lt_def; exact or.inl ⟨⟨0, zero_lt_one⟩, (by split; rintros ⟨⟩)⟩ /-- The pre-game `ω`. (In fact all ordinals have game and surreal representatives.) -/ def omega : pgame := ⟨ulift ℕ, pempty, λ n, ↑n.1, pempty.elim⟩ theorem zero_lt_one : (0 : pgame) < 1 := begin rw lt_def, left, use ⟨punit.star, by split; rintro ⟨ ⟩⟩, end /-- The pre-game `half` is defined as `{0 | 1}`. -/ def half : pgame := ⟨punit, punit, 0, 1⟩ @[simp] lemma half_move_left : half.move_left punit.star = 0 := rfl @[simp] lemma half_move_right : half.move_right punit.star = 1 := rfl theorem zero_lt_half : 0 < half := begin rw lt_def, left, use punit.star, split; rintro ⟨ ⟩, end theorem half_lt_one : half < 1 := begin rw lt_def, right, use punit.star, split; rintro ⟨ ⟩, exact zero_lt_one, end end pgame
35d780b6122519e987d2c0b15d30277651babafb
1a61aba1b67cddccce19532a9596efe44be4285f
/library/data/nat/find.lean
69961e68ec9c2d975b685f05c38a569bd17ef55f
[ "Apache-2.0" ]
permissive
eigengrau/lean
07986a0f2548688c13ba36231f6cdbee82abf4c6
f8a773be1112015e2d232661ce616d23f12874d0
refs/heads/master
1,610,939,198,566
1,441,352,386,000
1,441,352,494,000
41,903,576
0
0
null
1,441,352,210,000
1,441,352,210,000
null
UTF-8
Lean
false
false
3,596
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Choice function for decidable predicates on natural numbers. This module provides the following two declarations: choose {p : nat → Prop} [d : decidable_pred p] : (∃ x, p x) → nat choose_spec {p : nat → Prop} [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) -/ import data.nat.basic data.nat.order open nat subtype decidable well_founded namespace nat section find_x parameter {p : nat → Prop} private definition lbp (x : nat) : Prop := ∀ y, y < x → ¬ p y private lemma lbp_zero : lbp 0 := λ y h, absurd h (not_lt_zero y) private lemma lbp_succ {x : nat} : lbp x → ¬ p x → lbp (succ x) := λ lx npx y yltsx, or.elim (eq_or_lt_of_le (le_of_succ_le_succ yltsx)) (suppose y = x, by substvars; assumption) (suppose y < x, lx y this) private definition gtb (a b : nat) : Prop := a > b ∧ lbp a local infix `≺`:50 := gtb private lemma acc_of_px {x : nat} : p x → acc gtb x := assume h, acc.intro x (λ (y : nat) (l : y ≺ x), obtain (h₁ : y > x) (h₂ : ∀ a, a < y → ¬ p a), from l, absurd h (h₂ x h₁)) private lemma acc_of_acc_succ {x : nat} : acc gtb (succ x) → acc gtb x := assume h, acc.intro x (λ (y : nat) (l : y ≺ x), by_cases (suppose y = succ x, by substvars; assumption) (suppose y ≠ succ x, have x < y, from and.elim_left l, have succ x < y, from lt_of_le_and_ne this (ne.symm `y ≠ succ x`), acc.inv h (and.intro this (and.elim_right l)))) private lemma acc_of_px_of_gt {x y : nat} : p x → y > x → acc gtb y := assume px ygtx, acc.intro y (λ (z : nat) (l : z ≺ y), obtain (zgty : z > y) (h : ∀ a, a < z → ¬ p a), from l, absurd px (h x (lt.trans ygtx zgty))) private lemma acc_of_acc_of_lt : ∀ {x y : nat}, acc gtb x → y < x → acc gtb y | 0 y a0 ylt0 := absurd ylt0 !not_lt_zero | (succ x) y asx yltsx := assert acc gtb x, from acc_of_acc_succ asx, by_cases (suppose y = x, by substvars; assumption) (suppose y ≠ x, acc_of_acc_of_lt `acc gtb x` (lt_of_le_and_ne (le_of_lt_succ yltsx) this)) parameter (ex : ∃ a, p a) parameter [dp : decidable_pred p] include dp private lemma acc_of_ex (x : nat) : acc gtb x := obtain (w : nat) (pw : p w), from ex, lt.by_cases (suppose x < w, acc_of_acc_of_lt (acc_of_px pw) this) (suppose x = w, by subst x; exact (acc_of_px pw)) (suppose x > w, acc_of_px_of_gt pw this) private lemma wf_gtb : well_founded gtb := well_founded.intro acc_of_ex private definition find.F (x : nat) : (Π x₁, x₁ ≺ x → lbp x₁ → {a : nat | p a}) → lbp x → {a : nat | p a} := match x with | 0 := λ f l0, by_cases (λ p0 : p 0, tag 0 p0) (suppose ¬ p 0, have lbp 1, from lbp_succ l0 this, have 1 ≺ 0, from and.intro (lt.base 0) `lbp 1`, f 1 `1 ≺ 0` `lbp 1`) | (succ n) := λ f lsn, by_cases (suppose p (succ n), tag (succ n) this) (suppose ¬ p (succ n), have lss : lbp (succ (succ n)), from lbp_succ lsn this, have succ (succ n) ≺ succ n, from and.intro (lt.base (succ n)) lss, f (succ (succ n)) this lss) end private definition find_x : {x : nat | p x} := @fix _ _ _ wf_gtb find.F 0 lbp_zero end find_x protected definition find {p : nat → Prop} [d : decidable_pred p] : (∃ x, p x) → nat := assume h, elt_of (find_x h) protected theorem find_spec {p : nat → Prop} [d : decidable_pred p] (ex : ∃ x, p x) : p (nat.find ex) := has_property (find_x ex) end nat
9f28d4b686f84ef8339723293d06e7a832e7df85
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/analysis/complex/basic.lean
2282d4c0ef867b25b54a4eba470d2b7b344558b3
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
15,470
lean
/- Copyright (c) Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import data.complex.determinant import data.complex.is_R_or_C /-! # Normed space structure on `ℂ`. This file gathers basic facts on complex numbers of an analytic nature. ## Main results This file registers `ℂ` as a normed field, expresses basic properties of the norm, and gives tools on the real vector space structure of `ℂ`. Notably, in the namespace `complex`, it defines functions: * `re_clm` * `im_clm` * `of_real_clm` * `conj_cle` They are bundled versions of the real part, the imaginary part, the embedding of `ℝ` in `ℂ`, and the complex conjugate as continuous `ℝ`-linear maps. The last two are also bundled as linear isometries in `of_real_li` and `conj_lie`. We also register the fact that `ℂ` is an `is_R_or_C` field. -/ noncomputable theory namespace complex open_locale complex_conjugate topological_space instance : has_norm ℂ := ⟨abs⟩ @[simp] lemma norm_eq_abs (z : ℂ) : ‖z‖ = abs z := rfl instance : normed_add_comm_group ℂ := add_group_norm.to_normed_add_comm_group { map_zero' := map_zero abs, neg' := abs.map_neg, eq_zero_of_map_eq_zero' := λ _, abs.eq_zero.1, ..abs } instance : normed_field ℂ := { norm := abs, dist_eq := λ _ _, rfl, norm_mul' := map_mul abs, .. complex.field, .. complex.normed_add_comm_group } instance : densely_normed_field ℂ := { lt_norm_lt := λ r₁ r₂ h₀ hr, let ⟨x, h⟩ := normed_field.exists_lt_norm_lt ℝ h₀ hr in have this : ‖(‖x‖ : ℂ)‖ = ‖(‖x‖)‖, by simp only [norm_eq_abs, abs_of_real, real.norm_eq_abs], ⟨‖x‖, by rwa [this, norm_norm]⟩ } instance {R : Type*} [normed_field R] [normed_algebra R ℝ] : normed_algebra R ℂ := { norm_smul_le := λ r x, begin rw [norm_eq_abs, norm_eq_abs, ←algebra_map_smul ℝ r x, algebra.smul_def, map_mul, ←norm_algebra_map' ℝ r, coe_algebra_map, abs_of_real], refl, end, to_algebra := complex.algebra } variables {E : Type*} [normed_add_comm_group E] [normed_space ℂ E] /-- The module structure from `module.complex_to_real` is a normed space. -/ @[priority 900] -- see Note [lower instance priority] instance _root_.normed_space.complex_to_real : normed_space ℝ E := normed_space.restrict_scalars ℝ ℂ E lemma dist_eq (z w : ℂ) : dist z w = abs (z - w) := rfl lemma dist_eq_re_im (z w : ℂ) : dist z w = real.sqrt ((z.re - w.re) ^ 2 + (z.im - w.im) ^ 2) := by { rw [sq, sq], refl } @[simp] lemma dist_mk (x₁ y₁ x₂ y₂ : ℝ) : dist (mk x₁ y₁) (mk x₂ y₂) = real.sqrt ((x₁ - x₂) ^ 2 + (y₁ - y₂) ^ 2) := dist_eq_re_im _ _ lemma dist_of_re_eq {z w : ℂ} (h : z.re = w.re) : dist z w = dist z.im w.im := by rw [dist_eq_re_im, h, sub_self, zero_pow two_pos, zero_add, real.sqrt_sq_eq_abs, real.dist_eq] lemma nndist_of_re_eq {z w : ℂ} (h : z.re = w.re) : nndist z w = nndist z.im w.im := nnreal.eq $ dist_of_re_eq h lemma edist_of_re_eq {z w : ℂ} (h : z.re = w.re) : edist z w = edist z.im w.im := by rw [edist_nndist, edist_nndist, nndist_of_re_eq h] lemma dist_of_im_eq {z w : ℂ} (h : z.im = w.im) : dist z w = dist z.re w.re := by rw [dist_eq_re_im, h, sub_self, zero_pow two_pos, add_zero, real.sqrt_sq_eq_abs, real.dist_eq] lemma nndist_of_im_eq {z w : ℂ} (h : z.im = w.im) : nndist z w = nndist z.re w.re := nnreal.eq $ dist_of_im_eq h lemma edist_of_im_eq {z w : ℂ} (h : z.im = w.im) : edist z w = edist z.re w.re := by rw [edist_nndist, edist_nndist, nndist_of_im_eq h] lemma dist_conj_self (z : ℂ) : dist (conj z) z = 2 * |z.im| := by rw [dist_of_re_eq (conj_re z), conj_im, dist_comm, real.dist_eq, sub_neg_eq_add, ← two_mul, _root_.abs_mul, abs_of_pos (zero_lt_two' ℝ)] lemma nndist_conj_self (z : ℂ) : nndist (conj z) z = 2 * real.nnabs z.im := nnreal.eq $ by rw [← dist_nndist, nnreal.coe_mul, nnreal.coe_two, real.coe_nnabs, dist_conj_self] lemma dist_self_conj (z : ℂ) : dist z (conj z) = 2 * |z.im| := by rw [dist_comm, dist_conj_self] lemma nndist_self_conj (z : ℂ) : nndist z (conj z) = 2 * real.nnabs z.im := by rw [nndist_comm, nndist_conj_self] @[simp] lemma comap_abs_nhds_zero : filter.comap abs (𝓝 0) = 𝓝 0 := comap_norm_nhds_zero lemma norm_real (r : ℝ) : ‖(r : ℂ)‖ = ‖r‖ := abs_of_real _ @[simp] lemma norm_rat (r : ℚ) : ‖(r : ℂ)‖ = |(r : ℝ)| := by { rw ← of_real_rat_cast, exact norm_real _ } @[simp] lemma norm_nat (n : ℕ) : ‖(n : ℂ)‖ = n := abs_of_nat _ @[simp] lemma norm_int {n : ℤ} : ‖(n : ℂ)‖ = |n| := by simp [← rat.cast_coe_int] {single_pass := tt} lemma norm_int_of_nonneg {n : ℤ} (hn : 0 ≤ n) : ‖(n : ℂ)‖ = n := by simp [hn] @[continuity] lemma continuous_abs : continuous abs := continuous_norm @[continuity] lemma continuous_norm_sq : continuous norm_sq := by simpa [← norm_sq_eq_abs] using continuous_abs.pow 2 @[simp, norm_cast] lemma nnnorm_real (r : ℝ) : ‖(r : ℂ)‖₊ = ‖r‖₊ := subtype.ext $ norm_real r @[simp, norm_cast] lemma nnnorm_nat (n : ℕ) : ‖(n : ℂ)‖₊ = n := subtype.ext $ by simp @[simp, norm_cast] lemma nnnorm_int (n : ℤ) : ‖(n : ℂ)‖₊ = ‖n‖₊ := subtype.ext $ by simp only [coe_nnnorm, norm_int, int.norm_eq_abs] lemma nnnorm_eq_one_of_pow_eq_one {ζ : ℂ} {n : ℕ} (h : ζ ^ n = 1) (hn : n ≠ 0) : ‖ζ‖₊ = 1 := begin refine (@pow_left_inj nnreal _ _ _ _ zero_le' zero_le' hn.bot_lt).mp _, rw [←nnnorm_pow, h, nnnorm_one, one_pow], end lemma norm_eq_one_of_pow_eq_one {ζ : ℂ} {n : ℕ} (h : ζ ^ n = 1) (hn : n ≠ 0) : ‖ζ‖ = 1 := congr_arg coe (nnnorm_eq_one_of_pow_eq_one h hn) /-- The `abs` function on `ℂ` is proper. -/ lemma tendsto_abs_cocompact_at_top : filter.tendsto abs (filter.cocompact ℂ) filter.at_top := tendsto_norm_cocompact_at_top /-- The `norm_sq` function on `ℂ` is proper. -/ lemma tendsto_norm_sq_cocompact_at_top : filter.tendsto norm_sq (filter.cocompact ℂ) filter.at_top := by simpa [mul_self_abs] using tendsto_abs_cocompact_at_top.at_top_mul_at_top tendsto_abs_cocompact_at_top open continuous_linear_map /-- Continuous linear map version of the real part function, from `ℂ` to `ℝ`. -/ def re_clm : ℂ →L[ℝ] ℝ := re_lm.mk_continuous 1 (λ x, by simp [abs_re_le_abs]) @[continuity] lemma continuous_re : continuous re := re_clm.continuous @[simp] lemma re_clm_coe : (coe (re_clm) : ℂ →ₗ[ℝ] ℝ) = re_lm := rfl @[simp] lemma re_clm_apply (z : ℂ) : (re_clm : ℂ → ℝ) z = z.re := rfl @[simp] lemma re_clm_norm : ‖re_clm‖ = 1 := le_antisymm (linear_map.mk_continuous_norm_le _ zero_le_one _) $ calc 1 = ‖re_clm 1‖ : by simp ... ≤ ‖re_clm‖ : unit_le_op_norm _ _ (by simp) @[simp] lemma re_clm_nnnorm : ‖re_clm‖₊ = 1 := subtype.ext re_clm_norm /-- Continuous linear map version of the real part function, from `ℂ` to `ℝ`. -/ def im_clm : ℂ →L[ℝ] ℝ := im_lm.mk_continuous 1 (λ x, by simp [abs_im_le_abs]) @[continuity] lemma continuous_im : continuous im := im_clm.continuous @[simp] lemma im_clm_coe : (coe (im_clm) : ℂ →ₗ[ℝ] ℝ) = im_lm := rfl @[simp] lemma im_clm_apply (z : ℂ) : (im_clm : ℂ → ℝ) z = z.im := rfl @[simp] lemma im_clm_norm : ‖im_clm‖ = 1 := le_antisymm (linear_map.mk_continuous_norm_le _ zero_le_one _) $ calc 1 = ‖im_clm I‖ : by simp ... ≤ ‖im_clm‖ : unit_le_op_norm _ _ (by simp) @[simp] lemma im_clm_nnnorm : ‖im_clm‖₊ = 1 := subtype.ext im_clm_norm lemma restrict_scalars_one_smul_right' (x : E) : continuous_linear_map.restrict_scalars ℝ ((1 : ℂ →L[ℂ] ℂ).smul_right x : ℂ →L[ℂ] E) = re_clm.smul_right x + I • im_clm.smul_right x := by { ext ⟨a, b⟩, simp [mk_eq_add_mul_I, add_smul, mul_smul, smul_comm I] } lemma restrict_scalars_one_smul_right (x : ℂ) : continuous_linear_map.restrict_scalars ℝ ((1 : ℂ →L[ℂ] ℂ).smul_right x : ℂ →L[ℂ] ℂ) = x • 1 := by { ext1 z, dsimp, apply mul_comm } /-- The complex-conjugation function from `ℂ` to itself is an isometric linear equivalence. -/ def conj_lie : ℂ ≃ₗᵢ[ℝ] ℂ := ⟨conj_ae.to_linear_equiv, abs_conj⟩ @[simp] lemma conj_lie_apply (z : ℂ) : conj_lie z = conj z := rfl @[simp] lemma conj_lie_symm : conj_lie.symm = conj_lie := rfl lemma isometry_conj : isometry (conj : ℂ → ℂ) := conj_lie.isometry @[simp] lemma dist_conj_conj (z w : ℂ) : dist (conj z) (conj w) = dist z w := isometry_conj.dist_eq z w @[simp] lemma nndist_conj_conj (z w : ℂ) : nndist (conj z) (conj w) = nndist z w := isometry_conj.nndist_eq z w lemma dist_conj_comm (z w : ℂ) : dist (conj z) w = dist z (conj w) := by rw [← dist_conj_conj, conj_conj] lemma nndist_conj_comm (z w : ℂ) : nndist (conj z) w = nndist z (conj w) := subtype.ext $ dist_conj_comm _ _ /-- The determinant of `conj_lie`, as a linear map. -/ @[simp] lemma det_conj_lie : (conj_lie.to_linear_equiv : ℂ →ₗ[ℝ] ℂ).det = -1 := det_conj_ae /-- The determinant of `conj_lie`, as a linear equiv. -/ @[simp] lemma linear_equiv_det_conj_lie : conj_lie.to_linear_equiv.det = -1 := linear_equiv_det_conj_ae instance : has_continuous_star ℂ := ⟨conj_lie.continuous⟩ @[continuity] lemma continuous_conj : continuous (conj : ℂ → ℂ) := continuous_star /-- The only continuous ring homomorphisms from `ℂ` to `ℂ` are the identity and the complex conjugation. -/ lemma ring_hom_eq_id_or_conj_of_continuous {f : ℂ →+* ℂ} (hf : continuous f) : f = ring_hom.id ℂ ∨ f = conj := begin refine (real_alg_hom_eq_id_or_conj $ alg_hom.mk' f $ map_real_smul f hf).imp (λ h, _) (λ h, _), all_goals { convert congr_arg alg_hom.to_ring_hom h, ext1, refl, }, end /-- Continuous linear equiv version of the conj function, from `ℂ` to `ℂ`. -/ def conj_cle : ℂ ≃L[ℝ] ℂ := conj_lie @[simp] lemma conj_cle_coe : conj_cle.to_linear_equiv = conj_ae.to_linear_equiv := rfl @[simp] lemma conj_cle_apply (z : ℂ) : conj_cle z = conj z := rfl @[simp] lemma conj_cle_norm : ‖(conj_cle : ℂ →L[ℝ] ℂ)‖ = 1 := conj_lie.to_linear_isometry.norm_to_continuous_linear_map @[simp] lemma conj_cle_nnorm : ‖(conj_cle : ℂ →L[ℝ] ℂ)‖₊ = 1 := subtype.ext conj_cle_norm /-- Linear isometry version of the canonical embedding of `ℝ` in `ℂ`. -/ def of_real_li : ℝ →ₗᵢ[ℝ] ℂ := ⟨of_real_am.to_linear_map, norm_real⟩ lemma isometry_of_real : isometry (coe : ℝ → ℂ) := of_real_li.isometry @[continuity] lemma continuous_of_real : continuous (coe : ℝ → ℂ) := of_real_li.continuous /-- The only continuous ring homomorphism from `ℝ` to `ℂ` is the identity. -/ lemma ring_hom_eq_of_real_of_continuous {f : ℝ →+* ℂ} (h : continuous f) : f = complex.of_real := begin convert congr_arg alg_hom.to_ring_hom (subsingleton.elim (alg_hom.mk' f $ map_real_smul f h) $ algebra.of_id ℝ ℂ), ext1, refl, end /-- Continuous linear map version of the canonical embedding of `ℝ` in `ℂ`. -/ def of_real_clm : ℝ →L[ℝ] ℂ := of_real_li.to_continuous_linear_map @[simp] lemma of_real_clm_coe : (of_real_clm : ℝ →ₗ[ℝ] ℂ) = of_real_am.to_linear_map := rfl @[simp] lemma of_real_clm_apply (x : ℝ) : of_real_clm x = x := rfl @[simp] lemma of_real_clm_norm : ‖of_real_clm‖ = 1 := of_real_li.norm_to_continuous_linear_map @[simp] lemma of_real_clm_nnnorm : ‖of_real_clm‖₊ = 1 := subtype.ext $ of_real_clm_norm noncomputable instance : is_R_or_C ℂ := { re := ⟨complex.re, complex.zero_re, complex.add_re⟩, im := ⟨complex.im, complex.zero_im, complex.add_im⟩, I := complex.I, I_re_ax := by simp only [add_monoid_hom.coe_mk, complex.I_re], I_mul_I_ax := by simp only [complex.I_mul_I, eq_self_iff_true, or_true], re_add_im_ax := λ z, by simp only [add_monoid_hom.coe_mk, complex.re_add_im, complex.coe_algebra_map, complex.of_real_eq_coe], of_real_re_ax := λ r, by simp only [add_monoid_hom.coe_mk, complex.of_real_re, complex.coe_algebra_map, complex.of_real_eq_coe], of_real_im_ax := λ r, by simp only [add_monoid_hom.coe_mk, complex.of_real_im, complex.coe_algebra_map, complex.of_real_eq_coe], mul_re_ax := λ z w, by simp only [complex.mul_re, add_monoid_hom.coe_mk], mul_im_ax := λ z w, by simp only [add_monoid_hom.coe_mk, complex.mul_im], conj_re_ax := λ z, rfl, conj_im_ax := λ z, rfl, conj_I_ax := by simp only [complex.conj_I, ring_hom.coe_mk], norm_sq_eq_def_ax := λ z, by simp only [←complex.norm_sq_eq_abs, ←complex.norm_sq_apply, add_monoid_hom.coe_mk, complex.norm_eq_abs], mul_im_I_ax := λ z, by simp only [mul_one, add_monoid_hom.coe_mk, complex.I_im], inv_def_ax := λ z, by simp only [complex.inv_def, complex.norm_sq_eq_abs, complex.coe_algebra_map, complex.of_real_eq_coe, complex.norm_eq_abs], div_I_ax := complex.div_I } lemma _root_.is_R_or_C.re_eq_complex_re : ⇑(is_R_or_C.re : ℂ →+ ℝ) = complex.re := rfl lemma _root_.is_R_or_C.im_eq_complex_im : ⇑(is_R_or_C.im : ℂ →+ ℝ) = complex.im := rfl section complex_order open_locale complex_order lemma eq_coe_norm_of_nonneg {z : ℂ} (hz : 0 ≤ z) : z = ↑‖z‖ := by rw [eq_re_of_real_le hz, is_R_or_C.norm_of_real, real.norm_of_nonneg (complex.le_def.2 hz).1] end complex_order section variables {α β γ : Type*} [add_comm_monoid α] [topological_space α] [add_comm_monoid γ] [topological_space γ] /-- The natural `add_equiv` from `ℂ` to `ℝ × ℝ`. -/ @[simps apply symm_apply_re symm_apply_im { simp_rhs := tt }] def equiv_real_prod_add_hom : ℂ ≃+ ℝ × ℝ := { map_add' := by simp, .. equiv_real_prod } /-- The natural `linear_equiv` from `ℂ` to `ℝ × ℝ`. -/ @[simps apply symm_apply_re symm_apply_im { simp_rhs := tt }] def equiv_real_prod_add_hom_lm : ℂ ≃ₗ[ℝ] ℝ × ℝ := { map_smul' := by simp [equiv_real_prod_add_hom], .. equiv_real_prod_add_hom } /-- The natural `continuous_linear_equiv` from `ℂ` to `ℝ × ℝ`. -/ @[simps apply symm_apply_re symm_apply_im { simp_rhs := tt }] def equiv_real_prodₗ : ℂ ≃L[ℝ] ℝ × ℝ := equiv_real_prod_add_hom_lm.to_continuous_linear_equiv end lemma has_sum_iff {α} (f : α → ℂ) (c : ℂ) : has_sum f c ↔ has_sum (λ x, (f x).re) c.re ∧ has_sum (λ x, (f x).im) c.im := begin -- For some reason, `continuous_linear_map.has_sum` is orders of magnitude faster than -- `has_sum.mapL` here: refine ⟨λ h, ⟨re_clm.has_sum h, im_clm.has_sum h⟩, _⟩, rintro ⟨h₁, h₂⟩, convert (h₁.prod_mk h₂).mapL equiv_real_prodₗ.symm.to_continuous_linear_map, { ext x; refl }, { cases c, refl } end end complex namespace is_R_or_C local notation `reC` := @is_R_or_C.re ℂ _ local notation `imC` := @is_R_or_C.im ℂ _ local notation `IC` := @is_R_or_C.I ℂ _ local notation `absC` := @is_R_or_C.abs ℂ _ local notation `norm_sqC` := @is_R_or_C.norm_sq ℂ _ @[simp] lemma re_to_complex {x : ℂ} : reC x = x.re := rfl @[simp] lemma im_to_complex {x : ℂ} : imC x = x.im := rfl @[simp] lemma I_to_complex : IC = complex.I := rfl @[simp] lemma norm_sq_to_complex {x : ℂ} : norm_sqC x = complex.norm_sq x := by simp [is_R_or_C.norm_sq, complex.norm_sq] @[simp] lemma abs_to_complex {x : ℂ} : absC x = complex.abs x := by simp [is_R_or_C.abs, complex.abs] end is_R_or_C
02511e948b783899d7264b48b8bbea757bb98cd3
4fa161becb8ce7378a709f5992a594764699e268
/src/analysis/normed_space/hahn_banach.lean
7c55577adbe4ac6c98e76618540c380579fb2bd8
[ "Apache-2.0" ]
permissive
laughinggas/mathlib
e4aa4565ae34e46e834434284cb26bd9d67bc373
86dcd5cda7a5017c8b3c8876c89a510a19d49aad
refs/heads/master
1,669,496,232,688
1,592,831,995,000
1,592,831,995,000
274,155,979
0
0
Apache-2.0
1,592,835,190,000
1,592,835,189,000
null
UTF-8
Lean
false
false
3,495
lean
/- Copyright (c) 2020 Yury Kudryashov All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import analysis.normed_space.operator_norm import analysis.convex.cone /-! # Hahn-Banach theorem In this file we prove a version of Hahn-Banach theorem for continuous linear functions on normed spaces. We also prove a standard corollary, needed for the isometric inclusion in the double dual. ## TODO Prove more corollaries -/ section basic variables {E : Type*} [normed_group E] [normed_space ℝ E] /-- Hahn-Banach theorem for continuous linear functions. -/ theorem exists_extension_norm_eq (p : subspace ℝ E) (f : p →L[ℝ] ℝ) : ∃ g : E →L[ℝ] ℝ, (∀ x : p, g x = f x) ∧ ∥g∥ = ∥f∥ := begin rcases exists_extension_of_le_sublinear ⟨p, f⟩ (λ x, ∥f∥ * ∥x∥) (λ c hc x, by simp only [norm_smul c x, real.norm_eq_abs, abs_of_pos hc, mul_left_comm]) (λ x y, _) (λ x, le_trans (le_abs_self _) (f.le_op_norm _)) with ⟨g, g_eq, g_le⟩, set g' := g.mk_continuous (∥f∥) (λ x, abs_le.2 ⟨neg_le.1 $ g.map_neg x ▸ norm_neg x ▸ g_le (-x), g_le x⟩), { refine ⟨g', g_eq, _⟩, { apply le_antisymm (g.mk_continuous_norm_le (norm_nonneg f) _), refine f.op_norm_le_bound (norm_nonneg _) (λ x, _), dsimp at g_eq, rw ← g_eq, apply g'.le_op_norm } }, { simp only [← mul_add], exact mul_le_mul_of_nonneg_left (norm_add_le x y) (norm_nonneg f) } end end basic section dual_vector variables {E : Type*} [normed_group E] [normed_space ℝ E] open continuous_linear_equiv open_locale classical lemma coord_self' (x : E) (h : x ≠ 0) : (∥x∥ • (coord ℝ x h)) ⟨x, submodule.mem_span_singleton_self x⟩ = ∥x∥ := calc (∥x∥ • (coord ℝ x h)) ⟨x, submodule.mem_span_singleton_self x⟩ = ∥x∥ • (linear_equiv.coord ℝ E x h) ⟨x, submodule.mem_span_singleton_self x⟩ : rfl ... = ∥x∥ • 1 : by rw linear_equiv.coord_self ℝ E x h ... = ∥x∥ : mul_one _ lemma coord_norm' (x : E) (h : x ≠ 0) : ∥∥x∥ • coord ℝ x h∥ = 1 := by rw [norm_smul, norm_norm, coord_norm, mul_inv_cancel (mt norm_eq_zero.mp h)] /-- Corollary of Hahn-Banach. Given a nonzero element `x` of a normed space, there exists an element of the dual space, of norm 1, whose value on `x` is `∥x∥`. -/ theorem exists_dual_vector (x : E) (h : x ≠ 0) : ∃ g : E →L[ℝ] ℝ, ∥g∥ = 1 ∧ g x = ∥x∥ := begin cases exists_extension_norm_eq (submodule.span ℝ {x}) (∥x∥ • coord ℝ x h) with g hg, use g, split, { rw [hg.2, coord_norm'] }, { calc g x = g (⟨x, submodule.mem_span_singleton_self x⟩ : submodule.span ℝ {x}) : by simp ... = (∥x∥ • coord ℝ x h) (⟨x, submodule.mem_span_singleton_self x⟩ : submodule.span ℝ {x}) : by rw ← hg.1 ... = ∥x∥ : by rw coord_self' } end /-- Variant of the above theorem, eliminating the hypothesis that `x` be nonzero, and choosing the dual element arbitrarily when `x = 0`. -/ theorem exists_dual_vector' (h : 0 < vector_space.dim ℝ E) (x : E) : ∃ g : E →L[ℝ] ℝ, ∥g∥ = 1 ∧ g x = ∥x∥ := begin by_cases hx : x = 0, { cases dim_pos_iff_exists_ne_zero.mp h with y hy, cases exists_dual_vector y hy with g hg, use g, refine ⟨hg.left, _⟩, simp [hx] }, { exact exists_dual_vector x hx } end -- TODO: These corollaries are also true over ℂ. end dual_vector
1c0c8a9c4943df3f15e96e7f4f9823563213162e
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/1290.lean
325c8deea639e41697f1f27937d6794922948edc
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
457
lean
structure Category := (Obj : Type) (Hom : Obj -> Obj -> Type) structure Isomorphism ( C: Category ) { A B : C^.Obj } := (morphism : C^.Hom A B) instance Isomorphism_coercion_to_morphism { C : Category } { A B C^.Obj } : has_coe (Isomorphism C A B) (C^.Hom A B) := (coe: Isomorphism.morphism) instance Isomorphism_coercion_to_morphism_fixed { C : Category } { A B : C^.Obj } : has_coe (Isomorphism C) (C^.Hom A B) := {coe := Isomorphism.morphism}
3f5235fab04c35500a2aaff80f713303747fa594
9dc8cecdf3c4634764a18254e94d43da07142918
/src/data/list/defs.lean
76c77a323cee4e5822574870466bea900ecb72b0
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
41,521
lean
/- Copyright (c) 2014 Parikshit Khanna. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Mario Carneiro -/ import data.option.defs import logic.basic import tactic.cache import data.rbmap.basic import data.rbtree.default_lt /-! ## Definitions on lists This file contains various definitions on lists. It does not contain proofs about these definitions, those are contained in other files in `data/list` -/ namespace list open function nat universes u v w x variables {α β γ δ ε ζ : Type*} instance [decidable_eq α] : has_sdiff (list α) := ⟨ list.diff ⟩ /-- Split a list at an index. split_at 2 [a, b, c] = ([a, b], [c]) -/ def split_at : ℕ → list α → list α × list α | 0 a := ([], a) | (succ n) [] := ([], []) | (succ n) (x :: xs) := let (l, r) := split_at n xs in (x :: l, r) /-- An auxiliary function for `split_on_p`. -/ def split_on_p_aux {α : Type u} (P : α → Prop) [decidable_pred P] : list α → (list α → list α) → list (list α) | [] f := [f []] | (h :: t) f := if P h then f [] :: split_on_p_aux t id else split_on_p_aux t (λ l, f (h :: l)) /-- Split a list at every element satisfying a predicate. -/ def split_on_p {α : Type u} (P : α → Prop) [decidable_pred P] (l : list α) : list (list α) := split_on_p_aux P l id /-- Split a list at every occurrence of an element. [1,1,2,3,2,4,4].split_on 2 = [[1,1],[3],[4,4]] -/ def split_on {α : Type u} [decidable_eq α] (a : α) (as : list α) : list (list α) := as.split_on_p (=a) /-- Concatenate an element at the end of a list. concat [a, b] c = [a, b, c] -/ @[simp] def concat : list α → α → list α | [] a := [a] | (b::l) a := b :: concat l a /-- `head' xs` returns the first element of `xs` if `xs` is non-empty; it returns `none` otherwise -/ @[simp] def head' : list α → option α | [] := none | (a :: l) := some a /-- Convert a list into an array (whose length is the length of `l`). -/ def to_array (l : list α) : array l.length α := {data := λ v, l.nth_le v.1 v.2} /-- "default" `nth` function: returns `d` instead of `none` in the case that the index is out of bounds. -/ def nthd (d : α) : Π (l : list α) (n : ℕ), α | [] _ := d | (x::xs) 0 := x | (x::xs) (n + 1) := nthd xs n /-- "inhabited" `nth` function: returns `default` instead of `none` in the case that the index is out of bounds. -/ def inth [h : inhabited α] (l : list α) (n : nat) : α := nthd default l n /-- Apply a function to the nth tail of `l`. Returns the input without using `f` if the index is larger than the length of the list. modify_nth_tail f 2 [a, b, c] = [a, b] ++ f [c] -/ @[simp] def modify_nth_tail (f : list α → list α) : ℕ → list α → list α | 0 l := f l | (n+1) [] := [] | (n+1) (a::l) := a :: modify_nth_tail n l /-- Apply `f` to the head of the list, if it exists. -/ @[simp] def modify_head (f : α → α) : list α → list α | [] := [] | (a::l) := f a :: l /-- Apply `f` to the nth element of the list, if it exists. -/ def modify_nth (f : α → α) : ℕ → list α → list α := modify_nth_tail (modify_head f) /-- Apply `f` to the last element of `l`, if it exists. -/ @[simp] def modify_last (f : α → α) : list α → list α | [] := [] | [x] := [f x] | (x :: xs) := x :: modify_last xs /-- `insert_nth n a l` inserts `a` into the list `l` after the first `n` elements of `l` `insert_nth 2 1 [1, 2, 3, 4] = [1, 2, 1, 3, 4]`-/ def insert_nth (n : ℕ) (a : α) : list α → list α := modify_nth_tail (list.cons a) n section take' variable [inhabited α] /-- Take `n` elements from a list `l`. If `l` has less than `n` elements, append `n - length l` elements `default`. -/ def take' : ∀ n, list α → list α | 0 l := [] | (n+1) l := l.head :: take' n l.tail end take' /-- Get the longest initial segment of the list whose members all satisfy `p`. take_while (λ x, x < 3) [0, 2, 5, 1] = [0, 2] -/ def take_while (p : α → Prop) [decidable_pred p] : list α → list α | [] := [] | (a::l) := if p a then a :: take_while l else [] /-- Fold a function `f` over the list from the left, returning the list of partial results. scanl (+) 0 [1, 2, 3] = [0, 1, 3, 6] -/ def scanl (f : α → β → α) : α → list β → list α | a [] := [a] | a (b::l) := a :: scanl (f a b) l /-- Auxiliary definition used to define `scanr`. If `scanr_aux f b l = (b', l')` then `scanr f b l = b' :: l'` -/ def scanr_aux (f : α → β → β) (b : β) : list α → β × list β | [] := (b, []) | (a::l) := let (b', l') := scanr_aux l in (f a b', b' :: l') /-- Fold a function `f` over the list from the right, returning the list of partial results. scanr (+) 0 [1, 2, 3] = [6, 5, 3, 0] -/ def scanr (f : α → β → β) (b : β) (l : list α) : list β := let (b', l') := scanr_aux f b l in b' :: l' /-- Product of a list. prod [a, b, c] = ((1 * a) * b) * c -/ def prod [has_mul α] [has_one α] : list α → α := foldl (*) 1 /-- Sum of a list. sum [a, b, c] = ((0 + a) + b) + c -/ -- Later this will be tagged with `to_additive`, but this can't be done yet because of import -- dependencies. def sum [has_add α] [has_zero α] : list α → α := foldl (+) 0 /-- The alternating sum of a list. -/ def alternating_sum {G : Type*} [has_zero G] [has_add G] [has_neg G] : list G → G | [] := 0 | (g :: []) := g | (g :: h :: t) := g + -h + alternating_sum t /-- The alternating product of a list. -/ def alternating_prod {G : Type*} [has_one G] [has_mul G] [has_inv G] : list G → G | [] := 1 | (g :: []) := g | (g :: h :: t) := g * h⁻¹ * alternating_prod t /-- Given a function `f : α → β ⊕ γ`, `partition_map f l` maps the list by `f` whilst partitioning the result it into a pair of lists, `list β × list γ`, partitioning the `sum.inl _` into the left list, and the `sum.inr _` into the right list. `partition_map (id : ℕ ⊕ ℕ → ℕ ⊕ ℕ) [inl 0, inr 1, inl 2] = ([0,2], [1])` -/ def partition_map (f : α → β ⊕ γ) : list α → list β × list γ | [] := ([],[]) | (x::xs) := match f x with | (sum.inr r) := prod.map id (cons r) $ partition_map xs | (sum.inl l) := prod.map (cons l) id $ partition_map xs end /-- `find p l` is the first element of `l` satisfying `p`, or `none` if no such element exists. -/ def find (p : α → Prop) [decidable_pred p] : list α → option α | [] := none | (a::l) := if p a then some a else find l /-- `mfind tac l` returns the first element of `l` on which `tac` succeeds, and fails otherwise. -/ def mfind {α} {m : Type u → Type v} [monad m] [alternative m] (tac : α → m punit) : list α → m α := list.mfirst $ λ a, tac a $> a /-- `mbfind' p l` returns the first element `a` of `l` for which `p a` returns true. `mbfind'` short-circuits, so `p` is not necessarily run on every `a` in `l`. This is a monadic version of `list.find`. -/ def mbfind' {m : Type u → Type v} [monad m] {α : Type u} (p : α → m (ulift bool)) : list α → m (option α) | [] := pure none | (x :: xs) := do ⟨px⟩ ← p x, if px then pure (some x) else mbfind' xs section variables {m : Type → Type v} [monad m] /-- A variant of `mbfind'` with more restrictive universe levels. -/ def mbfind {α} (p : α → m bool) (xs : list α) : m (option α) := xs.mbfind' (functor.map ulift.up ∘ p) /-- `many p as` returns true iff `p` returns true for any element of `l`. `many` short-circuits, so if `p` returns true for any element of `l`, later elements are not checked. This is a monadic version of `list.any`. -/ -- Implementing this via `mbfind` would give us less universe polymorphism. def many {α : Type u} (p : α → m bool) : list α → m bool | [] := pure false | (x :: xs) := do px ← p x, if px then pure tt else many xs /-- `mall p as` returns true iff `p` returns true for all elements of `l`. `mall` short-circuits, so if `p` returns false for any element of `l`, later elements are not checked. This is a monadic version of `list.all`. -/ def mall {α : Type u} (p : α → m bool) (as : list α) : m bool := bnot <$> many (λ a, bnot <$> p a) as /-- `mbor xs` runs the actions in `xs`, returning true if any of them returns true. `mbor` short-circuits, so if an action returns true, later actions are not run. This is a monadic version of `list.bor`. -/ def mbor : list (m bool) → m bool := many id /-- `mband xs` runs the actions in `xs`, returning true if all of them return true. `mband` short-circuits, so if an action returns false, later actions are not run. This is a monadic version of `list.band`. -/ def mband : list (m bool) → m bool := mall id end /-- Auxiliary definition for `foldl_with_index`. -/ def foldl_with_index_aux (f : ℕ → α → β → α) : ℕ → α → list β → α | _ a [] := a | i a (b :: l) := foldl_with_index_aux (i + 1) (f i a b) l /-- Fold a list from left to right as with `foldl`, but the combining function also receives each element's index. -/ def foldl_with_index (f : ℕ → α → β → α) (a : α) (l : list β) : α := foldl_with_index_aux f 0 a l /-- Auxiliary definition for `foldr_with_index`. -/ def foldr_with_index_aux (f : ℕ → α → β → β) : ℕ → β → list α → β | _ b [] := b | i b (a :: l) := f i a (foldr_with_index_aux (i + 1) b l) /-- Fold a list from right to left as with `foldr`, but the combining function also receives each element's index. -/ def foldr_with_index (f : ℕ → α → β → β) (b : β) (l : list α) : β := foldr_with_index_aux f 0 b l /-- `find_indexes p l` is the list of indexes of elements of `l` that satisfy `p`. -/ def find_indexes (p : α → Prop) [decidable_pred p] (l : list α) : list nat := foldr_with_index (λ i a is, if p a then i :: is else is) [] l /-- Returns the elements of `l` that satisfy `p` together with their indexes in `l`. The returned list is ordered by index. -/ def indexes_values (p : α → Prop) [decidable_pred p] (l : list α) : list (ℕ × α) := foldr_with_index (λ i a l, if p a then (i , a) :: l else l) [] l /-- `indexes_of a l` is the list of all indexes of `a` in `l`. For example: ``` indexes_of a [a, b, a, a] = [0, 2, 3] ``` -/ def indexes_of [decidable_eq α] (a : α) : list α → list nat := find_indexes (eq a) section mfold_with_index variables {m : Type v → Type w} [monad m] /-- Monadic variant of `foldl_with_index`. -/ def mfoldl_with_index {α β} (f : ℕ → β → α → m β) (b : β) (as : list α) : m β := as.foldl_with_index (λ i ma b, do a ← ma, f i a b) (pure b) /-- Monadic variant of `foldr_with_index`. -/ def mfoldr_with_index {α β} (f : ℕ → α → β → m β) (b : β) (as : list α) : m β := as.foldr_with_index (λ i a mb, do b ← mb, f i a b) (pure b) end mfold_with_index section mmap_with_index variables {m : Type v → Type w} [applicative m] /-- Auxiliary definition for `mmap_with_index`. -/ def mmap_with_index_aux {α β} (f : ℕ → α → m β) : ℕ → list α → m (list β) | _ [] := pure [] | i (a :: as) := list.cons <$> f i a <*> mmap_with_index_aux (i + 1) as /-- Applicative variant of `map_with_index`. -/ def mmap_with_index {α β} (f : ℕ → α → m β) (as : list α) : m (list β) := mmap_with_index_aux f 0 as /-- Auxiliary definition for `mmap_with_index'`. -/ def mmap_with_index'_aux {α} (f : ℕ → α → m punit) : ℕ → list α → m punit | _ [] := pure ⟨⟩ | i (a :: as) := f i a *> mmap_with_index'_aux (i + 1) as /-- A variant of `mmap_with_index` specialised to applicative actions which return `unit`. -/ def mmap_with_index' {α} (f : ℕ → α → m punit) (as : list α) : m punit := mmap_with_index'_aux f 0 as end mmap_with_index /-- `lookmap` is a combination of `lookup` and `filter_map`. `lookmap f l` will apply `f : α → option α` to each element of the list, replacing `a → b` at the first value `a` in the list such that `f a = some b`. -/ def lookmap (f : α → option α) : list α → list α | [] := [] | (a::l) := match f a with | some b := b :: l | none := a :: lookmap l end /-- `countp p l` is the number of elements of `l` that satisfy `p`. -/ def countp (p : α → Prop) [decidable_pred p] : list α → nat | [] := 0 | (x::xs) := if p x then succ (countp xs) else countp xs /-- `count a l` is the number of occurrences of `a` in `l`. -/ def count [decidable_eq α] (a : α) : list α → nat := countp (eq a) /-- `is_prefix l₁ l₂`, or `l₁ <+: l₂`, means that `l₁` is a prefix of `l₂`, that is, `l₂` has the form `l₁ ++ t` for some `t`. -/ def is_prefix (l₁ : list α) (l₂ : list α) : Prop := ∃ t, l₁ ++ t = l₂ /-- `is_suffix l₁ l₂`, or `l₁ <:+ l₂`, means that `l₁` is a suffix of `l₂`, that is, `l₂` has the form `t ++ l₁` for some `t`. -/ def is_suffix (l₁ : list α) (l₂ : list α) : Prop := ∃ t, t ++ l₁ = l₂ /-- `is_infix l₁ l₂`, or `l₁ <:+: l₂`, means that `l₁` is a contiguous substring of `l₂`, that is, `l₂` has the form `s ++ l₁ ++ t` for some `s, t`. -/ def is_infix (l₁ : list α) (l₂ : list α) : Prop := ∃ s t, s ++ l₁ ++ t = l₂ infix ` <+: `:50 := is_prefix infix ` <:+ `:50 := is_suffix infix ` <:+: `:50 := is_infix /-- `inits l` is the list of initial segments of `l`. inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]] -/ @[simp] def inits : list α → list (list α) | [] := [[]] | (a::l) := [] :: map (λt, a::t) (inits l) /-- `tails l` is the list of terminal segments of `l`. tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []] -/ @[simp] def tails : list α → list (list α) | [] := [[]] | (a::l) := (a::l) :: tails l def sublists'_aux : list α → (list α → list β) → list (list β) → list (list β) | [] f r := f [] :: r | (a::l) f r := sublists'_aux l f (sublists'_aux l (f ∘ cons a) r) /-- `sublists' l` is the list of all (non-contiguous) sublists of `l`. It differs from `sublists` only in the order of appearance of the sublists; `sublists'` uses the first element of the list as the MSB, `sublists` uses the first element of the list as the LSB. sublists' [1, 2, 3] = [[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]] -/ def sublists' (l : list α) : list (list α) := sublists'_aux l id [] def sublists_aux : list α → (list α → list β → list β) → list β | [] f := [] | (a::l) f := f [a] (sublists_aux l (λys r, f ys (f (a :: ys) r))) /-- `sublists l` is the list of all (non-contiguous) sublists of `l`; cf. `sublists'` for a different ordering. sublists [1, 2, 3] = [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]] -/ def sublists (l : list α) : list (list α) := [] :: sublists_aux l cons def sublists_aux₁ : list α → (list α → list β) → list β | [] f := [] | (a::l) f := f [a] ++ sublists_aux₁ l (λys, f ys ++ f (a :: ys)) section forall₂ variables {r : α → β → Prop} {p : γ → δ → Prop} /-- `forall₂ R l₁ l₂` means that `l₁` and `l₂` have the same length, and whenever `a` is the nth element of `l₁`, and `b` is the nth element of `l₂`, then `R a b` is satisfied. -/ inductive forall₂ (R : α → β → Prop) : list α → list β → Prop | nil : forall₂ [] [] | cons {a b l₁ l₂} : R a b → forall₂ l₁ l₂ → forall₂ (a::l₁) (b::l₂) attribute [simp] forall₂.nil end forall₂ /-- `l.all₂ p` is equivalent to `∀ a ∈ l, p a`, but unfolds directly to a conjunction, i.e. `list.all₂ p [0, 1, 2] = p 0 ∧ p 1 ∧ p 2`. -/ @[simp] def all₂ (p : α → Prop) : list α → Prop | [] := true | (x :: []) := p x | (x :: l) := p x ∧ all₂ l /-- Auxiliary definition used to define `transpose`. `transpose_aux l L` takes each element of `l` and appends it to the start of each element of `L`. `transpose_aux [a, b, c] [l₁, l₂, l₃] = [a::l₁, b::l₂, c::l₃]` -/ def transpose_aux : list α → list (list α) → list (list α) | [] ls := ls | (a::i) [] := [a] :: transpose_aux i [] | (a::i) (l::ls) := (a::l) :: transpose_aux i ls /-- transpose of a list of lists, treated as a matrix. transpose [[1, 2], [3, 4], [5, 6]] = [[1, 3, 5], [2, 4, 6]] -/ def transpose : list (list α) → list (list α) | [] := [] | (l::ls) := transpose_aux l (transpose ls) /-- List of all sections through a list of lists. A section of `[L₁, L₂, ..., Lₙ]` is a list whose first element comes from `L₁`, whose second element comes from `L₂`, and so on. -/ def sections : list (list α) → list (list α) | [] := [[]] | (l::L) := bind (sections L) $ λ s, map (λ a, a::s) l section permutations /-- An auxiliary function for defining `permutations`. `permutations_aux2 t ts r ys f` is equal to `(ys ++ ts, (insert_left ys t ts).map f ++ r)`, where `insert_left ys t ts` (not explicitly defined) is the list of lists of the form `insert_nth n t (ys ++ ts)` for `0 ≤ n < length ys`. permutations_aux2 10 [4, 5, 6] [] [1, 2, 3] id = ([1, 2, 3, 4, 5, 6], [[10, 1, 2, 3, 4, 5, 6], [1, 10, 2, 3, 4, 5, 6], [1, 2, 10, 3, 4, 5, 6]]) -/ def permutations_aux2 (t : α) (ts : list α) (r : list β) : list α → (list α → β) → list α × list β | [] f := (ts, r) | (y::ys) f := let (us, zs) := permutations_aux2 ys (λx : list α, f (y::x)) in (y :: us, f (t :: y :: us) :: zs) private def meas : (Σ'_:list α, list α) → ℕ × ℕ | ⟨l, i⟩ := (length l + length i, length l) local infix ` ≺ `:50 := inv_image (prod.lex (<) (<)) meas /-- A recursor for pairs of lists. To have `C l₁ l₂` for all `l₁`, `l₂`, it suffices to have it for `l₂ = []` and to be able to pour the elements of `l₁` into `l₂`. -/ @[elab_as_eliminator] def permutations_aux.rec {C : list α → list α → Sort v} (H0 : ∀ is, C [] is) (H1 : ∀ t ts is, C ts (t::is) → C is [] → C (t::ts) is) : ∀ l₁ l₂, C l₁ l₂ | [] is := H0 is | (t::ts) is := have h1 : ⟨ts, t :: is⟩ ≺ ⟨t :: ts, is⟩, from show prod.lex _ _ (succ (length ts + length is), length ts) (succ (length ts) + length is, length (t :: ts)), by rw nat.succ_add; exact prod.lex.right _ (lt_succ_self _), have h2 : ⟨is, []⟩ ≺ ⟨t :: ts, is⟩, from prod.lex.left _ _ (nat.lt_add_of_pos_left (succ_pos _)), H1 t ts is (permutations_aux.rec ts (t::is)) (permutations_aux.rec is []) using_well_founded { dec_tac := tactic.assumption, rel_tac := λ _ _, `[exact ⟨(≺), @inv_image.wf _ _ _ meas (prod.lex_wf lt_wf lt_wf)⟩] } /-- An auxiliary function for defining `permutations`. `permutations_aux ts is` is the set of all permutations of `is ++ ts` that do not fix `ts`. -/ def permutations_aux : list α → list α → list (list α) := @@permutations_aux.rec (λ _ _, list (list α)) (λ is, []) (λ t ts is IH1 IH2, foldr (λy r, (permutations_aux2 t ts r y id).2) IH1 (is :: IH2)) /-- List of all permutations of `l`. permutations [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [3, 2, 1], [2, 3, 1], [3, 1, 2], [1, 3, 2]] -/ def permutations (l : list α) : list (list α) := l :: permutations_aux l [] /-- `permutations'_aux t ts` inserts `t` into every position in `ts`, including the last. This function is intended for use in specifications, so it is simpler than `permutations_aux2`, which plays roughly the same role in `permutations`. Note that `(permutations_aux2 t [] [] ts id).2` is similar to this function, but skips the last position: permutations'_aux 10 [1, 2, 3] = [[10, 1, 2, 3], [1, 10, 2, 3], [1, 2, 10, 3], [1, 2, 3, 10]] (permutations_aux2 10 [] [] [1, 2, 3] id).2 = [[10, 1, 2, 3], [1, 10, 2, 3], [1, 2, 10, 3]] -/ @[simp] def permutations'_aux (t : α) : list α → list (list α) | [] := [[t]] | (y::ys) := (t :: y :: ys) :: (permutations'_aux ys).map (cons y) /-- List of all permutations of `l`. This version of `permutations` is less efficient but has simpler definitional equations. The permutations are in a different order, but are equal up to permutation, as shown by `list.permutations_perm_permutations'`. permutations [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] -/ @[simp] def permutations' : list α → list (list α) | [] := [[]] | (t::ts) := (permutations' ts).bind $ permutations'_aux t end permutations /-- `erasep p l` removes the first element of `l` satisfying the predicate `p`. -/ def erasep (p : α → Prop) [decidable_pred p] : list α → list α | [] := [] | (a::l) := if p a then l else a :: erasep l /-- `extractp p l` returns a pair of an element `a` of `l` satisfying the predicate `p`, and `l`, with `a` removed. If there is no such element `a` it returns `(none, l)`. -/ def extractp (p : α → Prop) [decidable_pred p] : list α → option α × list α | [] := (none, []) | (a::l) := if p a then (some a, l) else let (a', l') := extractp l in (a', a :: l') /-- `revzip l` returns a list of pairs of the elements of `l` paired with the elements of `l` in reverse order. `revzip [1,2,3,4,5] = [(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)]` -/ def revzip (l : list α) : list (α × α) := zip l l.reverse /-- `product l₁ l₂` is the list of pairs `(a, b)` where `a ∈ l₁` and `b ∈ l₂`. product [1, 2] [5, 6] = [(1, 5), (1, 6), (2, 5), (2, 6)] -/ def product (l₁ : list α) (l₂ : list β) : list (α × β) := l₁.bind $ λ a, l₂.map $ prod.mk a /- This notation binds more strongly than (pre)images, unions and intersections. -/ infixr (name := list.product) ` ×ˢ `:82 := list.product /-- `sigma l₁ l₂` is the list of dependent pairs `(a, b)` where `a ∈ l₁` and `b ∈ l₂ a`. sigma [1, 2] (λ_, [(5 : ℕ), 6]) = [(1, 5), (1, 6), (2, 5), (2, 6)] -/ protected def sigma {σ : α → Type*} (l₁ : list α) (l₂ : Π a, list (σ a)) : list (Σ a, σ a) := l₁.bind $ λ a, (l₂ a).map $ sigma.mk a /-- Auxliary definition used to define `of_fn`. `of_fn_aux f m h l` returns the first `m` elements of `of_fn f` appended to `l` -/ def of_fn_aux {n} (f : fin n → α) : ∀ m, m ≤ n → list α → list α | 0 h l := l | (succ m) h l := of_fn_aux m (le_of_lt h) (f ⟨m, h⟩ :: l) /-- `of_fn f` with `f : fin n → α` returns the list whose ith element is `f i` `of_fun f = [f 0, f 1, ... , f(n - 1)]` -/ def of_fn {n} (f : fin n → α) : list α := of_fn_aux f n (le_refl _) [] /-- `of_fn_nth_val f i` returns `some (f i)` if `i < n` and `none` otherwise. -/ def of_fn_nth_val {n} (f : fin n → α) (i : ℕ) : option α := if h : i < n then some (f ⟨i, h⟩) else none /-- `disjoint l₁ l₂` means that `l₁` and `l₂` have no elements in common. -/ def disjoint (l₁ l₂ : list α) : Prop := ∀ ⦃a⦄, a ∈ l₁ → a ∈ l₂ → false section pairwise variables (R : α → α → Prop) /-- `pairwise R l` means that all the elements with earlier indexes are `R`-related to all the elements with later indexes. pairwise R [1, 2, 3] ↔ R 1 2 ∧ R 1 3 ∧ R 2 3 For example if `R = (≠)` then it asserts `l` has no duplicates, and if `R = (<)` then it asserts that `l` is (strictly) sorted. -/ inductive pairwise : list α → Prop | nil : pairwise [] | cons : ∀ {a : α} {l : list α}, (∀ a' ∈ l, R a a') → pairwise l → pairwise (a::l) variables {R} @[simp] theorem pairwise_cons {a : α} {l : list α} : pairwise R (a::l) ↔ (∀ a' ∈ l, R a a') ∧ pairwise R l := ⟨λ p, by cases p with a l n p; exact ⟨n, p⟩, λ ⟨n, p⟩, p.cons n⟩ attribute [simp] pairwise.nil instance decidable_pairwise [decidable_rel R] (l : list α) : decidable (pairwise R l) := by induction l with hd tl ih; [exact is_true pairwise.nil, exactI decidable_of_iff' _ pairwise_cons] end pairwise /-- `pw_filter R l` is a maximal sublist of `l` which is `pairwise R`. `pw_filter (≠)` is the erase duplicates function (cf. `dedup`), and `pw_filter (<)` finds a maximal increasing subsequence in `l`. For example, pw_filter (<) [0, 1, 5, 2, 6, 3, 4] = [0, 1, 2, 3, 4] -/ def pw_filter (R : α → α → Prop) [decidable_rel R] : list α → list α | [] := [] | (x :: xs) := let IH := pw_filter xs in if ∀ y ∈ IH, R x y then x :: IH else IH section chain variable (R : α → α → Prop) /-- `chain R a l` means that `R` holds between adjacent elements of `a::l`. chain R a [b, c, d] ↔ R a b ∧ R b c ∧ R c d -/ inductive chain : α → list α → Prop | nil {a : α} : chain a [] | cons : ∀ {a b : α} {l : list α}, R a b → chain b l → chain a (b::l) /-- `chain' R l` means that `R` holds between adjacent elements of `l`. chain' R [a, b, c, d] ↔ R a b ∧ R b c ∧ R c d -/ def chain' : list α → Prop | [] := true | (a :: l) := chain R a l variable {R} @[simp] theorem chain_cons {a b : α} {l : list α} : chain R a (b::l) ↔ R a b ∧ chain R b l := ⟨λ p, by cases p with _ a b l n p; exact ⟨n, p⟩, λ ⟨n, p⟩, p.cons n⟩ attribute [simp] chain.nil instance decidable_chain [decidable_rel R] (a : α) (l : list α) : decidable (chain R a l) := by induction l generalizing a; simp only [chain.nil, chain_cons]; resetI; apply_instance instance decidable_chain' [decidable_rel R] (l : list α) : decidable (chain' R l) := by cases l; dunfold chain'; apply_instance end chain /-- `nodup l` means that `l` has no duplicates, that is, any element appears at most once in the list. It is defined as `pairwise (≠)`. -/ def nodup : list α → Prop := pairwise (≠) instance nodup_decidable [decidable_eq α] : ∀ l : list α, decidable (nodup l) := list.decidable_pairwise /-- `dedup l` removes duplicates from `l` (taking only the last occurrence). Defined as `pw_filter (≠)`. dedup [1, 0, 2, 2, 1] = [0, 2, 1] -/ def dedup [decidable_eq α] : list α → list α := pw_filter (≠) /-- Greedily create a sublist of `a :: l` such that, for every two adjacent elements `a, b`, `R a b` holds. Mostly used with ≠; for example, `destutter' (≠) 1 [2, 2, 1, 1] = [1, 2, 1]`, `destutter' (≠) 1, [2, 3, 3] = [1, 2, 3]`, `destutter' (<) 1 [2, 5, 2, 3, 4, 9] = [1, 2, 5, 9]`. -/ def destutter' (R : α → α → Prop) [decidable_rel R] : α → list α → list α | a [] := [a] | a (h :: l) := if R a h then a :: destutter' h l else destutter' a l /-- Greedily create a sublist of `l` such that, for every two adjacent elements `a, b ∈ l`, `R a b` holds. Mostly used with ≠; for example, `destutter (≠) [1, 2, 2, 1, 1] = [1, 2, 1]`, `destutter (≠) [1, 2, 3, 3] = [1, 2, 3]`, `destutter (<) [1, 2, 5, 2, 3, 4, 9] = [1, 2, 5, 9]`. -/ def destutter (R : α → α → Prop) [decidable_rel R] : list α → list α | (h :: l) := destutter' R h l | [] := [] /-- `range' s n` is the list of numbers `[s, s+1, ..., s+n-1]`. It is intended mainly for proving properties of `range` and `iota`. -/ @[simp] def range' : ℕ → ℕ → list ℕ | s 0 := [] | s (n+1) := s :: range' (s+1) n /-- Drop `none`s from a list, and replace each remaining `some a` with `a`. -/ def reduce_option {α} : list (option α) → list α := list.filter_map id /-- `ilast' x xs` returns the last element of `xs` if `xs` is non-empty; it returns `x` otherwise -/ @[simp] def ilast' {α} : α → list α → α | a [] := a | a (b::l) := ilast' b l /-- `last' xs` returns the last element of `xs` if `xs` is non-empty; it returns `none` otherwise -/ @[simp] def last' {α} : list α → option α | [] := none | [a] := some a | (b::l) := last' l /-- `rotate l n` rotates the elements of `l` to the left by `n` rotate [0, 1, 2, 3, 4, 5] 2 = [2, 3, 4, 5, 0, 1] -/ def rotate (l : list α) (n : ℕ) : list α := let (l₁, l₂) := list.split_at (n % l.length) l in l₂ ++ l₁ /-- rotate' is the same as `rotate`, but slower. Used for proofs about `rotate`-/ def rotate' : list α → ℕ → list α | [] n := [] | l 0 := l | (a::l) (n+1) := rotate' (l ++ [a]) n section choose variables (p : α → Prop) [decidable_pred p] (l : list α) /-- Given a decidable predicate `p` and a proof of existence of `a ∈ l` such that `p a`, choose the first element with this property. This version returns both `a` and proofs of `a ∈ l` and `p a`. -/ def choose_x : Π l : list α, Π hp : (∃ a, a ∈ l ∧ p a), { a // a ∈ l ∧ p a } | [] hp := false.elim (exists.elim hp (assume a h, not_mem_nil a h.left)) | (l :: ls) hp := if pl : p l then ⟨l, ⟨or.inl rfl, pl⟩⟩ else let ⟨a, ⟨a_mem_ls, pa⟩⟩ := choose_x ls (hp.imp (λ b ⟨o, h₂⟩, ⟨o.resolve_left (λ e, pl $ e ▸ h₂), h₂⟩)) in ⟨a, ⟨or.inr a_mem_ls, pa⟩⟩ /-- Given a decidable predicate `p` and a proof of existence of `a ∈ l` such that `p a`, choose the first element with this property. This version returns `a : α`, and properties are given by `choose_mem` and `choose_property`. -/ def choose (hp : ∃ a, a ∈ l ∧ p a) : α := choose_x p l hp end choose /-- Filters and maps elements of a list -/ def mmap_filter {m : Type → Type v} [monad m] {α β} (f : α → m (option β)) : list α → m (list β) | [] := return [] | (h :: t) := do b ← f h, t' ← t.mmap_filter, return $ match b with none := t' | (some x) := x::t' end /-- `mmap_upper_triangle f l` calls `f` on all elements in the upper triangular part of `l × l`. That is, for each `e ∈ l`, it will run `f e e` and then `f e e'` for each `e'` that appears after `e` in `l`. Example: suppose `l = [1, 2, 3]`. `mmap_upper_triangle f l` will produce the list `[f 1 1, f 1 2, f 1 3, f 2 2, f 2 3, f 3 3]`. -/ def mmap_upper_triangle {m} [monad m] {α β : Type u} (f : α → α → m β) : list α → m (list β) | [] := return [] | (h::t) := do v ← f h h, l ← t.mmap (f h), t ← t.mmap_upper_triangle, return $ (v::l) ++ t /-- `mmap'_diag f l` calls `f` on all elements in the upper triangular part of `l × l`. That is, for each `e ∈ l`, it will run `f e e` and then `f e e'` for each `e'` that appears after `e` in `l`. Example: suppose `l = [1, 2, 3]`. `mmap'_diag f l` will evaluate, in this order, `f 1 1`, `f 1 2`, `f 1 3`, `f 2 2`, `f 2 3`, `f 3 3`. -/ def mmap'_diag {m} [monad m] {α} (f : α → α → m unit) : list α → m unit | [] := return () | (h::t) := f h h >> t.mmap' (f h) >> t.mmap'_diag protected def traverse {F : Type u → Type v} [applicative F] {α β : Type*} (f : α → F β) : list α → F (list β) | [] := pure [] | (x :: xs) := list.cons <$> f x <*> traverse xs /-- `get_rest l l₁` returns `some l₂` if `l = l₁ ++ l₂`. If `l₁` is not a prefix of `l`, returns `none` -/ def get_rest [decidable_eq α] : list α → list α → option (list α) | l [] := some l | [] _ := none | (x::l) (y::l₁) := if x = y then get_rest l l₁ else none /-- `list.slice n m xs` removes a slice of length `m` at index `n` in list `xs`. -/ def slice {α} : ℕ → ℕ → list α → list α | 0 n xs := xs.drop n | (succ n) m [] := [] | (succ n) m (x :: xs) := x :: slice n m xs /-- Left-biased version of `list.map₂`. `map₂_left' f as bs` applies `f` to each pair of elements `aᵢ ∈ as` and `bᵢ ∈ bs`. If `bs` is shorter than `as`, `f` is applied to `none` for the remaining `aᵢ`. Returns the results of the `f` applications and the remaining `bs`. ``` map₂_left' prod.mk [1, 2] ['a'] = ([(1, some 'a'), (2, none)], []) map₂_left' prod.mk [1] ['a', 'b'] = ([(1, some 'a')], ['b']) ``` -/ @[simp] def map₂_left' (f : α → option β → γ) : list α → list β → (list γ × list β) | [] bs := ([], bs) | (a :: as) [] := ((a :: as).map (λ a, f a none), []) | (a :: as) (b :: bs) := let rec := map₂_left' as bs in (f a (some b) :: rec.fst, rec.snd) /-- Right-biased version of `list.map₂`. `map₂_right' f as bs` applies `f` to each pair of elements `aᵢ ∈ as` and `bᵢ ∈ bs`. If `as` is shorter than `bs`, `f` is applied to `none` for the remaining `bᵢ`. Returns the results of the `f` applications and the remaining `as`. ``` map₂_right' prod.mk [1] ['a', 'b'] = ([(some 1, 'a'), (none, 'b')], []) map₂_right' prod.mk [1, 2] ['a'] = ([(some 1, 'a')], [2]) ``` -/ def map₂_right' (f : option α → β → γ) (as : list α) (bs : list β) : (list γ × list α) := map₂_left' (flip f) bs as /-- Left-biased version of `list.zip`. `zip_left' as bs` returns the list of pairs `(aᵢ, bᵢ)` for `aᵢ ∈ as` and `bᵢ ∈ bs`. If `bs` is shorter than `as`, the remaining `aᵢ` are paired with `none`. Also returns the remaining `bs`. ``` zip_left' [1, 2] ['a'] = ([(1, some 'a'), (2, none)], []) zip_left' [1] ['a', 'b'] = ([(1, some 'a')], ['b']) zip_left' = map₂_left' prod.mk ``` -/ def zip_left' : list α → list β → list (α × option β) × list β := map₂_left' prod.mk /-- Right-biased version of `list.zip`. `zip_right' as bs` returns the list of pairs `(aᵢ, bᵢ)` for `aᵢ ∈ as` and `bᵢ ∈ bs`. If `as` is shorter than `bs`, the remaining `bᵢ` are paired with `none`. Also returns the remaining `as`. ``` zip_right' [1] ['a', 'b'] = ([(some 1, 'a'), (none, 'b')], []) zip_right' [1, 2] ['a'] = ([(some 1, 'a')], [2]) zip_right' = map₂_right' prod.mk ``` -/ def zip_right' : list α → list β → list (option α × β) × list α := map₂_right' prod.mk /-- Left-biased version of `list.map₂`. `map₂_left f as bs` applies `f` to each pair `aᵢ ∈ as` and `bᵢ ‌∈ bs`. If `bs` is shorter than `as`, `f` is applied to `none` for the remaining `aᵢ`. ``` map₂_left prod.mk [1, 2] ['a'] = [(1, some 'a'), (2, none)] map₂_left prod.mk [1] ['a', 'b'] = [(1, some 'a')] map₂_left f as bs = (map₂_left' f as bs).fst ``` -/ @[simp] def map₂_left (f : α → option β → γ) : list α → list β → list γ | [] _ := [] | (a :: as) [] := (a :: as).map (λ a, f a none) | (a :: as) (b :: bs) := f a (some b) :: map₂_left as bs /-- Right-biased version of `list.map₂`. `map₂_right f as bs` applies `f` to each pair `aᵢ ∈ as` and `bᵢ ‌∈ bs`. If `as` is shorter than `bs`, `f` is applied to `none` for the remaining `bᵢ`. ``` map₂_right prod.mk [1, 2] ['a'] = [(some 1, 'a')] map₂_right prod.mk [1] ['a', 'b'] = [(some 1, 'a'), (none, 'b')] map₂_right f as bs = (map₂_right' f as bs).fst ``` -/ def map₂_right (f : option α → β → γ) (as : list α) (bs : list β) : list γ := map₂_left (flip f) bs as /-- Left-biased version of `list.zip`. `zip_left as bs` returns the list of pairs `(aᵢ, bᵢ)` for `aᵢ ∈ as` and `bᵢ ∈ bs`. If `bs` is shorter than `as`, the remaining `aᵢ` are paired with `none`. ``` zip_left [1, 2] ['a'] = [(1, some 'a'), (2, none)] zip_left [1] ['a', 'b'] = [(1, some 'a')] zip_left = map₂_left prod.mk ``` -/ def zip_left : list α → list β → list (α × option β) := map₂_left prod.mk /-- Right-biased version of `list.zip`. `zip_right as bs` returns the list of pairs `(aᵢ, bᵢ)` for `aᵢ ∈ as` and `bᵢ ∈ bs`. If `as` is shorter than `bs`, the remaining `bᵢ` are paired with `none`. ``` zip_right [1, 2] ['a'] = [(some 1, 'a')] zip_right [1] ['a', 'b'] = [(some 1, 'a'), (none, 'b')] zip_right = map₂_right prod.mk ``` -/ def zip_right : list α → list β → list (option α × β) := map₂_right prod.mk /-- If all elements of `xs` are `some xᵢ`, `all_some xs` returns the `xᵢ`. Otherwise it returns `none`. ``` all_some [some 1, some 2] = some [1, 2] all_some [some 1, none ] = none ``` -/ def all_some : list (option α) → option (list α) | [] := some [] | (some a :: as) := cons a <$> all_some as | (none :: as) := none /-- `fill_nones xs ys` replaces the `none`s in `xs` with elements of `ys`. If there are not enough `ys` to replace all the `none`s, the remaining `none`s are dropped from `xs`. ``` fill_nones [none, some 1, none, none] [2, 3] = [2, 1, 3] ``` -/ def fill_nones {α} : list (option α) → list α → list α | [] _ := [] | (some a :: as) as' := a :: fill_nones as as' | (none :: as) [] := as.reduce_option | (none :: as) (a :: as') := a :: fill_nones as as' /-- `take_list as ns` extracts successive sublists from `as`. For `ns = n₁ ... nₘ`, it first takes the `n₁` initial elements from `as`, then the next `n₂` ones, etc. It returns the sublists of `as` -- one for each `nᵢ` -- and the remaining elements of `as`. If `as` does not have at least as many elements as the sum of the `nᵢ`, the corresponding sublists will have less than `nᵢ` elements. ``` take_list ['a', 'b', 'c', 'd', 'e'] [2, 1, 1] = ([['a', 'b'], ['c'], ['d']], ['e']) take_list ['a', 'b'] [3, 1] = ([['a', 'b'], []], []) ``` -/ def take_list {α} : list α → list ℕ → list (list α) × list α | xs [] := ([], xs) | xs (n :: ns) := let ⟨xs₁, xs₂⟩ := xs.split_at n in let ⟨xss, rest⟩ := take_list xs₂ ns in (xs₁ :: xss, rest) /-- `to_rbmap as` is the map that associates each index `i` of `as` with the corresponding element of `as`. ``` to_rbmap ['a', 'b', 'c'] = rbmap_of [(0, 'a'), (1, 'b'), (2, 'c')] ``` -/ def to_rbmap {α : Type*} : list α → rbmap ℕ α := foldl_with_index (λ i mapp a, mapp.insert i a) (mk_rbmap ℕ α) /-- Auxliary definition used to define `to_chunks`. `to_chunks_aux n xs i` returns `(xs.take i, (xs.drop i).to_chunks (n+1))`, that is, the first `i` elements of `xs`, and the remaining elements chunked into sublists of length `n+1`. -/ def to_chunks_aux {α} (n : ℕ) : list α → ℕ → list α × list (list α) | [] i := ([], []) | (x::xs) 0 := let (l, L) := to_chunks_aux xs n in ([], (x::l)::L) | (x::xs) (i+1) := let (l, L) := to_chunks_aux xs i in (x::l, L) /-- `xs.to_chunks n` splits the list into sublists of size at most `n`, such that `(xs.to_chunks n).join = xs`. ``` [1, 2, 3, 4, 5, 6, 7, 8].to_chunks 10 = [[1, 2, 3, 4, 5, 6, 7, 8]] [1, 2, 3, 4, 5, 6, 7, 8].to_chunks 3 = [[1, 2, 3], [4, 5, 6], [7, 8]] [1, 2, 3, 4, 5, 6, 7, 8].to_chunks 2 = [[1, 2], [3, 4], [5, 6], [7, 8]] [1, 2, 3, 4, 5, 6, 7, 8].to_chunks 0 = [[1, 2, 3, 4, 5, 6, 7, 8]] ``` -/ def to_chunks {α} : ℕ → list α → list (list α) | _ [] := [] | 0 xs := [xs] | (n+1) (x::xs) := let (l, L) := to_chunks_aux n xs n in (x::l)::L /-- Asynchronous version of `list.map`. -/ meta def map_async_chunked {α β} (f : α → β) (xs : list α) (chunk_size := 1024) : list β := ((xs.to_chunks chunk_size).map (λ xs, task.delay (λ _, list.map f xs))).bind task.get /-! We add some n-ary versions of `list.zip_with` for functions with more than two arguments. These can also be written in terms of `list.zip` or `list.zip_with`. For example, `zip_with3 f xs ys zs` could also be written as `zip_with id (zip_with f xs ys) zs` or as `(zip xs $ zip ys zs).map $ λ ⟨x, y, z⟩, f x y z`. -/ /-- Ternary version of `list.zip_with`. -/ def zip_with3 (f : α → β → γ → δ) : list α → list β → list γ → list δ | (x::xs) (y::ys) (z::zs) := f x y z :: zip_with3 xs ys zs | _ _ _ := [] /-- Quaternary version of `list.zip_with`. -/ def zip_with4 (f : α → β → γ → δ → ε) : list α → list β → list γ → list δ → list ε | (x::xs) (y::ys) (z::zs) (u::us) := f x y z u :: zip_with4 xs ys zs us | _ _ _ _ := [] /-- Quinary version of `list.zip_with`. -/ def zip_with5 (f : α → β → γ → δ → ε → ζ) : list α → list β → list γ → list δ → list ε → list ζ | (x::xs) (y::ys) (z::zs) (u::us) (v::vs) := f x y z u v :: zip_with5 xs ys zs us vs | _ _ _ _ _ := [] /-- Given a starting list `old`, a list of booleans and a replacement list `new`, read the items in `old` in succession and either replace them with the next element of `new` or not, according as to whether the corresponding boolean is `tt` or `ff`. -/ def replace_if : list α → list bool → list α → list α | l _ [] := l | [] _ _ := [] | l [] _ := l | (n::ns) (tf::bs) e@(c::cs) := if tf then c :: ns.replace_if bs cs else n :: ns.replace_if bs e /-- An auxiliary function for `list.map_with_prefix_suffix`. -/ def map_with_prefix_suffix_aux {α β} (f : list α → α → list α → β) : list α → list α → list β | prev [] := [] | prev (h::t) := f prev h t :: map_with_prefix_suffix_aux (prev.concat h) t /-- `list.map_with_prefix_suffix f l` maps `f` across a list `l`. For each `a ∈ l` with `l = pref ++ [a] ++ suff`, `a` is mapped to `f pref a suff`. Example: if `f : list ℕ → ℕ → list ℕ → β`, `list.map_with_prefix_suffix f [1, 2, 3]` will produce the list `[f [] 1 [2, 3], f [1] 2 [3], f [1, 2] 3 []]`. -/ def map_with_prefix_suffix {α β} (f : list α → α → list α → β) (l : list α) : list β := map_with_prefix_suffix_aux f [] l /-- `list.map_with_complement f l` is a variant of `list.map_with_prefix_suffix` that maps `f` across a list `l`. For each `a ∈ l` with `l = pref ++ [a] ++ suff`, `a` is mapped to `f a (pref ++ suff)`, i.e., the list input to `f` is `l` with `a` removed. Example: if `f : ℕ → list ℕ → β`, `list.map_with_complement f [1, 2, 3]` will produce the list `[f 1 [2, 3], f 2 [1, 3], f 3 [1, 2]]`. -/ def map_with_complement {α β} (f : α → list α → β) : list α → list β := map_with_prefix_suffix $ λ pref a suff, f a (pref ++ suff) end list
3056d04722622419c1469f5ee5f57e892e0d18be
b9d8165d695e844c92d9d4cdcac7b5ab9efe09f7
/src/analysis/specific_limits.lean
5fde3f5b558f104c84e37d7cee28bd5b2679553b
[ "Apache-2.0" ]
permissive
spapinistarkware/mathlib
e917d9c44bf85ef51db18e7a11615959f714efc5
0a9a1ff463a1f26e27d7c391eb7f6334f0d90383
refs/heads/master
1,606,808,129,547
1,577,478,369,000
1,577,478,369,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
18,975
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl A collection of specific limit computations. -/ import analysis.normed_space.basic algebra.geom_sum import topology.instances.ennreal noncomputable theory open_locale classical topological_space open classical function lattice filter finset metric variables {α : Type*} {β : Type*} {ι : Type*} /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_left'`). -/ lemma tendsto_at_top_mul_left [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1 : α) ≤ n • r := archimedean.arch 1 hr, have hn' : 1 ≤ r * n, by rwa add_monoid.smul_eq_mul' at hn, filter_upwards [(tendsto_at_top _ _).1 hf (n * max b 0)], assume x hx, calc b ≤ 1 * max b 0 : by { rw [one_mul], exact le_max_left _ _ } ... ≤ (r * n) * max b 0 : mul_le_mul_of_nonneg_right hn' (le_max_right _ _) ... = r * (n * max b 0) : by rw [mul_assoc] ... ≤ r * f x : mul_le_mul_of_nonneg_left hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_right'`). -/ lemma tendsto_at_top_mul_right [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1 : α) ≤ n • r := archimedean.arch 1 hr, have hn' : 1 ≤ (n : α) * r, by rwa add_monoid.smul_eq_mul at hn, filter_upwards [(tendsto_at_top _ _).1 hf (max b 0 * n)], assume x hx, calc b ≤ max b 0 * 1 : by { rw [mul_one], exact le_max_left _ _ } ... ≤ max b 0 * (n * r) : mul_le_mul_of_nonneg_left hn' (le_max_right _ _) ... = (max b 0 * n) * r : by rw [mul_assoc] ... ≤ f x * r : mul_le_mul_of_nonneg_right hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_left` instead. -/ lemma tendsto_at_top_mul_left' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), filter_upwards [(tendsto_at_top _ _).1 hf (b/r)], assume x hx, simpa [div_le_iff' hr] using hx end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_right` instead. -/ lemma tendsto_at_top_mul_right' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := by simpa [mul_comm] using tendsto_at_top_mul_left' hr hf /-- If a function tends to infinity along a filter, then this function divided by a positive constant also tends to infinity. -/ lemma tendsto_at_top_div [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x / r) l at_top := tendsto_at_top_mul_right' (inv_pos hr) hf /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/ lemma tendsto_inv_zero_at_top [discrete_linear_ordered_field α] [topological_space α] [orderable_topology α] : tendsto (λx:α, x⁻¹) (nhds_within (0 : α) (set.Ioi 0)) at_top := begin apply (tendsto_at_top _ _).2 (λb, _), refine mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 ⟨(max b 1)⁻¹, by simp [zero_lt_one], λx hx, _⟩, calc b ≤ max b 1 : le_max_left _ _ ... ≤ x⁻¹ : begin apply (le_inv _ hx.1).2 (le_of_lt hx.2), exact lt_of_lt_of_le zero_lt_one (le_max_right _ _) end end lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} : (∃r, tendsto (λn, (range n).sum (λi, abs (f i))) at_top (𝓝 r)) → summable f | ⟨r, hr⟩ := begin refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩, exact assume i, norm_nonneg _, simpa only using hr end lemma tendsto_pow_at_top_at_top_of_gt_1 {r : ℝ} (h : 1 < r) : tendsto (λn:ℕ, r ^ n) at_top at_top := (tendsto_at_top_at_top _).2 $ assume p, let ⟨n, hn⟩ := pow_unbounded_of_one_lt p h in ⟨n, λ m hnm, le_of_lt $ lt_of_lt_of_le hn (pow_le_pow (le_of_lt h) hnm)⟩ lemma tendsto_inverse_at_top_nhds_0 : tendsto (λr:ℝ, r⁻¹) at_top (𝓝 0) := tendsto_orderable_unbounded (no_top 0) (no_bot 0) $ assume l u hl hu, mem_at_top_sets.mpr ⟨u⁻¹ + 1, assume b hb, have u⁻¹ < b, from lt_of_lt_of_le (lt_add_of_pos_right _ zero_lt_one) hb, ⟨lt_trans hl $ inv_pos $ lt_trans (inv_pos hu) this, lt_of_one_div_lt_one_div hu $ begin rw [inv_eq_one_div], simp [-one_div_eq_inv, div_div_eq_mul_div, div_one], simp [this] end⟩⟩ lemma tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := by_cases (assume : r = 0, (tendsto_add_at_top_iff_nat 1).mp $ by simp [pow_succ, this, tendsto_const_nhds]) (assume : r ≠ 0, have tendsto (λn, (r⁻¹ ^ n)⁻¹) at_top (𝓝 0), from tendsto.comp tendsto_inverse_at_top_nhds_0 (tendsto_pow_at_top_at_top_of_gt_1 $ one_lt_inv (lt_of_le_of_ne h₁ this.symm) h₂), tendsto.congr' (univ_mem_sets' $ by simp *) this) lemma nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : nnreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := nnreal.tendsto_coe.1 $ by simp only [nnreal.coe_pow, nnreal.coe_zero, tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg hr] lemma ennreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : ennreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := begin rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, rw [← ennreal.coe_zero], norm_cast at *, apply nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 hr end lemma tendsto_pow_at_top_nhds_0_of_lt_1_normed_field {K : Type*} [normed_field K] {ξ : K} (_ : ∥ξ∥ < 1) : tendsto (λ n : ℕ, ξ^n) at_top (𝓝 0) := begin rw[tendsto_iff_norm_tendsto_zero], convert tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg ξ) ‹∥ξ∥ < 1›, ext n, simp end lemma tendsto_pow_at_top_at_top_of_gt_1_nat {k : ℕ} (h : 1 < k) : tendsto (λn:ℕ, k ^ n) at_top at_top := tendsto_coe_nat_real_at_top_iff.1 $ have hr : 1 < (k : ℝ), by rw [← nat.cast_one, nat.cast_lt]; exact h, by simpa using tendsto_pow_at_top_at_top_of_gt_1 hr lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) at_top (𝓝 0) := tendsto.comp tendsto_inverse_at_top_nhds_0 (tendsto_coe_nat_real_at_top_iff.2 tendsto_id) lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_at_top_nhds_0_nat lemma tendsto_one_div_add_at_top_nhds_0_nat : tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) := suffices tendsto (λ n : ℕ, 1 / (↑(n + 1) : ℝ)) at_top (𝓝 0), by simpa, (tendsto_add_at_top_iff_nat 1).2 (tendsto_const_div_at_top_nhds_0_nat 1) lemma has_sum_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := have r ≠ 1, from ne_of_lt h₂, have r + -1 ≠ 0, by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption, have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂).sub tendsto_const_nhds).mul tendsto_const_nhds, have (λ n, (range n).sum (λ i, r ^ i)) = (λ n, geom_series r n) := rfl, (has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $ by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at * lemma summable_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, has_sum_geometric h₁ h₂⟩ lemma tsum_geometric {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : (∑n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_eq_has_sum (has_sum_geometric h₁ h₂) lemma has_sum_geometric_two : has_sum (λn:ℕ, ((1:ℝ)/2) ^ n) 2 := by convert has_sum_geometric _ _; norm_num lemma summable_geometric_two : summable (λn:ℕ, ((1:ℝ)/2) ^ n) := ⟨_, has_sum_geometric_two⟩ lemma tsum_geometric_two : (∑n:ℕ, ((1:ℝ)/2) ^ n) = 2 := tsum_eq_has_sum has_sum_geometric_two lemma has_sum_geometric_two' (a : ℝ) : has_sum (λn:ℕ, (a / 2) / 2 ^ n) a := begin convert has_sum_mul_left (a / 2) (has_sum_geometric (le_of_lt one_half_pos) one_half_lt_one), { funext n, simp, rw ← pow_inv; [refl, exact two_ne_zero] }, { norm_num, rw div_mul_cancel _ two_ne_zero } end lemma summable_geometric_two' (a : ℝ) : summable (λ n:ℕ, (a / 2) / 2 ^ n) := ⟨a, has_sum_geometric_two' a⟩ lemma tsum_geometric_two' (a : ℝ) : (∑ n:ℕ, (a / 2) / 2^n) = a := tsum_eq_has_sum $ has_sum_geometric_two' a lemma nnreal.has_sum_geometric {r : nnreal} (hr : r < 1) : has_sum (λ n : ℕ, r ^ n) (1 - r)⁻¹ := begin apply nnreal.has_sum_coe.1, push_cast, rw [nnreal.coe_sub (le_of_lt hr)], exact has_sum_geometric r.coe_nonneg hr end lemma nnreal.summable_geometric {r : nnreal} (hr : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, nnreal.has_sum_geometric hr⟩ lemma tsum_geometric_nnreal {r : nnreal} (hr : r < 1) : (∑n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_eq_has_sum (nnreal.has_sum_geometric hr) /-- The series `pow r` converges to `(1-r)⁻¹`. For `r < 1` the RHS is a finite number, and for `1 ≤ r` the RHS equals `∞`. -/ lemma ennreal.tsum_geometric (r : ennreal) : (∑n:ℕ, r ^ n) = (1 - r)⁻¹ := begin cases lt_or_le r 1 with hr hr, { rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, norm_cast at *, convert ennreal.tsum_coe_eq (nnreal.has_sum_geometric hr), rw [ennreal.coe_inv $ ne_of_gt $ nnreal.sub_pos.2 hr] }, { rw [ennreal.sub_eq_zero_of_le hr, ennreal.inv_zero, ennreal.tsum_eq_supr_nat, supr_eq_top], refine λ a ha, (ennreal.exists_nat_gt (lt_top_iff_ne_top.1 ha)).imp (λ n hn, lt_of_lt_of_le hn _), have : ∀ k:ℕ, 1 ≤ r^k, by simpa using canonically_ordered_semiring.pow_le_pow_of_le_left hr, calc (n:ennreal) = (range n).sum (λ _, 1) : by rw [sum_const, add_monoid.smul_one, card_range] ... ≤ (range n).sum (pow r) : sum_le_sum (λ k _, this k) } end /-- For any positive `ε`, define on an encodable type a positive sequence with sum less than `ε` -/ def pos_sum_of_encodable {ε : ℝ} (hε : 0 < ε) (ι) [encodable ι] : {ε' : ι → ℝ // (∀ i, 0 < ε' i) ∧ ∃ c, has_sum ε' c ∧ c ≤ ε} := begin let f := λ n, (ε / 2) / 2 ^ n, have hf : has_sum f ε := has_sum_geometric_two' _, have f0 : ∀ n, 0 < f n := λ n, div_pos (half_pos hε) (pow_pos two_pos _), refine ⟨f ∘ encodable.encode, λ i, f0 _, _⟩, rcases summable_comp_of_summable_of_injective f (summable_spec hf) (@encodable.encode_injective ι _) with ⟨c, hg⟩, refine ⟨c, hg, has_sum_le_inj _ (@encodable.encode_injective ι _) _ _ hg hf⟩, { assume i _, exact le_of_lt (f0 _) }, { assume n, exact le_refl _ } end section edist_le_geometric variables [emetric_space α] (r C : ennreal) (hr : r < 1) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C * r^n) include hr hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, `C ≠ ∞`, `r < 1`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric : cauchy_seq f := begin refine cauchy_seq_of_edist_le_of_tsum_ne_top _ hu _, rw [ennreal.mul_tsum, ennreal.tsum_geometric], refine ennreal.mul_ne_top hC (ennreal.inv_ne_top.2 _), exact ne_of_gt (ennreal.zero_lt_sub_iff_lt.2 hr) end omit hr hC /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ (C * r^n) / (1 - r) := begin convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _, simp only [pow_add, ennreal.mul_tsum, ennreal.tsum_geometric, ennreal.div_def, mul_assoc] end /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ C / (1 - r) := by simpa only [pow_zero, mul_one] using edist_le_of_edist_le_geometric_of_tendsto r C hu ha 0 end edist_le_geometric section edist_le_geometric_two variables [emetric_space α] (C : ennreal) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C / 2^n) {a : α} (ha : tendsto f at_top (𝓝 a)) include hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric_two : cauchy_seq f := begin simp only [ennreal.div_def, ennreal.inv_pow'] at hu, refine cauchy_seq_of_edist_le_geometric 2⁻¹ C _ hC hu, simp [ennreal.one_lt_two] end omit hC include ha /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f n` to the limit of `f` is bounded above by `2 * C * 2^-n`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto (n : ℕ) : edist (f n) a ≤ 2 * C / 2^n := begin simp only [ennreal.div_def, ennreal.inv_pow'] at hu, rw [ennreal.div_def, mul_assoc, mul_comm, ennreal.inv_pow'], convert edist_le_of_edist_le_geometric_of_tendsto 2⁻¹ C hu ha n, rw [ennreal.one_sub_inv_two, ennreal.inv_inv] end /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f 0` to the limit of `f` is bounded above by `2 * C`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto₀: edist (f 0) a ≤ 2 * C := by simpa only [pow_zero, ennreal.div_def, ennreal.inv_one, mul_one] using edist_le_of_edist_le_geometric_two_of_tendsto C hu ha 0 end edist_le_geometric_two section le_geometric variables [metric_space α] {r C : ℝ} (hr : r < 1) {f : ℕ → α} (hu : ∀n, dist (f n) (f (n+1)) ≤ C * r^n) include hr hu lemma aux_has_sum_of_le_geometric : has_sum (λ n : ℕ, C * r^n) (C / (1 - r)) := begin have h0 : 0 ≤ C, by simpa using le_trans dist_nonneg (hu 0), rcases eq_or_lt_of_le h0 with rfl | Cpos, { simp [has_sum_zero] }, { have rnonneg: r ≥ 0, from nonneg_of_mul_nonneg_left (by simpa only [pow_one] using le_trans dist_nonneg (hu 1)) Cpos, refine has_sum_mul_left C _, by simpa using has_sum_geometric rnonneg hr } end variables (r C) /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then `f` is a Cauchy sequence. Note that this lemma does not assume `0 ≤ C` or `0 ≤ r`. -/ lemma cauchy_seq_of_le_geometric : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C / (1 - r) := (tsum_eq_has_sum $ aux_has_sum_of_le_geometric hr hu) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ ha /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ (C * r^n) / (1 - r) := begin have := aux_has_sum_of_le_geometric hr hu, convert dist_le_tsum_of_dist_le_of_tendsto _ hu ⟨_, this⟩ ha n, simp only [pow_add, mul_left_comm C, mul_div_right_comm], rw [mul_comm], exact (eq.symm $ tsum_eq_has_sum $ has_sum_mul_left _ this) end omit hr hu variable (hu₂ : ∀ n, dist (f n) (f (n+1)) ≤ (C / 2) / 2^n) /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then `f` is a Cauchy sequence. -/ lemma cauchy_seq_of_le_geometric_two : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu₂ $ ⟨_, has_sum_geometric_two' C⟩ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C`. -/ lemma dist_le_of_le_geometric_two_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C := (tsum_geometric_two' C) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu₂ (summable_geometric_two' C) ha include hu₂ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f n` to the limit of `f` is bounded above by `C / 2^n`. -/ lemma dist_le_of_le_geometric_two_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ C / 2^n := begin convert dist_le_tsum_of_dist_le_of_tendsto _ hu₂ (summable_geometric_two' C) ha n, simp only [add_comm n, pow_add, (div_div_eq_div_mul _ _ _).symm], symmetry, exact tsum_eq_has_sum (has_sum_mul_right _ $ has_sum_geometric_two' C) end end le_geometric namespace nnreal theorem exists_pos_sum_of_encodable {ε : nnreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ ∃c, has_sum ε' c ∧ c < ε := let ⟨a, a0, aε⟩ := dense hε in let ⟨ε', hε', c, hc, hcε⟩ := pos_sum_of_encodable a0 ι in ⟨ λi, ⟨ε' i, le_of_lt $ hε' i⟩, assume i, nnreal.coe_lt.2 $ hε' i, ⟨c, has_sum_le (assume i, le_of_lt $ hε' i) has_sum_zero hc ⟩, nnreal.has_sum_coe.1 hc, lt_of_le_of_lt (nnreal.coe_le.1 hcε) aε ⟩ end nnreal namespace ennreal theorem exists_pos_sum_of_encodable {ε : ennreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ (∑ i, (ε' i : ennreal)) < ε := begin rcases dense hε with ⟨r, h0r, hrε⟩, rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, hx⟩, rcases nnreal.exists_pos_sum_of_encodable (coe_lt_coe.1 h0r) ι with ⟨ε', hp, c, hc, hcr⟩, exact ⟨ε', hp, (ennreal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩ end end ennreal
2f5bdaec7bcc30ac83c937cf6d46eb9499983f8f
9dc8cecdf3c4634764a18254e94d43da07142918
/src/data/rat/floor.lean
4b76ae26228f2ff9dfea4730e42fe625fbfa69bd
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
6,652
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Kappelmann -/ import algebra.order.floor import tactic.field_simp /-! # Floor Function for Rational Numbers ## Summary We define the `floor` function and the `floor_ring` instance on `ℚ`. Some technical lemmas relating `floor` to integer division and modulo arithmetic are derived as well as some simple inequalities. ## Tags rat, rationals, ℚ, floor -/ open int namespace rat variables {α : Type*} [linear_ordered_field α] [floor_ring α] /-- `floor q` is the largest integer `z` such that `z ≤ q` -/ protected def floor : ℚ → ℤ | ⟨n, d, h, c⟩ := n / d protected theorem le_floor {z : ℤ} : ∀ {r : ℚ}, z ≤ rat.floor r ↔ (z : ℚ) ≤ r | ⟨n, d, h, c⟩ := begin simp [rat.floor], rw [num_denom'], have h' := int.coe_nat_lt.2 h, conv { to_rhs, rw [coe_int_eq_mk, rat.le_def zero_lt_one h', mul_one] }, exact int.le_div_iff_mul_le h' end instance : floor_ring ℚ := floor_ring.of_floor ℚ rat.floor $ λ a z, rat.le_floor.symm protected lemma floor_def {q : ℚ} : ⌊q⌋ = q.num / q.denom := by { cases q, refl } lemma floor_int_div_nat_eq_div {n : ℤ} {d : ℕ} : ⌊(↑n : ℚ) / (↑d : ℚ)⌋ = n / (↑d : ℤ) := begin rw [rat.floor_def], obtain rfl | hd := @eq_zero_or_pos _ _ d, { simp }, set q := (n : ℚ) / d with q_eq, obtain ⟨c, n_eq_c_mul_num, d_eq_c_mul_denom⟩ : ∃ c, n = c * q.num ∧ (d : ℤ) = c * q.denom, by { rw q_eq, exact_mod_cast @rat.exists_eq_mul_div_num_and_eq_mul_div_denom n d (by exact_mod_cast hd.ne') }, rw [n_eq_c_mul_num, d_eq_c_mul_denom], refine (int.mul_div_mul_of_pos _ _ $ pos_of_mul_pos_left _ $ int.coe_nat_nonneg q.denom).symm, rwa [←d_eq_c_mul_denom, int.coe_nat_pos], end @[simp, norm_cast] lemma floor_cast (x : ℚ) : ⌊(x : α)⌋ = ⌊x⌋ := floor_eq_iff.2 (by exact_mod_cast floor_eq_iff.1 (eq.refl ⌊x⌋)) @[simp, norm_cast] lemma ceil_cast (x : ℚ) : ⌈(x : α)⌉ = ⌈x⌉ := by rw [←neg_inj, ←floor_neg, ←floor_neg, ← rat.cast_neg, rat.floor_cast] @[simp, norm_cast] lemma round_cast (x : ℚ) : round (x : α) = round x := have ((x + 1 / 2 : ℚ) : α) = x + 1 / 2, by simp, by rw [round_eq, round_eq, ← this, floor_cast] @[simp, norm_cast] lemma cast_fract (x : ℚ) : (↑(fract x) : α) = fract x := by simp only [fract, cast_sub, cast_coe_int, floor_cast] end rat lemma int.mod_nat_eq_sub_mul_floor_rat_div {n : ℤ} {d : ℕ} : n % d = n - d * ⌊(n : ℚ) / d⌋ := by rw [(eq_sub_of_add_eq $ int.mod_add_div n d), rat.floor_int_div_nat_eq_div] lemma nat.coprime_sub_mul_floor_rat_div_of_coprime {n d : ℕ} (n_coprime_d : n.coprime d) : ((n : ℤ) - d * ⌊(n : ℚ)/ d⌋).nat_abs.coprime d := begin have : (n : ℤ) % d = n - d * ⌊(n : ℚ)/ d⌋, from int.mod_nat_eq_sub_mul_floor_rat_div, rw ←this, have : d.coprime n, from n_coprime_d.symm, rwa [nat.coprime, nat.gcd_rec] at this end namespace rat lemma num_lt_succ_floor_mul_denom (q : ℚ) : q.num < (⌊q⌋ + 1) * q.denom := begin suffices : (q.num : ℚ) < (⌊q⌋ + 1) * q.denom, by exact_mod_cast this, suffices : (q.num : ℚ) < (q - fract q + 1) * q.denom, by { have : (⌊q⌋ : ℚ) = q - fract q, from (eq_sub_of_add_eq $ floor_add_fract q), rwa this }, suffices : (q.num : ℚ) < q.num + (1 - fract q) * q.denom, by { have : (q - fract q + 1) * q.denom = q.num + (1 - fract q) * q.denom, calc (q - fract q + 1) * q.denom = (q + (1 - fract q)) * q.denom : by ring ... = q * q.denom + (1 - fract q) * q.denom : by rw add_mul ... = q.num + (1 - fract q) * q.denom : by simp, rwa this }, suffices : 0 < (1 - fract q) * q.denom, by { rw ←sub_lt_iff_lt_add', simpa }, have : 0 < 1 - fract q, by { have : fract q < 1, from fract_lt_one q, have : 0 + fract q < 1, by simp [this], rwa lt_sub_iff_add_lt }, exact mul_pos this (by exact_mod_cast q.pos) end lemma fract_inv_num_lt_num_of_pos {q : ℚ} (q_pos : 0 < q): (fract q⁻¹).num < q.num := begin -- we know that the numerator must be positive have q_num_pos : 0 < q.num, from rat.num_pos_iff_pos.elim_right q_pos, -- we will work with the absolute value of the numerator, which is equal to the numerator have q_num_abs_eq_q_num : (q.num.nat_abs : ℤ) = q.num, from (int.nat_abs_of_nonneg q_num_pos.le), set q_inv := (q.denom : ℚ) / q.num with q_inv_def, have q_inv_eq : q⁻¹ = q_inv, from rat.inv_def', suffices : (q_inv - ⌊q_inv⌋).num < q.num, by rwa q_inv_eq, suffices : ((q.denom - q.num * ⌊q_inv⌋ : ℚ) / q.num).num < q.num, by field_simp [this, (ne_of_gt q_num_pos)], suffices : (q.denom : ℤ) - q.num * ⌊q_inv⌋ < q.num, by { -- use that `q.num` and `q.denom` are coprime to show that the numerator stays unreduced have : ((q.denom - q.num * ⌊q_inv⌋ : ℚ) / q.num).num = q.denom - q.num * ⌊q_inv⌋, by { suffices : ((q.denom : ℤ) - q.num * ⌊q_inv⌋).nat_abs.coprime q.num.nat_abs, by exact_mod_cast (rat.num_div_eq_of_coprime q_num_pos this), have : (q.num.nat_abs : ℚ) = (q.num : ℚ), by exact_mod_cast q_num_abs_eq_q_num, have tmp := nat.coprime_sub_mul_floor_rat_div_of_coprime q.cop.symm, simpa only [this, q_num_abs_eq_q_num] using tmp }, rwa this }, -- to show the claim, start with the following inequality have q_inv_num_denom_ineq : q⁻¹.num - ⌊q⁻¹⌋ * q⁻¹.denom < q⁻¹.denom, by { have : q⁻¹.num < (⌊q⁻¹⌋ + 1) * q⁻¹.denom, from rat.num_lt_succ_floor_mul_denom q⁻¹, have : q⁻¹.num < ⌊q⁻¹⌋ * q⁻¹.denom + q⁻¹.denom, by rwa [right_distrib, one_mul] at this, rwa [←sub_lt_iff_lt_add'] at this }, -- use that `q.num` and `q.denom` are coprime to show that q_inv is the unreduced reciprocal -- of `q` have : q_inv.num = q.denom ∧ q_inv.denom = q.num.nat_abs, by { have coprime_q_denom_q_num : q.denom.coprime q.num.nat_abs, from q.cop.symm, have : int.nat_abs q.denom = q.denom, by simp, rw ←this at coprime_q_denom_q_num, rw q_inv_def, split, { exact_mod_cast (rat.num_div_eq_of_coprime q_num_pos coprime_q_denom_q_num) }, { suffices : (((q.denom : ℚ) / q.num).denom : ℤ) = q.num.nat_abs, by exact_mod_cast this, rw q_num_abs_eq_q_num, exact_mod_cast (rat.denom_div_eq_of_coprime q_num_pos coprime_q_denom_q_num) } }, rwa [q_inv_eq, this.left, this.right, q_num_abs_eq_q_num, mul_comm] at q_inv_num_denom_ineq end end rat
8d2ecafbe14f979c6393ab713489dd59f9903b87
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/type_context.lean
b968e99dfcffb6994408c5c9a8793d2a40a2699b
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
8,700
lean
open tactic local_context tactic.unsafe tactic.unsafe.type_context run_cmd do n ← type_context.run (pure "hello type_context"), trace n run_cmd do n ← type_context.run (do x ← pure "hello", pure x), trace n run_cmd do n ← type_context.run $ (λ x, x) <$> pure "hello", trace n run_cmd do -- should fail f : ℕ ← type_context.run (type_context.fail $ "I failed"), trace f run_cmd do m ← tactic.mk_meta_var `(nat), e ← pure $ `([4,3,2]), b ← type_context.run (type_context.unify m e), trace b, -- should be ff because the types are not equal type_context.run (is_assigned m) >>= trace -- should be ff run_cmd do m ← tactic.mk_meta_var `(nat), r : nat ← type_context.run (do unify m `(4), type_context.failure) <|> pure 5, m ← instantiate_mvars m, trace m -- should be "?m_1" /- What happens when you assign an mvar to itself? It shouldn't stop you but it shouldn't stack-overflow either. -/ run_cmd do -- should fail with a 'deep recursion' type ← tactic.to_expr ```(nat), m ← tactic.mk_meta_var type, a ← type_context.run (type_context.assign m m *> type_context.get_assignment m), trace $ to_bool $ a = m, -- should be tt instantiate_mvars m run_cmd do -- should fail with a 'deep recursion' type ← tactic.to_expr ```(nat), m ← tactic.mk_meta_var type, m₂ ← to_expr ```(%%m + %%m), type_context.run (type_context.assign m m₂), instantiate_mvars m /- What happens when you assign a pair of mvars to each other? -/ run_cmd do -- should fail with a 'deep recursion' type ← tactic.to_expr ```(nat), m₁ ← tactic.mk_meta_var type, m₂ ← tactic.mk_meta_var type, type_context.run (type_context.assign m₁ m₂), type_context.run (type_context.assign m₂ m₁), trace m₁, trace m₂ run_cmd do x : pexpr ← resolve_name `int.eq_neg_of_eq_neg, x ← to_expr x, y ← infer_type x, (t,us,es) ← type_context.run $ type_context.to_tmp_mvars y, trace t, trace us, trace es, tactic.apply `(trivial), set_goals [] /- Some examples of rewriting tactics using type_context. -/ meta def my_infer : expr → tactic expr | e := type_context.run $ type_context.infer e run_cmd my_infer `(4 : nat) >>= tactic.trace meta def my_intro_core : expr → type_context (expr × expr) | goal := do target ← infer goal, match target with |(expr.pi n bi y b) := do lctx ← get_context goal, some (h,lctx) ← pure $ local_context.mk_local n y bi lctx, b ← pure $ expr.instantiate_var b h, goal' ← mk_mvar name.anonymous b (some lctx), assign goal $ expr.lam n bi y $ expr.mk_delayed_abstraction goal' [expr.local_uniq_name h], pure (h, goal') |_ := type_context.failure end open tactic meta def my_intro : name → tactic expr | n := do goal :: rest ← get_goals, (h, goal') ← type_context.run $ my_intro_core goal, set_goals $ goal' :: rest, pure h lemma my_intro_test : ∀ (x : ℕ), x = x := begin my_intro `hello, refl end #print my_intro_test open native meta instance level.has_lt : has_lt level := ⟨λ x y, level.lt x y⟩ meta instance level.dec_lt : decidable_rel (level.has_lt.lt) := by apply_instance meta def my_mk_pattern (ls : list level) (es : list expr) (target : expr) (ous : list level) (os : list expr) : tactic pattern := type_context.run $ do (t, extra_ls, extra_es) ← type_context.to_tmp_mvars target, level2meta : list (name × level) ← ls.mfoldl (λ acc l, do match l with | level.param n := pure $ (prod.mk n $ type_context.level.mk_tmp_mvar $ acc.length + extra_ls.length) :: acc | _ := type_context.failure end ) [], let convert_level := λ l, level.instantiate l level2meta, expr2meta : rb_map expr expr ← es.mfoldl (λ acc e, do e_type ← infer e, e_type ← pure $ expr.replace e_type (λ x _, rb_map.find acc x), e_type ← pure $ expr.instantiate_univ_params e_type level2meta, i ← pure $ rb_map.size acc + extra_es.length, m ← pure $ type_context.mk_tmp_mvar i e_type, pure $ rb_map.insert acc e m ) $ rb_map.mk _ _, let convert_expr := λ x, expr.instantiate_univ_params (expr.replace x (λ x _, rb_map.find expr2meta x)) level2meta, uoutput ← pure $ ous.map convert_level, output ← pure $ os.map convert_expr, t ← pure $ convert_expr target, pure $ tactic.pattern.mk t uoutput output (extra_ls.length + level2meta.length) (extra_es.length + expr2meta.size) /-- Reimplementation of tactic.match_pattern -/ meta def my_match_pattern_core : tactic.pattern → expr → type_context (list level × list expr) | ⟨target, uoutput, moutput, nuvars, nmvars⟩ e := -- open a temporary metavariable scope. tmp_mode nuvars nmvars (do -- match target with e. result ← type_context.unify target e, if (¬ result) then type_context.fail "failed to unify" else do -- fail when a tmp is not assigned list.mmap (level.tmp_get_assignment) $ list.range nuvars, list.mmap (tmp_get_assignment) $ list.range nmvars, -- instantiate the temporary metavariables. uo ← list.mmap level.instantiate_mvars $ uoutput, mo ← list.mmap instantiate_mvars $ moutput, pure (uo, mo) ) meta def my_match_pattern : pattern → expr → tactic (list level × list expr) |p e := do type_context.run $ my_match_pattern_core p e /- Make a pattern for testing. -/ meta def my_pat := do T ← to_expr ```(Type), α ← pure $ expr.local_const `α `α binder_info.implicit T, h ← pure $ expr.local_const `h `h binder_info.default α, LT ← to_expr ```(list %%α), t ← pure $ expr.local_const `t `t binder_info.default LT, target ← to_expr ```(@list.cons %%α %%h %%t), my_mk_pattern [] [α,h,t] target [] [h,t] run_cmd do p ← my_pat, trace $ p.target run_cmd do -- ([], [3, [4, 5]]) p ← my_pat, res ← my_match_pattern p `([3,4,5]), tactic.trace res run_cmd do -- should fail since doesn't match the pattern. p ← my_pat, e ← to_expr ```(list.empty), res ← my_match_pattern p `([] : list ℕ), tactic.trace res run_cmd do type_context.run (do lc0 ← type_context.get_local_context, type_context.push_local `hi `(nat), type_context.push_local `there `(nat), lc1 ← type_context.get_local_context, type_context.pop_local, lc2 ← type_context.get_local_context, type_context.trace lc0, type_context.trace lc1, type_context.trace lc2, pure () ) run_cmd do type_context.run (do hi ← mk_mvar `hi `(nat), some hello ← type_context.try (do type_context.is_declared hi >>= guardb, type_context.is_assigned hi >>= (guardb ∘ bnot), type_context.assign hi `(4), type_context.is_assigned hi >>= guardb, hello ← mk_mvar `hello `(nat), type_context.is_declared hello >>= guardb, pure hello ), type_context.is_declared hi >>= guardb, type_context.is_declared hello >>= guardb, pure () ) run_cmd do type_context.run (do hi ← mk_mvar `hi `(nat), none : option unit ← type_context.try (do type_context.assign hi `(4), push_local `H `(nat), failure ), type_context.is_declared hi >>= guardb, type_context.is_assigned hi >>= (guardb ∘ bnot), -- [note] the local variable stack should escape the try block. type_context.get_local_context >>= (λ l, guardb $ not $ list.empty $ local_context.to_list $ l), pure () ) -- tactic.get_fun_info and unsafe.type_context.get_fun_info should do the same thing. run_cmd do f ← tactic.resolve_name `has_bind.and_then >>= pure ∘ pexpr.mk_explicit >>= to_expr, fi ← tactic.get_fun_info f, fi ← to_string <$> tactic.pp fi, fi₂ ← type_context.run (unsafe.type_context.get_fun_info f), fi₂ ← to_string <$> tactic.pp fi₂, guard (fi = fi₂) open tactic.unsafe.type_context -- in_tmp_mode should work run_cmd do type_context.run (do in_tmp_mode >>= guardb ∘ bnot, type_context.tmp_mode 0 3 (do in_tmp_mode >>= guardb, tmp_mode 0 2 (do in_tmp_mode >>= guardb ), in_tmp_mode >>= guardb ), in_tmp_mode >>= guardb ∘ bnot ) #eval to_bool $ local_context.empty = local_context.empty
5e5ef6229f12a2f96402168f3edc2c200f0ae837
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/category_theory/functor.lean
5a20e931bea8846c368a66a6f95307c30ea6a399
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
3,180
lean
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tim Baumann, Stephen Morgan, Scott Morrison Defines a functor between categories. (As it is a 'bundled' object rather than the `is_functorial` typeclass parametrised by the underlying function on objects, the name is capitalised.) Introduces notations `C ⥤ D` for the type of all functors from `C` to `D`. (I would like a better arrow here, unfortunately ⇒ (`\functor`) is taken by core.) -/ import tactic.reassoc_axiom namespace category_theory universes v v₁ v₂ v₃ u u₁ u₂ u₃ -- declare the `v`'s first; see `category_theory.category` for an explanation /-- `functor C D` represents a functor between categories `C` and `D`. To apply a functor `F` to an object use `F.obj X`, and to a morphism use `F.map f`. The axiom `map_id` expresses preservation of identities, and `map_comp` expresses functoriality. -/ structure functor (C : Type u₁) [category.{v₁} C] (D : Type u₂) [category.{v₂} D] : Type (max v₁ v₂ u₁ u₂) := (obj [] : C → D) (map : Π {X Y : C}, (X ⟶ Y) → ((obj X) ⟶ (obj Y))) (map_id' : ∀ (X : C), map (𝟙 X) = 𝟙 (obj X) . obviously) (map_comp' : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map (f ≫ g) = (map f) ≫ (map g) . obviously) -- A functor is basically a function, so give ⥤ a similar precedence to → (25). -- For example, `C × D ⥤ E` should parse as `(C × D) ⥤ E` not `C × (D ⥤ E)`. infixr ` ⥤ `:26 := functor -- type as \func -- restate_axiom functor.map_id' attribute [simp] functor.map_id restate_axiom functor.map_comp' attribute [reassoc, simp] functor.map_comp namespace functor section variables (C : Type u₁) [category.{v₁} C] /-- `𝟭 C` is the identity functor on a category `C`. -/ protected def id : C ⥤ C := { obj := λ X, X, map := λ _ _ f, f } notation `𝟭` := functor.id -- Type this as `\sb1` instance : inhabited (C ⥤ C) := ⟨functor.id C⟩ variable {C} @[simp] lemma id_obj (X : C) : (𝟭 C).obj X = X := rfl @[simp] lemma id_map {X Y : C} (f : X ⟶ Y) : (𝟭 C).map f = f := rfl end section variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D] {E : Type u₃} [category.{v₃} E] /-- `F ⋙ G` is the composition of a functor `F` and a functor `G` (`F` first, then `G`). -/ def comp (F : C ⥤ D) (G : D ⥤ E) : C ⥤ E := { obj := λ X, G.obj (F.obj X), map := λ _ _ f, G.map (F.map f) } infixr ` ⋙ `:80 := comp @[simp] lemma comp_obj (F : C ⥤ D) (G : D ⥤ E) (X : C) : (F ⋙ G).obj X = G.obj (F.obj X) := rfl @[simp] lemma comp_map (F : C ⥤ D) (G : D ⥤ E) {X Y : C} (f : X ⟶ Y) : (F ⋙ G).map f = G.map (F.map f) := rfl -- These are not simp lemmas because rewriting along equalities between functors -- is not necessarily a good idea. -- Natural isomorphisms are also provided in `whiskering.lean`. protected lemma comp_id (F : C ⥤ D) : F ⋙ (𝟭 D) = F := by cases F; refl protected lemma id_comp (F : C ⥤ D) : (𝟭 C) ⋙ F = F := by cases F; refl end end functor end category_theory
56b360705797948ce1abc2776d49c16171441b99
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/analysis/calculus/specific_functions_auto.lean
feadf0dac0dd79152360ba0d8e463b2394a112b7
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
4,495
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.analysis.calculus.extend_deriv import Mathlib.analysis.calculus.iterated_deriv import Mathlib.analysis.special_functions.exp_log import Mathlib.topology.algebra.polynomial import Mathlib.PostPort namespace Mathlib /-! # Smoothness of specific functions The real function `exp_neg_inv_glue` given by `x ↦ exp (-1/x)` for `x > 0` and `0` for `x ≤ 0` is a basic building block to construct smooth partitions of unity. We prove that it is `C^∞` in `exp_neg_inv_glue.smooth`. -/ /-- `exp_neg_inv_glue` is the real function given by `x ↦ exp (-1/x)` for `x > 0` and `0` for `x ≤ 0`. is a basic building block to construct smooth partitions of unity. Its main property is that it vanishes for `x ≤ 0`, it is positive for `x > 0`, and the junction between the two behaviors is flat enough to retain smoothness. The fact that this function is `C^∞` is proved in `exp_neg_inv_glue.smooth`. -/ def exp_neg_inv_glue (x : ℝ) : ℝ := ite (x ≤ 0) 0 (real.exp (-(x⁻¹))) namespace exp_neg_inv_glue /-- Our goal is to prove that `exp_neg_inv_glue` is `C^∞`. For this, we compute its successive derivatives for `x > 0`. The `n`-th derivative is of the form `P_aux n (x) exp(-1/x) / x^(2 n)`, where `P_aux n` is computed inductively. -/ def P_aux : ℕ → polynomial ℝ := sorry /-- Formula for the `n`-th derivative of `exp_neg_inv_glue`, as an auxiliary function `f_aux`. -/ def f_aux (n : ℕ) (x : ℝ) : ℝ := ite (x ≤ 0) 0 (polynomial.eval x (P_aux n) * real.exp (-(x⁻¹)) / x ^ (bit0 1 * n)) /-- The `0`-th auxiliary function `f_aux 0` coincides with `exp_neg_inv_glue`, by definition. -/ theorem f_aux_zero_eq : f_aux 0 = exp_neg_inv_glue := sorry /-- For positive values, the derivative of the `n`-th auxiliary function `f_aux n` (given in this statement in unfolded form) is the `n+1`-th auxiliary function, since the polynomial `P_aux (n+1)` was chosen precisely to ensure this. -/ theorem f_aux_deriv (n : ℕ) (x : ℝ) (hx : x ≠ 0) : has_deriv_at (fun (x : ℝ) => polynomial.eval x (P_aux n) * real.exp (-(x⁻¹)) / x ^ (bit0 1 * n)) (polynomial.eval x (P_aux (n + 1)) * real.exp (-(x⁻¹)) / x ^ (bit0 1 * (n + 1))) x := sorry /-- For positive values, the derivative of the `n`-th auxiliary function `f_aux n` is the `n+1`-th auxiliary function. -/ theorem f_aux_deriv_pos (n : ℕ) (x : ℝ) (hx : 0 < x) : has_deriv_at (f_aux n) (polynomial.eval x (P_aux (n + 1)) * real.exp (-(x⁻¹)) / x ^ (bit0 1 * (n + 1))) x := sorry /-- To get differentiability at `0` of the auxiliary functions, we need to know that their limit is `0`, to be able to apply general differentiability extension theorems. This limit is checked in this lemma. -/ theorem f_aux_limit (n : ℕ) : filter.tendsto (fun (x : ℝ) => polynomial.eval x (P_aux n) * real.exp (-(x⁻¹)) / x ^ (bit0 1 * n)) (nhds_within 0 (set.Ioi 0)) (nhds 0) := sorry /-- Deduce from the limiting behavior at `0` of its derivative and general differentiability extension theorems that the auxiliary function `f_aux n` is differentiable at `0`, with derivative `0`. -/ theorem f_aux_deriv_zero (n : ℕ) : has_deriv_at (f_aux n) 0 0 := sorry /-- At every point, the auxiliary function `f_aux n` has a derivative which is equal to `f_aux (n+1)`. -/ theorem f_aux_has_deriv_at (n : ℕ) (x : ℝ) : has_deriv_at (f_aux n) (f_aux (n + 1) x) x := sorry /-- The successive derivatives of the auxiliary function `f_aux 0` are the functions `f_aux n`, by induction. -/ theorem f_aux_iterated_deriv (n : ℕ) : iterated_deriv n (f_aux 0) = f_aux n := sorry /-- The function `exp_neg_inv_glue` is smooth. -/ theorem smooth : times_cont_diff ℝ ⊤ exp_neg_inv_glue := sorry /-- The function `exp_neg_inv_glue` vanishes on `(-∞, 0]`. -/ theorem zero_of_nonpos {x : ℝ} (hx : x ≤ 0) : exp_neg_inv_glue x = 0 := sorry /-- The function `exp_neg_inv_glue` is positive on `(0, +∞)`. -/ theorem pos_of_pos {x : ℝ} (hx : 0 < x) : 0 < exp_neg_inv_glue x := sorry /-- The function exp_neg_inv_glue` is nonnegative. -/ theorem nonneg (x : ℝ) : 0 ≤ exp_neg_inv_glue x := or.dcases_on (le_or_gt x 0) (fun (h : x ≤ 0) => ge_of_eq (zero_of_nonpos h)) fun (h : x > 0) => le_of_lt (pos_of_pos h) end Mathlib
926ad7922cee9c376e88f3d4ad1f33abf72da752
c777c32c8e484e195053731103c5e52af26a25d1
/src/order/bounds/basic.lean
6cfd3c71db1d33bc22dac512b61a59ab87ea3a6b
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
50,599
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Yury Kudryashov -/ import data.set.intervals.basic import data.set.n_ary /-! # Upper / lower bounds > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file we define: * `upper_bounds`, `lower_bounds` : the set of upper bounds (resp., lower bounds) of a set; * `bdd_above s`, `bdd_below s` : the set `s` is bounded above (resp., below), i.e., the set of upper (resp., lower) bounds of `s` is nonempty; * `is_least s a`, `is_greatest s a` : `a` is a least (resp., greatest) element of `s`; for a partial order, it is unique if exists; * `is_lub s a`, `is_glb s a` : `a` is a least upper bound (resp., a greatest lower bound) of `s`; for a partial order, it is unique if exists. We also prove various lemmas about monotonicity, behaviour under `∪`, `∩`, `insert`, and provide formulas for `∅`, `univ`, and intervals. -/ open function set order_dual (to_dual of_dual) universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} section variables [preorder α] [preorder β] {s t : set α} {a b : α} /-! ### Definitions -/ /-- The set of upper bounds of a set. -/ def upper_bounds (s : set α) : set α := { x | ∀ ⦃a⦄, a ∈ s → a ≤ x } /-- The set of lower bounds of a set. -/ def lower_bounds (s : set α) : set α := { x | ∀ ⦃a⦄, a ∈ s → x ≤ a } /-- A set is bounded above if there exists an upper bound. -/ def bdd_above (s : set α) := (upper_bounds s).nonempty /-- A set is bounded below if there exists a lower bound. -/ def bdd_below (s : set α) := (lower_bounds s).nonempty /-- `a` is a least element of a set `s`; for a partial order, it is unique if exists. -/ def is_least (s : set α) (a : α) : Prop := a ∈ s ∧ a ∈ lower_bounds s /-- `a` is a greatest element of a set `s`; for a partial order, it is unique if exists -/ def is_greatest (s : set α) (a : α) : Prop := a ∈ s ∧ a ∈ upper_bounds s /-- `a` is a least upper bound of a set `s`; for a partial order, it is unique if exists. -/ def is_lub (s : set α) : α → Prop := is_least (upper_bounds s) /-- `a` is a greatest lower bound of a set `s`; for a partial order, it is unique if exists. -/ def is_glb (s : set α) : α → Prop := is_greatest (lower_bounds s) lemma mem_upper_bounds : a ∈ upper_bounds s ↔ ∀ x ∈ s, x ≤ a := iff.rfl lemma mem_lower_bounds : a ∈ lower_bounds s ↔ ∀ x ∈ s, a ≤ x := iff.rfl lemma bdd_above_def : bdd_above s ↔ ∃ x, ∀ y ∈ s, y ≤ x := iff.rfl lemma bdd_below_def : bdd_below s ↔ ∃ x, ∀ y ∈ s, x ≤ y := iff.rfl lemma bot_mem_lower_bounds [order_bot α] (s : set α) : ⊥ ∈ lower_bounds s := λ _ _, bot_le lemma top_mem_upper_bounds [order_top α] (s : set α) : ⊤ ∈ upper_bounds s := λ _ _, le_top @[simp] lemma is_least_bot_iff [order_bot α] : is_least s ⊥ ↔ ⊥ ∈ s := and_iff_left $ bot_mem_lower_bounds _ @[simp] lemma is_greatest_top_iff [order_top α] : is_greatest s ⊤ ↔ ⊤ ∈ s := and_iff_left $ top_mem_upper_bounds _ /-- A set `s` is not bounded above if and only if for each `x` there exists `y ∈ s` such that `x` is not greater than or equal to `y`. This version only assumes `preorder` structure and uses `¬(y ≤ x)`. A version for linear orders is called `not_bdd_above_iff`. -/ lemma not_bdd_above_iff' : ¬bdd_above s ↔ ∀ x, ∃ y ∈ s, ¬(y ≤ x) := by simp [bdd_above, upper_bounds, set.nonempty] /-- A set `s` is not bounded below if and only if for each `x` there exists `y ∈ s` such that `x` is not less than or equal to `y`. This version only assumes `preorder` structure and uses `¬(x ≤ y)`. A version for linear orders is called `not_bdd_below_iff`. -/ lemma not_bdd_below_iff' : ¬bdd_below s ↔ ∀ x, ∃ y ∈ s, ¬ x ≤ y := @not_bdd_above_iff' αᵒᵈ _ _ /-- A set `s` is not bounded above if and only if for each `x` there exists `y ∈ s` that is greater than `x`. A version for preorders is called `not_bdd_above_iff'`. -/ lemma not_bdd_above_iff {α : Type*} [linear_order α] {s : set α} : ¬bdd_above s ↔ ∀ x, ∃ y ∈ s, x < y := by simp only [not_bdd_above_iff', not_le] /-- A set `s` is not bounded below if and only if for each `x` there exists `y ∈ s` that is less than `x`. A version for preorders is called `not_bdd_below_iff'`. -/ lemma not_bdd_below_iff {α : Type*} [linear_order α] {s : set α} : ¬bdd_below s ↔ ∀ x, ∃ y ∈ s, y < x := @not_bdd_above_iff αᵒᵈ _ _ lemma bdd_above.dual (h : bdd_above s) : bdd_below (of_dual ⁻¹' s) := h lemma bdd_below.dual (h : bdd_below s) : bdd_above (of_dual ⁻¹' s) := h lemma is_least.dual (h : is_least s a) : is_greatest (of_dual ⁻¹' s) (to_dual a) := h lemma is_greatest.dual (h : is_greatest s a) : is_least (of_dual ⁻¹' s) (to_dual a) := h lemma is_lub.dual (h : is_lub s a) : is_glb (of_dual ⁻¹' s) (to_dual a) := h lemma is_glb.dual (h : is_glb s a) : is_lub (of_dual ⁻¹' s) (to_dual a) := h /-- If `a` is the least element of a set `s`, then subtype `s` is an order with bottom element. -/ @[reducible] def is_least.order_bot (h : is_least s a) : order_bot s := { bot := ⟨a, h.1⟩, bot_le := subtype.forall.2 h.2 } /-- If `a` is the greatest element of a set `s`, then subtype `s` is an order with top element. -/ @[reducible] def is_greatest.order_top (h : is_greatest s a) : order_top s := { top := ⟨a, h.1⟩, le_top := subtype.forall.2 h.2 } /-! ### Monotonicity -/ lemma upper_bounds_mono_set ⦃s t : set α⦄ (hst : s ⊆ t) : upper_bounds t ⊆ upper_bounds s := λ b hb x h, hb $ hst h lemma lower_bounds_mono_set ⦃s t : set α⦄ (hst : s ⊆ t) : lower_bounds t ⊆ lower_bounds s := λ b hb x h, hb $ hst h lemma upper_bounds_mono_mem ⦃a b⦄ (hab : a ≤ b) : a ∈ upper_bounds s → b ∈ upper_bounds s := λ ha x h, le_trans (ha h) hab lemma lower_bounds_mono_mem ⦃a b⦄ (hab : a ≤ b) : b ∈ lower_bounds s → a ∈ lower_bounds s := λ hb x h, le_trans hab (hb h) lemma upper_bounds_mono ⦃s t : set α⦄ (hst : s ⊆ t) ⦃a b⦄ (hab : a ≤ b) : a ∈ upper_bounds t → b ∈ upper_bounds s := λ ha, upper_bounds_mono_set hst $ upper_bounds_mono_mem hab ha lemma lower_bounds_mono ⦃s t : set α⦄ (hst : s ⊆ t) ⦃a b⦄ (hab : a ≤ b) : b ∈ lower_bounds t → a ∈ lower_bounds s := λ hb, lower_bounds_mono_set hst $ lower_bounds_mono_mem hab hb /-- If `s ⊆ t` and `t` is bounded above, then so is `s`. -/ lemma bdd_above.mono ⦃s t : set α⦄ (h : s ⊆ t) : bdd_above t → bdd_above s := nonempty.mono $ upper_bounds_mono_set h /-- If `s ⊆ t` and `t` is bounded below, then so is `s`. -/ lemma bdd_below.mono ⦃s t : set α⦄ (h : s ⊆ t) : bdd_below t → bdd_below s := nonempty.mono $ lower_bounds_mono_set h /-- If `a` is a least upper bound for sets `s` and `p`, then it is a least upper bound for any set `t`, `s ⊆ t ⊆ p`. -/ lemma is_lub.of_subset_of_superset {s t p : set α} (hs : is_lub s a) (hp : is_lub p a) (hst : s ⊆ t) (htp : t ⊆ p) : is_lub t a := ⟨upper_bounds_mono_set htp hp.1, lower_bounds_mono_set (upper_bounds_mono_set hst) hs.2⟩ /-- If `a` is a greatest lower bound for sets `s` and `p`, then it is a greater lower bound for any set `t`, `s ⊆ t ⊆ p`. -/ lemma is_glb.of_subset_of_superset {s t p : set α} (hs : is_glb s a) (hp : is_glb p a) (hst : s ⊆ t) (htp : t ⊆ p) : is_glb t a := hs.dual.of_subset_of_superset hp hst htp lemma is_least.mono (ha : is_least s a) (hb : is_least t b) (hst : s ⊆ t) : b ≤ a := hb.2 (hst ha.1) lemma is_greatest.mono (ha : is_greatest s a) (hb : is_greatest t b) (hst : s ⊆ t) : a ≤ b := hb.2 (hst ha.1) lemma is_lub.mono (ha : is_lub s a) (hb : is_lub t b) (hst : s ⊆ t) : a ≤ b := hb.mono ha $ upper_bounds_mono_set hst lemma is_glb.mono (ha : is_glb s a) (hb : is_glb t b) (hst : s ⊆ t) : b ≤ a := hb.mono ha $ lower_bounds_mono_set hst lemma subset_lower_bounds_upper_bounds (s : set α) : s ⊆ lower_bounds (upper_bounds s) := λ x hx y hy, hy hx lemma subset_upper_bounds_lower_bounds (s : set α) : s ⊆ upper_bounds (lower_bounds s) := λ x hx y hy, hy hx lemma set.nonempty.bdd_above_lower_bounds (hs : s.nonempty) : bdd_above (lower_bounds s) := hs.mono (subset_upper_bounds_lower_bounds s) lemma set.nonempty.bdd_below_upper_bounds (hs : s.nonempty) : bdd_below (upper_bounds s) := hs.mono (subset_lower_bounds_upper_bounds s) /-! ### Conversions -/ lemma is_least.is_glb (h : is_least s a) : is_glb s a := ⟨h.2, λ b hb, hb h.1⟩ lemma is_greatest.is_lub (h : is_greatest s a) : is_lub s a := ⟨h.2, λ b hb, hb h.1⟩ lemma is_lub.upper_bounds_eq (h : is_lub s a) : upper_bounds s = Ici a := set.ext $ λ b, ⟨λ hb, h.2 hb, λ hb, upper_bounds_mono_mem hb h.1⟩ lemma is_glb.lower_bounds_eq (h : is_glb s a) : lower_bounds s = Iic a := h.dual.upper_bounds_eq lemma is_least.lower_bounds_eq (h : is_least s a) : lower_bounds s = Iic a := h.is_glb.lower_bounds_eq lemma is_greatest.upper_bounds_eq (h : is_greatest s a) : upper_bounds s = Ici a := h.is_lub.upper_bounds_eq lemma is_lub_le_iff (h : is_lub s a) : a ≤ b ↔ b ∈ upper_bounds s := by { rw h.upper_bounds_eq, refl } lemma le_is_glb_iff (h : is_glb s a) : b ≤ a ↔ b ∈ lower_bounds s := by { rw h.lower_bounds_eq, refl } lemma is_lub_iff_le_iff : is_lub s a ↔ ∀ b, a ≤ b ↔ b ∈ upper_bounds s := ⟨λ h b, is_lub_le_iff h, λ H, ⟨(H _).1 le_rfl, λ b hb, (H b).2 hb⟩⟩ lemma is_glb_iff_le_iff : is_glb s a ↔ ∀ b, b ≤ a ↔ b ∈ lower_bounds s := @is_lub_iff_le_iff αᵒᵈ _ _ _ /-- If `s` has a least upper bound, then it is bounded above. -/ lemma is_lub.bdd_above (h : is_lub s a) : bdd_above s := ⟨a, h.1⟩ /-- If `s` has a greatest lower bound, then it is bounded below. -/ lemma is_glb.bdd_below (h : is_glb s a) : bdd_below s := ⟨a, h.1⟩ /-- If `s` has a greatest element, then it is bounded above. -/ lemma is_greatest.bdd_above (h : is_greatest s a) : bdd_above s := ⟨a, h.2⟩ /-- If `s` has a least element, then it is bounded below. -/ lemma is_least.bdd_below (h : is_least s a) : bdd_below s := ⟨a, h.2⟩ lemma is_least.nonempty (h : is_least s a) : s.nonempty := ⟨a, h.1⟩ lemma is_greatest.nonempty (h : is_greatest s a) : s.nonempty := ⟨a, h.1⟩ /-! ### Union and intersection -/ @[simp] lemma upper_bounds_union : upper_bounds (s ∪ t) = upper_bounds s ∩ upper_bounds t := subset.antisymm (λ b hb, ⟨λ x hx, hb (or.inl hx), λ x hx, hb (or.inr hx)⟩) (λ b hb x hx, hx.elim (λ hs, hb.1 hs) (λ ht, hb.2 ht)) @[simp] lemma lower_bounds_union : lower_bounds (s ∪ t) = lower_bounds s ∩ lower_bounds t := @upper_bounds_union αᵒᵈ _ s t lemma union_upper_bounds_subset_upper_bounds_inter : upper_bounds s ∪ upper_bounds t ⊆ upper_bounds (s ∩ t) := union_subset (upper_bounds_mono_set $ inter_subset_left _ _) (upper_bounds_mono_set $ inter_subset_right _ _) lemma union_lower_bounds_subset_lower_bounds_inter : lower_bounds s ∪ lower_bounds t ⊆ lower_bounds (s ∩ t) := @union_upper_bounds_subset_upper_bounds_inter αᵒᵈ _ s t lemma is_least_union_iff {a : α} {s t : set α} : is_least (s ∪ t) a ↔ (is_least s a ∧ a ∈ lower_bounds t ∨ a ∈ lower_bounds s ∧ is_least t a) := by simp [is_least, lower_bounds_union, or_and_distrib_right, and_comm (a ∈ t), and_assoc] lemma is_greatest_union_iff : is_greatest (s ∪ t) a ↔ (is_greatest s a ∧ a ∈ upper_bounds t ∨ a ∈ upper_bounds s ∧ is_greatest t a) := @is_least_union_iff αᵒᵈ _ a s t /-- If `s` is bounded, then so is `s ∩ t` -/ lemma bdd_above.inter_of_left (h : bdd_above s) : bdd_above (s ∩ t) := h.mono $ inter_subset_left s t /-- If `t` is bounded, then so is `s ∩ t` -/ lemma bdd_above.inter_of_right (h : bdd_above t) : bdd_above (s ∩ t) := h.mono $ inter_subset_right s t /-- If `s` is bounded, then so is `s ∩ t` -/ lemma bdd_below.inter_of_left (h : bdd_below s) : bdd_below (s ∩ t) := h.mono $ inter_subset_left s t /-- If `t` is bounded, then so is `s ∩ t` -/ lemma bdd_below.inter_of_right (h : bdd_below t) : bdd_below (s ∩ t) := h.mono $ inter_subset_right s t /-- If `s` and `t` are bounded above sets in a `semilattice_sup`, then so is `s ∪ t`. -/ lemma bdd_above.union [semilattice_sup γ] {s t : set γ} : bdd_above s → bdd_above t → bdd_above (s ∪ t) := begin rintros ⟨bs, hs⟩ ⟨bt, ht⟩, use bs ⊔ bt, rw upper_bounds_union, exact ⟨upper_bounds_mono_mem le_sup_left hs, upper_bounds_mono_mem le_sup_right ht⟩ end /-- The union of two sets is bounded above if and only if each of the sets is. -/ lemma bdd_above_union [semilattice_sup γ] {s t : set γ} : bdd_above (s ∪ t) ↔ bdd_above s ∧ bdd_above t := ⟨λ h, ⟨h.mono $ subset_union_left s t, h.mono $ subset_union_right s t⟩, λ h, h.1.union h.2⟩ lemma bdd_below.union [semilattice_inf γ] {s t : set γ} : bdd_below s → bdd_below t → bdd_below (s ∪ t) := @bdd_above.union γᵒᵈ _ s t /--The union of two sets is bounded above if and only if each of the sets is.-/ lemma bdd_below_union [semilattice_inf γ] {s t : set γ} : bdd_below (s ∪ t) ↔ bdd_below s ∧ bdd_below t := @bdd_above_union γᵒᵈ _ s t /-- If `a` is the least upper bound of `s` and `b` is the least upper bound of `t`, then `a ⊔ b` is the least upper bound of `s ∪ t`. -/ lemma is_lub.union [semilattice_sup γ] {a b : γ} {s t : set γ} (hs : is_lub s a) (ht : is_lub t b) : is_lub (s ∪ t) (a ⊔ b) := ⟨λ c h, h.cases_on (λ h, le_sup_of_le_left $ hs.left h) (λ h, le_sup_of_le_right $ ht.left h), λ c hc, sup_le (hs.right $ λ d hd, hc $ or.inl hd) (ht.right $ λ d hd, hc $ or.inr hd)⟩ /-- If `a` is the greatest lower bound of `s` and `b` is the greatest lower bound of `t`, then `a ⊓ b` is the greatest lower bound of `s ∪ t`. -/ lemma is_glb.union [semilattice_inf γ] {a₁ a₂ : γ} {s t : set γ} (hs : is_glb s a₁) (ht : is_glb t a₂) : is_glb (s ∪ t) (a₁ ⊓ a₂) := hs.dual.union ht /-- If `a` is the least element of `s` and `b` is the least element of `t`, then `min a b` is the least element of `s ∪ t`. -/ lemma is_least.union [linear_order γ] {a b : γ} {s t : set γ} (ha : is_least s a) (hb : is_least t b) : is_least (s ∪ t) (min a b) := ⟨by cases (le_total a b) with h h; simp [h, ha.1, hb.1], (ha.is_glb.union hb.is_glb).1⟩ /-- If `a` is the greatest element of `s` and `b` is the greatest element of `t`, then `max a b` is the greatest element of `s ∪ t`. -/ lemma is_greatest.union [linear_order γ] {a b : γ} {s t : set γ} (ha : is_greatest s a) (hb : is_greatest t b) : is_greatest (s ∪ t) (max a b) := ⟨by cases (le_total a b) with h h; simp [h, ha.1, hb.1], (ha.is_lub.union hb.is_lub).1⟩ lemma is_lub.inter_Ici_of_mem [linear_order γ] {s : set γ} {a b : γ} (ha : is_lub s a) (hb : b ∈ s) : is_lub (s ∩ Ici b) a := ⟨λ x hx, ha.1 hx.1, λ c hc, have hbc : b ≤ c, from hc ⟨hb, le_rfl⟩, ha.2 $ λ x hx, (le_total x b).elim (λ hxb, hxb.trans hbc) $ λ hbx, hc ⟨hx, hbx⟩⟩ lemma is_glb.inter_Iic_of_mem [linear_order γ] {s : set γ} {a b : γ} (ha : is_glb s a) (hb : b ∈ s) : is_glb (s ∩ Iic b) a := ha.dual.inter_Ici_of_mem hb lemma bdd_above_iff_exists_ge [semilattice_sup γ] {s : set γ} (x₀ : γ) : bdd_above s ↔ ∃ x, x₀ ≤ x ∧ ∀ y ∈ s, y ≤ x := by { rw [bdd_above_def, exists_ge_and_iff_exists], exact monotone.ball (λ x hx, monotone_le) } lemma bdd_below_iff_exists_le [semilattice_inf γ] {s : set γ} (x₀ : γ) : bdd_below s ↔ ∃ x, x ≤ x₀ ∧ ∀ y ∈ s, x ≤ y := bdd_above_iff_exists_ge (to_dual x₀) lemma bdd_above.exists_ge [semilattice_sup γ] {s : set γ} (hs : bdd_above s) (x₀ : γ) : ∃ x, x₀ ≤ x ∧ ∀ y ∈ s, y ≤ x := (bdd_above_iff_exists_ge x₀).mp hs lemma bdd_below.exists_le [semilattice_inf γ] {s : set γ} (hs : bdd_below s) (x₀ : γ) : ∃ x, x ≤ x₀ ∧ ∀ y ∈ s, x ≤ y := (bdd_below_iff_exists_le x₀).mp hs /-! ### Specific sets #### Unbounded intervals -/ lemma is_least_Ici : is_least (Ici a) a := ⟨left_mem_Ici, λ x, id⟩ lemma is_greatest_Iic : is_greatest (Iic a) a := ⟨right_mem_Iic, λ x, id⟩ lemma is_lub_Iic : is_lub (Iic a) a := is_greatest_Iic.is_lub lemma is_glb_Ici : is_glb (Ici a) a := is_least_Ici.is_glb lemma upper_bounds_Iic : upper_bounds (Iic a) = Ici a := is_lub_Iic.upper_bounds_eq lemma lower_bounds_Ici : lower_bounds (Ici a) = Iic a := is_glb_Ici.lower_bounds_eq lemma bdd_above_Iic : bdd_above (Iic a) := is_lub_Iic.bdd_above lemma bdd_below_Ici : bdd_below (Ici a) := is_glb_Ici.bdd_below lemma bdd_above_Iio : bdd_above (Iio a) := ⟨a, λ x hx, le_of_lt hx⟩ lemma bdd_below_Ioi : bdd_below (Ioi a) := ⟨a, λ x hx, le_of_lt hx⟩ lemma lub_Iio_le (a : α) (hb : is_lub (set.Iio a) b) : b ≤ a := (is_lub_le_iff hb).mpr $ λ k hk, le_of_lt hk lemma le_glb_Ioi (a : α) (hb : is_glb (set.Ioi a) b) : a ≤ b := @lub_Iio_le αᵒᵈ _ _ a hb lemma lub_Iio_eq_self_or_Iio_eq_Iic [partial_order γ] {j : γ} (i : γ) (hj : is_lub (set.Iio i) j) : j = i ∨ set.Iio i = set.Iic j := begin cases eq_or_lt_of_le (lub_Iio_le i hj) with hj_eq_i hj_lt_i, { exact or.inl hj_eq_i, }, { right, exact set.ext (λ k, ⟨λ hk_lt, hj.1 hk_lt, λ hk_le_j, lt_of_le_of_lt hk_le_j hj_lt_i⟩), }, end lemma glb_Ioi_eq_self_or_Ioi_eq_Ici [partial_order γ] {j : γ} (i : γ) (hj : is_glb (set.Ioi i) j) : j = i ∨ set.Ioi i = set.Ici j := @lub_Iio_eq_self_or_Iio_eq_Iic γᵒᵈ _ j i hj section variables [linear_order γ] lemma exists_lub_Iio (i : γ) : ∃ j, is_lub (set.Iio i) j := begin by_cases h_exists_lt : ∃ j, j ∈ upper_bounds (set.Iio i) ∧ j < i, { obtain ⟨j, hj_ub, hj_lt_i⟩ := h_exists_lt, exact ⟨j, hj_ub, λ k hk_ub, hk_ub hj_lt_i⟩, }, { refine ⟨i, λ j hj, le_of_lt hj, _⟩, rw mem_lower_bounds, by_contra, refine h_exists_lt _, push_neg at h, exact h, }, end lemma exists_glb_Ioi (i : γ) : ∃ j, is_glb (set.Ioi i) j := @exists_lub_Iio γᵒᵈ _ i variables [densely_ordered γ] lemma is_lub_Iio {a : γ} : is_lub (Iio a) a := ⟨λ x hx, le_of_lt hx, λ y hy, le_of_forall_ge_of_dense hy⟩ lemma is_glb_Ioi {a : γ} : is_glb (Ioi a) a := @is_lub_Iio γᵒᵈ _ _ a lemma upper_bounds_Iio {a : γ} : upper_bounds (Iio a) = Ici a := is_lub_Iio.upper_bounds_eq lemma lower_bounds_Ioi {a : γ} : lower_bounds (Ioi a) = Iic a := is_glb_Ioi.lower_bounds_eq end /-! #### Singleton -/ lemma is_greatest_singleton : is_greatest {a} a := ⟨mem_singleton a, λ x hx, le_of_eq $ eq_of_mem_singleton hx⟩ lemma is_least_singleton : is_least {a} a := @is_greatest_singleton αᵒᵈ _ a lemma is_lub_singleton : is_lub {a} a := is_greatest_singleton.is_lub lemma is_glb_singleton : is_glb {a} a := is_least_singleton.is_glb lemma bdd_above_singleton : bdd_above ({a} : set α) := is_lub_singleton.bdd_above lemma bdd_below_singleton : bdd_below ({a} : set α) := is_glb_singleton.bdd_below @[simp] lemma upper_bounds_singleton : upper_bounds {a} = Ici a := is_lub_singleton.upper_bounds_eq @[simp] lemma lower_bounds_singleton : lower_bounds {a} = Iic a := is_glb_singleton.lower_bounds_eq /-! #### Bounded intervals -/ lemma bdd_above_Icc : bdd_above (Icc a b) := ⟨b, λ _, and.right⟩ lemma bdd_below_Icc : bdd_below (Icc a b) := ⟨a, λ _, and.left⟩ lemma bdd_above_Ico : bdd_above (Ico a b) := bdd_above_Icc.mono Ico_subset_Icc_self lemma bdd_below_Ico : bdd_below (Ico a b) := bdd_below_Icc.mono Ico_subset_Icc_self lemma bdd_above_Ioc : bdd_above (Ioc a b) := bdd_above_Icc.mono Ioc_subset_Icc_self lemma bdd_below_Ioc : bdd_below (Ioc a b) := bdd_below_Icc.mono Ioc_subset_Icc_self lemma bdd_above_Ioo : bdd_above (Ioo a b) := bdd_above_Icc.mono Ioo_subset_Icc_self lemma bdd_below_Ioo : bdd_below (Ioo a b) := bdd_below_Icc.mono Ioo_subset_Icc_self lemma is_greatest_Icc (h : a ≤ b) : is_greatest (Icc a b) b := ⟨right_mem_Icc.2 h, λ x, and.right⟩ lemma is_lub_Icc (h : a ≤ b) : is_lub (Icc a b) b := (is_greatest_Icc h).is_lub lemma upper_bounds_Icc (h : a ≤ b) : upper_bounds (Icc a b) = Ici b := (is_lub_Icc h).upper_bounds_eq lemma is_least_Icc (h : a ≤ b) : is_least (Icc a b) a := ⟨left_mem_Icc.2 h, λ x, and.left⟩ lemma is_glb_Icc (h : a ≤ b) : is_glb (Icc a b) a := (is_least_Icc h).is_glb lemma lower_bounds_Icc (h : a ≤ b) : lower_bounds (Icc a b) = Iic a := (is_glb_Icc h).lower_bounds_eq lemma is_greatest_Ioc (h : a < b) : is_greatest (Ioc a b) b := ⟨right_mem_Ioc.2 h, λ x, and.right⟩ lemma is_lub_Ioc (h : a < b) : is_lub (Ioc a b) b := (is_greatest_Ioc h).is_lub lemma upper_bounds_Ioc (h : a < b) : upper_bounds (Ioc a b) = Ici b := (is_lub_Ioc h).upper_bounds_eq lemma is_least_Ico (h : a < b) : is_least (Ico a b) a := ⟨left_mem_Ico.2 h, λ x, and.left⟩ lemma is_glb_Ico (h : a < b) : is_glb (Ico a b) a := (is_least_Ico h).is_glb lemma lower_bounds_Ico (h : a < b) : lower_bounds (Ico a b) = Iic a := (is_glb_Ico h).lower_bounds_eq section variables [semilattice_sup γ] [densely_ordered γ] lemma is_glb_Ioo {a b : γ} (h : a < b) : is_glb (Ioo a b) a := ⟨λ x hx, hx.1.le, λ x hx, begin cases eq_or_lt_of_le (le_sup_right : a ≤ x ⊔ a) with h₁ h₂, { exact h₁.symm ▸ le_sup_left }, obtain ⟨y, lty, ylt⟩ := exists_between h₂, apply (not_lt_of_le (sup_le (hx ⟨lty, ylt.trans_le (sup_le _ h.le)⟩) lty.le) ylt).elim, obtain ⟨u, au, ub⟩ := exists_between h, apply (hx ⟨au, ub⟩).trans ub.le, end⟩ lemma lower_bounds_Ioo {a b : γ} (hab : a < b) : lower_bounds (Ioo a b) = Iic a := (is_glb_Ioo hab).lower_bounds_eq lemma is_glb_Ioc {a b : γ} (hab : a < b) : is_glb (Ioc a b) a := (is_glb_Ioo hab).of_subset_of_superset (is_glb_Icc hab.le) Ioo_subset_Ioc_self Ioc_subset_Icc_self lemma lower_bound_Ioc {a b : γ} (hab : a < b) : lower_bounds (Ioc a b) = Iic a := (is_glb_Ioc hab).lower_bounds_eq end section variables [semilattice_inf γ] [densely_ordered γ] lemma is_lub_Ioo {a b : γ} (hab : a < b) : is_lub (Ioo a b) b := by simpa only [dual_Ioo] using is_glb_Ioo hab.dual lemma upper_bounds_Ioo {a b : γ} (hab : a < b) : upper_bounds (Ioo a b) = Ici b := (is_lub_Ioo hab).upper_bounds_eq lemma is_lub_Ico {a b : γ} (hab : a < b) : is_lub (Ico a b) b := by simpa only [dual_Ioc] using is_glb_Ioc hab.dual lemma upper_bounds_Ico {a b : γ} (hab : a < b) : upper_bounds (Ico a b) = Ici b := (is_lub_Ico hab).upper_bounds_eq end lemma bdd_below_iff_subset_Ici : bdd_below s ↔ ∃ a, s ⊆ Ici a := iff.rfl lemma bdd_above_iff_subset_Iic : bdd_above s ↔ ∃ a, s ⊆ Iic a := iff.rfl lemma bdd_below_bdd_above_iff_subset_Icc : bdd_below s ∧ bdd_above s ↔ ∃ a b, s ⊆ Icc a b := by simp only [Ici_inter_Iic.symm, subset_inter_iff, bdd_below_iff_subset_Ici, bdd_above_iff_subset_Iic, exists_and_distrib_left, exists_and_distrib_right] /-! #### Univ -/ @[simp] lemma is_greatest_univ_iff : is_greatest univ a ↔ is_top a := by simp [is_greatest, mem_upper_bounds, is_top] lemma is_greatest_univ [order_top α] : is_greatest (univ : set α) ⊤ := is_greatest_univ_iff.2 is_top_top @[simp] lemma order_top.upper_bounds_univ [partial_order γ] [order_top γ] : upper_bounds (univ : set γ) = {⊤} := by rw [is_greatest_univ.upper_bounds_eq, Ici_top] lemma is_lub_univ [order_top α] : is_lub (univ : set α) ⊤ := is_greatest_univ.is_lub @[simp] lemma order_bot.lower_bounds_univ [partial_order γ] [order_bot γ] : lower_bounds (univ : set γ) = {⊥} := @order_top.upper_bounds_univ γᵒᵈ _ _ @[simp] lemma is_least_univ_iff : is_least univ a ↔ is_bot a := @is_greatest_univ_iff αᵒᵈ _ _ lemma is_least_univ [order_bot α] : is_least (univ : set α) ⊥ := @is_greatest_univ αᵒᵈ _ _ lemma is_glb_univ [order_bot α] : is_glb (univ : set α) ⊥ := is_least_univ.is_glb @[simp] lemma no_max_order.upper_bounds_univ [no_max_order α] : upper_bounds (univ : set α) = ∅ := eq_empty_of_subset_empty $ λ b hb, let ⟨x, hx⟩ := exists_gt b in not_le_of_lt hx (hb trivial) @[simp] lemma no_min_order.lower_bounds_univ [no_min_order α] : lower_bounds (univ : set α) = ∅ := @no_max_order.upper_bounds_univ αᵒᵈ _ _ @[simp] lemma not_bdd_above_univ [no_max_order α] : ¬bdd_above (univ : set α) := by simp [bdd_above] @[simp] lemma not_bdd_below_univ [no_min_order α] : ¬bdd_below (univ : set α) := @not_bdd_above_univ αᵒᵈ _ _ /-! #### Empty set -/ @[simp] lemma upper_bounds_empty : upper_bounds (∅ : set α) = univ := by simp only [upper_bounds, eq_univ_iff_forall, mem_set_of_eq, ball_empty_iff, forall_true_iff] @[simp] lemma lower_bounds_empty : lower_bounds (∅ : set α) = univ := @upper_bounds_empty αᵒᵈ _ @[simp] lemma bdd_above_empty [nonempty α] : bdd_above (∅ : set α) := by simp only [bdd_above, upper_bounds_empty, univ_nonempty] @[simp] lemma bdd_below_empty [nonempty α] : bdd_below (∅ : set α) := by simp only [bdd_below, lower_bounds_empty, univ_nonempty] @[simp] lemma is_glb_empty_iff : is_glb ∅ a ↔ is_top a := by simp [is_glb] @[simp] lemma is_lub_empty_iff : is_lub ∅ a ↔ is_bot a := @is_glb_empty_iff αᵒᵈ _ _ lemma is_glb_empty [order_top α] : is_glb ∅ (⊤:α) := is_glb_empty_iff.2 is_top_top lemma is_lub_empty [order_bot α] : is_lub ∅ (⊥:α) := @is_glb_empty αᵒᵈ _ _ lemma is_lub.nonempty [no_min_order α] (hs : is_lub s a) : s.nonempty := let ⟨a', ha'⟩ := exists_lt a in nonempty_iff_ne_empty.2 $ λ h, not_le_of_lt ha' $ hs.right $ by simp only [h, upper_bounds_empty] lemma is_glb.nonempty [no_max_order α] (hs : is_glb s a) : s.nonempty := hs.dual.nonempty lemma nonempty_of_not_bdd_above [ha : nonempty α] (h : ¬bdd_above s) : s.nonempty := nonempty.elim ha $ λ x, (not_bdd_above_iff'.1 h x).imp $ λ a ha, ha.fst lemma nonempty_of_not_bdd_below [ha : nonempty α] (h : ¬bdd_below s) : s.nonempty := @nonempty_of_not_bdd_above αᵒᵈ _ _ _ h /-! #### insert -/ /-- Adding a point to a set preserves its boundedness above. -/ @[simp] lemma bdd_above_insert [semilattice_sup γ] (a : γ) {s : set γ} : bdd_above (insert a s) ↔ bdd_above s := by simp only [insert_eq, bdd_above_union, bdd_above_singleton, true_and] lemma bdd_above.insert [semilattice_sup γ] (a : γ) {s : set γ} (hs : bdd_above s) : bdd_above (insert a s) := (bdd_above_insert a).2 hs /--Adding a point to a set preserves its boundedness below.-/ @[simp] lemma bdd_below_insert [semilattice_inf γ] (a : γ) {s : set γ} : bdd_below (insert a s) ↔ bdd_below s := by simp only [insert_eq, bdd_below_union, bdd_below_singleton, true_and] lemma bdd_below.insert [semilattice_inf γ] (a : γ) {s : set γ} (hs : bdd_below s) : bdd_below (insert a s) := (bdd_below_insert a).2 hs lemma is_lub.insert [semilattice_sup γ] (a) {b} {s : set γ} (hs : is_lub s b) : is_lub (insert a s) (a ⊔ b) := by { rw insert_eq, exact is_lub_singleton.union hs } lemma is_glb.insert [semilattice_inf γ] (a) {b} {s : set γ} (hs : is_glb s b) : is_glb (insert a s) (a ⊓ b) := by { rw insert_eq, exact is_glb_singleton.union hs } lemma is_greatest.insert [linear_order γ] (a) {b} {s : set γ} (hs : is_greatest s b) : is_greatest (insert a s) (max a b) := by { rw insert_eq, exact is_greatest_singleton.union hs } lemma is_least.insert [linear_order γ] (a) {b} {s : set γ} (hs : is_least s b) : is_least (insert a s) (min a b) := by { rw insert_eq, exact is_least_singleton.union hs } @[simp] lemma upper_bounds_insert (a : α) (s : set α) : upper_bounds (insert a s) = Ici a ∩ upper_bounds s := by rw [insert_eq, upper_bounds_union, upper_bounds_singleton] @[simp] lemma lower_bounds_insert (a : α) (s : set α) : lower_bounds (insert a s) = Iic a ∩ lower_bounds s := by rw [insert_eq, lower_bounds_union, lower_bounds_singleton] /-- When there is a global maximum, every set is bounded above. -/ @[simp] protected lemma order_top.bdd_above [order_top α] (s : set α) : bdd_above s := ⟨⊤, λ a ha, order_top.le_top a⟩ /-- When there is a global minimum, every set is bounded below. -/ @[simp] protected lemma order_bot.bdd_below [order_bot α] (s : set α) : bdd_below s := ⟨⊥, λ a ha, order_bot.bot_le a⟩ /-! #### Pair -/ lemma is_lub_pair [semilattice_sup γ] {a b : γ} : is_lub {a, b} (a ⊔ b) := is_lub_singleton.insert _ lemma is_glb_pair [semilattice_inf γ] {a b : γ} : is_glb {a, b} (a ⊓ b) := is_glb_singleton.insert _ lemma is_least_pair [linear_order γ] {a b : γ} : is_least {a, b} (min a b) := is_least_singleton.insert _ lemma is_greatest_pair [linear_order γ] {a b : γ} : is_greatest {a, b} (max a b) := is_greatest_singleton.insert _ /-! #### Lower/upper bounds -/ @[simp] lemma is_lub_lower_bounds : is_lub (lower_bounds s) a ↔ is_glb s a := ⟨λ H, ⟨λ x hx, H.2 $ subset_upper_bounds_lower_bounds s hx, H.1⟩, is_greatest.is_lub⟩ @[simp] lemma is_glb_upper_bounds : is_glb (upper_bounds s) a ↔ is_lub s a := @is_lub_lower_bounds αᵒᵈ _ _ _ end /-! ### (In)equalities with the least upper bound and the greatest lower bound -/ section preorder variables [preorder α] {s : set α} {a b : α} lemma lower_bounds_le_upper_bounds (ha : a ∈ lower_bounds s) (hb : b ∈ upper_bounds s) : s.nonempty → a ≤ b | ⟨c, hc⟩ := le_trans (ha hc) (hb hc) lemma is_glb_le_is_lub (ha : is_glb s a) (hb : is_lub s b) (hs : s.nonempty) : a ≤ b := lower_bounds_le_upper_bounds ha.1 hb.1 hs lemma is_lub_lt_iff (ha : is_lub s a) : a < b ↔ ∃ c ∈ upper_bounds s, c < b := ⟨λ hb, ⟨a, ha.1, hb⟩, λ ⟨c, hcs, hcb⟩, lt_of_le_of_lt (ha.2 hcs) hcb⟩ lemma lt_is_glb_iff (ha : is_glb s a) : b < a ↔ ∃ c ∈ lower_bounds s, b < c := is_lub_lt_iff ha.dual lemma le_of_is_lub_le_is_glb {x y} (ha : is_glb s a) (hb : is_lub s b) (hab : b ≤ a) (hx : x ∈ s) (hy : y ∈ s) : x ≤ y := calc x ≤ b : hb.1 hx ... ≤ a : hab ... ≤ y : ha.1 hy end preorder section partial_order variables [partial_order α] {s : set α} {a b : α} lemma is_least.unique (Ha : is_least s a) (Hb : is_least s b) : a = b := le_antisymm (Ha.right Hb.left) (Hb.right Ha.left) lemma is_least.is_least_iff_eq (Ha : is_least s a) : is_least s b ↔ a = b := iff.intro Ha.unique (λ h, h ▸ Ha) lemma is_greatest.unique (Ha : is_greatest s a) (Hb : is_greatest s b) : a = b := le_antisymm (Hb.right Ha.left) (Ha.right Hb.left) lemma is_greatest.is_greatest_iff_eq (Ha : is_greatest s a) : is_greatest s b ↔ a = b := iff.intro Ha.unique (λ h, h ▸ Ha) lemma is_lub.unique (Ha : is_lub s a) (Hb : is_lub s b) : a = b := Ha.unique Hb lemma is_glb.unique (Ha : is_glb s a) (Hb : is_glb s b) : a = b := Ha.unique Hb lemma set.subsingleton_of_is_lub_le_is_glb (Ha : is_glb s a) (Hb : is_lub s b) (hab : b ≤ a) : s.subsingleton := λ x hx y hy, le_antisymm (le_of_is_lub_le_is_glb Ha Hb hab hx hy) (le_of_is_lub_le_is_glb Ha Hb hab hy hx) lemma is_glb_lt_is_lub_of_ne (Ha : is_glb s a) (Hb : is_lub s b) {x y} (Hx : x ∈ s) (Hy : y ∈ s) (Hxy : x ≠ y) : a < b := lt_iff_le_not_le.2 ⟨lower_bounds_le_upper_bounds Ha.1 Hb.1 ⟨x, Hx⟩, λ hab, Hxy $ set.subsingleton_of_is_lub_le_is_glb Ha Hb hab Hx Hy⟩ end partial_order section linear_order variables [linear_order α] {s : set α} {a b : α} lemma lt_is_lub_iff (h : is_lub s a) : b < a ↔ ∃ c ∈ s, b < c := by simp only [← not_le, is_lub_le_iff h, mem_upper_bounds, not_forall] lemma is_glb_lt_iff (h : is_glb s a) : a < b ↔ ∃ c ∈ s, c < b := lt_is_lub_iff h.dual lemma is_lub.exists_between (h : is_lub s a) (hb : b < a) : ∃ c ∈ s, b < c ∧ c ≤ a := let ⟨c, hcs, hbc⟩ := (lt_is_lub_iff h).1 hb in ⟨c, hcs, hbc, h.1 hcs⟩ lemma is_lub.exists_between' (h : is_lub s a) (h' : a ∉ s) (hb : b < a) : ∃ c ∈ s, b < c ∧ c < a := let ⟨c, hcs, hbc, hca⟩ := h.exists_between hb in ⟨c, hcs, hbc, hca.lt_of_ne $ λ hac, h' $ hac ▸ hcs⟩ lemma is_glb.exists_between (h : is_glb s a) (hb : a < b) : ∃ c ∈ s, a ≤ c ∧ c < b := let ⟨c, hcs, hbc⟩ := (is_glb_lt_iff h).1 hb in ⟨c, hcs, h.1 hcs, hbc⟩ lemma is_glb.exists_between' (h : is_glb s a) (h' : a ∉ s) (hb : a < b) : ∃ c ∈ s, a < c ∧ c < b := let ⟨c, hcs, hac, hcb⟩ := h.exists_between hb in ⟨c, hcs, hac.lt_of_ne $ λ hac, h' $ hac.symm ▸ hcs, hcb⟩ end linear_order /-! ### Images of upper/lower bounds under monotone functions -/ namespace monotone_on variables [preorder α] [preorder β] {f : α → β} {s t : set α} (Hf : monotone_on f t) {a : α} (Hst : s ⊆ t) include Hf lemma mem_upper_bounds_image (Has : a ∈ upper_bounds s) (Hat : a ∈ t) : f a ∈ upper_bounds (f '' s) := ball_image_of_ball (λ x H, Hf (Hst H) Hat (Has H)) lemma mem_upper_bounds_image_self : a ∈ upper_bounds t → a ∈ t → f a ∈ upper_bounds (f '' t) := Hf.mem_upper_bounds_image subset_rfl lemma mem_lower_bounds_image (Has : a ∈ lower_bounds s) (Hat : a ∈ t) : f a ∈ lower_bounds (f '' s) := ball_image_of_ball (λ x H, Hf Hat (Hst H) (Has H)) lemma mem_lower_bounds_image_self : a ∈ lower_bounds t → a ∈ t → f a ∈ lower_bounds (f '' t) := Hf.mem_lower_bounds_image subset_rfl lemma image_upper_bounds_subset_upper_bounds_image (Hst : s ⊆ t) : f '' (upper_bounds s ∩ t) ⊆ upper_bounds (f '' s) := by { rintro _ ⟨a, ha, rfl⟩, exact Hf.mem_upper_bounds_image Hst ha.1 ha.2 } lemma image_lower_bounds_subset_lower_bounds_image : f '' (lower_bounds s ∩ t) ⊆ lower_bounds (f '' s) := Hf.dual.image_upper_bounds_subset_upper_bounds_image Hst /-- The image under a monotone function on a set `t` of a subset which has an upper bound in `t` is bounded above. -/ lemma map_bdd_above : (upper_bounds s ∩ t).nonempty → bdd_above (f '' s) := λ ⟨C, hs, ht⟩, ⟨f C, Hf.mem_upper_bounds_image Hst hs ht⟩ /-- The image under a monotone function on a set `t` of a subset which has a lower bound in `t` is bounded below. -/ lemma map_bdd_below : (lower_bounds s ∩ t).nonempty → bdd_below (f '' s) := λ ⟨C, hs, ht⟩, ⟨f C, Hf.mem_lower_bounds_image Hst hs ht⟩ /-- A monotone map sends a least element of a set to a least element of its image. -/ lemma map_is_least (Ha : is_least t a) : is_least (f '' t) (f a) := ⟨mem_image_of_mem _ Ha.1, Hf.mem_lower_bounds_image_self Ha.2 Ha.1⟩ /-- A monotone map sends a greatest element of a set to a greatest element of its image. -/ lemma map_is_greatest (Ha : is_greatest t a) : is_greatest (f '' t) (f a) := ⟨mem_image_of_mem _ Ha.1, Hf.mem_upper_bounds_image_self Ha.2 Ha.1⟩ end monotone_on namespace antitone_on variables [preorder α] [preorder β] {f : α → β} {s t : set α} (Hf : antitone_on f t) {a : α} (Hst : s ⊆ t) include Hf lemma mem_upper_bounds_image (Has : a ∈ lower_bounds s) : a ∈ t → f a ∈ upper_bounds (f '' s) := Hf.dual_right.mem_lower_bounds_image Hst Has lemma mem_upper_bounds_image_self : a ∈ lower_bounds t → a ∈ t → f a ∈ upper_bounds (f '' t) := Hf.dual_right.mem_lower_bounds_image_self lemma mem_lower_bounds_image : a ∈ upper_bounds s → a ∈ t → f a ∈ lower_bounds (f '' s) := Hf.dual_right.mem_upper_bounds_image Hst lemma mem_lower_bounds_image_self : a ∈ upper_bounds t → a ∈ t → f a ∈ lower_bounds (f '' t) := Hf.dual_right.mem_upper_bounds_image_self lemma image_lower_bounds_subset_upper_bounds_image : f '' (lower_bounds s ∩ t) ⊆ upper_bounds (f '' s) := Hf.dual_right.image_lower_bounds_subset_lower_bounds_image Hst lemma image_upper_bounds_subset_lower_bounds_image : f '' (upper_bounds s ∩ t) ⊆ lower_bounds (f '' s) := Hf.dual_right.image_upper_bounds_subset_upper_bounds_image Hst /-- The image under an antitone function of a set which is bounded above is bounded below. -/ lemma map_bdd_above : (upper_bounds s ∩ t).nonempty → bdd_below (f '' s) := Hf.dual_right.map_bdd_above Hst /-- The image under an antitone function of a set which is bounded below is bounded above. -/ lemma map_bdd_below : (lower_bounds s ∩ t).nonempty → bdd_above (f '' s) := Hf.dual_right.map_bdd_below Hst /-- An antitone map sends a greatest element of a set to a least element of its image. -/ lemma map_is_greatest : is_greatest t a → is_least (f '' t) (f a) := Hf.dual_right.map_is_greatest /-- An antitone map sends a least element of a set to a greatest element of its image. -/ lemma map_is_least : is_least t a → is_greatest (f '' t) (f a) := Hf.dual_right.map_is_least end antitone_on namespace monotone variables [preorder α] [preorder β] {f : α → β} (Hf : monotone f) {a : α} {s : set α} include Hf lemma mem_upper_bounds_image (Ha : a ∈ upper_bounds s) : f a ∈ upper_bounds (f '' s) := ball_image_of_ball (λ x H, Hf (Ha H)) lemma mem_lower_bounds_image (Ha : a ∈ lower_bounds s) : f a ∈ lower_bounds (f '' s) := ball_image_of_ball (λ x H, Hf (Ha H)) lemma image_upper_bounds_subset_upper_bounds_image : f '' upper_bounds s ⊆ upper_bounds (f '' s) := by { rintro _ ⟨a, ha, rfl⟩, exact Hf.mem_upper_bounds_image ha } lemma image_lower_bounds_subset_lower_bounds_image : f '' lower_bounds s ⊆ lower_bounds (f '' s) := Hf.dual.image_upper_bounds_subset_upper_bounds_image /-- The image under a monotone function of a set which is bounded above is bounded above. See also `bdd_above.image2`. -/ lemma map_bdd_above : bdd_above s → bdd_above (f '' s) | ⟨C, hC⟩ := ⟨f C, Hf.mem_upper_bounds_image hC⟩ /-- The image under a monotone function of a set which is bounded below is bounded below. See also `bdd_below.image2`. -/ lemma map_bdd_below : bdd_below s → bdd_below (f '' s) | ⟨C, hC⟩ := ⟨f C, Hf.mem_lower_bounds_image hC⟩ /-- A monotone map sends a least element of a set to a least element of its image. -/ lemma map_is_least (Ha : is_least s a) : is_least (f '' s) (f a) := ⟨mem_image_of_mem _ Ha.1, Hf.mem_lower_bounds_image Ha.2⟩ /-- A monotone map sends a greatest element of a set to a greatest element of its image. -/ lemma map_is_greatest (Ha : is_greatest s a) : is_greatest (f '' s) (f a) := ⟨mem_image_of_mem _ Ha.1, Hf.mem_upper_bounds_image Ha.2⟩ end monotone namespace antitone variables [preorder α] [preorder β] {f : α → β} (hf : antitone f) {a : α} {s : set α} lemma mem_upper_bounds_image : a ∈ lower_bounds s → f a ∈ upper_bounds (f '' s) := hf.dual_right.mem_lower_bounds_image lemma mem_lower_bounds_image : a ∈ upper_bounds s → f a ∈ lower_bounds (f '' s) := hf.dual_right.mem_upper_bounds_image lemma image_lower_bounds_subset_upper_bounds_image : f '' lower_bounds s ⊆ upper_bounds (f '' s) := hf.dual_right.image_lower_bounds_subset_lower_bounds_image lemma image_upper_bounds_subset_lower_bounds_image : f '' upper_bounds s ⊆ lower_bounds (f '' s) := hf.dual_right.image_upper_bounds_subset_upper_bounds_image /-- The image under an antitone function of a set which is bounded above is bounded below. -/ lemma map_bdd_above : bdd_above s → bdd_below (f '' s) := hf.dual_right.map_bdd_above /-- The image under an antitone function of a set which is bounded below is bounded above. -/ lemma map_bdd_below : bdd_below s → bdd_above (f '' s) := hf.dual_right.map_bdd_below /-- An antitone map sends a greatest element of a set to a least element of its image. -/ lemma map_is_greatest : is_greatest s a → is_least (f '' s) (f a) := hf.dual_right.map_is_greatest /-- An antitone map sends a least element of a set to a greatest element of its image. -/ lemma map_is_least : is_least s a → is_greatest (f '' s) (f a) := hf.dual_right.map_is_least end antitone section image2 variables [preorder α] [preorder β] [preorder γ] {f : α → β → γ} {s : set α} {t : set β} {a : α} {b : β} section monotone_monotone variables (h₀ : ∀ b, monotone (swap f b)) (h₁ : ∀ a, monotone (f a)) include h₀ h₁ lemma mem_upper_bounds_image2 (ha : a ∈ upper_bounds s) (hb : b ∈ upper_bounds t) : f a b ∈ upper_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma mem_lower_bounds_image2 (ha : a ∈ lower_bounds s) (hb : b ∈ lower_bounds t) : f a b ∈ lower_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma image2_upper_bounds_upper_bounds_subset : image2 f (upper_bounds s) (upper_bounds t) ⊆ upper_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_upper_bounds_image2 h₀ h₁ ha hb } lemma image2_lower_bounds_lower_bounds_subset : image2 f (lower_bounds s) (lower_bounds t) ⊆ lower_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_lower_bounds_image2 h₀ h₁ ha hb } /-- See also `monotone.map_bdd_above`. -/ lemma bdd_above.image2 : bdd_above s → bdd_above t → bdd_above (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_upper_bounds_image2 h₀ h₁ ha hb⟩ } /-- See also `monotone.map_bdd_below`. -/ lemma bdd_below.image2 : bdd_below s → bdd_below t → bdd_below (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_lower_bounds_image2 h₀ h₁ ha hb⟩ } lemma is_greatest.image2 (ha : is_greatest s a) (hb : is_greatest t b) : is_greatest (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_upper_bounds_image2 h₀ h₁ ha.2 hb.2⟩ lemma is_least.image2 (ha : is_least s a) (hb : is_least t b) : is_least (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_lower_bounds_image2 h₀ h₁ ha.2 hb.2⟩ end monotone_monotone section monotone_antitone variables (h₀ : ∀ b, monotone (swap f b)) (h₁ : ∀ a, antitone (f a)) include h₀ h₁ lemma mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_lower_bounds (ha : a ∈ upper_bounds s) (hb : b ∈ lower_bounds t) : f a b ∈ upper_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_upper_bounds (ha : a ∈ lower_bounds s) (hb : b ∈ upper_bounds t) : f a b ∈ lower_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma image2_upper_bounds_lower_bounds_subset_upper_bounds_image2 : image2 f (upper_bounds s) (lower_bounds t) ⊆ upper_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_lower_bounds h₀ h₁ ha hb } lemma image2_lower_bounds_upper_bounds_subset_lower_bounds_image2 : image2 f (lower_bounds s) (upper_bounds t) ⊆ lower_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_upper_bounds h₀ h₁ ha hb } lemma bdd_above.bdd_above_image2_of_bdd_below : bdd_above s → bdd_below t → bdd_above (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_lower_bounds h₀ h₁ ha hb⟩ } lemma bdd_below.bdd_below_image2_of_bdd_above : bdd_below s → bdd_above t → bdd_below (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_upper_bounds h₀ h₁ ha hb⟩ } lemma is_greatest.is_greatest_image2_of_is_least (ha : is_greatest s a) (hb : is_least t b) : is_greatest (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_lower_bounds h₀ h₁ ha.2 hb.2⟩ lemma is_least.is_least_image2_of_is_greatest (ha : is_least s a) (hb : is_greatest t b) : is_least (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_upper_bounds h₀ h₁ ha.2 hb.2⟩ end monotone_antitone section antitone_antitone variables (h₀ : ∀ b, antitone (swap f b)) (h₁ : ∀ a, antitone (f a)) include h₀ h₁ lemma mem_upper_bounds_image2_of_mem_lower_bounds (ha : a ∈ lower_bounds s) (hb : b ∈ lower_bounds t) : f a b ∈ upper_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma mem_lower_bounds_image2_of_mem_upper_bounds (ha : a ∈ upper_bounds s) (hb : b ∈ upper_bounds t) : f a b ∈ lower_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma image2_upper_bounds_upper_bounds_subset_upper_bounds_image2 : image2 f (lower_bounds s) (lower_bounds t) ⊆ upper_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_upper_bounds_image2_of_mem_lower_bounds h₀ h₁ ha hb } lemma image2_lower_bounds_lower_bounds_subset_lower_bounds_image2 : image2 f (upper_bounds s) (upper_bounds t) ⊆ lower_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_lower_bounds_image2_of_mem_upper_bounds h₀ h₁ ha hb } lemma bdd_below.image2_bdd_above : bdd_below s → bdd_below t → bdd_above (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_upper_bounds_image2_of_mem_lower_bounds h₀ h₁ ha hb⟩ } lemma bdd_above.image2_bdd_below : bdd_above s → bdd_above t → bdd_below (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_lower_bounds_image2_of_mem_upper_bounds h₀ h₁ ha hb⟩ } lemma is_least.is_greatest_image2 (ha : is_least s a) (hb : is_least t b) : is_greatest (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_upper_bounds_image2_of_mem_lower_bounds h₀ h₁ ha.2 hb.2⟩ lemma is_greatest.is_least_image2 (ha : is_greatest s a) (hb : is_greatest t b) : is_least (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_lower_bounds_image2_of_mem_upper_bounds h₀ h₁ ha.2 hb.2⟩ end antitone_antitone section antitone_monotone variables (h₀ : ∀ b, antitone (swap f b)) (h₁ : ∀ a, monotone (f a)) include h₀ h₁ lemma mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_upper_bounds (ha : a ∈ lower_bounds s) (hb : b ∈ upper_bounds t) : f a b ∈ upper_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_lower_bounds (ha : a ∈ upper_bounds s) (hb : b ∈ lower_bounds t) : f a b ∈ lower_bounds (image2 f s t) := forall_image2_iff.2 $ λ x hx y hy, (h₀ _ $ ha hx).trans $ h₁ _ $ hb hy lemma image2_lower_bounds_upper_bounds_subset_upper_bounds_image2 : image2 f (lower_bounds s) (upper_bounds t) ⊆ upper_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_upper_bounds h₀ h₁ ha hb } lemma image2_upper_bounds_lower_bounds_subset_lower_bounds_image2 : image2 f (upper_bounds s) (lower_bounds t) ⊆ lower_bounds (image2 f s t) := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_lower_bounds h₀ h₁ ha hb } lemma bdd_below.bdd_above_image2_of_bdd_above : bdd_below s → bdd_above t → bdd_above (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_upper_bounds h₀ h₁ ha hb⟩ } lemma bdd_above.bdd_below_image2_of_bdd_above : bdd_above s → bdd_below t → bdd_below (image2 f s t) := by { rintro ⟨a, ha⟩ ⟨b, hb⟩, exact ⟨f a b, mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_lower_bounds h₀ h₁ ha hb⟩ } lemma is_least.is_greatest_image2_of_is_greatest (ha : is_least s a) (hb : is_greatest t b) : is_greatest (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_upper_bounds_image2_of_mem_upper_bounds_of_mem_upper_bounds h₀ h₁ ha.2 hb.2⟩ lemma is_greatest.is_least_image2_of_is_least (ha : is_greatest s a) (hb : is_least t b) : is_least (image2 f s t) (f a b) := ⟨mem_image2_of_mem ha.1 hb.1, mem_lower_bounds_image2_of_mem_lower_bounds_of_mem_lower_bounds h₀ h₁ ha.2 hb.2⟩ end antitone_monotone end image2 lemma is_glb.of_image [preorder α] [preorder β] {f : α → β} (hf : ∀ {x y}, f x ≤ f y ↔ x ≤ y) {s : set α} {x : α} (hx : is_glb (f '' s) (f x)) : is_glb s x := ⟨λ y hy, hf.1 $ hx.1 $ mem_image_of_mem _ hy, λ y hy, hf.1 $ hx.2 $ monotone.mem_lower_bounds_image (λ x y, hf.2) hy⟩ lemma is_lub.of_image [preorder α] [preorder β] {f : α → β} (hf : ∀ {x y}, f x ≤ f y ↔ x ≤ y) {s : set α} {x : α} (hx : is_lub (f '' s) (f x)) : is_lub s x := @is_glb.of_image αᵒᵈ βᵒᵈ _ _ f (λ x y, hf) _ _ hx lemma is_lub_pi {π : α → Type*} [Π a, preorder (π a)] {s : set (Π a, π a)} {f : Π a, π a} : is_lub s f ↔ ∀ a, is_lub (function.eval a '' s) (f a) := begin classical, refine ⟨λ H a, ⟨(function.monotone_eval a).mem_upper_bounds_image H.1, λ b hb, _⟩, λ H, ⟨_, _⟩⟩, { suffices : function.update f a b ∈ upper_bounds s, from function.update_same a b f ▸ H.2 this a, refine λ g hg, le_update_iff.2 ⟨hb $ mem_image_of_mem _ hg, λ i hi, H.1 hg i⟩ }, { exact λ g hg a, (H a).1 (mem_image_of_mem _ hg) }, { exact λ g hg a, (H a).2 ((function.monotone_eval a).mem_upper_bounds_image hg) } end lemma is_glb_pi {π : α → Type*} [Π a, preorder (π a)] {s : set (Π a, π a)} {f : Π a, π a} : is_glb s f ↔ ∀ a, is_glb (function.eval a '' s) (f a) := @is_lub_pi α (λ a, (π a)ᵒᵈ) _ s f lemma is_lub_prod [preorder α] [preorder β] {s : set (α × β)} (p : α × β) : is_lub s p ↔ is_lub (prod.fst '' s) p.1 ∧ is_lub (prod.snd '' s) p.2 := begin refine ⟨λ H, ⟨⟨monotone_fst.mem_upper_bounds_image H.1, λ a ha, _⟩, ⟨monotone_snd.mem_upper_bounds_image H.1, λ a ha, _⟩⟩, λ H, ⟨_, _⟩⟩, { suffices : (a, p.2) ∈ upper_bounds s, from (H.2 this).1, exact λ q hq, ⟨ha $ mem_image_of_mem _ hq, (H.1 hq).2⟩ }, { suffices : (p.1, a) ∈ upper_bounds s, from (H.2 this).2, exact λ q hq, ⟨(H.1 hq).1, ha $ mem_image_of_mem _ hq⟩ }, { exact λ q hq, ⟨H.1.1 $ mem_image_of_mem _ hq, H.2.1 $ mem_image_of_mem _ hq⟩ }, { exact λ q hq, ⟨H.1.2 $ monotone_fst.mem_upper_bounds_image hq, H.2.2 $ monotone_snd.mem_upper_bounds_image hq⟩ } end lemma is_glb_prod [preorder α] [preorder β] {s : set (α × β)} (p : α × β) : is_glb s p ↔ is_glb (prod.fst '' s) p.1 ∧ is_glb (prod.snd '' s) p.2 := @is_lub_prod αᵒᵈ βᵒᵈ _ _ _ _
f21bb3edde78f498319294cb09833afb7f481449
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/contra2.lean
5fb5b27e971127504e17d6fe223fc232ff5559f5
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
455
lean
open nat example (q p : Prop) (h₁ : p) (h₂ : ¬ p) : q := by contradiction example (q p : Prop) (h₁ : p) (h₂ : p → false) : q := by contradiction example (q : Prop) (a b : nat) (h₁ : a + b = 0) (h₂ : ¬ a + b = 0) : q := by contradiction example (q : Prop) (a b : nat) (h₁ : a + b = 0) (h₂ : a + b ≠ 0) : q := by contradiction example (q : Prop) (a b : nat) (h₁ : a + b = 0) (h₂ : a + b = 0 → false) : q := by contradiction
d94c55ded90ccb6438be960a4ff7742897b72c43
205f0fc16279a69ea36e9fd158e3a97b06834ce2
/src/08_Bi_implication/00_intro.lean
651d940a89ba01c93e266e17a92c678f0852610d
[]
no_license
kevinsullivan/cs-dm-lean
b21d3ca1a9b2a0751ba13fcb4e7b258010a5d124
a06a94e98be77170ca1df486c8189338b16cf6c6
refs/heads/master
1,585,948,743,595
1,544,339,346,000
1,544,339,346,000
155,570,767
1
3
null
1,541,540,372,000
1,540,995,993,000
Lean
UTF-8
Lean
false
false
6,133
lean
/- If P and Q are propositions, then so is P ↔ Q. We call this form of proposition a bi-implication. It means P → Q ∧ Q → P. Here's a somewhat silly example: if it has been raining the ground in the desert is wet (R → W) and if the ground in the desert is wet then it has been raining (W → R). In this case, we can say that the ground in the desert is wet "if and only if" (iff) it has been raining. In such a situation we say that "it has been raining" and "the ground in the desert is wet" are equivalent, as the two states of affairs invariable occur or do not occur together. The rules for ↔ introducing and elimination are conceptually the same as for ∧ applied to two implications, one going in each direction (R to W and W to R, respectively). We recommend that you pronounce P ↔ Q as "P and Q are equivalent". Most mathematicians pronounce it as "P if and only if Q", which they generally abbreviate P iff Q (note the extra f). Figuring out why the phrase "if and only if" actually makes sense is arguably more trouble than it's worth. Just know that people use this phrase in mathematics and logic all the time. /- ************************* *** Introduction Rule *** ************************* -/ To construct a proof of P ↔ Q you must have (or have assumed) proofs of two propositions: a proof of P → Q, and a proof of Q → P. The inference rule is thus as follows: P Q : Prop, p2q : P → Q, q2p: Q → P ----------------------------------- PiffQ : P ↔ Q In informal mathematical writing, a proof of P ↔ Q will start with the following kind of language. "We are to prove P ↔ Q. To prove it we must first prove P → Q, then we must prove P → Q. We consider the case P → Q first. " "first we consider the implication from P to Q, ..." Once that part is proved, it will say "and now we consider the implication in the other direction." When that part is also done, it will then say, combing these results thus proves P ↔ Q. QED." Lean provides the iff.intro rule to construct a proof of P ↔ Q from the requisite sub-proofs. Here's an example of its use in a program whose type makes clear what's required to use it. -/ lemma bi_implication : ∀ { P Q : Prop }, (P → Q) → (Q → P) → (P ↔ Q) := λ P Q pfPQ pfQP, iff.intro pfPQ pfQP /- The logical way to read this is as saying that if we assume that P and Q are propositions, and if we assume we're given a proof of P → Q and we furthermore assume we're given a proof of Q → P then we can derive a proof of P ↔ Q by appealing to (by applying) the iff introduction rule of the natural deduction system of logical reasoning. -/ /- Let's assume we have two propositions, P and Q. -/ variables P Q : Prop /- and that we have proofs of both P → Q and of Q → P -/ variable forward: P → Q variable backward: Q → P /- then we can apply iff-intro to derive a proof of P ↔ Q. -/ def pqEquiv := iff.intro forward backward /- Going the other way, if we're given a proof of P ↔ Q, then we can derive proofs of P → Q and of Q → P using the iff.elim left and right rules. -/ #check pqEquiv /- A proof of P ↔ Q is essentially a proof of the conjunction (P → Q) ∧ (Q → P). iff.intro is like ∧-intro, and the left and right iff.elim rules are like the ∧-elim left and right rules. -/ /- EXERCISE: Construct a proof, pqequiv, of the proposition, P ∧ Q ↔ Q ∧ P. Note: we don't need to know whether P and Q are true, false, or unknown to provide such a proof. -/ theorem andcomm : P ∧ Q ↔ Q ∧ P := begin apply iff.intro, -- left to right assume pq : P ∧ Q, show Q ∧ P, from and.intro (pq.right) (pq.left), -- in other direction assume qp: Q ∧ P, show P ∧ Q, from and.intro (qp.right) (qp.left), end /- Note that the proposition that andcomm proves is: ∀ P Q: Prop, P ∧ Q ↔ Q ∧ P. The use of "variables P Q : Prop" above basically adds a "∀ P Q : Prop" to each of the propositions that follow. As a result, andcomm in effect takes any two propositions as arguments and returns a proof that the conjunctions are equivalent no matter the order of the conjuncts. -/ #check andcomm (0=0) (1=1) #reduce andcomm (0=0) (1=1) /- In the following trivial example, we can see how the bi_implication introduction rule (run backwards) gives us a way to split a goal of proving P ↔ Q into two sub-goals, one implication in each direction. Knowing to do that split and then to provide two proofs, one for each direction, is the key to proving bi-implications, whether using a prover such as Lean or just using paper and pencil. -/ theorem easy_iff: 0 = 0 ↔ 1 = 1 := begin apply bi_implication, exact λ e, eq.refl 1, -- ignores argument exact λ e, eq.refl 0, -- ignores argument end /- EXERCISE: 1. Prove that A → B → C ↔ A ∧ B → C. 2. Given that you can prove this, does this mean that A → B = A ∧ B? -/ lemma a_imp_b_imp_c_iff_a_and_b_imp_c: ∀ A B C: Prop, (A → B → C) ↔ ((A ∧ B) → C) := λ A B C: Prop, begin apply iff.intro, -- forward assume abc : (A → B → C), assume ab : A ∧ B, show C, from begin have a : A := ab.left, have b : B := ab.right, show C, from abc a b, end, -- backward assume abc : (A ∧ B → C), show A → B → C, from begin assume (a : A) (b : B), have ab := and.intro a b, show C, from abc ab end, end /- ************************* *** Elimination Rules *** ************************* -/ /- As with ∧, the elimination rules, iff.elim_left and iff.elim_right, take a proof of P ↔ Q and return the constituent sub-proofs, P → Q, and Q → P, respectively. -/ #check iff.elim_left (andcomm P Q) #check iff.elim_right (andcomm P Q) theorem PIffQImpP2Q : (P ↔ Q) → P → Q := begin assume piffq p, show Q, from begin have p2q := iff.elim_left piffq, exact (p2q p) end end -- even easier is this theorem PIffQImpP2Q' : (P ↔ Q) → P -> Q := begin assume piffq, show P → Q, from iff.elim_left piffq end /- EXERCISE: Prove P ↔ Q) → Q -> P -/
b5a65a4295180122af858b09dfae213c900e6082
c9b68131de1dfe4e7f0ea5749b11e67a774bc839
/src/constraints_autogen.lean
a0946d4aba0371654484f61816fb57614afe049c
[]
no_license
congge666/formal-proofs
2013f158f310abcfc07c156bb2a5113fb78f7831
b5f6964d0220c8f89668357f2c08e44861128fe3
refs/heads/master
1,691,374,567,671
1,632,704,604,000
1,632,706,366,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
37,539
lean
/- This file is generated automatically. -/ import algebra.field_power notation `offset_size` := 2^16 notation `half_offset_size` := 2^15 /- data available to verifier -/ structure input_data (F : Type*) := (trace_length : nat) (initial_ap : nat) (initial_pc : nat) (final_ap : nat) (final_pc : nat) (m_star : F → option F) structure public_data (F : Type*) := (memory__multi_column_perm__perm__interaction_elm : F) (memory__multi_column_perm__hash_interaction_elm0 : F) (memory__multi_column_perm__perm__public_memory_prod : F) (rc16__perm__interaction_elm : F) (rc16__perm__public_memory_prod : F) (rc_min : nat) (rc_max : nat) (initial_rc_addr : nat) (pedersen__points__x : F) (pedersen__points__y : F) (pedersen__shift_point_x : F) (pedersen__shift_point_y : F) (initial_pedersen_addr : nat) (ecdsa__sig_config_alpha : F) (ecdsa__sig_config_beta : F) (ecdsa__generator_points__x : F) (ecdsa__generator_points__y : F) (ecdsa__sig_config_shift_point_x : F) (ecdsa__sig_config_shift_point_y : F) (initial_ecdsa_addr : F) (initial_checkpoints_addr : F) (final_checkpoints_addr : F) /- prover's data -/ def column (F : Type*) := nat → F def column.off {F : Type*} (c : column F) (i j : nat) := c (i + j) structure columns (F : Type*) := (column0 : column F) (column1 : column F) (column2 : column F) (column3 : column F) (column4 : column F) (column5 : column F) (column6 : column F) (column7 : column F) (column8 : column F) (column9 : column F) (column10 : column F) (column11 : column F) (column12 : column F) (column13 : column F) (column14 : column F) (column15 : column F) (column16 : column F) (column17 : column F) (column18 : column F) (column19 : column F) (column20 : column F) (column21 : column F) (column22 : column F) structure columns_inter (F : Type*) := (column23_inter1 : column F) (column24_inter1 : column F) /- accessors -/ namespace columns variables {F : Type*} (c : columns F) (i : nat) @[simp] def rc16_pool := c.column0.off i 0 @[simp] def cpu__decode__opcode_rc__column := c.column1.off i 0 @[simp] def rc16__sorted := c.column2.off i 0 @[simp] def pedersen__hash0__ec_subset_sum__partial_sum__x := c.column3.off i 0 @[simp] def pedersen__hash0__ec_subset_sum__partial_sum__y := c.column4.off i 0 @[simp] def pedersen__hash0__ec_subset_sum__slope := c.column5.off i 0 @[simp] def pedersen__hash0__ec_subset_sum__selector := c.column6.off i 0 @[simp] def pedersen__hash1__ec_subset_sum__partial_sum__x := c.column7.off i 0 @[simp] def pedersen__hash1__ec_subset_sum__partial_sum__y := c.column8.off i 0 @[simp] def pedersen__hash1__ec_subset_sum__slope := c.column9.off i 0 @[simp] def pedersen__hash1__ec_subset_sum__selector := c.column10.off i 0 @[simp] def pedersen__hash2__ec_subset_sum__partial_sum__x := c.column11.off i 0 @[simp] def pedersen__hash2__ec_subset_sum__partial_sum__y := c.column12.off i 0 @[simp] def pedersen__hash2__ec_subset_sum__slope := c.column13.off i 0 @[simp] def pedersen__hash2__ec_subset_sum__selector := c.column14.off i 0 @[simp] def pedersen__hash3__ec_subset_sum__partial_sum__x := c.column15.off i 0 @[simp] def pedersen__hash3__ec_subset_sum__partial_sum__y := c.column16.off i 0 @[simp] def pedersen__hash3__ec_subset_sum__slope := c.column17.off i 0 @[simp] def pedersen__hash3__ec_subset_sum__selector := c.column18.off i 0 @[simp] def mem_pool__addr := c.column19.off i 0 @[simp] def mem_pool__value := c.column19.off i 1 @[simp] def memory__sorted__addr := c.column20.off i 0 @[simp] def memory__sorted__value := c.column20.off i 1 @[simp] def cpu__registers__ap := c.column21.off i 0 @[simp] def cpu__registers__fp := c.column21.off i 8 @[simp] def cpu__operands__ops_mul := c.column21.off i 4 @[simp] def cpu__operands__res := c.column21.off i 12 @[simp] def cpu__update_registers__update_pc__tmp0 := c.column21.off i 2 @[simp] def cpu__update_registers__update_pc__tmp1 := c.column21.off i 10 @[simp] def ecdsa__signature0__key_points__x := c.column21.off i 6 @[simp] def ecdsa__signature0__key_points__y := c.column21.off i 14 @[simp] def ecdsa__signature0__doubling_slope := c.column21.off i 1 @[simp] def ecdsa__signature0__exponentiate_key__partial_sum__x := c.column21.off i 9 @[simp] def ecdsa__signature0__exponentiate_key__partial_sum__y := c.column21.off i 5 @[simp] def ecdsa__signature0__exponentiate_key__slope := c.column21.off i 13 @[simp] def ecdsa__signature0__exponentiate_key__selector := c.column21.off i 3 @[simp] def ecdsa__signature0__exponentiate_key__x_diff_inv := c.column21.off i 11 @[simp] def ecdsa__signature0__exponentiate_generator__partial_sum__x := c.column21.off i 7 @[simp] def ecdsa__signature0__exponentiate_generator__partial_sum__y := c.column21.off i 23 @[simp] def ecdsa__signature0__exponentiate_generator__slope := c.column21.off i 15 @[simp] def ecdsa__signature0__exponentiate_generator__selector := c.column21.off i 31 @[simp] def ecdsa__signature0__exponentiate_generator__x_diff_inv := c.column22.off i 0 @[simp] def ecdsa__signature0__r_w_inv := c.column21.off i 4091 @[simp] def ecdsa__signature0__add_results_slope := c.column22.off i 8160 @[simp] def ecdsa__signature0__add_results_inv := c.column21.off i 8175 @[simp] def ecdsa__signature0__extract_r_slope := c.column21.off i 4093 @[simp] def ecdsa__signature0__extract_r_inv := c.column21.off i 8189 @[simp] def ecdsa__signature0__z_inv := c.column21.off i 4081 @[simp] def ecdsa__signature0__q_x_squared := c.column21.off i 8177 @[simp] def cpu__decode__mem_inst__addr := c.column19.off i 0 @[simp] def cpu__decode__mem_inst__value := c.column19.off i 1 @[simp] def cpu__decode__pc := c.column19.off i 0 @[simp] def cpu__decode__instruction := c.column19.off i 1 @[simp] def cpu__decode__off0 := c.column0.off i 0 @[simp] def cpu__decode__off1 := c.column0.off i 8 @[simp] def cpu__decode__off2 := c.column0.off i 4 @[simp] def cpu__operands__mem_dst__addr := c.column19.off i 8 @[simp] def cpu__operands__mem_dst__value := c.column19.off i 9 @[simp] def cpu__operands__mem_op0__addr := c.column19.off i 4 @[simp] def cpu__operands__mem_op0__value := c.column19.off i 5 @[simp] def cpu__operands__mem_op1__addr := c.column19.off i 12 @[simp] def cpu__operands__mem_op1__value := c.column19.off i 13 @[simp] def orig__public_memory__addr := c.column19.off i 2 @[simp] def orig__public_memory__value := c.column19.off i 3 @[simp] def pedersen__input0__addr := c.column19.off i 6 @[simp] def pedersen__input0__value := c.column19.off i 7 @[simp] def pedersen__input1__addr := c.column19.off i 70 @[simp] def pedersen__input1__value := c.column19.off i 71 @[simp] def pedersen__output__addr := c.column19.off i 38 @[simp] def pedersen__output__value := c.column19.off i 39 @[simp] def rc_builtin__mem__addr := c.column19.off i 102 @[simp] def rc_builtin__mem__value := c.column19.off i 103 @[simp] def rc_builtin__inner_rc := c.column0.off i 12 @[simp] def ecdsa__pubkey__addr := c.column19.off i 22 @[simp] def ecdsa__pubkey__value := c.column19.off i 23 @[simp] def ecdsa__message__addr := c.column19.off i 4118 @[simp] def ecdsa__message__value := c.column19.off i 4119 @[simp] def checkpoints__req_pc__addr := c.column19.off i 150 @[simp] def checkpoints__req_pc__value := c.column19.off i 151 @[simp] def checkpoints__req_fp__addr := c.column19.off i 86 @[simp] def checkpoints__req_fp__value := c.column19.off i 87 end columns namespace columns_inter variables {F : Type*} (ci : columns_inter F) (i : nat) @[simp] def rc16__perm__cum_prod0 := ci.column23_inter1.off i 0 @[simp] def memory__multi_column_perm__perm__cum_prod0 := ci.column24_inter1.off i 0 end columns_inter /- constraints -/ variables {F: Type*} [field F] structure cpu__decode (c : columns F) : Prop := (opcode_rc__bit : ∀ i: nat, (¬ ((i % 16 = 15))) → (c.column1.off i 0 - (c.column1.off i 1 + c.column1.off i 1)) * (c.column1.off i 0 - (c.column1.off i 1 + c.column1.off i 1)) - (c.column1.off i 0 - (c.column1.off i 1 + c.column1.off i 1)) = 0) (opcode_rc__zero : ∀ i: nat, (((i % 16 = 15))) → c.column1.off i 0 = 0) (opcode_rc_input : ∀ i: nat, (((i % 16 = 0))) → c.column19.off i 1 - (((c.column1.off i 0 * 2^16 + c.column0.off i 4) * offset_size + c.column0.off i 8) * offset_size + c.column0.off i 0) = 0) structure cpu__operands (c : columns F) : Prop := (mem_dst_addr : ∀ i: nat, (((i % 16 = 0))) → c.column19.off i 8 + half_offset_size - ((c.column1.off i 0 - (c.column1.off i 1 + c.column1.off i 1)) * c.column21.off i 8 + (1 - (c.column1.off i 0 - (c.column1.off i 1 + c.column1.off i 1))) * c.column21.off i 0 + c.column0.off i 0) = 0) (mem0_addr : ∀ i: nat, (((i % 16 = 0))) → c.column19.off i 4 + half_offset_size - ((c.column1.off i 1 - (c.column1.off i 2 + c.column1.off i 2)) * c.column21.off i 8 + (1 - (c.column1.off i 1 - (c.column1.off i 2 + c.column1.off i 2))) * c.column21.off i 0 + c.column0.off i 8) = 0) (mem1_addr : ∀ i: nat, (((i % 16 = 0))) → c.column19.off i 12 + half_offset_size - ((c.column1.off i 2 - (c.column1.off i 3 + c.column1.off i 3)) * c.column19.off i 0 + (c.column1.off i 4 - (c.column1.off i 5 + c.column1.off i 5)) * c.column21.off i 0 + (c.column1.off i 3 - (c.column1.off i 4 + c.column1.off i 4)) * c.column21.off i 8 + (1 - (c.column1.off i 2 - (c.column1.off i 3 + c.column1.off i 3) + c.column1.off i 4 - (c.column1.off i 5 + c.column1.off i 5) + c.column1.off i 3 - (c.column1.off i 4 + c.column1.off i 4))) * c.column19.off i 5 + c.column0.off i 4) = 0) (ops_mul : ∀ i: nat, (((i % 16 = 0))) → c.column21.off i 4 - c.column19.off i 5 * c.column19.off i 13 = 0) (res : ∀ i: nat, (((i % 16 = 0))) → (1 - (c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10))) * c.column21.off i 12 - ((c.column1.off i 5 - (c.column1.off i 6 + c.column1.off i 6)) * (c.column19.off i 5 + c.column19.off i 13) + (c.column1.off i 6 - (c.column1.off i 7 + c.column1.off i 7)) * c.column21.off i 4 + (1 - (c.column1.off i 5 - (c.column1.off i 6 + c.column1.off i 6) + c.column1.off i 6 - (c.column1.off i 7 + c.column1.off i 7) + c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10))) * c.column19.off i 13) = 0) structure cpu__update_registers (c : columns F) (inp : input_data F) : Prop := (update_pc__tmp0 : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → c.column21.off i 2 - (c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10)) * c.column19.off i 9 = 0) (update_pc__tmp1 : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → c.column21.off i 10 - c.column21.off i 2 * c.column21.off i 12 = 0) (update_pc__pc_cond_negative : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → (1 - (c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10))) * c.column19.off i 16 + c.column21.off i 2 * (c.column19.off i 16 - (c.column19.off i 0 + c.column19.off i 13)) - ((1 - (c.column1.off i 7 - (c.column1.off i 8 + c.column1.off i 8) + c.column1.off i 8 - (c.column1.off i 9 + c.column1.off i 9) + c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10))) * (c.column19.off i 0 + c.column1.off i 2 - (c.column1.off i 3 + c.column1.off i 3) + 1) + (c.column1.off i 7 - (c.column1.off i 8 + c.column1.off i 8)) * c.column21.off i 12 + (c.column1.off i 8 - (c.column1.off i 9 + c.column1.off i 9)) * (c.column19.off i 0 + c.column21.off i 12)) = 0) (update_pc__pc_cond_positive : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → (c.column21.off i 10 - (c.column1.off i 9 - (c.column1.off i 10 + c.column1.off i 10))) * (c.column19.off i 16 - (c.column19.off i 0 + c.column1.off i 2 - (c.column1.off i 3 + c.column1.off i 3) + 1)) = 0) (update_ap__ap_update : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → c.column21.off i 16 - (c.column21.off i 0 + (c.column1.off i 10 - (c.column1.off i 11 + c.column1.off i 11)) * c.column21.off i 12 + c.column1.off i 11 - (c.column1.off i 12 + c.column1.off i 12) + (c.column1.off i 12 - (c.column1.off i 13 + c.column1.off i 13)) * 2) = 0) (update_fp__fp_update : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ (i = 16 * (inp.trace_length / 16 - 1))) → c.column21.off i 24 - ((1 - (c.column1.off i 12 - (c.column1.off i 13 + c.column1.off i 13) + c.column1.off i 13 - (c.column1.off i 14 + c.column1.off i 14))) * c.column21.off i 8 + (c.column1.off i 13 - (c.column1.off i 14 + c.column1.off i 14)) * c.column19.off i 9 + (c.column1.off i 12 - (c.column1.off i 13 + c.column1.off i 13)) * (c.column21.off i 0 + 2)) = 0) structure cpu__opcodes (c : columns F) : Prop := (call__push_fp : ∀ i: nat, (((i % 16 = 0))) → (c.column1.off i 12 - (c.column1.off i 13 + c.column1.off i 13)) * (c.column19.off i 9 - c.column21.off i 8) = 0) (call__push_pc : ∀ i: nat, (((i % 16 = 0))) → (c.column1.off i 12 - (c.column1.off i 13 + c.column1.off i 13)) * (c.column19.off i 5 - (c.column19.off i 0 + c.column1.off i 2 - (c.column1.off i 3 + c.column1.off i 3) + 1)) = 0) (assert_eq__assert_eq : ∀ i: nat, (((i % 16 = 0))) → (c.column1.off i 14 - (c.column1.off i 15 + c.column1.off i 15)) * (c.column19.off i 9 - c.column21.off i 12) = 0) structure initial_and_final (inp : input_data F) (c : columns F) : Prop := (initial_ap : ∀ i: nat, ((i = 0)) → c.column21.off i 0 - inp.initial_ap = 0) (initial_fp : ∀ i: nat, ((i = 0)) → c.column21.off i 8 - inp.initial_ap = 0) (initial_pc : ∀ i: nat, ((i = 0)) → c.column19.off i 0 - inp.initial_pc = 0) (final_ap : ∀ i: nat, ((i = 16 * (inp.trace_length / 16 - 1))) → c.column21.off i 0 - inp.final_ap = 0) (final_pc : ∀ i: nat, ((i = 16 * (inp.trace_length / 16 - 1))) → c.column19.off i 0 - inp.final_pc = 0) structure memory (inp : input_data F) (pd : public_data F) (c : columns F) (ci : columns_inter F) : Prop := (multi_column_perm__perm__init0 : ∀ i: nat, ((i = 0)) → (pd.memory__multi_column_perm__perm__interaction_elm - (c.column20.off i 0 + pd.memory__multi_column_perm__hash_interaction_elm0 * c.column20.off i 1)) * ci.column24_inter1.off i 0 + c.column19.off i 0 + pd.memory__multi_column_perm__hash_interaction_elm0 * c.column19.off i 1 - pd.memory__multi_column_perm__perm__interaction_elm = 0) (multi_column_perm__perm__step0 : ∀ i: nat, (((i % 2 = 0)) ∧ ¬ (i = 2 * (inp.trace_length / 2 - 1))) → (pd.memory__multi_column_perm__perm__interaction_elm - (c.column20.off i 2 + pd.memory__multi_column_perm__hash_interaction_elm0 * c.column20.off i 3)) * ci.column24_inter1.off i 2 - (pd.memory__multi_column_perm__perm__interaction_elm - (c.column19.off i 2 + pd.memory__multi_column_perm__hash_interaction_elm0 * c.column19.off i 3)) * ci.column24_inter1.off i 0 = 0) (multi_column_perm__perm__last : ∀ i: nat, ((i = 2 * (inp.trace_length / 2 - 1))) → ci.column24_inter1.off i 0 - pd.memory__multi_column_perm__perm__public_memory_prod = 0) (diff_is_bit : ∀ i: nat, (((i % 2 = 0)) ∧ ¬ (i = 2 * (inp.trace_length / 2 - 1))) → (c.column20.off i 2 - c.column20.off i 0) * (c.column20.off i 2 - c.column20.off i 0) - (c.column20.off i 2 - c.column20.off i 0) = 0) (is_func : ∀ i: nat, (((i % 2 = 0)) ∧ ¬ (i = 2 * (inp.trace_length / 2 - 1))) → (c.column20.off i 2 - c.column20.off i 0 - 1) * (c.column20.off i 1 - c.column20.off i 3) = 0) structure public_memory (c : columns F) : Prop := (memory_addr_zero : ∀ i: nat, (((i % 8 = 0))) → c.column19.off i 2 = 0) (memory_value_zero : ∀ i: nat, (((i % 8 = 0))) → c.column19.off i 3 = 0) structure rc16 (inp : input_data F) (pd : public_data F) (c : columns F) (ci : columns_inter F): Prop := (perm__init0 : ∀ i: nat, ((i = 0)) → (pd.rc16__perm__interaction_elm - c.column2.off i 0) * ci.column23_inter1.off i 0 + c.column0.off i 0 - pd.rc16__perm__interaction_elm = 0) (perm__step0 : ∀ i: nat, (¬ (i = inp.trace_length - 1)) → (pd.rc16__perm__interaction_elm - c.column2.off i 1) * ci.column23_inter1.off i 1 - (pd.rc16__perm__interaction_elm - c.column0.off i 1) * ci.column23_inter1.off i 0 = 0) (perm__last : ∀ i: nat, ((i = inp.trace_length - 1)) → ci.column23_inter1.off i 0 - pd.rc16__perm__public_memory_prod = 0) (diff_is_bit : ∀ i: nat, (¬ (i = inp.trace_length - 1)) → (c.column2.off i 1 - c.column2.off i 0) * (c.column2.off i 1 - c.column2.off i 0) - (c.column2.off i 1 - c.column2.off i 0) = 0) (minimum : ∀ i: nat, ((i = 0)) → c.column2.off i 0 - pd.rc_min = 0) (maximum : ∀ i: nat, ((i = inp.trace_length - 1)) → c.column2.off i 0 - pd.rc_max = 0) structure rc_builtin (inp : input_data F) (pd : public_data F) (c : columns F) : Prop := (value : ∀ i: nat, (((i % 128 = 0))) → ((((((c.column0.off i 12 * offset_size + c.column0.off i 28) * offset_size + c.column0.off i 44) * offset_size + c.column0.off i 60) * offset_size + c.column0.off i 76) * offset_size + c.column0.off i 92) * offset_size + c.column0.off i 108) * offset_size + c.column0.off i 124 - c.column19.off i 103 = 0) (addr_step : ∀ i: nat, (((i % 128 = 0)) ∧ ¬ (i = 128 * (inp.trace_length / 128 - 1))) → c.column19.off i 230 - (c.column19.off i 102 + 1) = 0) (init_addr : ∀ i: nat, ((i = 0)) → c.column19.off i 102 - pd.initial_rc_addr = 0) structure pedersen (inp : input_data F) (pd : public_data F) (c : columns F) : Prop := (pedersen__hash0__ec_subset_sum__booleanity_test : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1)) * (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1) - 1) = 0) (pedersen__hash0__ec_subset_sum__bit_extraction_end : ∀ i: nat, (((i % 256 = 252))) → c.column6.off i 0 = 0) (pedersen__hash0__ec_subset_sum__zeros_tail : ∀ i: nat, (((i % 256 = 255))) → c.column6.off i 0 = 0) (pedersen__hash0__ec_subset_sum__add_points__slope : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1)) * (c.column4.off i 0 - pd.pedersen__points__y) - c.column5.off i 0 * (c.column3.off i 0 - pd.pedersen__points__x) = 0) (pedersen__hash0__ec_subset_sum__add_points__x : ∀ i: nat, (¬ ((i % 256 = 255))) → c.column5.off i 0 * c.column5.off i 0 - (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1)) * (c.column3.off i 0 + pd.pedersen__points__x + c.column3.off i 1) = 0) (pedersen__hash0__ec_subset_sum__add_points__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1)) * (c.column4.off i 0 + c.column4.off i 1) - c.column5.off i 0 * (c.column3.off i 0 - c.column3.off i 1) = 0) (pedersen__hash0__ec_subset_sum__copy_point__x : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1))) * (c.column3.off i 1 - c.column3.off i 0) = 0) (pedersen__hash0__ec_subset_sum__copy_point__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column6.off i 0 - (c.column6.off i 1 + c.column6.off i 1))) * (c.column4.off i 1 - c.column4.off i 0) = 0) (pedersen__hash0__copy_point__x : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column3.off i 256 - c.column3.off i 255 = 0) (pedersen__hash0__copy_point__y : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column4.off i 256 - c.column4.off i 255 = 0) (pedersen__hash0__init__x : ∀ i: nat, (((i % 512 = 0))) → c.column3.off i 0 - pd.pedersen__shift_point_x = 0) (pedersen__hash0__init__y : ∀ i: nat, (((i % 512 = 0))) → c.column4.off i 0 - pd.pedersen__shift_point_y = 0) (pedersen__hash1__ec_subset_sum__booleanity_test : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1)) * (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1) - 1) = 0) (pedersen__hash1__ec_subset_sum__bit_extraction_end : ∀ i: nat, (((i % 256 = 252))) → c.column10.off i 0 = 0) (pedersen__hash1__ec_subset_sum__zeros_tail : ∀ i: nat, (((i % 256 = 255))) → c.column10.off i 0 = 0) (pedersen__hash1__ec_subset_sum__add_points__slope : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1)) * (c.column8.off i 0 - pd.pedersen__points__y) - c.column9.off i 0 * (c.column7.off i 0 - pd.pedersen__points__x) = 0) (pedersen__hash1__ec_subset_sum__add_points__x : ∀ i: nat, (¬ ((i % 256 = 255))) → c.column9.off i 0 * c.column9.off i 0 - (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1)) * (c.column7.off i 0 + pd.pedersen__points__x + c.column7.off i 1) = 0) (pedersen__hash1__ec_subset_sum__add_points__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1)) * (c.column8.off i 0 + c.column8.off i 1) - c.column9.off i 0 * (c.column7.off i 0 - c.column7.off i 1) = 0) (pedersen__hash1__ec_subset_sum__copy_point__x : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1))) * (c.column7.off i 1 - c.column7.off i 0) = 0) (pedersen__hash1__ec_subset_sum__copy_point__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column10.off i 0 - (c.column10.off i 1 + c.column10.off i 1))) * (c.column8.off i 1 - c.column8.off i 0) = 0) (pedersen__hash1__copy_point__x : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column7.off i 256 - c.column7.off i 255 = 0) (pedersen__hash1__copy_point__y : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column8.off i 256 - c.column8.off i 255 = 0) (pedersen__hash1__init__x : ∀ i: nat, (((i % 512 = 0))) → c.column7.off i 0 - pd.pedersen__shift_point_x = 0) (pedersen__hash1__init__y : ∀ i: nat, (((i % 512 = 0))) → c.column8.off i 0 - pd.pedersen__shift_point_y = 0) (pedersen__hash2__ec_subset_sum__booleanity_test : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1)) * (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1) - 1) = 0) (pedersen__hash2__ec_subset_sum__bit_extraction_end : ∀ i: nat, (((i % 256 = 252))) → c.column14.off i 0 = 0) (pedersen__hash2__ec_subset_sum__zeros_tail : ∀ i: nat, (((i % 256 = 255))) → c.column14.off i 0 = 0) (pedersen__hash2__ec_subset_sum__add_points__slope : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1)) * (c.column12.off i 0 - pd.pedersen__points__y) - c.column13.off i 0 * (c.column11.off i 0 - pd.pedersen__points__x) = 0) (pedersen__hash2__ec_subset_sum__add_points__x : ∀ i: nat, (¬ ((i % 256 = 255))) → c.column13.off i 0 * c.column13.off i 0 - (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1)) * (c.column11.off i 0 + pd.pedersen__points__x + c.column11.off i 1) = 0) (pedersen__hash2__ec_subset_sum__add_points__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1)) * (c.column12.off i 0 + c.column12.off i 1) - c.column13.off i 0 * (c.column11.off i 0 - c.column11.off i 1) = 0) (pedersen__hash2__ec_subset_sum__copy_point__x : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1))) * (c.column11.off i 1 - c.column11.off i 0) = 0) (pedersen__hash2__ec_subset_sum__copy_point__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column14.off i 0 - (c.column14.off i 1 + c.column14.off i 1))) * (c.column12.off i 1 - c.column12.off i 0) = 0) (pedersen__hash2__copy_point__x : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column11.off i 256 - c.column11.off i 255 = 0) (pedersen__hash2__copy_point__y : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column12.off i 256 - c.column12.off i 255 = 0) (pedersen__hash2__init__x : ∀ i: nat, (((i % 512 = 0))) → c.column11.off i 0 - pd.pedersen__shift_point_x = 0) (pedersen__hash2__init__y : ∀ i: nat, (((i % 512 = 0))) → c.column12.off i 0 - pd.pedersen__shift_point_y = 0) (pedersen__hash3__ec_subset_sum__booleanity_test : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1)) * (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1) - 1) = 0) (pedersen__hash3__ec_subset_sum__bit_extraction_end : ∀ i: nat, (((i % 256 = 252))) → c.column18.off i 0 = 0) (pedersen__hash3__ec_subset_sum__zeros_tail : ∀ i: nat, (((i % 256 = 255))) → c.column18.off i 0 = 0) (pedersen__hash3__ec_subset_sum__add_points__slope : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1)) * (c.column16.off i 0 - pd.pedersen__points__y) - c.column17.off i 0 * (c.column15.off i 0 - pd.pedersen__points__x) = 0) (pedersen__hash3__ec_subset_sum__add_points__x : ∀ i: nat, (¬ ((i % 256 = 255))) → c.column17.off i 0 * c.column17.off i 0 - (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1)) * (c.column15.off i 0 + pd.pedersen__points__x + c.column15.off i 1) = 0) (pedersen__hash3__ec_subset_sum__add_points__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1)) * (c.column16.off i 0 + c.column16.off i 1) - c.column17.off i 0 * (c.column15.off i 0 - c.column15.off i 1) = 0) (pedersen__hash3__ec_subset_sum__copy_point__x : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1))) * (c.column15.off i 1 - c.column15.off i 0) = 0) (pedersen__hash3__ec_subset_sum__copy_point__y : ∀ i: nat, (¬ ((i % 256 = 255))) → (1 - (c.column18.off i 0 - (c.column18.off i 1 + c.column18.off i 1))) * (c.column16.off i 1 - c.column16.off i 0) = 0) (pedersen__hash3__copy_point__x : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column15.off i 256 - c.column15.off i 255 = 0) (pedersen__hash3__copy_point__y : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ ((i % 512 = 256))) → c.column16.off i 256 - c.column16.off i 255 = 0) (pedersen__hash3__init__x : ∀ i: nat, (((i % 512 = 0))) → c.column15.off i 0 - pd.pedersen__shift_point_x = 0) (pedersen__hash3__init__y : ∀ i: nat, (((i % 512 = 0))) → c.column16.off i 0 - pd.pedersen__shift_point_y = 0) (pedersen__input0_value0 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 7 - c.column6.off i 0 = 0) (pedersen__input0_value1 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 135 - c.column10.off i 0 = 0) (pedersen__input0_value2 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 263 - c.column14.off i 0 = 0) (pedersen__input0_value3 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 391 - c.column18.off i 0 = 0) (pedersen__input0_addr : ∀ i: nat, (((i % 128 = 0)) ∧ ¬ (i = 128 * (inp.trace_length / 128 - 1))) → c.column19.off i 134 - (c.column19.off i 38 + 1) = 0) (pedersen__init_addr : ∀ i: nat, ((i = 0)) → c.column19.off i 6 - pd.initial_pedersen_addr = 0) (pedersen__input1_value0 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 71 - c.column6.off i 256 = 0) (pedersen__input1_value1 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 199 - c.column10.off i 256 = 0) (pedersen__input1_value2 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 327 - c.column14.off i 256 = 0) (pedersen__input1_value3 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 455 - c.column18.off i 256 = 0) (pedersen__input1_addr : ∀ i: nat, (((i % 128 = 0))) → c.column19.off i 70 - (c.column19.off i 6 + 1) = 0) (pedersen__output_value0 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 39 - c.column3.off i 511 = 0) (pedersen__output_value1 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 167 - c.column7.off i 511 = 0) (pedersen__output_value2 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 295 - c.column11.off i 511 = 0) (pedersen__output_value3 : ∀ i: nat, (((i % 512 = 0))) → c.column19.off i 423 - c.column15.off i 511 = 0) (pedersen__output_addr : ∀ i: nat, (((i % 128 = 0))) → c.column19.off i 38 - (c.column19.off i 70 + 1) = 0) structure ecdsa (inp : input_data F) (pd : public_data F) (c : columns F) : Prop := (ecdsa__signature0__doubling_key__slope : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → c.column21.off i 6 * c.column21.off i 6 + c.column21.off i 6 * c.column21.off i 6 + c.column21.off i 6 * c.column21.off i 6 + pd.ecdsa__sig_config_alpha - (c.column21.off i 14 + c.column21.off i 14) * c.column21.off i 1 = 0) (ecdsa__signature0__doubling_key__x : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → c.column21.off i 1 * c.column21.off i 1 - (c.column21.off i 6 + c.column21.off i 6 + c.column21.off i 22) = 0) (ecdsa__signature0__doubling_key__y : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → c.column21.off i 14 + c.column21.off i 30 - c.column21.off i 1 * (c.column21.off i 6 - c.column21.off i 22) = 0) (ecdsa__signature0__exponentiate_generator__booleanity_test : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63)) * (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63) - 1) = 0) (ecdsa__signature0__exponentiate_generator__bit_extraction_end : ∀ i: nat, (((i % 8192 = 8032))) → c.column21.off i 31 = 0) (ecdsa__signature0__exponentiate_generator__zeros_tail : ∀ i: nat, (((i % 8192 = 8160))) → c.column21.off i 31 = 0) (ecdsa__signature0__exponentiate_generator__add_points__slope : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63)) * (c.column21.off i 23 - pd.ecdsa__generator_points__y) - c.column21.off i 15 * (c.column21.off i 7 - pd.ecdsa__generator_points__x) = 0) (ecdsa__signature0__exponentiate_generator__add_points__x : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → c.column21.off i 15 * c.column21.off i 15 - (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63)) * (c.column21.off i 7 + pd.ecdsa__generator_points__x + c.column21.off i 39) = 0) (ecdsa__signature0__exponentiate_generator__add_points__y : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63)) * (c.column21.off i 23 + c.column21.off i 55) - c.column21.off i 15 * (c.column21.off i 7 - c.column21.off i 39) = 0) (ecdsa__signature0__exponentiate_generator__add_points__x_diff_inv : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → c.column22.off i 0 * (c.column21.off i 7 - pd.ecdsa__generator_points__x) - 1 = 0) (ecdsa__signature0__exponentiate_generator__copy_point__x : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → (1 - (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63))) * (c.column21.off i 39 - c.column21.off i 7) = 0) (ecdsa__signature0__exponentiate_generator__copy_point__y : ∀ i: nat, (((i % 32 = 0)) ∧ ¬ ((i % 8192 = 8160))) → (1 - (c.column21.off i 31 - (c.column21.off i 63 + c.column21.off i 63))) * (c.column21.off i 55 - c.column21.off i 23) = 0) (ecdsa__signature0__exponentiate_key__booleanity_test : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19)) * (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19) - 1) = 0) (ecdsa__signature0__exponentiate_key__bit_extraction_end : ∀ i: nat, (((i % 4096 = 4016))) → c.column21.off i 3 = 0) (ecdsa__signature0__exponentiate_key__zeros_tail : ∀ i: nat, (((i % 4096 = 4080))) → c.column21.off i 3 = 0) (ecdsa__signature0__exponentiate_key__add_points__slope : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19)) * (c.column21.off i 5 - c.column21.off i 14) - c.column21.off i 13 * (c.column21.off i 9 - c.column21.off i 6) = 0) (ecdsa__signature0__exponentiate_key__add_points__x : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → c.column21.off i 13 * c.column21.off i 13 - (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19)) * (c.column21.off i 9 + c.column21.off i 6 + c.column21.off i 25) = 0) (ecdsa__signature0__exponentiate_key__add_points__y : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19)) * (c.column21.off i 5 + c.column21.off i 21) - c.column21.off i 13 * (c.column21.off i 9 - c.column21.off i 25) = 0) (ecdsa__signature0__exponentiate_key__add_points__x_diff_inv : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → c.column21.off i 11 * (c.column21.off i 9 - c.column21.off i 6) - 1 = 0) (ecdsa__signature0__exponentiate_key__copy_point__x : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → (1 - (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19))) * (c.column21.off i 25 - c.column21.off i 9) = 0) (ecdsa__signature0__exponentiate_key__copy_point__y : ∀ i: nat, (((i % 16 = 0)) ∧ ¬ ((i % 4096 = 4080))) → (1 - (c.column21.off i 3 - (c.column21.off i 19 + c.column21.off i 19))) * (c.column21.off i 21 - c.column21.off i 5) = 0) (ecdsa__signature0__init_gen__x : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 7 - pd.ecdsa__sig_config_shift_point_x = 0) (ecdsa__signature0__init_gen__y : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 23 + pd.ecdsa__sig_config_shift_point_y = 0) (ecdsa__signature0__init_key__x : ∀ i: nat, (((i % 4096 = 0))) → c.column21.off i 9 - pd.ecdsa__sig_config_shift_point_x = 0) (ecdsa__signature0__init_key__y : ∀ i: nat, (((i % 4096 = 0))) → c.column21.off i 5 - pd.ecdsa__sig_config_shift_point_y = 0) (ecdsa__signature0__add_results__slope : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8183 - (c.column21.off i 4085 + c.column22.off i 8160 * (c.column21.off i 8167 - c.column21.off i 4089)) = 0) (ecdsa__signature0__add_results__x : ∀ i: nat, (((i % 8192 = 0))) → c.column22.off i 8160 * c.column22.off i 8160 - (c.column21.off i 8167 + c.column21.off i 4089 + c.column21.off i 4102) = 0) (ecdsa__signature0__add_results__y : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8183 + c.column21.off i 4110 - c.column22.off i 8160 * (c.column21.off i 8167 - c.column21.off i 4102) = 0) (ecdsa__signature0__add_results__x_diff_inv : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8175 * (c.column21.off i 8167 - c.column21.off i 4089) - 1 = 0) (ecdsa__signature0__extract_r__slope : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8181 + pd.ecdsa__sig_config_shift_point_y - c.column21.off i 4093 * (c.column21.off i 8185 - pd.ecdsa__sig_config_shift_point_x) = 0) (ecdsa__signature0__extract_r__x : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 4093 * c.column21.off i 4093 - (c.column21.off i 8185 + pd.ecdsa__sig_config_shift_point_x + c.column21.off i 3) = 0) (ecdsa__signature0__extract_r__x_diff_inv : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8189 * (c.column21.off i 8185 - pd.ecdsa__sig_config_shift_point_x) - 1 = 0) (ecdsa__signature0__z_nonzero : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 31 * c.column21.off i 4081 - 1 = 0) (ecdsa__signature0__r_and_w_nonzero : ∀ i: nat, (((i % 4096 = 0))) → c.column21.off i 3 * c.column21.off i 4091 - 1 = 0) (ecdsa__signature0__q_on_curve__x_squared : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 8177 - c.column21.off i 6 * c.column21.off i 6 = 0) (ecdsa__signature0__q_on_curve__on_curve : ∀ i: nat, (((i % 8192 = 0))) → c.column21.off i 14 * c.column21.off i 14 - (c.column21.off i 6 * c.column21.off i 8177 + pd.ecdsa__sig_config_alpha * c.column21.off i 6 + pd.ecdsa__sig_config_beta) = 0) (ecdsa__init_addr : ∀ i: nat, ((i = 0)) → c.column19.off i 22 - pd.initial_ecdsa_addr = 0) (ecdsa__message_addr : ∀ i: nat, (((i % 8192 = 0))) → c.column19.off i 4118 - (c.column19.off i 22 + 1) = 0) (ecdsa__pubkey_addr : ∀ i: nat, (((i % 8192 = 0)) ∧ ¬ (i = 8192 * (inp.trace_length / 8192 - 1))) → c.column19.off i 8214 - (c.column19.off i 4118 + 1) = 0) (ecdsa__message_value0 : ∀ i: nat, (((i % 8192 = 0))) → c.column19.off i 4119 - c.column21.off i 31 = 0) (ecdsa__pubkey_value0 : ∀ i: nat, (((i % 8192 = 0))) → c.column19.off i 23 - c.column21.off i 6 = 0) structure checkpoints (c : columns F) (inp : input_data F) (pd : public_data F) : Prop := (checkpoints__req_pc_init_addr : ∀ i: nat, ((i = 0)) → c.column19.off i 150 - pd.initial_checkpoints_addr = 0) (checkpoints__req_pc_final_addr : ∀ i: nat, ((i = 256 * (inp.trace_length / 256 - 1))) → c.column19.off i 150 - pd.final_checkpoints_addr = 0) (checkpoints__required_fp_addr : ∀ i: nat, (((i % 256 = 0))) → c.column19.off i 86 - (c.column19.off i 150 + 1) = 0) (checkpoints__required_pc_next_addr : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ (i = 256 * (inp.trace_length / 256 - 1))) → (c.column19.off i 406 - c.column19.off i 150) * (c.column19.off i 406 - (c.column19.off i 150 + 2)) = 0) (checkpoints__req_pc : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ (i = 256 * (inp.trace_length / 256 - 1))) → (c.column19.off i 406 - c.column19.off i 150) * (c.column19.off i 151 - c.column19.off i 0) = 0) (checkpoints__req_fp : ∀ i: nat, (((i % 256 = 0)) ∧ ¬ (i = 256 * (inp.trace_length / 256 - 1))) → (c.column19.off i 406 - c.column19.off i 150) * (c.column19.off i 87 - c.column21.off i 8) = 0)
91c28892583ca0e29f7f11ababd8ec6e6b6763e2
c777c32c8e484e195053731103c5e52af26a25d1
/src/ring_theory/jacobson_ideal.lean
0e1f0e5efbbcb4be5fd8d080c889a5b93e052061
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
14,785
lean
/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Devon Tuma -/ import ring_theory.ideal.quotient import ring_theory.polynomial.quotient /-! # Jacobson radical The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. We can extend the idea of the nilradical to ideals of `R`, by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. Under this extension, the original nilradical is the radical of the zero ideal `⊥`. Here we define the Jacobson radical of an ideal `I` in a similar way, as the intersection of maximal ideals containing `I`. ## Main definitions Let `R` be a commutative ring, and `I` be an ideal of `R` * `jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. * `is_local I` is the proposition that the jacobson radical of `I` is itself a maximal ideal ## Main statements * `mem_jacobson_iff` gives a characterization of members of the jacobson of I * `is_local_of_is_maximal_radical`: if the radical of I is maximal then so is the jacobson radical ## Tags Jacobson, Jacobson radical, Local Ideal -/ universes u v namespace ideal variables {R : Type u} {S : Type v} open_locale polynomial section jacobson section ring variables [ring R] [ring S] {I : ideal R} /-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ def jacobson (I : ideal R) : ideal R := Inf {J : ideal R | I ≤ J ∧ is_maximal J} lemma le_jacobson : I ≤ jacobson I := λ x hx, mem_Inf.mpr (λ J hJ, hJ.left hx) @[simp] lemma jacobson_idem : jacobson (jacobson I) = jacobson I := le_antisymm (Inf_le_Inf (λ J hJ, ⟨Inf_le hJ, hJ.2⟩)) le_jacobson @[simp] lemma jacobson_top : jacobson (⊤ : ideal R) = ⊤ := eq_top_iff.2 le_jacobson @[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := ⟨λ H, classical.by_contradiction $ λ hi, let ⟨M, hm, him⟩ := exists_le_maximal I hi in lt_top_iff_ne_top.1 (lt_of_le_of_lt (show jacobson I ≤ M, from Inf_le ⟨him, hm⟩) $ lt_top_iff_ne_top.2 hm.ne_top) H, λ H, eq_top_iff.2 $ le_Inf $ λ J ⟨hij, hj⟩, H ▸ hij⟩ lemma jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := λ h, eq_bot_iff.mpr (h ▸ le_jacobson) lemma jacobson_eq_self_of_is_maximal [H : is_maximal I] : I.jacobson = I := le_antisymm (Inf_le ⟨le_of_eq rfl, H⟩) le_jacobson @[priority 100] instance jacobson.is_maximal [H : is_maximal I] : is_maximal (jacobson I) := ⟨⟨λ htop, H.1.1 (jacobson_eq_top_iff.1 htop), λ J hJ, H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := ⟨λ hx y, classical.by_cases (assume hxy : I ⊔ span {y * x + 1} = ⊤, let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) in let ⟨r, hr⟩ := mem_span_singleton'.1 hq in ⟨r, by rw [mul_assoc, ←mul_add_one, hr, ← hpq, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) (assume hxy : I ⊔ span {y * x + 1} ≠ ⊤, let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy in suffices x ∉ M, from (this $ mem_Inf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim, λ hxm, hm1.1.1 $ (eq_top_iff_one _).2 $ add_sub_cancel' (y * x) 1 ▸ M.sub_mem (le_sup_right.trans hm2 $ subset_span rfl) (M.mul_mem_left _ hxm)), λ hx, mem_Inf.2 $ λ M ⟨him, hm⟩, classical.by_contradiction $ λ hxm, let ⟨y, i, hi, df⟩ := hm.exists_inv hxm, ⟨z, hz⟩ := hx (-y) in hm.1.1 $ (eq_top_iff_one _).2 $ sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem (by { rw [mul_assoc, ←mul_add_one, neg_mul, ← (sub_eq_iff_eq_add.mpr df.symm), neg_sub, sub_add_cancel], exact M.mul_mem_left _ hi }) (him hz)⟩ lemma exists_mul_sub_mem_of_sub_one_mem_jacobson {I : ideal R} (r : R) (h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := begin cases mem_jacobson_iff.1 h 1 with s hs, use s, simpa [mul_sub] using hs end /-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ theorem eq_jacobson_iff_Inf_maximal : I.jacobson = I ↔ ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M := begin use λ hI, ⟨{J : ideal R | I ≤ J ∧ J.is_maximal}, ⟨λ _ hJ, or.inl hJ.right, hI.symm⟩⟩, rintros ⟨M, hM, hInf⟩, refine le_antisymm (λ x hx, _) le_jacobson, rw [hInf, mem_Inf], intros I hI, cases hM I hI with is_max is_top, { exact (mem_Inf.1 hx) ⟨le_Inf_iff.1 (le_of_eq hInf) I hI, is_max⟩ }, { exact is_top.symm ▸ submodule.mem_top } end theorem eq_jacobson_iff_Inf_maximal' : I.jacobson = I ↔ ∃ M : set (ideal R), (∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M := eq_jacobson_iff_Inf_maximal.trans ⟨λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ K hK, or.rec_on (hM.1 J hJ) (λ h, h.1.2 K hK) (λ h, eq_top_iff.2 (le_of_lt (h ▸ hK))), hM.2⟩⟩, λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ, or.rec_on (classical.em (J = ⊤)) (λ h, or.inr h) (λ h, or.inl ⟨⟨h, hM.1 J hJ⟩⟩), hM.2⟩⟩⟩ /-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` also lies outside of a maximal ideal containing `I`. -/ lemma eq_jacobson_iff_not_mem : I.jacobson = I ↔ ∀ x ∉ I, ∃ M : ideal R, (I ≤ M ∧ M.is_maximal) ∧ x ∉ M := begin split, { intros h x hx, erw [← h, mem_Inf] at hx, push_neg at hx, exact hx }, { refine λ h, le_antisymm (λ x hx, _) le_jacobson, contrapose hx, erw mem_Inf, push_neg, exact h x hx } end theorem map_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) : ring_hom.ker f ≤ I → map f (I.jacobson) = (map f I).jacobson := begin intro h, unfold ideal.jacobson, have : ∀ J ∈ {J : ideal R | I ≤ J ∧ J.is_maximal}, f.ker ≤ J := λ J hJ, le_trans h hJ.left, refine trans (map_Inf hf this) (le_antisymm _ _), { refine Inf_le_Inf (λ J hJ, ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, map_comap_of_surjective f hf J⟩⟩), haveI : J.is_maximal := hJ.right, exact comap_is_maximal_of_surjective f hf }, { refine Inf_le_Inf_of_subset_insert_top (λ j hj, hj.rec_on (λ J hJ, _)), rw ← hJ.2, cases map_eq_top_or_is_maximal_of_surjective f hf hJ.left.right with htop hmax, { exact htop.symm ▸ set.mem_insert ⊤ _ }, { exact set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ } }, end lemma map_jacobson_of_bijective {f : R →+* S} (hf : function.bijective f) : map f (I.jacobson) = (map f I).jacobson := map_jacobson_of_surjective hf.right (le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) lemma comap_jacobson {f : R →+* S} {K : ideal S} : comap f (K.jacobson) = Inf (comap f '' {J : ideal S | K ≤ J ∧ J.is_maximal}) := trans (comap_Inf' f _) (Inf_eq_infi).symm theorem comap_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) {K : ideal S} : comap f (K.jacobson) = (comap f K).jacobson := begin unfold ideal.jacobson, refine le_antisymm _ _, { refine le_trans (comap_mono (le_of_eq (trans top_inf_eq.symm Inf_insert.symm))) _, rw [comap_Inf', Inf_eq_infi], refine infi_le_infi_of_subset (λ J hJ, _), have : comap f (map f J) = J := trans (comap_map_of_surjective f hf J) (le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left), cases map_eq_top_or_is_maximal_of_surjective _ hf hJ.right with htop hmax, { refine ⟨⊤, ⟨set.mem_insert ⊤ _, htop ▸ this⟩⟩ }, { refine ⟨map f J, ⟨set.mem_insert_of_mem _ ⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ } }, { rw comap_Inf, refine le_infi_iff.2 (λ J, (le_infi_iff.2 (λ hJ, _))), haveI : J.is_maximal := hJ.right, refine Inf_le ⟨comap_mono hJ.left, comap_is_maximal_of_surjective _ hf⟩ } end @[mono] lemma jacobson_mono {I J : ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := begin intros h x hx, erw mem_Inf at ⊢ hx, exact λ K ⟨hK, hK_max⟩, hx ⟨trans h hK, hK_max⟩ end end ring section comm_ring variables [comm_ring R] [comm_ring S] {I : ideal R} lemma radical_le_jacobson : radical I ≤ jacobson I := le_Inf (λ J hJ, (radical_eq_Inf I).symm ▸ Inf_le ⟨hJ.left, is_maximal.is_prime hJ.right⟩) lemma is_radical_of_eq_jacobson (h : jacobson I = I) : I.is_radical := radical_le_jacobson.trans h.le lemma is_unit_of_sub_one_mem_jacobson_bot (r : R) (h : r - 1 ∈ jacobson (⊥ : ideal R)) : is_unit r := begin cases exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs, rw [mem_bot, sub_eq_zero, mul_comm] at hs, exact is_unit_of_mul_eq_one _ _ hs end lemma mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : ideal R) ↔ ∀ y, is_unit (x * y + 1) := ⟨λ hx y, let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y in is_unit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, mul_comm _ z, mul_right_comm]⟩, λ h, mem_jacobson_iff.mpr (λ y, (let ⟨b, hb⟩ := is_unit_iff_exists_inv.1 (h y) in ⟨b, (submodule.mem_bot R).2 (hb ▸ (by ring))⟩))⟩ /-- An ideal `I` of `R` is equal to its Jacobson radical if and only if the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ theorem jacobson_eq_iff_jacobson_quotient_eq_bot : I.jacobson = I ↔ jacobson (⊥ : ideal (R ⧸ I)) = ⊥ := begin have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I, split, { intro h, replace h := congr_arg (map (quotient.mk I)) h, rw map_jacobson_of_surjective hf (le_of_eq mk_ker) at h, simpa using h }, { intro h, replace h := congr_arg (comap (quotient.mk I)) h, rw [comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at h, simpa using h } end /-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : I.radical = I.jacobson ↔ radical (⊥ : ideal (R ⧸ I)) = jacobson ⊥ := begin have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I, split, { intro h, have := congr_arg (map (quotient.mk I)) h, rw [map_radical_of_surjective hf (le_of_eq mk_ker), map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this, simpa using this }, { intro h, have := congr_arg (comap (quotient.mk I)) h, rw [comap_radical, comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at this, simpa using this } end lemma jacobson_radical_eq_jacobson : I.radical.jacobson = I.jacobson := le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_Inf I))) (Inf_le_Inf (λ J hJ, ⟨Inf_le ⟨hJ.1, hJ.2.is_prime⟩, hJ.2⟩))) (jacobson_mono le_radical) end comm_ring end jacobson section polynomial open polynomial variables [comm_ring R] lemma jacobson_bot_polynomial_le_Inf_map_maximal : jacobson (⊥ : ideal R[X]) ≤ Inf (map (C : R →+* R[X]) '' {J : ideal R | J.is_maximal}) := begin refine le_Inf (λ J, exists_imp_distrib.2 (λ j hj, _)), haveI : j.is_maximal := hj.1, refine trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J), suffices : (⊥ : ideal (polynomial (R ⧸ j))).jacobson = ⊥, { rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot], replace this := congr_arg (map (polynomial_quotient_equiv_quotient_polynomial j).to_ring_hom) this, rwa [map_jacobson_of_bijective _, map_bot] at this, exact (ring_equiv.bijective (polynomial_quotient_equiv_quotient_polynomial j)) }, refine eq_bot_iff.2 (λ f hf, _), simpa [(λ hX, by simpa using congr_arg (λ f, coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)), end lemma jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : ideal R) = ⊥) : jacobson (⊥ : ideal R[X]) = ⊥ := begin refine eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_Inf_map_maximal _), refine (λ f hf, ((submodule.mem_bot _).2 (polynomial.ext (λ n, trans _ (coeff_zero n).symm)))), suffices : f.coeff n ∈ ideal.jacobson ⊥, by rwa [h, submodule.mem_bot] at this, exact mem_Inf.2 (λ j hj, (mem_map_C_iff.1 ((mem_Inf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n), end end polynomial section is_local variables [comm_ring R] /-- An ideal `I` is local iff its Jacobson radical is maximal. -/ class is_local (I : ideal R) : Prop := (out : is_maximal (jacobson I)) theorem is_local_iff {I : ideal R} : is_local I ↔ is_maximal (jacobson I) := ⟨λ h, h.1, λ h, ⟨h⟩⟩ theorem is_local_of_is_maximal_radical {I : ideal R} (hi : is_maximal (radical I)) : is_local I := ⟨have radical I = jacobson I, from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him) (Inf_le ⟨le_radical, hi⟩), show is_maximal (jacobson I), from this ▸ hi⟩ theorem is_local.le_jacobson {I J : ideal R} (hi : is_local I) (hij : I ≤ J) (hj : J ≠ ⊤) : J ≤ jacobson I := let ⟨M, hm, hjm⟩ := exists_le_maximal J hj in le_trans hjm $ le_of_eq $ eq.symm $ hi.1.eq_of_le hm.1.1 $ Inf_le ⟨le_trans hij hjm, hm⟩ theorem is_local.mem_jacobson_or_exists_inv {I : ideal R} (hi : is_local I) (x : R) : x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := classical.by_cases (assume h : I ⊔ span {x} = ⊤, let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in let ⟨r, hr⟩ := mem_span_singleton.1 hq in or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) (assume h : I ⊔ span {x} ≠ ⊤, or.inl $ le_trans le_sup_right (hi.le_jacobson le_sup_left h) $ mem_span_singleton.2 $ dvd_refl x) end is_local theorem is_primary_of_is_maximal_radical [comm_ring R] {I : ideal R} (hi : is_maximal (radical I)) : is_primary I := have radical I = jacobson I, from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him) (Inf_le ⟨le_radical, hi⟩), ⟨ne_top_of_lt $ lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), λ x y hxy, ((is_local_of_is_maximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp (λ ⟨z, hz⟩, by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]; exact I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz)) (this ▸ id)⟩ end ideal
372df345e317de924c17998fca84aec058431a4c
618003631150032a5676f229d13a079ac875ff77
/test/convert.lean
544310ab36ea45c260e5b8d9015921251cbcfb18
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
594
lean
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import data.set.basic import tactic.interactive open set variables {α β : Type} @[simp] lemma singleton_inter_singleton_eq_empty {x y : α} : ({x} ∩ {y} = (∅ : set α)) ↔ x ≠ y := by simp [singleton_inter_eq_empty] example {f : β → α} {x y : α} (h : x ≠ y) : f ⁻¹' {x} ∩ f ⁻¹' {y} = ∅ := begin have : {x} ∩ {y} = (∅ : set α) := by simpa using h, convert preimage_empty, rw [←preimage_inter,this], end
eeffa4b02909811c3dc399809ea0c75cc3bcfcc1
4727251e0cd73359b15b664c3170e5d754078599
/src/topology/category/UniformSpace.lean
4b5f920cf466fe0746e1a62b5eb58ab912936d44
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
7,265
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton, Patrick Massot, Scott Morrison -/ import category_theory.adjunction.reflective import category_theory.concrete_category.unbundled_hom import category_theory.monad.limits import category_theory.limits.has_limits import topology.category.Top.basic import topology.uniform_space.completion /-! # The category of uniform spaces We construct the category of uniform spaces, show that the complete separated uniform spaces form a reflective subcategory, and hence possess all limits that uniform spaces do. TODO: show that uniform spaces actually have all limits! -/ universes u open category_theory /-- A (bundled) uniform space. -/ def UniformSpace : Type (u+1) := bundled uniform_space namespace UniformSpace /-- The information required to build morphisms for `UniformSpace`. -/ instance : unbundled_hom @uniform_continuous := ⟨@uniform_continuous_id, @uniform_continuous.comp⟩ attribute [derive [large_category, concrete_category]] UniformSpace instance : has_coe_to_sort UniformSpace Type* := bundled.has_coe_to_sort instance (x : UniformSpace) : uniform_space x := x.str /-- Construct a bundled `UniformSpace` from the underlying type and the typeclass. -/ def of (α : Type u) [uniform_space α] : UniformSpace := ⟨α⟩ instance : inhabited UniformSpace := ⟨UniformSpace.of empty⟩ @[simp] lemma coe_of (X : Type u) [uniform_space X] : (of X : Type u) = X := rfl instance (X Y : UniformSpace) : has_coe_to_fun (X ⟶ Y) (λ _, X → Y) := ⟨category_theory.functor.map (forget UniformSpace)⟩ @[simp] lemma coe_comp {X Y Z : UniformSpace} (f : X ⟶ Y) (g : Y ⟶ Z) : (f ≫ g : X → Z) = g ∘ f := rfl @[simp] lemma coe_id (X : UniformSpace) : (𝟙 X : X → X) = id := rfl @[simp] lemma coe_mk {X Y : UniformSpace} (f : X → Y) (hf : uniform_continuous f) : ((⟨f, hf⟩ : X ⟶ Y) : X → Y) = f := rfl lemma hom_ext {X Y : UniformSpace} {f g : X ⟶ Y} : (f : X → Y) = g → f = g := subtype.eq /-- The forgetful functor from uniform spaces to topological spaces. -/ instance has_forget_to_Top : has_forget₂ UniformSpace.{u} Top.{u} := { forget₂ := { obj := λ X, Top.of X, map := λ X Y f, { to_fun := f, continuous_to_fun := uniform_continuous.continuous f.property }, }, } end UniformSpace /-- A (bundled) complete separated uniform space. -/ structure CpltSepUniformSpace := (α : Type u) [is_uniform_space : uniform_space α] [is_complete_space : complete_space α] [is_separated : separated_space α] namespace CpltSepUniformSpace instance : has_coe_to_sort CpltSepUniformSpace (Type u) := ⟨CpltSepUniformSpace.α⟩ attribute [instance] is_uniform_space is_complete_space is_separated /-- The function forgetting that a complete separated uniform spaces is complete and separated. -/ def to_UniformSpace (X : CpltSepUniformSpace) : UniformSpace := UniformSpace.of X instance complete_space (X : CpltSepUniformSpace) : complete_space ((to_UniformSpace X).α) := CpltSepUniformSpace.is_complete_space X instance separated_space (X : CpltSepUniformSpace) : separated_space ((to_UniformSpace X).α) := CpltSepUniformSpace.is_separated X /-- Construct a bundled `UniformSpace` from the underlying type and the appropriate typeclasses. -/ def of (X : Type u) [uniform_space X] [complete_space X] [separated_space X] : CpltSepUniformSpace := ⟨X⟩ @[simp] lemma coe_of (X : Type u) [uniform_space X] [complete_space X] [separated_space X] : (of X : Type u) = X := rfl instance : inhabited CpltSepUniformSpace := begin haveI : separated_space empty := separated_iff_t2.mpr (by apply_instance), exact ⟨CpltSepUniformSpace.of empty⟩ end /-- The category instance on `CpltSepUniformSpace`. -/ instance category : large_category CpltSepUniformSpace := induced_category.category to_UniformSpace /-- The concrete category instance on `CpltSepUniformSpace`. -/ instance concrete_category : concrete_category CpltSepUniformSpace := induced_category.concrete_category to_UniformSpace instance has_forget_to_UniformSpace : has_forget₂ CpltSepUniformSpace UniformSpace := induced_category.has_forget₂ to_UniformSpace end CpltSepUniformSpace namespace UniformSpace open uniform_space open CpltSepUniformSpace /-- The functor turning uniform spaces into complete separated uniform spaces. -/ noncomputable def completion_functor : UniformSpace ⥤ CpltSepUniformSpace := { obj := λ X, CpltSepUniformSpace.of (completion X), map := λ X Y f, ⟨completion.map f.1, completion.uniform_continuous_map⟩, map_id' := λ X, subtype.eq completion.map_id, map_comp' := λ X Y Z f g, subtype.eq (completion.map_comp g.property f.property).symm, }. /-- The inclusion of a uniform space into its completion. -/ def completion_hom (X : UniformSpace) : X ⟶ (forget₂ CpltSepUniformSpace UniformSpace).obj (completion_functor.obj X) := { val := (coe : X → completion X), property := completion.uniform_continuous_coe X } @[simp] lemma completion_hom_val (X : UniformSpace) (x) : (completion_hom X) x = (x : completion X) := rfl /-- The mate of a morphism from a `UniformSpace` to a `CpltSepUniformSpace`. -/ noncomputable def extension_hom {X : UniformSpace} {Y : CpltSepUniformSpace} (f : X ⟶ (forget₂ CpltSepUniformSpace UniformSpace).obj Y) : completion_functor.obj X ⟶ Y := { val := completion.extension f, property := completion.uniform_continuous_extension } @[simp] lemma extension_hom_val {X : UniformSpace} {Y : CpltSepUniformSpace} (f : X ⟶ (forget₂ _ _).obj Y) (x) : (extension_hom f) x = completion.extension f x := rfl. @[simp] lemma extension_comp_coe {X : UniformSpace} {Y : CpltSepUniformSpace} (f : to_UniformSpace (CpltSepUniformSpace.of (completion X)) ⟶ to_UniformSpace Y) : extension_hom (completion_hom X ≫ f) = f := by { apply subtype.eq, funext x, exact congr_fun (completion.extension_comp_coe f.property) x } /-- The completion functor is left adjoint to the forgetful functor. -/ noncomputable def adj : completion_functor ⊣ forget₂ CpltSepUniformSpace UniformSpace := adjunction.mk_of_hom_equiv { hom_equiv := λ X Y, { to_fun := λ f, completion_hom X ≫ f, inv_fun := λ f, extension_hom f, left_inv := λ f, by { dsimp, erw extension_comp_coe }, right_inv := λ f, begin apply subtype.eq, funext x, cases f, exact @completion.extension_coe _ _ _ _ _ (CpltSepUniformSpace.separated_space _) f_property _ end }, hom_equiv_naturality_left_symm' := λ X X' Y f g, begin apply hom_ext, funext x, dsimp, erw [coe_comp, ←completion.extension_map], refl, exact g.property, exact f.property, end } noncomputable instance : is_right_adjoint (forget₂ CpltSepUniformSpace UniformSpace) := ⟨completion_functor, adj⟩ noncomputable instance : reflective (forget₂ CpltSepUniformSpace UniformSpace) := {} open category_theory.limits -- TODO Once someone defines `has_limits UniformSpace`, turn this into an instance. example [has_limits.{u} UniformSpace.{u}] : has_limits.{u} CpltSepUniformSpace.{u} := has_limits_of_reflective $ forget₂ CpltSepUniformSpace UniformSpace.{u} end UniformSpace
ef799d9291c79f91480b6620f4ead0ffc49897d3
a4673261e60b025e2c8c825dfa4ab9108246c32e
/src/Lean/Compiler/IR/RC.lean
a5ecab26591c7ed9e8c8cb59355f481d9a5867a7
[ "Apache-2.0" ]
permissive
jcommelin/lean4
c02dec0cc32c4bccab009285475f265f17d73228
2909313475588cc20ac0436e55548a4502050d0a
refs/heads/master
1,674,129,550,893
1,606,415,348,000
1,606,415,348,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
12,738
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Runtime import Lean.Compiler.IR.CompilerM import Lean.Compiler.IR.LiveVars namespace Lean.IR.ExplicitRC /- Insert explicit RC instructions. So, it assumes the input code does not contain `inc` nor `dec` instructions. This transformation is applied before lower level optimizations that introduce the instructions `release` and `set` -/ structure VarInfo := (ref : Bool := true) -- true if the variable may be a reference (aka pointer) at runtime (persistent : Bool := false) -- true if the variable is statically known to be marked a Persistent at runtime (consume : Bool := false) -- true if the variable RC must be "consumed" abbrev VarMap := Std.RBMap VarId VarInfo (fun x y => x.idx < y.idx) structure Context := (env : Environment) (decls : Array Decl) (varMap : VarMap := {}) (jpLiveVarMap : JPLiveVarMap := {}) -- map: join point => live variables (localCtx : LocalContext := {}) -- we use it to store the join point declarations def getDecl (ctx : Context) (fid : FunId) : Decl := match findEnvDecl' ctx.env fid ctx.decls with | some decl => decl | none => arbitrary -- unreachable if well-formed def getVarInfo (ctx : Context) (x : VarId) : VarInfo := match ctx.varMap.find? x with | some info => info | none => {} -- unreachable in well-formed code def getJPParams (ctx : Context) (j : JoinPointId) : Array Param := match ctx.localCtx.getJPParams j with | some ps => ps | none => #[] -- unreachable in well-formed code def getJPLiveVars (ctx : Context) (j : JoinPointId) : LiveVarSet := match ctx.jpLiveVarMap.find? j with | some s => s | none => {} def mustConsume (ctx : Context) (x : VarId) : Bool := let info := getVarInfo ctx x info.ref && info.consume @[inline] def addInc (ctx : Context) (x : VarId) (b : FnBody) (n := 1) : FnBody := let info := getVarInfo ctx x if n == 0 then b else FnBody.inc x n true info.persistent b @[inline] def addDec (ctx : Context) (x : VarId) (b : FnBody) : FnBody := let info := getVarInfo ctx x FnBody.dec x 1 true info.persistent b private def updateRefUsingCtorInfo (ctx : Context) (x : VarId) (c : CtorInfo) : Context := if c.isRef then ctx else let m := ctx.varMap { ctx with varMap := match m.find? x with | some info => m.insert x { info with ref := false } -- I really want a Lenses library + notation | none => m } private def addDecForAlt (ctx : Context) (caseLiveVars altLiveVars : LiveVarSet) (b : FnBody) : FnBody := caseLiveVars.fold (init := b) fun b x => if !altLiveVars.contains x && mustConsume ctx x then addDec ctx x b else b /- `isFirstOcc xs x i = true` if `xs[i]` is the first occurrence of `xs[i]` in `xs` -/ private def isFirstOcc (xs : Array Arg) (i : Nat) : Bool := let x := xs[i] i.all fun j => xs[j] != x /- Return true if `x` also occurs in `ys` in a position that is not consumed. That is, it is also passed as a borrow reference. -/ @[specialize] private def isBorrowParamAux (x : VarId) (ys : Array Arg) (consumeParamPred : Nat → Bool) : Bool := ys.size.any fun i => let y := ys[i] match y with | Arg.irrelevant => false | Arg.var y => x == y && !consumeParamPred i private def isBorrowParam (x : VarId) (ys : Array Arg) (ps : Array Param) : Bool := isBorrowParamAux x ys fun i => not ps[i].borrow /- Return `n`, the number of times `x` is consumed. - `ys` is a sequence of instruction parameters where we search for `x`. - `consumeParamPred i = true` if parameter `i` is consumed. -/ @[specialize] private def getNumConsumptions (x : VarId) (ys : Array Arg) (consumeParamPred : Nat → Bool) : Nat := ys.size.fold (init := 0) fun i n => let y := ys[i] match y with | Arg.irrelevant => n | Arg.var y => if x == y && consumeParamPred i then n+1 else n @[specialize] private def addIncBeforeAux (ctx : Context) (xs : Array Arg) (consumeParamPred : Nat → Bool) (b : FnBody) (liveVarsAfter : LiveVarSet) : FnBody := xs.size.fold (init := b) fun i b => let x := xs[i] match x with | Arg.irrelevant => b | Arg.var x => let info := getVarInfo ctx x if !info.ref || !isFirstOcc xs i then b else let numConsuptions := getNumConsumptions x xs consumeParamPred -- number of times the argument is let numIncs := if !info.consume || -- `x` is not a variable that must be consumed by the current procedure liveVarsAfter.contains x || -- `x` is live after executing instruction isBorrowParamAux x xs consumeParamPred -- `x` is used in a position that is passed as a borrow reference then numConsuptions else numConsuptions - 1 -- dbgTrace ("addInc " ++ toString x ++ " nconsumptions: " ++ toString numConsuptions ++ " incs: " ++ toString numIncs -- ++ " consume: " ++ toString info.consume ++ " live: " ++ toString (liveVarsAfter.contains x) -- ++ " borrowParam : " ++ toString (isBorrowParamAux x xs consumeParamPred)) $ fun _ => addInc ctx x b numIncs private def addIncBefore (ctx : Context) (xs : Array Arg) (ps : Array Param) (b : FnBody) (liveVarsAfter : LiveVarSet) : FnBody := addIncBeforeAux ctx xs (fun i => not ps[i].borrow) b liveVarsAfter /- See `addIncBeforeAux`/`addIncBefore` for the procedure that inserts `inc` operations before an application. -/ private def addDecAfterFullApp (ctx : Context) (xs : Array Arg) (ps : Array Param) (b : FnBody) (bLiveVars : LiveVarSet) : FnBody := xs.size.fold (init := b) fun i b => match xs[i] with | Arg.irrelevant => b | Arg.var x => /- We must add a `dec` if `x` must be consumed, it is alive after the application, and it has been borrowed by the application. Remark: `x` may occur multiple times in the application (e.g., `f x y x`). This is why we check whether it is the first occurrence. -/ if mustConsume ctx x && isFirstOcc xs i && isBorrowParam x xs ps && !bLiveVars.contains x then addDec ctx x b else b private def addIncBeforeConsumeAll (ctx : Context) (xs : Array Arg) (b : FnBody) (liveVarsAfter : LiveVarSet) : FnBody := addIncBeforeAux ctx xs (fun i => true) b liveVarsAfter /- Add `dec` instructions for parameters that are references, are not alive in `b`, and are not borrow. That is, we must make sure these parameters are consumed. -/ private def addDecForDeadParams (ctx : Context) (ps : Array Param) (b : FnBody) (bLiveVars : LiveVarSet) : FnBody := ps.foldl (init := b) fun b p => if !p.borrow && p.ty.isObj && !bLiveVars.contains p.x then addDec ctx p.x b else b private def isPersistent : Expr → Bool | Expr.fap c xs => xs.isEmpty -- all global constants are persistent objects | _ => false /- We do not need to consume the projection of a variable that is not consumed -/ private def consumeExpr (m : VarMap) : Expr → Bool | Expr.proj i x => match m.find? x with | some info => info.consume | none => true | other => true /- Return true iff `v` at runtime is a scalar value stored in a tagged pointer. We do not need RC operations for this kind of value. -/ private def isScalarBoxedInTaggedPtr (v : Expr) : Bool := match v with | Expr.ctor c ys => c.size == 0 && c.ssize == 0 && c.usize == 0 | Expr.lit (LitVal.num n) => n ≤ maxSmallNat | _ => false private def updateVarInfo (ctx : Context) (x : VarId) (t : IRType) (v : Expr) : Context := { ctx with varMap := ctx.varMap.insert x { ref := t.isObj && !isScalarBoxedInTaggedPtr v, persistent := isPersistent v, consume := consumeExpr ctx.varMap v } } private def addDecIfNeeded (ctx : Context) (x : VarId) (b : FnBody) (bLiveVars : LiveVarSet) : FnBody := if mustConsume ctx x && !bLiveVars.contains x then addDec ctx x b else b private def processVDecl (ctx : Context) (z : VarId) (t : IRType) (v : Expr) (b : FnBody) (bLiveVars : LiveVarSet) : FnBody × LiveVarSet := let b := match v with | (Expr.ctor _ ys) => addIncBeforeConsumeAll ctx ys (FnBody.vdecl z t v b) bLiveVars | (Expr.reuse _ _ _ ys) => addIncBeforeConsumeAll ctx ys (FnBody.vdecl z t v b) bLiveVars | (Expr.proj _ x) => let b := addDecIfNeeded ctx x b bLiveVars let b := if (getVarInfo ctx x).consume then addInc ctx z b else b (FnBody.vdecl z t v b) | (Expr.uproj _ x) => FnBody.vdecl z t v (addDecIfNeeded ctx x b bLiveVars) | (Expr.sproj _ _ x) => FnBody.vdecl z t v (addDecIfNeeded ctx x b bLiveVars) | (Expr.fap f ys) => -- dbgTrace ("processVDecl " ++ toString v) $ fun _ => let ps := (getDecl ctx f).params let b := addDecAfterFullApp ctx ys ps b bLiveVars let b := FnBody.vdecl z t v b addIncBefore ctx ys ps b bLiveVars | (Expr.pap _ ys) => addIncBeforeConsumeAll ctx ys (FnBody.vdecl z t v b) bLiveVars | (Expr.ap x ys) => let ysx := ys.push (Arg.var x) -- TODO: avoid temporary array allocation addIncBeforeConsumeAll ctx ysx (FnBody.vdecl z t v b) bLiveVars | (Expr.unbox x) => FnBody.vdecl z t v (addDecIfNeeded ctx x b bLiveVars) | other => FnBody.vdecl z t v b -- Expr.reset, Expr.box, Expr.lit are handled here let liveVars := updateLiveVars v bLiveVars let liveVars := liveVars.erase z (b, liveVars) def updateVarInfoWithParams (ctx : Context) (ps : Array Param) : Context := let m := ps.foldl (init := ctx.varMap) fun m p => m.insert p.x { ref := p.ty.isObj, consume := !p.borrow } { ctx with varMap := m } partial def visitFnBody : FnBody → Context → (FnBody × LiveVarSet) | FnBody.vdecl x t v b, ctx => let ctx := updateVarInfo ctx x t v let (b, bLiveVars) := visitFnBody b ctx processVDecl ctx x t v b bLiveVars | FnBody.jdecl j xs v b, ctx => let (v, vLiveVars) := visitFnBody v (updateVarInfoWithParams ctx xs) let v := addDecForDeadParams ctx xs v vLiveVars let ctx := { ctx with jpLiveVarMap := updateJPLiveVarMap j xs v ctx.jpLiveVarMap } let (b, bLiveVars) := visitFnBody b ctx (FnBody.jdecl j xs v b, bLiveVars) | FnBody.uset x i y b, ctx => let (b, s) := visitFnBody b ctx -- We don't need to insert `y` since we only need to track live variables that are references at runtime let s := s.insert x (FnBody.uset x i y b, s) | FnBody.sset x i o y t b, ctx => let (b, s) := visitFnBody b ctx -- We don't need to insert `y` since we only need to track live variables that are references at runtime let s := s.insert x (FnBody.sset x i o y t b, s) | FnBody.mdata m b, ctx => let (b, s) := visitFnBody b ctx (FnBody.mdata m b, s) | b@(FnBody.case tid x xType alts), ctx => let caseLiveVars := collectLiveVars b ctx.jpLiveVarMap let alts := alts.map $ fun alt => match alt with | Alt.ctor c b => let ctx := updateRefUsingCtorInfo ctx x c let (b, altLiveVars) := visitFnBody b ctx let b := addDecForAlt ctx caseLiveVars altLiveVars b Alt.ctor c b | Alt.default b => let (b, altLiveVars) := visitFnBody b ctx let b := addDecForAlt ctx caseLiveVars altLiveVars b Alt.default b (FnBody.case tid x xType alts, caseLiveVars) | b@(FnBody.ret x), ctx => match x with | Arg.var x => let info := getVarInfo ctx x if info.ref && !info.consume then (addInc ctx x b, mkLiveVarSet x) else (b, mkLiveVarSet x) | _ => (b, {}) | b@(FnBody.jmp j xs), ctx => let jLiveVars := getJPLiveVars ctx j let ps := getJPParams ctx j let b := addIncBefore ctx xs ps b jLiveVars let bLiveVars := collectLiveVars b ctx.jpLiveVarMap (b, bLiveVars) | FnBody.unreachable, _ => (FnBody.unreachable, {}) | other, ctx => (other, {}) -- unreachable if well-formed partial def visitDecl (env : Environment) (decls : Array Decl) : Decl → Decl | Decl.fdecl f xs t b => let ctx : Context := { env := env, decls := decls } let ctx := updateVarInfoWithParams ctx xs let (b, bLiveVars) := visitFnBody b ctx let b := addDecForDeadParams ctx xs b bLiveVars Decl.fdecl f xs t b | other => other end ExplicitRC def explicitRC (decls : Array Decl) : CompilerM (Array Decl) := do let env ← getEnv pure $ decls.map (ExplicitRC.visitDecl env decls) end Lean.IR
456d9a477c2b889aea9bdb04342f4f141a61682d
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/data/fintype/card_embedding.lean
9992b97aef63c983924d49071eb8086a6f3ddcf2
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
1,909
lean
/- Copyright (c) 2021 Eric Rodriguez. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Rodriguez -/ import data.fintype.big_operators import logic.equiv.embedding /-! # Number of embeddings This file establishes the cardinality of `α ↪ β` in full generality. -/ local notation (name := finset.card) `|` x `|` := finset.card x local notation (name := fintype.card) `‖` x `‖` := fintype.card x open function open_locale nat big_operators namespace fintype lemma card_embedding_eq_of_unique {α β : Type*} [unique α] [fintype β] [fintype (α ↪ β)] : ‖α ↪ β‖ = ‖β‖ := card_congr equiv.unique_embedding_equiv_result /- Establishes the cardinality of the type of all injections between two finite types. -/ @[simp] theorem card_embedding_eq {α β} [fintype α] [fintype β] [fintype (α ↪ β)] : ‖α ↪ β‖ = (‖β‖.desc_factorial ‖α‖) := begin classical, unfreezingI { induction ‹fintype α› using fintype.induction_empty_option with α₁ α₂ h₂ e ih α h ih }, { letI := fintype.of_equiv _ e.symm, rw [← card_congr (equiv.embedding_congr e (equiv.refl β)), ih, card_congr e] }, { rw [card_pempty, nat.desc_factorial_zero, card_eq_one_iff], exact ⟨embedding.of_is_empty, λ x, fun_like.ext _ _ is_empty_elim⟩ }, { rw [card_option, nat.desc_factorial_succ, card_congr (embedding.option_embedding_equiv α β), card_sigma, ← ih], simp only [fintype.card_compl_set, fintype.card_range, finset.sum_const, finset.card_univ, smul_eq_mul, mul_comm] }, end /- The cardinality of embeddings from an infinite type to a finite type is zero. This is a re-statement of the pigeonhole principle. -/ @[simp] lemma card_embedding_eq_of_infinite {α β : Type*} [infinite α] [fintype β] [fintype (α ↪ β)] : ‖α ↪ β‖ = 0 := card_eq_zero end fintype
0676c6eeacdc7dd3ea8972b5ccaa9ab854e3efa2
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/analysis/calculus/fderiv_symmetric.lean
4058f9e17c09e855152e42e7e5c627eb06444304
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
19,560
lean
/- Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.calculus.deriv import analysis.calculus.mean_value import analysis.convex.topology /-! # Symmetry of the second derivative We show that, over the reals, the second derivative is symmetric. The most precise result is `convex.second_derivative_within_at_symmetric`. It asserts that, if a function is differentiable inside a convex set `s` with nonempty interior, and has a second derivative within `s` at a point `x`, then this second derivative at `x` is symmetric. Note that this result does not require continuity of the first derivative. The following particular cases of this statement are especially relevant: `second_derivative_symmetric_of_eventually` asserts that, if a function is differentiable on a neighborhood of `x`, and has a second derivative at `x`, then this second derivative is symmetric. `second_derivative_symmetric` asserts that, if a function is differentiable, and has a second derivative at `x`, then this second derivative is symmetric. ## Implementation note For the proof, we obtain an asymptotic expansion to order two of `f (x + v + w) - f (x + v)`, by using the mean value inequality applied to a suitable function along the segment `[x + v, x + v + w]`. This expansion involves `f'' ⬝ w` as we move along a segment directed by `w` (see `convex.taylor_approx_two_segment`). Consider the alternate sum `f (x + v + w) + f x - f (x + v) - f (x + w)`, corresponding to the values of `f` along a rectangle based at `x` with sides `v` and `w`. One can write it using the two sides directed by `w`, as `(f (x + v + w) - f (x + v)) - (f (x + w) - f x)`. Together with the previous asymptotic expansion, one deduces that it equals `f'' v w + o(1)` when `v, w` tends to `0`. Exchanging the roles of `v` and `w`, one instead gets an asymptotic expansion `f'' w v`, from which the equality `f'' v w = f'' w v` follows. In our most general statement, we only assume that `f` is differentiable inside a convex set `s`, so a few modifications have to be made. Since we don't assume continuity of `f` at `x`, we consider instead the rectangle based at `x + v + w` with sides `v` and `w`, in `convex.is_o_alternate_sum_square`, but the argument is essentially the same. It only works when `v` and `w` both point towards the interior of `s`, to make sure that all the sides of the rectangle are contained in `s` by convexity. The general case follows by linearity, though. -/ open asymptotics set open_locale topological_space variables {E F : Type*} [normed_group E] [normed_space ℝ E] [normed_group F] [normed_space ℝ F] {s : set E} (s_conv : convex s) {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ x ∈ interior s, has_fderiv_at f (f' x) x) {x : E} (xs : x ∈ s) (hx : has_fderiv_within_at f' f'' (interior s) x) include s_conv xs hx hf /-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one can Taylor-expand to order two the function `f` on the segment `[x + h v, x + h (v + w)]`, giving a bilinear estimate for `f (x + hv + hw) - f (x + hv)` in terms of `f' w` and of `f'' ⬝ w`, up to `o(h^2)`. This is a technical statement used to show that the second derivative is symmetric. -/ lemma convex.taylor_approx_two_segment {v w : E} (hv : x + v ∈ interior s) (hw : x + v + w ∈ interior s) : is_o (λ (h : ℝ), f (x + h • v + h • w) - f (x + h • v) - h • f' x w - h^2 • f'' v w - (h^2/2) • f'' w w) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0) := begin -- it suffices to check that the expression is bounded by `ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2` for -- small enough `h`, for any positive `ε`. apply is_o.trans_is_O (is_o_iff.2 (λ ε εpos, _)) (is_O_const_mul_self ((∥v∥ + ∥w∥) * ∥w∥) _ _), -- consider a ball of radius `δ` around `x` in which the Taylor approximation for `f''` is -- good up to `δ`. rw [has_fderiv_within_at, has_fderiv_at_filter, is_o_iff] at hx, rcases metric.mem_nhds_within_iff.1 (hx εpos) with ⟨δ, δpos, sδ⟩, have E1 : ∀ᶠ h in 𝓝[Ioi (0:ℝ)] 0, h * (∥v∥ + ∥w∥) < δ, { have : filter.tendsto (λ h, h * (∥v∥ + ∥w∥)) (𝓝[Ioi (0:ℝ)] 0) (𝓝 (0 * (∥v∥ + ∥w∥))) := (continuous_id.mul continuous_const).continuous_within_at, apply (tendsto_order.1 this).2 δ, simpa only [zero_mul] using δpos }, have E2 : ∀ᶠ h in 𝓝[Ioi (0:ℝ)] 0, (h : ℝ) < 1 := mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 ⟨(1 : ℝ), by simp only [mem_Ioi, zero_lt_one], λ x hx, hx.2⟩, filter_upwards [E1, E2, self_mem_nhds_within], -- we consider `h` small enough that all points under consideration belong to this ball, -- and also with `0 < h < 1`. assume h hδ h_lt_1 hpos, replace hpos : 0 < h := hpos, have xt_mem : ∀ t ∈ Icc (0 : ℝ) 1, x + h • v + (t * h) • w ∈ interior s, { assume t ht, have : x + h • v ∈ interior s := s_conv.add_smul_mem_interior xs hv ⟨hpos, h_lt_1.le⟩, rw [← smul_smul], apply s_conv.interior.add_smul_mem this _ ht, rw add_assoc at hw, convert s_conv.add_smul_mem_interior xs hw ⟨hpos, h_lt_1.le⟩ using 1, simp only [add_assoc, smul_add] }, -- define a function `g` on `[0,1]` (identified with `[v, v + w]`) such that `g 1 - g 0` is the -- quantity to be estimated. We will check that its derivative is given by an explicit -- expression `g'`, that we can bound. Then the desired bound for `g 1 - g 0` follows from the -- mean value inequality. let g := λ t, f (x + h • v + (t * h) • w) - (t * h) • f' x w - (t * h^2) • f'' v w - ((t * h)^2/2) • f'' w w, set g' := λ t, f' (x + h • v + (t * h) • w) (h • w) - h • f' x w - h^2 • f'' v w - (t * h^2) • f'' w w with hg', -- check that `g'` is the derivative of `g`, by a straightforward computation have g_deriv : ∀ t ∈ Icc (0 : ℝ) 1, has_deriv_within_at g (g' t) (Icc 0 1) t, { assume t ht, apply_rules [has_deriv_within_at.sub, has_deriv_within_at.add], { refine (hf _ _).comp_has_deriv_within_at _ _, { exact xt_mem t ht }, apply has_deriv_at.has_deriv_within_at, suffices : has_deriv_at (λ u, x + h • v + (u * h) • w) (0 + 0 + (1 * h) • w) t, by simpa only [one_mul, zero_add], apply_rules [has_deriv_at.add, has_deriv_at_const, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices : has_deriv_within_at (λ u, (u * h) • f' x w) ((1 * h) • f' x w) (Icc 0 1) t, by simpa only [one_mul], apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices : has_deriv_within_at (λ u, (u * h ^ 2) • f'' v w) ((1 * h^2) • f'' v w) (Icc 0 1) t, by simpa only [one_mul], apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id'] }, { suffices H : has_deriv_within_at (λ u, ((u * h) ^ 2 / 2) • f'' w w) (((((2 : ℕ) : ℝ) * (t * h) ^ (2 - 1) * (1 * h))/2) • f'' w w) (Icc 0 1) t, { convert H using 2, simp only [one_mul, nat.cast_bit0, pow_one, nat.cast_one], ring }, apply_rules [has_deriv_at.has_deriv_within_at, has_deriv_at.smul_const, has_deriv_at_id', has_deriv_at.pow] } }, -- check that `g'` is uniformly bounded, with a suitable bound `ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2`. have g'_bound : ∀ t ∈ Ico (0 : ℝ) 1, ∥g' t∥ ≤ ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2, { assume t ht, have I : ∥h • v + (t * h) • w∥ ≤ h * (∥v∥ + ∥w∥) := calc ∥h • v + (t * h) • w∥ ≤ ∥h • v∥ + ∥(t * h) • w∥ : norm_add_le _ _ ... = h * ∥v∥ + t * (h * ∥w∥) : by simp only [norm_smul, real.norm_eq_abs, hpos.le, abs_of_nonneg, abs_mul, ht.left, mul_assoc] ... ≤ h * ∥v∥ + 1 * (h * ∥w∥) : add_le_add (le_refl _) (mul_le_mul_of_nonneg_right ht.2.le (mul_nonneg hpos.le (norm_nonneg _))) ... = h * (∥v∥ + ∥w∥) : by ring, calc ∥g' t∥ = ∥(f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)) (h • w)∥ : begin rw hg', have : h * (t * h) = t * (h * h), by ring, simp only [continuous_linear_map.coe_sub', continuous_linear_map.map_add, pow_two, continuous_linear_map.add_apply, pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub, continuous_linear_map.coe_smul', pi.sub_apply, continuous_linear_map.map_smul, this] end ... ≤ ∥f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)∥ * ∥h • w∥ : continuous_linear_map.le_op_norm _ _ ... ≤ (ε * ∥h • v + (t * h) • w∥) * (∥h • w∥) : begin apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), have H : x + h • v + (t * h) • w ∈ metric.ball x δ ∩ interior s, { refine ⟨_, xt_mem t ⟨ht.1, ht.2.le⟩⟩, rw [add_assoc, add_mem_ball_iff_norm], exact I.trans_lt hδ }, have := sδ H, simp only [mem_set_of_eq] at this, convert this; abel end ... ≤ (ε * (∥h • v∥ + ∥h • w∥)) * (∥h • w∥) : begin apply mul_le_mul_of_nonneg_right _ (norm_nonneg _), apply mul_le_mul_of_nonneg_left _ (εpos.le), apply (norm_add_le _ _).trans, refine add_le_add (le_refl _) _, simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, ht.1, hpos.le, mul_assoc], exact mul_le_of_le_one_left (mul_nonneg hpos.le (norm_nonneg _)) ht.2.le, end ... = ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2 : by { simp only [norm_smul, real.norm_eq_abs, abs_mul, abs_of_nonneg, hpos.le], ring } }, -- conclude using the mean value inequality have I : ∥g 1 - g 0∥ ≤ ε * ((∥v∥ + ∥w∥) * ∥w∥) * h^2, by simpa only [mul_one, sub_zero] using norm_image_sub_le_of_norm_deriv_le_segment' g_deriv g'_bound 1 (right_mem_Icc.2 zero_le_one), convert I using 1, { congr' 1, dsimp only [g], simp only [nat.one_ne_zero, add_zero, one_mul, zero_div, zero_mul, sub_zero, zero_smul, ne.def, not_false_iff, bit0_eq_zero, zero_pow'], abel }, { simp only [real.norm_eq_abs, abs_mul, add_nonneg (norm_nonneg v) (norm_nonneg w), abs_of_nonneg, mul_assoc, pow_bit0_abs, norm_nonneg, abs_pow] } end /-- One can get `f'' v w` as the limit of `h ^ (-2)` times the alternate sum of the values of `f` along the vertices of a quadrilateral with sides `h v` and `h w` based at `x`. In a setting where `f` is not guaranteed to be continuous at `f`, we can still get this if we use a quadrilateral based at `h v + h w`. -/ lemma convex.is_o_alternate_sum_square {v w : E} (h4v : x + (4 : ℝ) • v ∈ interior s) (h4w : x + (4 : ℝ) • w ∈ interior s) : is_o (λ (h : ℝ), f (x + h • (2 • v + 2 • w)) + f (x + h • (v + w)) - f (x + h • (2 • v + w)) - f (x + h • (v + 2 • w)) - h^2 • f'' v w) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0) := begin have A : (1 : ℝ)/2 ∈ Ioc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩, have B : (1 : ℝ)/2 ∈ Icc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩, have C : ∀ (w : E), (2 : ℝ) • w = 2 • w := λ w, by simp only [two_smul], have h2v2w : x + (2 : ℝ) • v + (2 : ℝ) • w ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1, simp only [smul_sub, smul_smul, one_div, add_sub_add_left_eq_sub, mul_add, add_smul], norm_num, simp only [show (4 : ℝ) = (2 : ℝ) + (2 : ℝ), by norm_num, add_smul], abel }, have h2vww : x + (2 • v + w) + w ∈ interior s, { convert h2v2w using 1, simp only [two_smul], abel }, have h2v : x + (2 : ℝ) • v ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h4v A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], norm_num }, have h2w : x + (2 : ℝ) • w ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h4w A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj], norm_num }, have hvw : x + (v + w) ∈ interior s, { convert s_conv.add_smul_sub_mem_interior xs h2v2w A using 1, simp only [smul_smul, one_div, add_sub_cancel', add_right_inj, smul_add, smul_sub], norm_num, abel }, have h2vw : x + (2 • v + w) ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h2v h2v2w B using 1, simp only [smul_add, smul_sub, smul_smul, ← C], norm_num, abel }, have hvww : x + (v + w) + w ∈ interior s, { convert s_conv.interior.add_smul_sub_mem h2w h2v2w B using 1, simp only [one_div, add_sub_cancel', inv_smul_smul', add_sub_add_right_eq_sub, ne.def, not_false_iff, bit0_eq_zero, one_ne_zero], rw two_smul, abel }, have TA1 := s_conv.taylor_approx_two_segment hf xs hx h2vw h2vww, have TA2 := s_conv.taylor_approx_two_segment hf xs hx hvw hvww, convert TA1.sub TA2, ext h, simp only [two_smul, smul_add, ← add_assoc, continuous_linear_map.map_add, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', continuous_linear_map.map_smul], abel, end /-- Assume that `f` is differentiable inside a convex set `s`, and that its derivative `f'` is differentiable at a point `x`. Then, given two vectors `v` and `w` pointing inside `s`, one has `f'' v w = f'' w v`. Superseded by `convex.second_derivative_within_at_symmetric`, which removes the assumption that `v` and `w` point inside `s`. -/ lemma convex.second_derivative_within_at_symmetric_of_mem_interior {v w : E} (h4v : x + (4 : ℝ) • v ∈ interior s) (h4w : x + (4 : ℝ) • w ∈ interior s) : f'' w v = f'' v w := begin have A : is_o (λ (h : ℝ), h^2 • (f'' w v- f'' v w)) (λ h, h^2) (𝓝[Ioi (0 : ℝ)] 0), { convert (s_conv.is_o_alternate_sum_square hf xs hx h4v h4w).sub (s_conv.is_o_alternate_sum_square hf xs hx h4w h4v), ext h, simp only [add_comm, smul_add, smul_sub], abel }, have B : is_o (λ (h : ℝ), f'' w v - f'' v w) (λ h, (1 : ℝ)) (𝓝[Ioi (0 : ℝ)] 0), { have : is_O (λ (h : ℝ), 1/h^2) (λ h, 1/h^2) (𝓝[Ioi (0 : ℝ)] 0) := is_O_refl _ _, have C := this.smul_is_o A, apply C.congr' _ _, { filter_upwards [self_mem_nhds_within], assume h hpos, rw [← one_smul ℝ (f'' w v - f'' v w), smul_smul, smul_smul], congr' 1, field_simp [has_lt.lt.ne' hpos] }, { filter_upwards [self_mem_nhds_within], assume h hpos, field_simp [has_lt.lt.ne' hpos, has_scalar.smul] } }, simpa only [sub_eq_zero] using (is_o_const_const_iff (@one_ne_zero ℝ _ _)).1 B, end omit s_conv xs hx hf /-- If a function is differentiable inside a convex set with nonempty interior, and has a second derivative at a point of this convex set, then this second derivative is symmetric. -/ theorem convex.second_derivative_within_at_symmetric {s : set E} (s_conv : convex s) (hne : (interior s).nonempty) {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ x ∈ interior s, has_fderiv_at f (f' x) x) {x : E} (xs : x ∈ s) (hx : has_fderiv_within_at f' f'' (interior s) x) (v w : E) : f'' v w = f'' w v := begin /- we work around a point `x + 4 z` in the interior of `s`. For any vector `m`, then `x + 4 (z + t m)` also belongs to the interior of `s` for small enough `t`. This means that we will be able to apply `second_derivative_within_at_symmetric_of_mem_interior` to show that `f''` is symmetric, after cancelling all the contributions due to `z`. -/ rcases hne with ⟨y, hy⟩, obtain ⟨z, hz⟩ : ∃ z, z = ((1:ℝ) / 4) • (y - x) := ⟨((1:ℝ) / 4) • (y - x), rfl⟩, have A : ∀ (m : E), filter.tendsto (λ (t : ℝ), x + (4 : ℝ) • (z + t • m)) (𝓝 0) (𝓝 y), { assume m, have : x + (4 : ℝ) • (z + (0 : ℝ) • m) = y, by simp [hz], rw ← this, refine tendsto_const_nhds.add _, refine tendsto_const_nhds.smul _, refine tendsto_const_nhds.add _, exact continuous_at_id.smul continuous_at_const }, have B : ∀ (m : E), ∀ᶠ t in 𝓝[Ioi (0 : ℝ)] (0 : ℝ), x + (4 : ℝ) • (z + t • m) ∈ interior s, { assume m, apply nhds_within_le_nhds, apply A m, rw [mem_interior_iff_mem_nhds] at hy, exact interior_mem_nhds.2 hy }, -- we choose `t m > 0` such that `x + 4 (z + (t m) m)` belongs to the interior of `s`, for any -- vector `m`. choose t ts tpos using λ m, ((B m).and self_mem_nhds_within).exists, -- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z` -- and `z + (t m) m`, we deduce that `f'' m z = f'' z m` for all `m`. have C : ∀ (m : E), f'' m z = f'' z m, { assume m, have : f'' (z + t m • m) (z + t 0 • 0) = f'' (z + t 0 • 0) (z + t m • m) := s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts 0) (ts m), simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, add_right_inj, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', add_zero, continuous_linear_map.zero_apply, smul_zero, continuous_linear_map.map_zero] at this, exact smul_right_injective F (tpos m).ne' this }, -- applying `second_derivative_within_at_symmetric_of_mem_interior` to the vectors `z + (t v) v` -- and `z + (t w) w`, we deduce that `f'' v w = f'' w v`. Cross terms involving `z` can be -- eliminated thanks to the fact proved above that `f'' m z = f'' z m`. have : f'' (z + t v • v) (z + t w • w) = f'' (z + t w • w) (z + t v • v) := s_conv.second_derivative_within_at_symmetric_of_mem_interior hf xs hx (ts w) (ts v), simp only [continuous_linear_map.map_add, continuous_linear_map.map_smul, smul_add, smul_smul, continuous_linear_map.add_apply, pi.smul_apply, continuous_linear_map.coe_smul', C] at this, rw ← sub_eq_zero at this, abel at this, simp only [one_gsmul, neg_smul, sub_eq_zero, mul_comm, ← sub_eq_add_neg] at this, apply smul_right_injective F _ this, simp [(tpos v).ne', (tpos w).ne'] end /-- If a function is differentiable around `x`, and has two derivatives at `x`, then the second derivative is symmetric. -/ theorem second_derivative_symmetric_of_eventually {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ᶠ y in 𝓝 x, has_fderiv_at f (f' y) y) (hx : has_fderiv_at f' f'' x) (v w : E) : f'' v w = f'' w v := begin rcases metric.mem_nhds_iff.1 hf with ⟨ε, εpos, hε⟩, have A : (interior (metric.ball x ε)).nonempty, by rwa [metric.is_open_ball.interior_eq, metric.nonempty_ball], exact convex.second_derivative_within_at_symmetric (convex_ball x ε) A (λ y hy, hε (interior_subset hy)) (metric.mem_ball_self εpos) hx.has_fderiv_within_at v w, end /-- If a function is differentiable, and has two derivatives at `x`, then the second derivative is symmetric. -/ theorem second_derivative_symmetric {f : E → F} {f' : E → (E →L[ℝ] F)} {f'' : E →L[ℝ] (E →L[ℝ] F)} (hf : ∀ y, has_fderiv_at f (f' y) y) (hx : has_fderiv_at f' f'' x) (v w : E) : f'' v w = f'' w v := second_derivative_symmetric_of_eventually (filter.eventually_of_forall hf) hx v w
bc5c61f70f4075efeef4efb6091a955a49205988
626e312b5c1cb2d88fca108f5933076012633192
/src/measure_theory/measure/regular.lean
02d4f189d66c18c8dd990f0452b1bdc5d00a9a4f
[ "Apache-2.0" ]
permissive
Bioye97/mathlib
9db2f9ee54418d29dd06996279ba9dc874fd6beb
782a20a27ee83b523f801ff34efb1a9557085019
refs/heads/master
1,690,305,956,488
1,631,067,774,000
1,631,067,774,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
37,443
lean
/- Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris Van Doorn -/ import measure_theory.constructions.borel_space /-! # Regular measures A measure is `regular` if it satisfies the following properties: * it is finite on compact sets; * it is outer regular for measurable sets with respect to open sets: the measure of any measurable set `A` is the infimum of `μ U` over all open sets `U` containing `A`; * it is inner regular for open sets with respect to compacts sets: the measure of any open set `U` is the supremum of `μ K` over all compact sets `K` contained in `U`. A measure is `weakly_regular` if it satisfies the following properties: * it is outer regular for measurable sets with respect to open sets: the measure of any measurable set `A` is the infimum of `μ U` over all open sets `U` containing `A`; * it is inner regular for open sets with respect to closed sets: the measure of any open set `U` is the supremum of `μ F` over all compact sets `F` contained in `U`. Regularity implies weak regularity. Both these conditions are registered as typeclasses for a measure `μ`, and this implication is recorded as an instance. These conditions imply inner regularity for all measurable sets of finite measure (with respect to compact sets or closed sets respectively), but in general not for all sets. For a counterexample, consider the group `ℝ × ℝ` where the first factor has the discrete topology and the second one the usual topology. It is a locally compact Hausdorff topological group, with Haar measure equal to Lebesgue measure on each vertical fiber. The set `ℝ × {0}` has infinite measure (by outer regularity), but any compact set it contains has zero measure (as it is finite). Several authors require as a definition of regularity that all measurable sets are inner regular. We have opted for the slightly weaker definition above as it holds for all Haar measures, it is enough for essentially all applications, and it is equivalent to the other definition when the measure is finite. The interest of the notion of weak regularity is that it is enough for many applications, and it is automatically satisfied by any finite measure on a metric space. ## Main definitions and results * `regular μ`: a typeclass registering that a measure `μ` on a topological space is regular. * `measurable_set.measure_eq_infi_is_open'` asserts that, when `μ` is regular, the measure of a measurable set is the infimum of the measure of open sets containing it. The unprimed version is reserved for weakly regular measures, as it should apply most of the time. Such open sets with suitable measures can be constructed with `measurable_set.exists_is_open_lt_of_lt'`. * `is_open.measure_eq_supr_is_compact` asserts that the measure of an open set is the supremum of the measure of compact sets it contains. Such a compact set with suitable measure can be constructed with `is_open.exists_lt_is_compact`. * `measurable_set.measure_eq_supr_is_compact_of_lt_top` asserts that the measure of a measurable set of finite measure is the supremum of the measure of compact sets it contains. Such a compact set with suitable measure can be constructed with `measurable_set.exists_lt_is_compact_of_lt_top` or `measurable_set.exists_lt_is_compact_of_lt_top_of_pos`. * `regular.of_sigma_compact_space_of_is_locally_finite_measure` is an instance registering that a locally finite measure on a locally compact metric space is regular (in fact, an emetric space is enough). * `weakly_regular μ`: a typeclass registering that a measure `μ` on a topological space is weakly regular. * `measurable_set.measure_eq_infi_is_open`, `measurable_set.exists_is_open_lt_of_lt`, `is_open.measure_eq_supr_is_closed`, `is_open.exists_lt_is_closed`, `measurable_set.measure_eq_supr_is_closed_of_lt_top`, `measurable_set.exists_lt_is_closed_of_lt_top` and `measurable_set.exists_lt_is_closed_of_lt_top_of_pos` state the corresponding properties for weakly regular measures. * `weakly_regular.of_pseudo_emetric_space_of_is_finite_measure` is an instance registering that a finite measure on a metric space is weakly regular (in fact, a pseudo emetric space is enough). ## Implementation notes The main nontrivial statement is `weakly_regular.exists_closed_subset_self_subset_open`, expressing that in a finite measure space, if every open set can be approximated from inside by closed sets, then any measurable set can be approximated from inside by closed sets and from outside by open sets. This statement is proved by measurable induction, starting from open sets and checking that it is stable by taking complements (this is the point of this condition, being symmetrical between inside and outside) and countable disjoint unions. Once this statement is proved, one deduces results for general measures from this statement, by restricting them to finite measure sets (and proving that this restriction is weakly regular, using again the same statement). ## References [Halmos, Measure Theory, §52][halmos1950measure]. Note that Halmos uses an unusual definition of Borel sets (for him, they are elements of the `σ`-algebra generated by compact sets!), so his proofs or statements do not apply directly. [Billingsley, Convergence of Probability Measures][billingsley1999] -/ open set filter open_locale ennreal topological_space nnreal big_operators namespace measure_theory namespace measure variables {α β : Type*} [measurable_space α] [topological_space α] {μ : measure α} /-- A measure `μ` is regular if - it is finite on all compact sets; - it is outer regular: `μ(A) = inf {μ(U) | A ⊆ U open}` for `A` measurable; - it is inner regular for open sets, using compact sets: `μ(U) = sup {μ(K) | K ⊆ U compact}` for `U` open. -/ class regular (μ : measure α) : Prop := (lt_top_of_is_compact : ∀ ⦃K : set α⦄, is_compact K → μ K < ∞) (outer_regular : ∀ ⦃A : set α⦄, measurable_set A → (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) ≤ μ A) (inner_regular : ∀ ⦃U : set α⦄, is_open U → μ U ≤ ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K) /-- A measure `μ` is weakly regular if - it is outer regular: `μ(A) = inf { μ(U) | A ⊆ U open }` for `A` measurable; - it is inner regular for open sets, using closed sets: `μ(U) = sup {μ(F) | F ⊆ U compact}` for `U` open. -/ class weakly_regular (μ : measure α) : Prop := (outer_regular : ∀ ⦃A : set α⦄, measurable_set A → (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) ≤ μ A) (inner_regular : ∀ ⦃U : set α⦄, is_open U → μ U ≤ ⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ U), μ F) /-- A regular measure is weakly regular. -/ @[priority 100] -- see Note [lower instance priority] instance regular.weakly_regular [t2_space α] [regular μ] : weakly_regular μ := { outer_regular := regular.outer_regular, inner_regular := λ U hU, calc μ U ≤ ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K : regular.inner_regular hU ... ≤ ⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ U), μ F : by { simp only [supr_and'], exact bsupr_le_bsupr' (λ i hi, ⟨hi.1.is_closed, hi.2⟩) } } namespace regular /-- The measure of a measurable set is the infimum of the measures of open sets containing it. The unprimed version is reserved for weakly regular measures, as regular measures are automatically weakly regular most of the time. -/ lemma _root_.measurable_set.measure_eq_infi_is_open' ⦃A : set α⦄ (hA : measurable_set A) (μ : measure α) [regular μ] : μ A = (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) := le_antisymm (le_infi $ λ s, le_infi $ λ hs, le_infi $ λ h2s, μ.mono h2s) (regular.outer_regular hA) /-- Given `r` larger than the measure of a measurable set `A`, there exists an open superset of `A` with measure `< r`. The unprimed version is reserved for weakly regular measures, as regular measures are automatically weakly regular most of the time. -/ lemma _root_.measurable_set.exists_is_open_lt_of_lt' [regular μ] ⦃A : set α⦄ (hA : measurable_set A) (r : ℝ≥0∞) (hr : μ A < r) : ∃ U, is_open U ∧ A ⊆ U ∧ μ U < r := begin rw hA.measure_eq_infi_is_open' μ at hr, simpa only [infi_lt_iff, exists_prop] using hr end /-- The measure of an open set is the supremum of the measures of compact sets it contains. -/ lemma _root_.is_open.measure_eq_supr_is_compact ⦃U : set α⦄ (hU : is_open U) (μ : measure α) [regular μ] : μ U = (⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K) := le_antisymm (regular.inner_regular hU) (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s) lemma _root_.is_open.exists_lt_is_compact [regular μ] ⦃U : set α⦄ (hU : is_open U) {r : ℝ≥0∞} (hr : r < μ U) : ∃ K, is_compact K ∧ K ⊆ U ∧ r < μ K := begin rw hU.measure_eq_supr_is_compact at hr, simpa only [lt_supr_iff, exists_prop] using hr, end lemma exists_compact_not_null [regular μ] : (∃ K, is_compact K ∧ μ K ≠ 0) ↔ μ ≠ 0 := by simp_rw [ne.def, ← measure_univ_eq_zero, is_open_univ.measure_eq_supr_is_compact, ennreal.supr_eq_zero, not_forall, exists_prop, subset_univ, true_and] protected lemma map [opens_measurable_space α] [measurable_space β] [topological_space β] [t2_space β] [borel_space β] [regular μ] (f : α ≃ₜ β) : (measure.map f μ).regular := begin have hf := f.measurable, have h2f := f.to_equiv.injective.preimage_surjective, have h3f := f.to_equiv.surjective, split, { intros K hK, rw [map_apply hf hK.measurable_set], apply regular.lt_top_of_is_compact, rwa f.compact_preimage }, { intros A hA, rw [map_apply hf hA, (hf hA).measure_eq_infi_is_open'], refine le_of_eq _, apply infi_congr (preimage f) h2f, intro U, apply infi_congr_Prop f.is_open_preimage, intro hU, apply infi_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U, rw [map_apply hf hU.measurable_set], }, { intros U hU, rw [map_apply hf hU.measurable_set, (hU.preimage f.continuous).measure_eq_supr_is_compact], refine ge_of_eq _, apply supr_congr (preimage f) h2f, intro K, apply supr_congr_Prop f.compact_preimage, intro hK, apply supr_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U, rw [map_apply hf hK.measurable_set] } end protected lemma smul [regular μ] {x : ℝ≥0∞} (hx : x < ∞) : (x • μ).regular := begin split, { intros K hK, exact ennreal.mul_lt_top hx (regular.lt_top_of_is_compact hK) }, { intros A hA, rw [coe_smul], refine le_trans _ (ennreal.mul_left_mono $ regular.outer_regular hA), simp only [infi_and'], simp only [infi_subtype'], haveI : nonempty {s : set α // is_open s ∧ A ⊆ s} := ⟨⟨set.univ, is_open_univ, subset_univ _⟩⟩, rw [ennreal.mul_infi], refl', exact ne_of_lt hx }, { intros U hU, rw [coe_smul], refine le_trans (ennreal.mul_left_mono $ regular.inner_regular hU) _, simp only [supr_and'], simp only [supr_subtype'], rw [ennreal.mul_supr], refl' } end /-- A regular measure in a σ-compact space is σ-finite. -/ @[priority 100] -- see Note [lower instance priority] instance sigma_finite [opens_measurable_space α] [t2_space α] [sigma_compact_space α] [regular μ] : sigma_finite μ := ⟨⟨{ set := compact_covering α, set_mem := λ n, (is_compact_compact_covering α n).measurable_set, finite := λ n, regular.lt_top_of_is_compact $ is_compact_compact_covering α n, spanning := Union_compact_covering α }⟩⟩ end regular namespace weakly_regular lemma _root_.measurable_set.measure_eq_infi_is_open ⦃A : set α⦄ (hA : measurable_set A) (μ : measure α) [weakly_regular μ] : μ A = (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) := le_antisymm (le_infi $ λ s, le_infi $ λ hs, le_infi $ λ h2s, μ.mono h2s) (weakly_regular.outer_regular hA) lemma _root_.measurable_set.exists_is_open_lt_of_lt [weakly_regular μ] ⦃A : set α⦄ (hA : measurable_set A) (r : ℝ≥0∞) (hr : μ A < r) : ∃ U, is_open U ∧ A ⊆ U ∧ μ U < r := begin rw hA.measure_eq_infi_is_open μ at hr, simpa only [infi_lt_iff, exists_prop] using hr end lemma _root_.is_open.measure_eq_supr_is_closed ⦃U : set α⦄ (hU : is_open U) (μ : measure α) [weakly_regular μ] : μ U = (⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ U), μ F) := le_antisymm (weakly_regular.inner_regular hU) (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s) lemma _root_.is_open.exists_lt_is_closed_of_gt [weakly_regular μ] ⦃U : set α⦄ (hU : is_open U) (r : ℝ≥0∞) (hr : r < μ U) : ∃ F, is_closed F ∧ F ⊆ U ∧ r < μ F := begin rw hU.measure_eq_supr_is_closed at hr, simpa only [lt_supr_iff, exists_prop] using hr, end /-- Given a weakly regular measure, any finite measure set is contained in a finite measure open set.-/ lemma exists_subset_is_open_measure_lt_top [weakly_regular μ] {A : set α} (h'A : μ A < ∞) : ∃ U, is_open U ∧ A ⊆ U ∧ μ U < ∞ := begin rcases exists_measurable_superset μ A with ⟨B, AB, B_meas, μB⟩, rw ← μB at h'A, have : (⨅ (U : set α) (h : is_open U) (h2 : B ⊆ U), μ U) < μ B + 1, { refine lt_of_le_of_lt (weakly_regular.outer_regular B_meas) _, simpa only [add_zero] using (ennreal.add_lt_add_iff_left h'A).mpr ennreal.zero_lt_one }, simp only [infi_lt_iff] at this, rcases this with ⟨U, U_open, BU, hU⟩, exact ⟨U, U_open, subset.trans AB BU, hU.trans (ennreal.add_lt_top.2 ⟨h'A, ennreal.one_lt_top⟩)⟩ end /-- In a finite measure space, assume that any open set can be approximated from inside by closed sets. Then any measurable set can be approximated from inside by closed sets, and from outside by open sets. -/ lemma exists_closed_subset_self_subset_open_of_pos [borel_space α] (μ : measure α) [is_finite_measure μ] (h0 : ∀ (U : set α), is_open U → μ U ≤ ⨆ (F : set α) (hF : is_closed F) (FU : F ⊆ U), μ F) : ∀ ⦃s : set α⦄ (hs : measurable_set s), ∀ ε > 0, (∃ (U : set α), is_open U ∧ s ⊆ U ∧ μ U ≤ μ s + ε) ∧ (∃ (F : set α), is_closed F ∧ F ⊆ s ∧ μ s ≤ μ F + ε) := begin refine measurable_space.induction_on_inter borel_space.measurable_eq is_pi_system_is_open _ _ _ _, /- The proof is by measurable induction: we should check that the property is true for the empty set, for open sets, and is stable by taking the complement and by taking countable disjoint unions. The point of the property we are proving is that it is stable by taking complements (exchanging the roles of closed and open sets and thanks to the finiteness of the measure). -/ -- check for empty set { assume ε hε, exact ⟨⟨∅, is_open_empty, subset.refl _, by simp only [measure_empty, zero_le]⟩, ⟨∅, is_closed_empty, subset.refl _, by simp only [measure_empty, zero_le]⟩⟩ }, -- check for open sets. This is essentially our assumption `h0`. { assume U hU ε hε, refine ⟨⟨U, hU, subset.refl _, le_self_add⟩, _⟩, have : μ U + ε ≤ ⨆ (F : set α) (hF : is_closed F) (FU : F ⊆ U), (μ F + ε), { haveI : nonempty {i // is_closed i ∧ i ⊆ U} := ⟨⟨∅, is_closed_empty, empty_subset _⟩⟩, simp_rw [supr_and', supr_subtype', ← ennreal.supr_add], refine add_le_add _ (le_refl _), convert h0 U hU using 1, simp_rw [supr_and', supr_subtype'], }, have : μ U < (⨆ (F : set α) (hF : is_closed F) (FU : F ⊆ U), (μ F + ε)), { apply lt_of_lt_of_le _ this, simpa using (ennreal.add_lt_add_iff_left (measure_lt_top μ U)).2 hε }, simp only [lt_supr_iff] at this, rcases this with ⟨F, F_closed, FU, μF⟩, exact ⟨F, F_closed, FU, μF.le⟩ }, -- check for complements { assume s hs h ε εpos, rcases h ε εpos with ⟨⟨U, U_open, U_subset, nu_U⟩, ⟨F, F_closed, F_subset, nu_F⟩⟩, refine ⟨⟨Fᶜ, is_open_compl_iff.2 F_closed, compl_subset_compl.2 F_subset, _⟩, ⟨Uᶜ, is_closed_compl_iff.2 U_open, compl_subset_compl.2 U_subset, _⟩⟩, { apply ennreal.le_of_add_le_add_left (measure_lt_top μ F), calc μ F + μ Fᶜ = μ s + μ sᶜ : by rw [measure_add_measure_compl hs, measure_add_measure_compl F_closed.measurable_set] ... ≤ (μ F + ε) + μ sᶜ : add_le_add nu_F (le_refl _) ... = μ F + (μ sᶜ + ε) : by abel }, { apply ennreal.le_of_add_le_add_left (measure_lt_top μ s), calc μ s + μ sᶜ = μ U + μ Uᶜ : by rw [measure_add_measure_compl hs, measure_add_measure_compl U_open.measurable_set] ... ≤ (μ s + ε) + μ Uᶜ : add_le_add nu_U (le_refl _) ... = μ s + (μ Uᶜ + ε) : by abel } }, -- check for disjoint unions { assume s s_disj s_meas hs ε εpos, split, -- the approximating open set is constructed by taking for each `s n` an approximating open set -- `U n` with measure at most `μ (s n) + δ n` for a summable `δ`, and taking the union of these. { rcases ennreal.exists_pos_sum_of_encodable' εpos ℕ with ⟨δ, δpos, hδ⟩, have : ∀ n, ∃ (U : set α), is_open U ∧ s n ⊆ U ∧ μ U ≤ μ (s n) + δ n := λ n, (hs n _ (δpos n).gt).1, choose U hU using this, refine ⟨(⋃ n, U n), is_open_Union (λ n, (hU n).1), Union_subset_Union (λ n, (hU n).2.1), _⟩, calc μ (⋃ (n : ℕ), U n) ≤ ∑' n, μ (U n) : measure_Union_le _ ... ≤ ∑' n, (μ (s n) + δ n) : ennreal.tsum_le_tsum (λ n, (hU n).2.2) ... ≤ μ (⋃ (i : ℕ), s i) + ε : begin rw [ennreal.tsum_add], refine add_le_add (le_of_eq _) hδ.le, exact (measure_Union s_disj s_meas).symm, end }, -- the approximating closed set is constructed by considering finitely many sets `s i`, which -- cover all the measure up to `ε/2`, approximating each of these by a closed set `F i`, and -- taking the union of these (finitely many) `F i`. { set δ := ε / 2 with hδ, have δpos : 0 < δ := ennreal.half_pos εpos, have L : tendsto (λ n, ∑ i in finset.range n, μ (s i) + δ) at_top (𝓝 (μ (⋃ i, s i) + δ)), { rw measure_Union s_disj s_meas, refine tendsto.add (ennreal.tendsto_nat_tsum _) tendsto_const_nhds }, have nu_lt : μ (⋃ i, s i) < μ (⋃ i, s i) + δ, by simpa only [add_zero] using (ennreal.add_lt_add_iff_left (measure_lt_top μ _)).mpr δpos, obtain ⟨n, hn, npos⟩ : ∃ n, (μ (⋃ (i : ℕ), s i) < ∑ (i : ℕ) in finset.range n, μ (s i) + δ) ∧ (0 < n) := (((tendsto_order.1 L).1 _ nu_lt).and (eventually_gt_at_top 0)).exists, have : ∀ i, ∃ (F : set α), is_closed F ∧ F ⊆ s i ∧ μ (s i) ≤ μ F + δ / n := λ i, (hs i _ (ennreal.div_pos_iff.2 ⟨ne_of_gt δpos, ennreal.nat_ne_top n⟩)).2, choose F hF using this, have F_disj: pairwise (disjoint on F) := s_disj.mono (λ i j hij, disjoint.mono (hF i).2.1 (hF j).2.1 hij), refine ⟨⋃ i ∈ finset.range n, F i, _, _, _⟩, { exact is_closed_bUnion (by simpa using finite_lt_nat n) (λ i hi, (hF i).1) }, { assume x hx, simp only [exists_prop, mem_Union, finset.mem_range] at hx, rcases hx with ⟨i, i_lt, hi⟩, simp only [mem_Union], exact ⟨i, (hF i).2.1 hi⟩ }, { calc μ (⋃ (i : ℕ), s i) ≤ ∑ (i : ℕ) in finset.range n, μ (s i) + δ : hn.le ... ≤ (∑ (i : ℕ) in finset.range n, (μ (F i) + δ / n)) + δ : add_le_add (finset.sum_le_sum (λ i hi, (hF i).2.2)) (le_refl _) ... = μ (⋃ i ∈ finset.range n, F i) + ε : begin simp only [finset.sum_add_distrib, finset.sum_const, nsmul_eq_mul, finset.card_range], rw [ennreal.mul_div_cancel' _ (ennreal.nat_ne_top n), measure_bUnion_finset (F_disj.pairwise_on _) (λ i hi, (hF i).1.measurable_set), hδ, add_assoc, ennreal.add_halves], simpa only [ne.def, nat.cast_eq_zero] using ne_of_gt npos end } } } end /-- In a finite measure space, if every open set can be approximated from inside by closed sets, then the measure is weakly regular -/ theorem weakly_regular_of_inner_regular_of_is_finite_measure [borel_space α] (μ : measure α) [is_finite_measure μ] (h0 : ∀ (U : set α), is_open U → μ U ≤ ⨆ (F : set α) (hF : is_closed F) (FU : F ⊆ U), μ F) : weakly_regular μ := { outer_regular := begin assume s hs, apply ennreal.le_of_forall_pos_le_add (λ ε εpos h, le_of_lt _), rcases exists_between (ennreal.coe_lt_coe.2 εpos) with ⟨δ, δpos, δε⟩, simp only [infi_lt_iff], rcases (exists_closed_subset_self_subset_open_of_pos μ h0 hs δ δpos).1 with ⟨U, U_open, sU, μU⟩, refine ⟨U, U_open, sU, μU.trans_lt _⟩, rwa ennreal.add_lt_add_iff_left (measure_lt_top μ s), end, inner_regular := h0 } /-- The restriction of a weakly regular measure to an open set of finite measure is weakly regular. Superseded by `restrict_of_measurable_set`, proving the same statement for measurable sets instead of open sets. -/ lemma restrict_of_is_open [borel_space α] [weakly_regular μ] (U : set α) (hU : is_open U) (h'U : μ U < ∞) : weakly_regular (μ.restrict U) := begin haveI : fact (μ U < ∞) := ⟨h'U⟩, refine weakly_regular_of_inner_regular_of_is_finite_measure _ (λ V V_open, _), simp only [restrict_apply' hU.measurable_set], refine le_trans (weakly_regular.inner_regular (V_open.inter hU)) _, simp only [and_imp, supr_le_iff, subset_inter_iff], assume F F_closed FV FU, have : F = F ∩ U := subset.antisymm (by simp [subset.refl, FU]) (inter_subset_left _ _), conv_lhs {rw this}, simp_rw [supr_and', supr_subtype'], exact le_supr (λ s : {s // is_closed s ∧ s ⊆ V}, μ (s ∩ U)) ⟨F, F_closed, FV⟩, end /-- Given a weakly regular measure of finite mass, any measurable set can be approximated from inside by closed sets. -/ lemma _root_.measurable_set.measure_eq_supr_is_closed_of_is_finite_measure [borel_space α] (μ : measure α) [is_finite_measure μ] [weakly_regular μ] ⦃A : set α⦄ (hA : measurable_set A) : μ A = (⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ A), μ F) := begin refine le_antisymm _ (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s), apply ennreal.le_of_forall_pos_le_add (λ ε εpos h, le_of_lt _), rcases exists_between (ennreal.coe_lt_coe.2 εpos) with ⟨δ, δpos, δε⟩, haveI : nonempty {F // is_closed F ∧ F ⊆ A} := ⟨⟨∅, is_closed_empty, empty_subset _⟩⟩, simp_rw [supr_and', supr_subtype', ennreal.supr_add], simp only [lt_supr_iff], rcases (exists_closed_subset_self_subset_open_of_pos μ weakly_regular.inner_regular hA δ δpos).2 with ⟨F, F_closed, sF, μF⟩, refine ⟨⟨F, F_closed, sF⟩, μF.trans_lt _⟩, exact (ennreal.add_lt_add_iff_left (measure_lt_top μ F)).2 δε, end /-- Given a weakly regular measure, any measurable set of finite mass can be approximated from inside by closed sets. -/ lemma _root_.measurable_set.measure_eq_supr_is_closed_of_lt_top [borel_space α] [weakly_regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) : μ A = (⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ A), μ F) := begin -- this is proved by restricting the measure to an open set of finite measure containing `A` -- (which exists by outer regularity) and using the result for finite measures applied to this -- restriction, as it is weakly regular thanks to `restrict_of_is_open`. refine le_antisymm _ (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s), obtain ⟨U, U_open, AU, μU⟩ : ∃ U, is_open U ∧ A ⊆ U ∧ μ U < ∞ := exists_subset_is_open_measure_lt_top h'A, haveI : fact (μ U < ∞) := ⟨μU⟩, haveI : weakly_regular (μ.restrict U) := restrict_of_is_open U U_open μU, calc μ A = (μ.restrict U) A : begin rw restrict_apply' U_open.measurable_set, congr' 1, exact subset.antisymm (subset_inter (subset.refl _) AU) (inter_subset_left _ _) end ... = (⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ A), (μ.restrict U) F) : hA.measure_eq_supr_is_closed_of_is_finite_measure _ ... ≤ ⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ A), μ F : begin refine supr_le_supr (λ F, _), refine supr_le_supr (λ F_closed, _), refine supr_le_supr (λ FA, _), rw restrict_apply' U_open.measurable_set, apply measure_mono (inter_subset_left _ _), end end lemma _root_.measurable_set.exists_lt_is_closed_of_lt_top [borel_space α] [weakly_regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) {r : ℝ≥0∞} (hr : r < μ A) : ∃ F, is_closed F ∧ F ⊆ A ∧ r < μ F := begin rw hA.measure_eq_supr_is_closed_of_lt_top h'A at hr, simpa only [lt_supr_iff, exists_prop] using hr, end lemma _root_.measurable_set.exists_lt_is_closed_of_lt_top_of_pos [borel_space α] [weakly_regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) {ε : ℝ≥0∞} (εpos : 0 < ε) : ∃ F, is_closed F ∧ F ⊆ A ∧ μ A < μ F + ε := begin have : μ A < ⨆ (F : set α) (h : is_closed F) (h2 : F ⊆ A), (μ F + ε), { haveI : nonempty {F // is_closed F ∧ F ⊆ A} := ⟨⟨∅, is_closed_empty, empty_subset _⟩⟩, simp_rw [hA.measure_eq_supr_is_closed_of_lt_top h'A, supr_and', supr_subtype', ← ennreal.supr_add], simpa only [add_zero, ennreal.coe_zero] using (ennreal.add_lt_add_iff_left _).mpr εpos, convert h'A, simp_rw [hA.measure_eq_supr_is_closed_of_lt_top h'A, supr_and', supr_subtype'] }, simpa only [lt_supr_iff, exists_prop], end /-- The restriction of a weakly regular measure to a measurable set of finite measure is weakly regular. -/ lemma restrict_of_measurable_set [borel_space α] [weakly_regular μ] (A : set α) (hA : measurable_set A) (h'A : μ A < ∞) : weakly_regular (μ.restrict A) := begin haveI : fact (μ A < ∞) := ⟨h'A⟩, refine weakly_regular_of_inner_regular_of_is_finite_measure _ (λ V V_open, _), simp only [restrict_apply' hA], rw (V_open.measurable_set.inter hA).measure_eq_supr_is_closed_of_lt_top, { simp only [and_imp, supr_le_iff, subset_inter_iff], assume F F_closed FV FU, have : F = F ∩ A := subset.antisymm (by simp [subset.refl, FU]) (inter_subset_left _ _), conv_lhs {rw this}, simp_rw [supr_and', supr_subtype'], exact le_supr (λ s : {s // is_closed s ∧ s ⊆ V}, μ (s ∩ A)) ⟨F, F_closed, FV⟩ }, { exact lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) h'A }, { apply_instance } end /-- In a metric space (or even a pseudo emetric space), an open set can be approximated from inside by closed sets. -/ lemma inner_regular_of_pseudo_emetric_space {X : Type*} [pseudo_emetric_space X] [measurable_space X] [borel_space X] (μ : measure X) (U : set X) (U_open : is_open U) : μ U ≤ ⨆ (F : set X) (hF : is_closed F) (FU : F ⊆ U), μ F := begin rcases U_open.exists_Union_is_closed with ⟨F, F_closed, F_subset, F_Union, F_mono⟩, conv_lhs { rw ← F_Union }, rw measure_Union_eq_supr (λ n, (F_closed n).measurable_set) F_mono.directed_le, simp only [supr_le_iff], assume n, simp_rw [supr_and', supr_subtype'], exact le_supr (λ s : {s // is_closed s ∧ s ⊆ U}, μ s) ⟨F n, F_closed n, F_subset n⟩, end /-- Any finite measure on a metric space (or even a pseudo emetric space) is weakly regular. -/ @[priority 100] -- see Note [lower instance priority] instance of_pseudo_emetric_space_of_is_finite_measure {X : Type*} [pseudo_emetric_space X] [measurable_space X] [borel_space X] (μ : measure X) [is_finite_measure μ] : weakly_regular μ := weakly_regular_of_inner_regular_of_is_finite_measure μ $ inner_regular_of_pseudo_emetric_space μ end weakly_regular namespace regular /-- Any locally finite measure on a sigma compact locally compact metric space is regular. -/ @[priority 100] -- see Note [lower instance priority] instance of_sigma_compact_space_of_is_locally_finite_measure {X : Type*} [emetric_space X] [sigma_compact_space X] [locally_compact_space X] [measurable_space X] [borel_space X] (μ : measure X) [is_locally_finite_measure μ] : regular μ := { lt_top_of_is_compact := λ K hK, hK.measure_lt_top, inner_regular := begin /- Given an open set, it can be approximated from inside by closed sets thanks to `inner_regular_of_pseudo_emetric_space`. Each such closed set `F` can be approximated by a compact set `B n ∩ F`, using a compact exhaustion `B n` of the space. -/ assume U U_open, refine (weakly_regular.inner_regular_of_pseudo_emetric_space μ U U_open).trans _, simp only [supr_le_iff], assume F F_closed FU, have B : compact_exhaustion X := default _, have : F = ⋃ n, B n ∩ F, by rw [← Union_inter, B.Union_eq, univ_inter], rw [this, measure_Union_eq_supr (λ n, (B.is_compact n).measurable_set.inter F_closed.measurable_set)], { simp_rw [supr_le_iff, supr_and', supr_subtype'], assume n, exact le_supr (λ K : {K // is_compact K ∧ K ⊆ U}, μ K) ⟨B n ∩ F, is_compact.inter_right (B.is_compact n) F_closed, subset.trans (inter_subset_right _ _) FU⟩ }, { apply (monotone_nat_of_le_succ (λ n, _)).directed_le, exact inter_subset_inter_left _ (B.subset_succ n) }, end, outer_regular := begin /- let `B n` be a compact exhaustion of the space, and let `C n = B n \ B (n-1)`. Consider a measurable set `A`. Then `A ∩ C n` is a set of finite measure, that can be approximated by an open set `U n` (by using the fact that the measure restricted to `B (n+1)` is finite, and therefore weakly regular). The union of the `U n` is an open set containing `A`, with measure arbitrarily close to that of `A`. -/ assume A hA, apply ennreal.le_of_forall_pos_le_add (λ ε εpos μA, le_of_lt _), rcases ennreal.exists_pos_sum_of_encodable' (ennreal.coe_pos.2 εpos) ℕ with ⟨δ, δpos, hδ⟩, have B : compact_exhaustion X := default _, let C := disjointed (λ n, B n), have C_meas : ∀ n, measurable_set (C n) := measurable_set.disjointed (λ n, (B.is_compact n).measurable_set), have A_eq : A = (⋃ n, A ∩ C n), by simp_rw [← inter_Union, C, Union_disjointed, compact_exhaustion.Union_eq, inter_univ], have μA_eq : μ A = ∑' n, μ (A ∩ C n), { conv_lhs { rw A_eq }, rw measure_Union, { assume m n hmn, exact disjoint.mono (inter_subset_right _ _) (inter_subset_right _ _) (disjoint_disjointed _ m n hmn), }, { exact (λ n, hA.inter (C_meas n)) } }, have : ∀ n, ∃ U, is_open U ∧ (A ∩ C n ⊆ U) ∧ (μ U ≤ μ (A ∩ C n) + δ n), { assume n, set ν := μ.restrict (B (n+1)) with hν, haveI : is_finite_measure ν := ⟨begin rw [restrict_apply measurable_set.univ, univ_inter], exact is_compact.measure_lt_top (B.is_compact _), end⟩, have : (⨅ (U : set X) (h : is_open U) (h2 : A ∩ C n ⊆ U), ν U) < ν (A ∩ C n) + δ n := begin refine (weakly_regular.outer_regular (hA.inter (C_meas n))).trans_lt _, simpa only [add_zero] using (ennreal.add_lt_add_iff_left (measure_lt_top ν _)).mpr (δpos n), end, simp only [infi_lt_iff] at this, rcases this with ⟨U, U_open, UA, νU⟩, refine ⟨U ∩ interior (B (n+1)), U_open.inter is_open_interior, _, _⟩, { simp only [UA, true_and, subset_inter_iff], refine (inter_subset_right _ _).trans _, exact (disjointed_subset _ n).trans (B.subset_interior_succ _) }, { simp only [hν, restrict_apply' (B.is_compact _).measurable_set] at νU, calc μ (U ∩ interior (B (n + 1))) ≤ μ (U ∩ B (n + 1)) : measure_mono (inter_subset_inter_right _ interior_subset) ... ≤ μ (A ∩ C n ∩ B (n + 1)) + δ n : νU.le ... ≤ μ (A ∩ C n) + δ n : add_le_add (measure_mono (inter_subset_left _ _)) (le_refl _) } }, choose U hU using this, simp_rw [infi_lt_iff], refine ⟨⋃ n, U n, is_open_Union (λ n, (hU n).1), _, _⟩, { rw A_eq, exact Union_subset_Union (λ n, (hU n).2.1) }, { calc μ (⋃ (n : ℕ), U n) ≤ ∑' n, μ (U n) : measure_Union_le _ ... ≤ ∑' n, (μ (A ∩ C n) + δ n) : ennreal.tsum_le_tsum (λ n, (hU n).2.2) ... < μ A + ε : by { rw [ennreal.tsum_add, μA_eq.symm], exact (ennreal.add_lt_add_iff_left μA).2 hδ } } end } /-- Given a regular measure, any measurable set of finite mass can be approximated from inside by compact sets. -/ lemma _root_.measurable_set.measure_eq_supr_is_compact_of_lt_top [borel_space α] [t2_space α] [regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) : μ A = (⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ A), μ K) := begin /- We approximate `A` from inside by a closed set `F` (using the fact that the result to be proved is true for weakly regular measures), and we approximate `A` from the outside by an open set `U`, and `U` from inside by a compact set `K`, by definition of regular measures. Then `K ∩ F` is contained in `A`, it is compact, and its measure is close to that of `A`. -/ refine le_antisymm _ (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s), apply ennreal.le_of_forall_pos_le_add (λ ε εpos H, _), set δ := (ε : ℝ≥0∞) / 2 with hδ, have δpos : 0 < δ := ennreal.half_pos (ennreal.coe_pos.2 εpos), -- construct `U` approximating `A` from outside. obtain ⟨U, U_open, AU, μU⟩ : ∃ (U : set α), is_open U ∧ A ⊆ U ∧ μ U < ∞ := weakly_regular.exists_subset_is_open_measure_lt_top h'A, -- construct `K` approximating `U` from inside. have : μ U < ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), (μ K + δ), { haveI : nonempty {K // is_compact K ∧ K ⊆ U} := ⟨⟨∅, is_compact_empty, empty_subset _⟩⟩, simp_rw [U_open.measure_eq_supr_is_compact, supr_and', supr_subtype', ← ennreal.supr_add], simpa only [add_zero, ennreal.coe_zero] using (ennreal.add_lt_add_iff_left _).mpr δpos, convert μU.trans_le le_top, simp_rw [U_open.measure_eq_supr_is_compact, supr_and', supr_subtype'] }, obtain ⟨K, K_compact, KU, μK⟩ : ∃ (K : set α) (_ : is_compact K) (_ : K ⊆ U), μ U < μ K + δ, by simpa only [lt_supr_iff] using this, -- construct `F` approximating `A` from inside. obtain ⟨F, F_closed, FA, μF⟩ : ∃ (F : set α), is_closed F ∧ F ⊆ A ∧ μ A < μ F + δ := hA.exists_lt_is_closed_of_lt_top_of_pos h'A δpos, -- show that `F ∩ K` approximates `A` from inside. have : μ A ≤ μ (F ∩ K) + ε := calc μ A ≤ μ F + δ : μF.le ... ≤ μ ((F ∩ K) ∪ (U \ K)) + δ : begin refine add_le_add (measure_mono _) (le_refl _), conv_lhs { rw ← inter_union_diff F K }, apply union_subset_union (subset.refl _), apply diff_subset_diff (subset.trans FA AU) (subset.refl _), end ... ≤ μ (F ∩ K) + μ (U \ K) + δ : add_le_add (measure_union_le _ _) (le_refl _) ... ≤ μ (F ∩ K) + δ + δ : begin refine add_le_add (add_le_add (le_refl _) _) (le_refl _), rw [measure_diff KU U_open.measurable_set K_compact.measurable_set (lt_top_of_is_compact K_compact), ennreal.sub_le_iff_le_add'], { exact μK.le }, { apply_instance } end ... = μ (F ∩ K) + ε : by rw [add_assoc, hδ, ennreal.add_halves], refine le_trans this (add_le_add _ (le_refl _)), simp_rw [supr_and', supr_subtype'], exact le_supr (λ s : {s // is_compact s ∧ s ⊆ A}, μ s) ⟨F ∩ K, K_compact.inter_left F_closed, subset.trans (inter_subset_left _ _) FA⟩, end lemma _root_.measurable_set.exists_lt_is_compact_of_lt_top [borel_space α] [t2_space α] [regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) {r : ℝ≥0∞} (hr : r < μ A) : ∃ K, is_compact K ∧ K ⊆ A ∧ r < μ K := begin rw hA.measure_eq_supr_is_compact_of_lt_top h'A at hr, simpa only [lt_supr_iff, exists_prop] using hr, end lemma _root_.measurable_set.exists_lt_is_compact_of_lt_top_of_pos [borel_space α] [t2_space α] [regular μ] ⦃A : set α⦄ (hA : measurable_set A) (h'A : μ A < ∞) {ε : ℝ≥0∞} (εpos : 0 < ε) : ∃ K, is_compact K ∧ K ⊆ A ∧ μ A < μ K + ε := begin have : μ A < ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ A), (μ K + ε), { haveI : nonempty {K // is_compact K ∧ K ⊆ A} := ⟨⟨∅, is_compact_empty, empty_subset _⟩⟩, simp_rw [hA.measure_eq_supr_is_compact_of_lt_top h'A, supr_and', supr_subtype', ← ennreal.supr_add], simpa only [add_zero, ennreal.coe_zero] using (ennreal.add_lt_add_iff_left _).mpr εpos, convert h'A, simp_rw [hA.measure_eq_supr_is_compact_of_lt_top h'A, supr_and', supr_subtype'] }, simpa only [lt_supr_iff, exists_prop], end end regular end measure end measure_theory
0473b0643ad9e53da249a8f21bc11c4ba879c808
37da0369b6c03e380e057bf680d81e6c9fdf9219
/hott/types/equiv.hlean
e36a4181ace0a4037a7c85de737dd926af0218b6
[ "Apache-2.0" ]
permissive
kodyvajjha/lean2
72b120d95c3a1d77f54433fa90c9810e14a931a4
227fcad22ab2bc27bb7471be7911075d101ba3f9
refs/heads/master
1,627,157,512,295
1,501,855,676,000
1,504,809,427,000
109,317,326
0
0
null
1,509,839,253,000
1,509,655,713,000
C++
UTF-8
Lean
false
false
12,659
hlean
/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about the types equiv and is_equiv -/ import .fiber .arrow arity ..prop_trunc cubical.square .pointed open eq is_trunc sigma sigma.ops pi fiber function equiv namespace is_equiv variables {A B : Type} (f : A → B) [H : is_equiv f] include H /- is_equiv f is a mere proposition -/ definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) := is_contr.mk (fiber.mk (f⁻¹ b) (right_inv f b)) (λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) : by rewrite inv_con_cancel_left ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite [adj f] ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc ... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose ... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv ... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con))) definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ~ id) := begin fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_right, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, apply (to_is_equiv (arrow_equiv_arrow_right B (equiv.mk f H))), end definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ~ id) : is_contr (Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) := begin fapply is_trunc_equiv_closed, {apply equiv.symm, apply sigma_pi_equiv_pi_sigma}, fapply is_trunc_equiv_closed, {apply pi_equiv_pi_right, intro a, apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))}, end omit H protected definition sigma_char : (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a)) := equiv.MK (λH, ⟨inv f, right_inv f, left_inv f, adj f⟩) (λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2) (λp, begin induction p with p1 p2, induction p2 with p21 p22, induction p22 with p221 p222, reflexivity end) (λH, by induction H; reflexivity) protected definition sigma_char' : (is_equiv f) ≃ (Σ(u : Σ(g : B → A), f ∘ g ~ id) (η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) := calc (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a)) : is_equiv.sigma_char ... ≃ (Σ(u : Σ(g : B → A), f ∘ g ~ id), Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) : sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) local attribute is_contr_right_inverse [instance] [priority 1600] local attribute is_contr_right_coherence [instance] [priority 1600] theorem is_prop_is_equiv [instance] : is_prop (is_equiv f) := is_prop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !is_equiv.sigma_char')) definition inv_eq_inv {A B : Type} {f f' : A → B} {Hf : is_equiv f} {Hf' : is_equiv f'} (p : f = f') : f⁻¹ = f'⁻¹ := apd011 inv p !is_prop.elimo /- contractible fibers -/ definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f := is_contr_fiber_of_is_equiv f definition is_prop_is_contr_fun (f : A → B) : is_prop (is_contr_fun f) := _ definition is_equiv_of_is_contr_fun [H : is_contr_fun f] : is_equiv f := adjointify _ (λb, point (center (fiber f b))) (λb, point_eq (center (fiber f b))) (λa, ap point (center_eq (fiber.mk a idp))) definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f := @is_equiv_of_is_contr_fun _ _ f (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _) definition is_equiv_equiv_is_contr_fun : is_equiv f ≃ is_contr_fun f := equiv_of_is_prop _ (λH, !is_equiv_of_is_contr_fun) theorem inv_commute'_fn {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)] {g : A → A} (h : Π{a}, B a → B (g a)) (h' : Π{a}, C a → C (g a)) (p : Π⦃a : A⦄ (b : B a), f (h b) = h' (f b)) {a : A} (b : B a) : inv_commute' @f @h @h' p (f b) = (ap f⁻¹ (p b))⁻¹ ⬝ left_inv f (h b) ⬝ (ap h (left_inv f b))⁻¹ := begin rewrite [↑[inv_commute',eq_of_fn_eq_fn'],+ap_con,-adj_inv f,+con.assoc,inv_con_cancel_left, adj f,+ap_inv,-+ap_compose, eq_bot_of_square (natural_square_tr (λb, (left_inv f (h b))⁻¹ ⬝ ap f⁻¹ (p b)) (left_inv f b))⁻¹ʰ, con_inv,inv_inv,+con.assoc], do 3 apply whisker_left, rewrite [con_inv_cancel_left,con.left_inv] end end is_equiv /- Moving equivalences around in homotopies -/ namespace is_equiv variables {A B C : Type} (f : A → B) [Hf : is_equiv f] include Hf section pre_compose variables (α : A → C) (β : B → C) -- homotopy_inv_of_homotopy_pre is in init.equiv protected definition inv_homotopy_of_homotopy_pre.is_equiv : is_equiv (inv_homotopy_of_homotopy_pre f α β) := adjointify _ (homotopy_of_inv_homotopy_pre f α β) abstract begin intro q, apply eq_of_homotopy, intro b, unfold inv_homotopy_of_homotopy_pre, unfold homotopy_of_inv_homotopy_pre, apply inverse, apply eq_bot_of_square, apply eq_hconcat (ap02 α (adj_inv f b)), apply eq_hconcat (ap_compose α f⁻¹ (right_inv f b))⁻¹, apply natural_square q (right_inv f b) end end abstract begin intro p, apply eq_of_homotopy, intro a, unfold inv_homotopy_of_homotopy_pre, unfold homotopy_of_inv_homotopy_pre, apply trans (con.assoc (ap α (left_inv f a))⁻¹ (p (f⁻¹ (f a))) (ap β (right_inv f (f a))))⁻¹, apply inverse, apply eq_bot_of_square, refine hconcat_eq _ (ap02 β (adj f a))⁻¹, refine hconcat_eq _ (ap_compose β f (left_inv f a)), apply natural_square p (left_inv f a) end end end pre_compose section post_compose variables (α : C → A) (β : C → B) -- homotopy_inv_of_homotopy_post is in init.equiv protected definition inv_homotopy_of_homotopy_post.is_equiv : is_equiv (inv_homotopy_of_homotopy_post f α β) := adjointify _ (homotopy_of_inv_homotopy_post f α β) abstract begin intro q, apply eq_of_homotopy, intro c, unfold inv_homotopy_of_homotopy_post, unfold homotopy_of_inv_homotopy_post, apply trans (whisker_right (left_inv f (α c)) (ap_con f⁻¹ (right_inv f (β c))⁻¹ (ap f (q c)) ⬝ whisker_right (ap f⁻¹ (ap f (q c))) (ap_inv f⁻¹ (right_inv f (β c))))), apply inverse, apply eq_bot_of_square, apply eq_hconcat (adj_inv f (β c))⁻¹, apply eq_vconcat (ap_compose f⁻¹ f (q c))⁻¹, refine vconcat_eq _ (ap_id (q c)), apply natural_square_tr (left_inv f) (q c) end end abstract begin intro p, apply eq_of_homotopy, intro c, unfold inv_homotopy_of_homotopy_post, unfold homotopy_of_inv_homotopy_post, apply trans (whisker_left (right_inv f (β c))⁻¹ (ap_con f (ap f⁻¹ (p c)) (left_inv f (α c)))), apply trans (con.assoc (right_inv f (β c))⁻¹ (ap f (ap f⁻¹ (p c))) (ap f (left_inv f (α c))))⁻¹, apply inverse, apply eq_bot_of_square, refine hconcat_eq _ (adj f (α c)), apply eq_vconcat (ap_compose f f⁻¹ (p c))⁻¹, refine vconcat_eq _ (ap_id (p c)), apply natural_square_tr (right_inv f) (p c) end end end post_compose end is_equiv namespace is_equiv /- Theorem 4.7.7 -/ variables {A : Type} {P Q : A → Type} variable (f : Πa, P a → Q a) definition is_fiberwise_equiv [reducible] := Πa, is_equiv (f a) definition is_equiv_total_of_is_fiberwise_equiv [H : is_fiberwise_equiv f] : is_equiv (total f) := is_equiv_sigma_functor id f definition is_fiberwise_equiv_of_is_equiv_total [H : is_equiv (total f)] : is_fiberwise_equiv f := begin intro a, apply is_equiv_of_is_contr_fun, intro q, apply @is_contr_equiv_closed _ _ (fiber_total_equiv f q) end end is_equiv namespace equiv open is_equiv variables {A B C : Type} definition equiv_mk_eq {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f') : equiv.mk f H = equiv.mk f' H' := apd011 equiv.mk p !is_prop.elimo definition equiv_eq' {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' := by (cases f; cases f'; apply (equiv_mk_eq p)) definition equiv_eq {f f' : A ≃ B} (p : to_fun f ~ to_fun f') : f = f' := by apply equiv_eq'; apply eq_of_homotopy p definition trans_symm (f : A ≃ B) (g : B ≃ C) : (f ⬝e g)⁻¹ᵉ = g⁻¹ᵉ ⬝e f⁻¹ᵉ :> (C ≃ A) := equiv_eq' idp definition symm_symm (f : A ≃ B) : f⁻¹ᵉ⁻¹ᵉ = f :> (A ≃ B) := equiv_eq' idp protected definition equiv.sigma_char [constructor] (A B : Type) : (A ≃ B) ≃ Σ(f : A → B), is_equiv f := begin fapply equiv.MK, {intro F, exact ⟨to_fun F, to_is_equiv F⟩}, {intro p, cases p with f H, exact (equiv.mk f H)}, {intro p, cases p, exact idp}, {intro F, cases F, exact idp}, end definition equiv_eq_char (f f' : A ≃ B) : (f = f') ≃ (to_fun f = to_fun f') := calc (f = f') ≃ (to_fun !equiv.sigma_char f = to_fun !equiv.sigma_char f') : eq_equiv_fn_eq (to_fun !equiv.sigma_char) ... ≃ ((to_fun !equiv.sigma_char f).1 = (to_fun !equiv.sigma_char f').1 ) : equiv_subtype ... ≃ (to_fun f = to_fun f') : equiv.rfl definition is_equiv_ap_to_fun (f f' : A ≃ B) : is_equiv (ap to_fun : f = f' → to_fun f = to_fun f') := begin fapply adjointify, {intro p, cases f with f H, cases f' with f' H', cases p, apply ap (mk f'), apply is_prop.elim}, {intro p, cases f with f H, cases f' with f' H', cases p, apply @concat _ _ (ap to_fun (ap (equiv.mk f') (is_prop.elim H H'))), {apply idp}, generalize is_prop.elim H H', intro q, cases q, apply idp}, {intro p, cases p, cases f with f H, apply ap (ap (equiv.mk f)), apply is_set.elim} end definition equiv_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a') (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply equiv.sigma_char}, { fapply sigma_pathover, esimp, apply arrow_pathover, exact r, apply is_prop.elimo} end definition is_contr_equiv (A B : Type) [HA : is_contr A] [HB : is_contr B] : is_contr (A ≃ B) := begin apply @is_contr_of_inhabited_prop, apply is_prop.mk, intro x y, cases x with fx Hx, cases y with fy Hy, generalize Hy, apply (eq_of_homotopy (λ a, !eq_of_is_contr)) ▸ (λ Hy, !is_prop.elim ▸ rfl), apply equiv_of_is_contr_of_is_contr end definition is_trunc_succ_equiv (n : trunc_index) (A B : Type) [HA : is_trunc n.+1 A] [HB : is_trunc n.+1 B] : is_trunc n.+1 (A ≃ B) := @is_trunc_equiv_closed _ _ n.+1 (equiv.symm !equiv.sigma_char) (@is_trunc_sigma _ _ _ _ (λ f, !is_trunc_succ_of_is_prop)) definition is_trunc_equiv (n : trunc_index) (A B : Type) [HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A ≃ B) := by cases n; apply !is_contr_equiv; apply !is_trunc_succ_equiv definition eq_of_fn_eq_fn'_idp {A B : Type} (f : A → B) [is_equiv f] (x : A) : eq_of_fn_eq_fn' f (idpath (f x)) = idpath x := !con.left_inv definition eq_of_fn_eq_fn'_con {A B : Type} (f : A → B) [is_equiv f] {x y z : A} (p : f x = f y) (q : f y = f z) : eq_of_fn_eq_fn' f (p ⬝ q) = eq_of_fn_eq_fn' f p ⬝ eq_of_fn_eq_fn' f q := begin unfold eq_of_fn_eq_fn', refine _ ⬝ !con.assoc, apply whisker_right, refine _ ⬝ !con.assoc⁻¹ ⬝ !con.assoc⁻¹, apply whisker_left, refine !ap_con ⬝ _, apply whisker_left, refine !con_inv_cancel_left⁻¹ end end equiv
3c86164ca368312143c989add3c4bfca2db66180
41ebf3cb010344adfa84907b3304db00e02db0a6
/uexp/src/uexp/rules/removeSemiJoinRightWithFilter.lean
160ab88dd680c08e45796957e3c6f8d5f08ba746
[ "BSD-2-Clause" ]
permissive
ReinierKoops/Cosette
e061b2ba58b26f4eddf4cd052dcf7abd16dfe8fb
eb8dadd06ee05fe7b6b99de431dd7c4faef5cb29
refs/heads/master
1,686,483,953,198
1,624,293,498,000
1,624,293,498,000
378,997,885
0
0
BSD-2-Clause
1,624,293,485,000
1,624,293,484,000
null
UTF-8
Lean
false
false
1,787
lean
import ..sql import ..tactics import ..u_semiring import ..extra_constants import ..meta.ucongr import ..meta.TDP set_option profiler true open Expr open Proj open Pred open SQL open tree notation `int` := datatypes.int constant str_foo_: const int. theorem rule: forall ( Γ scm_dept scm_emp: Schema) (rel_dept: relation scm_dept) (rel_emp: relation scm_emp) (dept_deptno : Column int scm_dept) (dept_name : Column int scm_dept) (emp_empno : Column int scm_emp) (emp_ename : Column int scm_emp) (emp_job : Column int scm_emp) (emp_mgr : Column int scm_emp) (emp_hiredate : Column int scm_emp) (emp_comm : Column int scm_emp) (emp_sal : Column int scm_emp) (emp_deptno : Column int scm_emp) (emp_slacker : Column int scm_emp), denoteSQL ((SELECT1 (right⋅left⋅emp_ename) (FROM1 (product (table rel_emp) (product (table rel_dept) (table rel_emp))) WHERE (and (and (equal (uvariable (right⋅left⋅emp_deptno)) (uvariable (right⋅right⋅left⋅dept_deptno))) (equal (uvariable (right⋅right⋅left⋅dept_deptno)) (uvariable (right⋅right⋅right⋅emp_deptno)))) (equal (uvariable (right⋅right⋅left⋅dept_name)) (constantExpr str_foo_))))) : SQL Γ _ ) = denoteSQL ((SELECT1 (right⋅left⋅emp_ename) (FROM1 (product (table rel_emp) (product ((SELECT * FROM1 (table rel_dept) WHERE (equal (uvariable (right⋅dept_name)) (constantExpr str_foo_)))) (table rel_emp))) WHERE (and (equal (uvariable (right⋅left⋅emp_deptno)) (uvariable (right⋅right⋅left⋅dept_deptno))) (equal (uvariable (right⋅right⋅left⋅dept_deptno)) (uvariable (right⋅right⋅right⋅emp_deptno)))))) : SQL Γ _) := begin intros, unfold_all_denotations, funext, print_size, simp, print_size, TDP' ucongr, end
8ef41e5c37e5f4007070ab55e516d22c47dce9d9
4727251e0cd73359b15b664c3170e5d754078599
/src/ring_theory/fintype.lean
efdb548d3547dd75079b27a15d002c197926557f
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
474
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import data.fintype.basic /-! # Some facts about finite rings -/ open_locale classical lemma card_units_lt (M₀ : Type*) [monoid_with_zero M₀] [nontrivial M₀] [fintype M₀] : fintype.card M₀ˣ < fintype.card M₀ := fintype.card_lt_of_injective_of_not_mem (coe : M₀ˣ → M₀) units.ext not_is_unit_zero
ade2fece467247b5925b2a050cd268994607f6b3
4727251e0cd73359b15b664c3170e5d754078599
/src/topology/continuous_function/cocompact_map.lean
5ed716fb37a9bb1a2f6d0ce8c315c2983e2c66c8
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
5,353
lean
/- Copyright (c) 2022 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import topology.continuous_function.basic /-! # Cocompact continuous maps The type of *cocompact continuous maps* are those which tend to the cocompact filter on the codomain along the cocompact filter on the domain. When the domain and codomain are Hausdorff, this is equivalent to many other conditions, including that preimages of compact sets are compact. -/ universes u v w open filter set /-! ### Cocompact continuous maps -/ /-- A *cocompact continuous map* is a continuous function between topological spaces which tends to the cocompact filter along the cocompact filter. Functions for which preimages of compact sets are compact always satisfy this property, and the converse holds for cocompact continuous maps when the codomain is Hausdorff (see `cocompact_map.tendsto_of_forall_preimage` and `cocompact_map.compact_preimage`) -/ structure cocompact_map (α : Type u) (β : Type v) [topological_space α] [topological_space β] extends continuous_map α β : Type (max u v) := (cocompact_tendsto' : tendsto to_fun (cocompact α) (cocompact β)) /-- `cocompact_map_class F α β` states that `F` is a type of cocompact continuous maps. You should also extend this typeclass when you extend `cocompact_map`. -/ class cocompact_map_class (F : Type*) (α β : out_param $ Type*) [topological_space α] [topological_space β] extends continuous_map_class F α β := (cocompact_tendsto (f : F) : tendsto f (cocompact α) (cocompact β)) namespace cocompact_map_class variables {F α β : Type*} [topological_space α] [topological_space β] [cocompact_map_class F α β] instance : has_coe_t F (cocompact_map α β) := ⟨λ f, ⟨f, cocompact_tendsto f⟩⟩ end cocompact_map_class export cocompact_map_class (cocompact_tendsto) namespace cocompact_map section basics variables {α β γ δ : Type*} [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] instance : cocompact_map_class (cocompact_map α β) α β := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' }, map_continuous := λ f, f.continuous_to_fun, cocompact_tendsto := λ f, f.cocompact_tendsto' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ instance : has_coe_to_fun (cocompact_map α β) (λ _, α → β) := fun_like.has_coe_to_fun @[simp] lemma coe_to_continuous_fun {f : cocompact_map α β} : (f.to_continuous_map : α → β) = f := rfl @[ext] lemma ext {f g : cocompact_map α β} (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h /-- Copy of a `cocompact_map` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : cocompact_map α β) (f' : α → β) (h : f' = f) : cocompact_map α β := { to_fun := f', continuous_to_fun := by {rw h, exact f.continuous_to_fun}, cocompact_tendsto' := by { simp_rw h, exact f.cocompact_tendsto' } } @[simp] lemma coe_mk (f : C(α, β)) (h : tendsto f (cocompact α) (cocompact β)) : ⇑(⟨f, h⟩ : cocompact_map α β) = f := rfl section variable (α) /-- The identity as a cocompact continuous map. -/ protected def id : cocompact_map α α := ⟨continuous_map.id _, tendsto_id⟩ @[simp] lemma coe_id : ⇑(cocompact_map.id α) = id := rfl end instance : inhabited (cocompact_map α α) := ⟨cocompact_map.id α⟩ /-- The composition of cocompact continuous maps, as a cocompact continuous map. -/ def comp (f : cocompact_map β γ) (g : cocompact_map α β) : cocompact_map α γ := ⟨f.to_continuous_map.comp g, (cocompact_tendsto f).comp (cocompact_tendsto g)⟩ @[simp] lemma coe_comp (f : cocompact_map β γ) (g : cocompact_map α β) : ⇑(comp f g) = f ∘ g := rfl @[simp] lemma comp_apply (f : cocompact_map β γ) (g : cocompact_map α β) (a : α) : comp f g a = f (g a) := rfl @[simp] lemma comp_assoc (f : cocompact_map γ δ) (g : cocompact_map β γ) (h : cocompact_map α β) : (f.comp g).comp h = f.comp (g.comp h) := rfl @[simp] lemma id_comp (f : cocompact_map α β) : (cocompact_map.id _).comp f = f := ext $ λ _, rfl @[simp] lemma comp_id (f : cocompact_map α β) : f.comp (cocompact_map.id _) = f := ext $ λ _, rfl lemma tendsto_of_forall_preimage {f : α → β} (h : ∀ s, is_compact s → is_compact (f ⁻¹' s)) : tendsto f (cocompact α) (cocompact β) := λ s hs, match mem_cocompact.mp hs with ⟨t, ht, hts⟩ := mem_map.mpr (mem_cocompact.mpr ⟨f ⁻¹' t, h t ht, by simpa using preimage_mono hts⟩) end /-- If the codomain is Hausdorff, preimages of compact sets are compact under a cocompact continuous map. -/ lemma compact_preimage [t2_space β] (f : cocompact_map α β) ⦃s : set β⦄ (hs : is_compact s) : is_compact (f ⁻¹' s) := begin obtain ⟨t, ht, hts⟩ := mem_cocompact'.mp (by simpa only [preimage_image_preimage, preimage_compl] using mem_map.mp (cocompact_tendsto f $ mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩)), exact compact_of_is_closed_subset ht (hs.is_closed.preimage $ map_continuous f) (by simpa using hts), end end basics end cocompact_map
de39ed6480da7f4ace97de0a7d3004df3ab9f35b
77c5b91fae1b966ddd1db969ba37b6f0e4901e88
/src/data/finset/interval.lean
e1c4a14f2f505ebec2e44f892f061165cda0bb6d
[ "Apache-2.0" ]
permissive
dexmagic/mathlib
ff48eefc56e2412429b31d4fddd41a976eb287ce
7a5d15a955a92a90e1d398b2281916b9c41270b2
refs/heads/master
1,693,481,322,046
1,633,360,193,000
1,633,360,193,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,026
lean
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import order.locally_finite /-! # Intervals as finsets This file provides basic results about all the `finset.Ixx`, which are defined in `order.locally_finite`. ## TODO Bring the lemmas about `finset.Ico` in `data.finset.intervals` here and in `data.nat.intervals`. -/ namespace finset variables {α : Type*} section preorder variables [preorder α] [locally_finite_order α] {a b : α} @[simp] lemma nonempty_Icc : (Icc a b).nonempty ↔ a ≤ b := by rw [←coe_nonempty, coe_Icc, set.nonempty_Icc] @[simp] lemma nonempty_Ioc : (Ioc a b).nonempty ↔ a < b := by rw [←coe_nonempty, coe_Ioc, set.nonempty_Ioc] @[simp] lemma nonempty_Ioo [densely_ordered α] : (Ioo a b).nonempty ↔ a < b := by rw [←coe_nonempty, coe_Ioo, set.nonempty_Ioo] @[simp] lemma Icc_eq_empty_iff : Icc a b = ∅ ↔ ¬a ≤ b := by rw [←coe_eq_empty, coe_Icc, set.Icc_eq_empty_iff] @[simp] lemma Ioc_eq_empty_iff : Ioc a b = ∅ ↔ ¬a < b := by rw [←coe_eq_empty, coe_Ioc, set.Ioc_eq_empty_iff] @[simp] lemma Ioo_eq_empty_iff [densely_ordered α] : Ioo a b = ∅ ↔ ¬a < b := by rw [←coe_eq_empty, coe_Ioo, set.Ioo_eq_empty_iff] alias Icc_eq_empty_iff ↔ _ finset.Icc_eq_empty alias Ioc_eq_empty_iff ↔ _ finset.Ioc_eq_empty @[simp] lemma Ioo_eq_empty (h : ¬a < b) : Ioo a b = ∅ := eq_empty_iff_forall_not_mem.2 $ λ x hx, h ((mem_Ioo.1 hx).1.trans (mem_Ioo.1 hx).2) @[simp] lemma Icc_eq_empty_of_lt (h : b < a) : Icc a b = ∅ := Icc_eq_empty h.not_le @[simp] lemma Ioc_eq_empty_of_le (h : b ≤ a) : Ioc a b = ∅ := Ioc_eq_empty h.not_lt @[simp] lemma Ioo_eq_empty_of_le (h : b ≤ a) : Ioo a b = ∅ := Ioo_eq_empty h.not_lt variables (a) @[simp] lemma Ioc_self : Ioc a a = ∅ := by rw [←coe_eq_empty, coe_Ioc, set.Ioc_self] @[simp] lemma Ioo_self : Ioo a a = ∅ := by rw [←coe_eq_empty, coe_Ioo, set.Ioo_self] end preorder section partial_order variables [partial_order α] [locally_finite_order α] {a b : α} @[simp] lemma Icc_self (a : α) : Icc a a = {a} := by rw [←coe_eq_singleton, coe_Icc, set.Icc_self] end partial_order section ordered_cancel_add_comm_monoid variables [ordered_cancel_add_comm_monoid α] [has_exists_add_of_le α] [decidable_eq α] [locally_finite_order α] lemma image_add_const_Icc (a b c : α) : (Icc a b).image ((+) c) = Icc (a + c) (b + c) := begin ext x, rw [mem_image, mem_Icc], split, { rintro ⟨y, hy, rfl⟩, rw mem_Icc at hy, rw add_comm c, exact ⟨add_le_add_right hy.1 c, add_le_add_right hy.2 c⟩ }, { intro hx, obtain ⟨y, hy⟩ := exists_add_of_le hx.1, rw [hy, add_right_comm] at hx, rw [eq_comm, add_right_comm, add_comm] at hy, exact ⟨a + y, mem_Icc.2 ⟨le_of_add_le_add_right hx.1, le_of_add_le_add_right hx.2⟩, hy⟩ } end lemma image_add_const_Ioc (a b c : α) : (Ioc a b).image ((+) c) = Ioc (a + c) (b + c) := begin ext x, rw [mem_image, mem_Ioc], split, { rintro ⟨y, hy, rfl⟩, rw mem_Ioc at hy, rw add_comm c, exact ⟨add_lt_add_right hy.1 c, add_le_add_right hy.2 c⟩ }, { intro hx, obtain ⟨y, hy⟩ := exists_add_of_le hx.1.le, rw [hy, add_right_comm] at hx, rw [eq_comm, add_right_comm, add_comm] at hy, exact ⟨a + y, mem_Ioc.2 ⟨lt_of_add_lt_add_right hx.1, le_of_add_le_add_right hx.2⟩, hy⟩ } end lemma image_add_const_Ioo (a b c : α) : (Ioo a b).image ((+) c) = Ioo (a + c) (b + c) := begin ext x, rw [mem_image, mem_Ioo], split, { rintro ⟨y, hy, rfl⟩, rw mem_Ioo at hy, rw add_comm c, exact ⟨add_lt_add_right hy.1 c, add_lt_add_right hy.2 c⟩ }, { intro hx, obtain ⟨y, hy⟩ := exists_add_of_le hx.1.le, rw [hy, add_right_comm] at hx, rw [eq_comm, add_right_comm, add_comm] at hy, exact ⟨a + y, mem_Ioo.2 ⟨lt_of_add_lt_add_right hx.1, lt_of_add_lt_add_right hx.2⟩, hy⟩ } end end ordered_cancel_add_comm_monoid end finset
6cb3eb0b8e72a0a6f9b1b1df04f43e26f35585c9
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/Lean/HeadIndex.lean
55b43b1b9c507e951e790ff249a128201ae270e7
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
3,808
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import Lean.Expr namespace Lean /-- Datastructure for representing the "head symbol" of an expression. It is the key of `KExprMap`. Examples: - The head of `f a` is `.const f` - The head of `let x := 1; f x` is `.const f` - The head of `fun x => fun` is `.lam` `HeadIndex` is a very simple index, and is used in situations where we want to find definitionally equal terms, but we want to minimize the search by checking only pairs of terms that have the same `HeadIndex`. -/ inductive HeadIndex where | fvar (fvarId : FVarId) | mvar (mvarId : MVarId) | const (constName : Name) | proj (structName : Name) (idx : Nat) | lit (litVal : Literal) | sort | lam | forallE deriving Inhabited, BEq, Repr namespace HeadIndex /-- Hash code for a `HeadIndex` value. -/ protected def HeadIndex.hash : HeadIndex → UInt64 | fvar fvarId => mixHash 11 <| hash fvarId | mvar mvarId => mixHash 13 <| hash mvarId | const constName => mixHash 17 <| hash constName | proj structName idx => mixHash 19 <| mixHash (hash structName) (hash idx) | lit litVal => mixHash 23 <| hash litVal | sort => 29 | lam => 31 | forallE => 37 instance : Hashable HeadIndex := ⟨HeadIndex.hash⟩ end HeadIndex namespace Expr /-- Return the number of arguments in the given expression with respect to its `HeadIndex` -/ def headNumArgs (e : Expr) : Nat := go e 0 where go : Expr → Nat → Nat | app f _, n => go f (n + 1) | letE _ _ _ b _, n => go b n | mdata _ e, n => go e n | _, n => n /-- Quick version that may fail if it "hits" a loose bound variable. This can happen, for example, if the input expression is of the form. ``` let f := fun x => x + 1; f 0 ``` -/ private def toHeadIndexQuick? : Expr → Option HeadIndex | mvar mvarId => HeadIndex.mvar mvarId | fvar fvarId => HeadIndex.fvar fvarId | const constName _ => HeadIndex.const constName | proj structName idx _ => HeadIndex.proj structName idx | sort _ => HeadIndex.sort | lam .. => HeadIndex.lam | forallE .. => HeadIndex.forallE | lit v => HeadIndex.lit v | app f _ => toHeadIndexQuick? f | letE _ _ _ b _ => toHeadIndexQuick? b | mdata _ e => toHeadIndexQuick? e | _ => none /-- Slower version of `toHeadIndexQuick?` that "expands" let-declarations to make sure we never hit a loose bound variable. The performance of the `letE` alternative can be improved, but this function should not be in the hotpath since `toHeadIndexQuick?` succeeds most of the time. -/ private partial def toHeadIndexSlow : Expr → HeadIndex | mvar mvarId => HeadIndex.mvar mvarId | fvar fvarId => HeadIndex.fvar fvarId | const constName _ => HeadIndex.const constName | proj structName idx _ => HeadIndex.proj structName idx | sort _ => HeadIndex.sort | lam .. => HeadIndex.lam | forallE .. => HeadIndex.forallE | lit v => HeadIndex.lit v | app f _ => toHeadIndexSlow f | letE _ _ v b _ => toHeadIndexSlow (b.instantiate1 v) | mdata _ e => toHeadIndexSlow e | _ => panic! "unexpected expression kind" /-- Convert the given expression into a `HeadIndex`. -/ def toHeadIndex (e : Expr) : HeadIndex := match toHeadIndexQuick? e with | some i => i | none => toHeadIndexSlow e end Expr end Lean
02a5db6af52107993aed0babeb7474209ec18f84
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
/tests/elabissues/variable_universe_bug.lean
6077d9b108aced00dc3884398f084e3103b48b4e
[ "Apache-2.0" ]
permissive
mhuisi/lean4
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
refs/heads/master
1,621,225,489,283
1,585,142,689,000
1,585,142,689,000
250,590,438
0
2
Apache-2.0
1,602,443,220,000
1,585,327,814,000
C
UTF-8
Lean
false
false
551
lean
/- Courtesy of @rwbarton. This is just a bug report, but since we are going to soon rewrite the entire module in Lean4, we don't want to bother fixing the C++ bug, and we don't want to add a failing test either. The issue is that collecting implicit locals does not collect additional universe parameters the locals depend on. -/ universes v u class Category (C : Type u) := (Hom : ∀ (X Y : C), Type v) variables {C : Type u} [Category.{v, u} C] def End (X : C) := Category.Hom X X -- invalid reference to undefined universe level parameter 'v'
712d3a5264df3dd24fa92efb5e91f03598683e46
e0f9ba56b7fedc16ef8697f6caeef5898b435143
/src/tactic/localized.lean
ff8f7e39404daa8adf6177c0fff076d7f596feab
[ "Apache-2.0" ]
permissive
anrddh/mathlib
6a374da53c7e3a35cb0298b0cd67824efef362b4
a4266a01d2dcb10de19369307c986d038c7bb6a6
refs/heads/master
1,656,710,827,909
1,589,560,456,000
1,589,560,456,000
264,271,800
0
0
Apache-2.0
1,589,568,062,000
1,589,568,061,000
null
UTF-8
Lean
false
false
5,229
lean
/- Copyright (c) 2019 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import tactic.core /-! # Localized notation This consists of two user-commands which allow you to declare notation and commands localized to a namespace. * Declare notation which is localized to a namespace using: ```lean localized "infix ` ⊹ `:60 := my_add" in my.add ``` * After this command it will be available in the same section/namespace/file, just as if you wrote `local infix ` ⊹ `:60 := my_add` * You can open it in other places. The following command will declare the notation again as local notation in that section/namespace/files: ```lean open_locale my.add ``` * More generally, the following will declare all localized notation in the specified namespaces. ```lean open_locale namespace1 namespace2 ... ``` * You can also declare other localized commands, like local attributes ```lean localized "attribute [simp] le_refl" in le ``` The code is inspired by code from Gabriel Ebner from the [hott3 repository](https://github.com/gebner/hott3). -/ open lean lean.parser interactive tactic native reserve notation `localized` @[user_attribute] meta def localized_attr : user_attribute (rb_lmap name string) unit := { name := "_localized", descr := "(interal) attribute that flags localized commands", cache_cfg := ⟨λ ns, (do dcls ← ns.mmap (λ n, mk_const n >>= eval_expr (name × string)), return $ rb_lmap.of_list dcls), []⟩ } /-- Get all commands in the given notation namespace and return them as a list of strings -/ meta def get_localized (ns : list name) : tactic (list string) := do m ← localized_attr.get_cache, return (ns.bind $ λ nm, m.find nm) /-- Execute all commands in the given notation namespace -/ @[user_command] meta def open_locale_cmd (_ : parse $ tk "open_locale") : parser unit := do ns ← many ident, cmds ← get_localized ns, cmds.mmap' emit_code_here /-- Add a new command to a notation namespace and execute it right now. The new command is added as a declaration to the environment with name `_localized_decl.<number>`. This declaration has attribute `_localized` and as value a name-string pair. -/ @[user_command] meta def localized_cmd (_ : parse $ tk "localized") : parser unit := do cmd ← parser.pexpr, cmd ← i_to_expr cmd, cmd ← eval_expr string cmd, let cmd := "local " ++ cmd, emit_code_here cmd, tk "in", nm ← ident, env ← get_env, let dummy_decl_name := mk_num_name `_localized_decl ((string.hash (cmd ++ nm.to_string) + env.fingerprint) % unsigned_sz), add_decl (declaration.defn dummy_decl_name [] `(name × string) (reflect (⟨nm, cmd⟩ : name × string)) (reducibility_hints.regular 1 tt) ff), localized_attr.set dummy_decl_name unit.star tt /-- This consists of two user-commands which allow you to declare notation and commands localized to a namespace. * Declare notation which is localized to a namespace using: ```lean localized \"infix ` ⊹ `:60 := my_add\" in my.add ``` * After this command it will be available in the same section/namespace/file, just as if you wrote `local infix ` ⊹ `:60 := my_add` * You can open it in other places. The following command will declare the notation again as local notation in that section/namespace/files: ```lean open_locale my.add ``` * More generally, the following will declare all localized notation in the specified namespaces. ```lean open_locale namespace1 namespace2 ... ``` * You can also declare other localized commands, like local attributes ```lean localized \"attribute [simp] le_refl\" in le ``` * To see all localized commands in a given namespace, run: ```lean run_cmd print_localized_commands [`my.add]. ``` * To see a list of all namespaces with localized commands, run: ```lean run_cmd do m ← localized_attr.get_cache, tactic.trace m.keys -- change to `tactic.trace m.to_list` -- to list all the commands in each namespace ``` * Warning 1: as a limitation on user commands, you cannot put `open_locale` directly after your imports. You have to write another command first (e.g. `open`, `namespace`, `universe variables`, `noncomputable theory`, `run_cmd tactic.skip`, ...). * Warning 2: You have to fully specify the names used in localized notation, so that the localized notation also works when the appropriate namespaces are not opened. -/ add_tactic_doc { name := "localized notation", category := doc_category.cmd, decl_names := [`localized_cmd, `open_locale_cmd], tags := ["notation", "type classes"] } /-- Print all commands in a given notation namespace -/ meta def print_localized_commands (ns : list name) : tactic unit := do cmds ← get_localized ns, cmds.mmap' trace -- you can run `open_locale classical` to get the decidability of all propositions. localized "attribute [instance, priority 9] classical.prop_decidable" in classical localized "postfix `?`:9001 := optional" in parser localized "postfix *:9001 := lean.parser.many" in parser
f6195151d38aa947d99fe15d3ca3ce6a14b770bf
7cef822f3b952965621309e88eadf618da0c8ae9
/src/order/basic.lean
6300dc09dd7499acd05c9d303397ded66cde6bd4
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
26,779
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Mario Carneiro -/ import logic.basic data.sum data.set.basic algebra.order open function /- TODO: automatic construction of dual definitions / theorems -/ universes u v w variables {α : Type u} {β : Type v} {γ : Type w} {r : α → α → Prop} theorem ge_of_eq [preorder α] {a b : α} : a = b → a ≥ b := λ h, h ▸ le_refl a theorem is_refl.swap (r) [is_refl α r] : is_refl α (swap r) := ⟨refl_of r⟩ theorem is_irrefl.swap (r) [is_irrefl α r] : is_irrefl α (swap r) := ⟨irrefl_of r⟩ theorem is_trans.swap (r) [is_trans α r] : is_trans α (swap r) := ⟨λ a b c h₁ h₂, trans_of r h₂ h₁⟩ theorem is_antisymm.swap (r) [is_antisymm α r] : is_antisymm α (swap r) := ⟨λ a b h₁ h₂, antisymm h₂ h₁⟩ theorem is_asymm.swap (r) [is_asymm α r] : is_asymm α (swap r) := ⟨λ a b h₁ h₂, asymm_of r h₂ h₁⟩ theorem is_total.swap (r) [is_total α r] : is_total α (swap r) := ⟨λ a b, (total_of r a b).swap⟩ theorem is_trichotomous.swap (r) [is_trichotomous α r] : is_trichotomous α (swap r) := ⟨λ a b, by simpa [swap, or.comm, or.left_comm] using trichotomous_of r a b⟩ theorem is_preorder.swap (r) [is_preorder α r] : is_preorder α (swap r) := {..@is_refl.swap α r _, ..@is_trans.swap α r _} theorem is_strict_order.swap (r) [is_strict_order α r] : is_strict_order α (swap r) := {..@is_irrefl.swap α r _, ..@is_trans.swap α r _} theorem is_partial_order.swap (r) [is_partial_order α r] : is_partial_order α (swap r) := {..@is_preorder.swap α r _, ..@is_antisymm.swap α r _} theorem is_total_preorder.swap (r) [is_total_preorder α r] : is_total_preorder α (swap r) := {..@is_preorder.swap α r _, ..@is_total.swap α r _} theorem is_linear_order.swap (r) [is_linear_order α r] : is_linear_order α (swap r) := {..@is_partial_order.swap α r _, ..@is_total.swap α r _} lemma antisymm_of_asymm (r) [is_asymm α r] : is_antisymm α r := ⟨λ x y h₁ h₂, (asymm h₁ h₂).elim⟩ /- Convert algebraic structure style to explicit relation style typeclasses -/ instance [preorder α] : is_refl α (≤) := ⟨le_refl⟩ instance [preorder α] : is_refl α (≥) := is_refl.swap _ instance [preorder α] : is_trans α (≤) := ⟨@le_trans _ _⟩ instance [preorder α] : is_trans α (≥) := is_trans.swap _ instance [preorder α] : is_preorder α (≤) := {} instance [preorder α] : is_preorder α (≥) := {} instance [preorder α] : is_irrefl α (<) := ⟨lt_irrefl⟩ instance [preorder α] : is_irrefl α (>) := is_irrefl.swap _ instance [preorder α] : is_trans α (<) := ⟨@lt_trans _ _⟩ instance [preorder α] : is_trans α (>) := is_trans.swap _ instance [preorder α] : is_asymm α (<) := ⟨@lt_asymm _ _⟩ instance [preorder α] : is_asymm α (>) := is_asymm.swap _ instance [preorder α] : is_antisymm α (<) := antisymm_of_asymm _ instance [preorder α] : is_antisymm α (>) := antisymm_of_asymm _ instance [preorder α] : is_strict_order α (<) := {} instance [preorder α] : is_strict_order α (>) := {} instance preorder.is_total_preorder [preorder α] [is_total α (≤)] : is_total_preorder α (≤) := {} instance [partial_order α] : is_antisymm α (≤) := ⟨@le_antisymm _ _⟩ instance [partial_order α] : is_antisymm α (≥) := is_antisymm.swap _ instance [partial_order α] : is_partial_order α (≤) := {} instance [partial_order α] : is_partial_order α (≥) := {} instance [linear_order α] : is_total α (≤) := ⟨le_total⟩ instance [linear_order α] : is_total α (≥) := is_total.swap _ instance linear_order.is_total_preorder [linear_order α] : is_total_preorder α (≤) := by apply_instance instance [linear_order α] : is_total_preorder α (≥) := {} instance [linear_order α] : is_linear_order α (≤) := {} instance [linear_order α] : is_linear_order α (≥) := {} instance [linear_order α] : is_trichotomous α (<) := ⟨lt_trichotomy⟩ instance [linear_order α] : is_trichotomous α (>) := is_trichotomous.swap _ theorem preorder.ext {α} {A B : preorder α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := begin resetI, cases A, cases B, congr, { funext x y, exact propext (H x y) }, { funext x y, dsimp [(≤)] at A_lt_iff_le_not_le B_lt_iff_le_not_le H, simp [A_lt_iff_le_not_le, B_lt_iff_le_not_le, H] }, end theorem partial_order.ext {α} {A B : partial_order α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := by haveI this := preorder.ext H; cases A; cases B; injection this; congr' theorem linear_order.ext {α} {A B : linear_order α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := by haveI this := partial_order.ext H; cases A; cases B; injection this; congr' /-- Given an order `R` on `β` and a function `f : α → β`, the preimage order on `α` is defined by `x ≤ y ↔ f x ≤ f y`. It is the unique order on `α` making `f` an order embedding (assuming `f` is injective). -/ @[simp] def order.preimage {α β} (f : α → β) (s : β → β → Prop) (x y : α) := s (f x) (f y) infix ` ⁻¹'o `:80 := order.preimage section monotone variables [preorder α] [preorder β] [preorder γ] /-- A function between preorders is monotone if `a ≤ b` implies `f a ≤ f b`. -/ def monotone (f : α → β) := ∀⦃a b⦄, a ≤ b → f a ≤ f b theorem monotone_id : @monotone α α _ _ id := assume x y h, h theorem monotone_const {b : β} : monotone (λ(a:α), b) := assume x y h, le_refl b protected theorem monotone.comp {g : β → γ} {f : α → β} (m_g : monotone g) (m_f : monotone f) : monotone (g ∘ f) := assume a b h, m_g (m_f h) lemma monotone_of_monotone_nat {f : ℕ → α} (hf : ∀n, f n ≤ f (n + 1)) : monotone f | n m h := begin induction h, { refl }, { transitivity, assumption, exact hf _ } end lemma reflect_lt {α β} [linear_order α] [preorder β] {f : α → β} (hf : monotone f) {x x' : α} (h : f x < f x') : x < x' := by { rw [← not_le], intro h', apply not_le_of_lt h, exact hf h' } end monotone /-- Type tag for a set with dual order: `≤` means `≥` and `<` means `>`. -/ def order_dual (α : Type*) := α namespace order_dual instance (α : Type*) [has_le α] : has_le (order_dual α) := ⟨λx y:α, y ≤ x⟩ instance (α : Type*) [has_lt α] : has_lt (order_dual α) := ⟨λx y:α, y < x⟩ instance (α : Type*) [preorder α] : preorder (order_dual α) := { le_refl := le_refl, le_trans := assume a b c hab hbc, le_trans hbc hab, lt_iff_le_not_le := λ _ _, lt_iff_le_not_le, .. order_dual.has_le α, .. order_dual.has_lt α } instance (α : Type*) [partial_order α] : partial_order (order_dual α) := { le_antisymm := assume a b hab hba, @le_antisymm α _ a b hba hab, .. order_dual.preorder α } instance (α : Type*) [linear_order α] : linear_order (order_dual α) := { le_total := assume a b:α, le_total b a, .. order_dual.partial_order α } instance (α : Type*) [decidable_linear_order α] : decidable_linear_order (order_dual α) := { decidable_le := show decidable_rel (λa b:α, b ≤ a), by apply_instance, decidable_lt := show decidable_rel (λa b:α, b < a), by apply_instance, .. order_dual.linear_order α } instance : Π [inhabited α], inhabited (order_dual α) := id end order_dual /- order instances on the function space -/ instance pi.preorder {ι : Type u} {α : ι → Type v} [∀i, preorder (α i)] : preorder (Πi, α i) := { le := λx y, ∀i, x i ≤ y i, le_refl := assume a i, le_refl (a i), le_trans := assume a b c h₁ h₂ i, le_trans (h₁ i) (h₂ i) } instance pi.partial_order {ι : Type u} {α : ι → Type v} [∀i, partial_order (α i)] : partial_order (Πi, α i) := { le_antisymm := λf g h1 h2, funext (λb, le_antisymm (h1 b) (h2 b)), ..pi.preorder } theorem comp_le_comp_left_of_monotone [preorder α] [preorder β] {f : β → α} {g h : γ → β} (m_f : monotone f) (le_gh : g ≤ h) : has_le.le.{max w u} (f ∘ g) (f ∘ h) := assume x, m_f (le_gh x) section monotone variables [preorder α] [preorder γ] theorem monotone_lam {f : α → β → γ} (m : ∀b, monotone (λa, f a b)) : monotone f := assume a a' h b, m b h theorem monotone_app (f : β → α → γ) (b : β) (m : monotone (λa b, f b a)) : monotone (f b) := assume a a' h, m h b end monotone def preorder.lift {α β} (f : α → β) (i : preorder β) : preorder α := by exactI { le := λx y, f x ≤ f y, le_refl := λ a, le_refl _, le_trans := λ a b c, le_trans, lt := λx y, f x < f y, lt_iff_le_not_le := λ a b, lt_iff_le_not_le } def partial_order.lift {α β} (f : α → β) (inj : injective f) (i : partial_order β) : partial_order α := by exactI { le_antisymm := λ a b h₁ h₂, inj (le_antisymm h₁ h₂), .. preorder.lift f (by apply_instance) } def linear_order.lift {α β} (f : α → β) (inj : injective f) (i : linear_order β) : linear_order α := by exactI { le_total := λx y, le_total (f x) (f y), .. partial_order.lift f inj (by apply_instance) } def decidable_linear_order.lift {α β} (f : α → β) (inj : injective f) (i : decidable_linear_order β) : decidable_linear_order α := by exactI { decidable_le := λ x y, show decidable (f x ≤ f y), by apply_instance, decidable_lt := λ x y, show decidable (f x < f y), by apply_instance, decidable_eq := λ x y, decidable_of_iff _ ⟨@inj x y, congr_arg f⟩, .. linear_order.lift f inj (by apply_instance) } instance subtype.preorder {α} [i : preorder α] (p : α → Prop) : preorder (subtype p) := preorder.lift subtype.val i instance subtype.partial_order {α} [i : partial_order α] (p : α → Prop) : partial_order (subtype p) := partial_order.lift subtype.val subtype.val_injective i instance subtype.linear_order {α} [i : linear_order α] (p : α → Prop) : linear_order (subtype p) := linear_order.lift subtype.val subtype.val_injective i instance subtype.decidable_linear_order {α} [i : decidable_linear_order α] (p : α → Prop) : decidable_linear_order (subtype p) := decidable_linear_order.lift subtype.val subtype.val_injective i instance prod.has_le (α : Type u) (β : Type v) [has_le α] [has_le β] : has_le (α × β) := ⟨λp q, p.1 ≤ q.1 ∧ p.2 ≤ q.2⟩ instance prod.preorder (α : Type u) (β : Type v) [preorder α] [preorder β] : preorder (α × β) := { le_refl := assume ⟨a, b⟩, ⟨le_refl a, le_refl b⟩, le_trans := assume ⟨a, b⟩ ⟨c, d⟩ ⟨e, f⟩ ⟨hac, hbd⟩ ⟨hce, hdf⟩, ⟨le_trans hac hce, le_trans hbd hdf⟩, .. prod.has_le α β } /-- The pointwise partial order on a product. (The lexicographic ordering is defined in order/lexicographic.lean, and the instances are available via the type synonym `lex α β = α × β`.) -/ instance prod.partial_order (α : Type u) (β : Type v) [partial_order α] [partial_order β] : partial_order (α × β) := { le_antisymm := assume ⟨a, b⟩ ⟨c, d⟩ ⟨hac, hbd⟩ ⟨hca, hdb⟩, prod.ext (le_antisymm hac hca) (le_antisymm hbd hdb), .. prod.preorder α β } /- additional order classes -/ /-- order without a top element; somtimes called cofinal -/ class no_top_order (α : Type u) [preorder α] : Prop := (no_top : ∀a:α, ∃a', a < a') lemma no_top [preorder α] [no_top_order α] : ∀a:α, ∃a', a < a' := no_top_order.no_top /-- order without a bottom element; somtimes called coinitial or dense -/ class no_bot_order (α : Type u) [preorder α] : Prop := (no_bot : ∀a:α, ∃a', a' < a) lemma no_bot [preorder α] [no_bot_order α] : ∀a:α, ∃a', a' < a := no_bot_order.no_bot /-- An order is dense if there is an element between any pair of distinct elements. -/ class densely_ordered (α : Type u) [preorder α] : Prop := (dense : ∀a₁ a₂:α, a₁ < a₂ → ∃a, a₁ < a ∧ a < a₂) lemma dense [preorder α] [densely_ordered α] : ∀{a₁ a₂:α}, a₁ < a₂ → ∃a, a₁ < a ∧ a < a₂ := densely_ordered.dense lemma le_of_forall_le_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α} (h : ∀a₃>a₂, a₁ ≤ a₃) : a₁ ≤ a₂ := le_of_not_gt $ assume ha, let ⟨a, ha₁, ha₂⟩ := dense ha in lt_irrefl a $ lt_of_lt_of_le ‹a < a₁› (h _ ‹a₂ < a›) lemma eq_of_le_of_forall_le_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α} (h₁ : a₂ ≤ a₁) (h₂ : ∀a₃>a₂, a₁ ≤ a₃) : a₁ = a₂ := le_antisymm (le_of_forall_le_of_dense h₂) h₁ lemma le_of_forall_ge_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α}(h : ∀a₃<a₁, a₂ ≥ a₃) : a₁ ≤ a₂ := le_of_not_gt $ assume ha, let ⟨a, ha₁, ha₂⟩ := dense ha in lt_irrefl a $ lt_of_le_of_lt (h _ ‹a < a₁›) ‹a₂ < a› lemma eq_of_le_of_forall_ge_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α} (h₁ : a₂ ≤ a₁) (h₂ : ∀a₃<a₁, a₂ ≥ a₃) : a₁ = a₂ := le_antisymm (le_of_forall_ge_of_dense h₂) h₁ lemma dense_or_discrete [linear_order α] (a₁ a₂ : α) : (∃a, a₁ < a ∧ a < a₂) ∨ ((∀a>a₁, a ≥ a₂) ∧ (∀a<a₂, a ≤ a₁)) := classical.or_iff_not_imp_left.2 $ assume h, ⟨assume a ha₁, le_of_not_gt $ assume ha₂, h ⟨a, ha₁, ha₂⟩, assume a ha₂, le_of_not_gt $ assume ha₁, h ⟨a, ha₁, ha₂⟩⟩ lemma trans_trichotomous_left [is_trans α r] [is_trichotomous α r] {a b c : α} : ¬r b a → r b c → r a c := begin intros h₁ h₂, rcases trichotomous_of r a b with h₃|h₃|h₃, exact trans h₃ h₂, rw h₃, exact h₂, exfalso, exact h₁ h₃ end lemma trans_trichotomous_right [is_trans α r] [is_trichotomous α r] {a b c : α} : r a b → ¬r c b → r a c := begin intros h₁ h₂, rcases trichotomous_of r b c with h₃|h₃|h₃, exact trans h₁ h₃, rw ←h₃, exact h₁, exfalso, exact h₂ h₃ end variables {s : β → β → Prop} {t : γ → γ → Prop} theorem is_irrefl_of_is_asymm [is_asymm α r] : is_irrefl α r := ⟨λ a h, asymm h h⟩ /-- Construct a partial order from a `is_strict_order` relation -/ def partial_order_of_SO (r) [is_strict_order α r] : partial_order α := { le := λ x y, x = y ∨ r x y, lt := r, le_refl := λ x, or.inl rfl, le_trans := λ x y z h₁ h₂, match y, z, h₁, h₂ with | _, _, or.inl rfl, h₂ := h₂ | _, _, h₁, or.inl rfl := h₁ | _, _, or.inr h₁, or.inr h₂ := or.inr (trans h₁ h₂) end, le_antisymm := λ x y h₁ h₂, match y, h₁, h₂ with | _, or.inl rfl, h₂ := rfl | _, h₁, or.inl rfl := rfl | _, or.inr h₁, or.inr h₂ := (asymm h₁ h₂).elim end, lt_iff_le_not_le := λ x y, ⟨λ h, ⟨or.inr h, not_or (λ e, by rw e at h; exact irrefl _ h) (asymm h)⟩, λ ⟨h₁, h₂⟩, h₁.resolve_left (λ e, h₂ $ e ▸ or.inl rfl)⟩ } section prio set_option default_priority 100 -- see Note [default priority] /-- This is basically the same as `is_strict_total_order`, but that definition is in Type (probably by mistake) and also has redundant assumptions. -/ @[algebra] class is_strict_total_order' (α : Type u) (lt : α → α → Prop) extends is_trichotomous α lt, is_strict_order α lt : Prop. end prio /-- Construct a linear order from a `is_strict_total_order'` relation -/ def linear_order_of_STO' (r) [is_strict_total_order' α r] : linear_order α := { le_total := λ x y, match y, trichotomous_of r x y with | y, or.inl h := or.inl (or.inr h) | _, or.inr (or.inl rfl) := or.inl (or.inl rfl) | _, or.inr (or.inr h) := or.inr (or.inr h) end, ..partial_order_of_SO r } /-- Construct a decidable linear order from a `is_strict_total_order'` relation -/ def decidable_linear_order_of_STO' (r) [is_strict_total_order' α r] [decidable_rel r] : decidable_linear_order α := by letI LO := linear_order_of_STO' r; exact { decidable_le := λ x y, decidable_of_iff (¬ r y x) (@not_lt _ _ y x), ..LO } noncomputable def classical.DLO (α) [LO : linear_order α] : decidable_linear_order α := { decidable_le := classical.dec_rel _, ..LO } theorem is_strict_total_order'.swap (r) [is_strict_total_order' α r] : is_strict_total_order' α (swap r) := {..is_trichotomous.swap r, ..is_strict_order.swap r} instance [linear_order α] : is_strict_total_order' α (<) := {} /-- A connected order is one satisfying the condition `a < c → a < b ∨ b < c`. This is recognizable as an intuitionistic substitute for `a ≤ b ∨ b ≤ a` on the constructive reals, and is also known as negative transitivity, since the contrapositive asserts transitivity of the relation `¬ a < b`. -/ @[algebra] class is_order_connected (α : Type u) (lt : α → α → Prop) : Prop := (conn : ∀ a b c, lt a c → lt a b ∨ lt b c) theorem is_order_connected.neg_trans {r : α → α → Prop} [is_order_connected α r] {a b c} (h₁ : ¬ r a b) (h₂ : ¬ r b c) : ¬ r a c := mt (is_order_connected.conn a b c) $ by simp [h₁, h₂] theorem is_strict_weak_order_of_is_order_connected [is_asymm α r] [is_order_connected α r] : is_strict_weak_order α r := { trans := λ a b c h₁ h₂, (is_order_connected.conn _ c _ h₁).resolve_right (asymm h₂), incomp_trans := λ a b c ⟨h₁, h₂⟩ ⟨h₃, h₄⟩, ⟨is_order_connected.neg_trans h₁ h₃, is_order_connected.neg_trans h₄ h₂⟩, ..@is_irrefl_of_is_asymm α r _ } @[priority 100] -- see Note [lower instance priority] instance is_order_connected_of_is_strict_total_order' [is_strict_total_order' α r] : is_order_connected α r := ⟨λ a b c h, (trichotomous _ _).imp_right (λ o, o.elim (λ e, e ▸ h) (λ h', trans h' h))⟩ @[priority 100] -- see Note [lower instance priority] instance is_strict_total_order_of_is_strict_total_order' [is_strict_total_order' α r] : is_strict_total_order α r := {..is_strict_weak_order_of_is_order_connected} instance [linear_order α] : is_strict_total_order α (<) := by apply_instance instance [linear_order α] : is_order_connected α (<) := by apply_instance instance [linear_order α] : is_incomp_trans α (<) := by apply_instance instance [linear_order α] : is_strict_weak_order α (<) := by apply_instance /-- An extensional relation is one in which an element is determined by its set of predecessors. It is named for the `x ∈ y` relation in set theory, whose extensionality is one of the first axioms of ZFC. -/ @[algebra] class is_extensional (α : Type u) (r : α → α → Prop) : Prop := (ext : ∀ a b, (∀ x, r x a ↔ r x b) → a = b) @[priority 100] -- see Note [lower instance priority] instance is_extensional_of_is_strict_total_order' [is_strict_total_order' α r] : is_extensional α r := ⟨λ a b H, ((@trichotomous _ r _ a b) .resolve_left $ mt (H _).2 (irrefl a)) .resolve_right $ mt (H _).1 (irrefl b)⟩ section prio set_option default_priority 100 -- see Note [default priority] /-- A well order is a well-founded linear order. -/ @[algebra] class is_well_order (α : Type u) (r : α → α → Prop) extends is_strict_total_order' α r : Prop := (wf : well_founded r) end prio @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_strict_total_order {α} (r : α → α → Prop) [is_well_order α r] : is_strict_total_order α r := by apply_instance @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_extensional {α} (r : α → α → Prop) [is_well_order α r] : is_extensional α r := by apply_instance @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_trichotomous {α} (r : α → α → Prop) [is_well_order α r] : is_trichotomous α r := by apply_instance @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_trans {α} (r : α → α → Prop) [is_well_order α r] : is_trans α r := by apply_instance @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_irrefl {α} (r : α → α → Prop) [is_well_order α r] : is_irrefl α r := by apply_instance @[priority 100] -- see Note [lower instance priority] instance is_well_order.is_asymm {α} (r : α → α → Prop) [is_well_order α r] : is_asymm α r := by apply_instance noncomputable def decidable_linear_order_of_is_well_order (r : α → α → Prop) [is_well_order α r] : decidable_linear_order α := by { haveI := linear_order_of_STO' r, exact classical.DLO α } instance empty_relation.is_well_order [subsingleton α] : is_well_order α empty_relation := { trichotomous := λ a b, or.inr $ or.inl $ subsingleton.elim _ _, irrefl := λ a, id, trans := λ a b c, false.elim, wf := ⟨λ a, ⟨_, λ y, false.elim⟩⟩ } instance nat.lt.is_well_order : is_well_order ℕ (<) := ⟨nat.lt_wf⟩ instance sum.lex.is_well_order [is_well_order α r] [is_well_order β s] : is_well_order (α ⊕ β) (sum.lex r s) := { trichotomous := λ a b, by cases a; cases b; simp; apply trichotomous, irrefl := λ a, by cases a; simp; apply irrefl, trans := λ a b c, by cases a; cases b; simp; cases c; simp; apply trans, wf := sum.lex_wf (is_well_order.wf r) (is_well_order.wf s) } instance prod.lex.is_well_order [is_well_order α r] [is_well_order β s] : is_well_order (α × β) (prod.lex r s) := { trichotomous := λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩, match @trichotomous _ r _ a₁ b₁ with | or.inl h₁ := or.inl $ prod.lex.left _ _ _ h₁ | or.inr (or.inr h₁) := or.inr $ or.inr $ prod.lex.left _ _ _ h₁ | or.inr (or.inl e) := e ▸ match @trichotomous _ s _ a₂ b₂ with | or.inl h := or.inl $ prod.lex.right _ _ h | or.inr (or.inr h) := or.inr $ or.inr $ prod.lex.right _ _ h | or.inr (or.inl e) := e ▸ or.inr $ or.inl rfl end end, irrefl := λ ⟨a₁, a₂⟩ h, by cases h with _ _ _ _ h _ _ _ h; [exact irrefl _ h, exact irrefl _ h], trans := λ a b c h₁ h₂, begin cases h₁ with a₁ a₂ b₁ b₂ ab a₁ b₁ b₂ ab; cases h₂ with _ _ c₁ c₂ bc _ _ c₂ bc, { exact prod.lex.left _ _ _ (trans ab bc) }, { exact prod.lex.left _ _ _ ab }, { exact prod.lex.left _ _ _ bc }, { exact prod.lex.right _ _ (trans ab bc) } end, wf := prod.lex_wf (is_well_order.wf r) (is_well_order.wf s) } /-- An unbounded or cofinal set -/ def unbounded (r : α → α → Prop) (s : set α) : Prop := ∀ a, ∃ b ∈ s, ¬ r b a /-- A bounded or final set -/ def bounded (r : α → α → Prop) (s : set α) : Prop := ∃a, ∀ b ∈ s, r b a @[simp] lemma not_bounded_iff {r : α → α → Prop} (s : set α) : ¬bounded r s ↔ unbounded r s := begin classical, simp only [bounded, unbounded, not_forall, not_exists, exists_prop, not_and, not_not] end @[simp] lemma not_unbounded_iff {r : α → α → Prop} (s : set α) : ¬unbounded r s ↔ bounded r s := by { classical, rw [not_iff_comm, not_bounded_iff] } namespace well_founded /-- If `r` is a well founded relation, then any nonempty set has a minimum element with respect to `r`. -/ theorem has_min {α} {r : α → α → Prop} (H : well_founded r) (s : set α) : s.nonempty → ∃ a ∈ s, ∀ x ∈ s, ¬ r x a | ⟨a, ha⟩ := (acc.rec_on (H.apply a) $ λ x _ IH, classical.not_imp_not.1 $ λ hne hx, hne $ ⟨x, hx, λ y hy hyx, hne $ IH y hyx hy⟩) ha /-- The minimum element of a nonempty set in a well-founded order -/ noncomputable def min {α} {r : α → α → Prop} (H : well_founded r) (p : set α) (h : p.nonempty) : α := classical.some (H.has_min p h) theorem min_mem {α} {r : α → α → Prop} (H : well_founded r) (p : set α) (h : p.nonempty) : H.min p h ∈ p := let ⟨h, _⟩ := classical.some_spec (H.has_min p h) in h theorem not_lt_min {α} {r : α → α → Prop} (H : well_founded r) (p : set α) (h : p.nonempty) {x} (xp : x ∈ p) : ¬ r x (H.min p h) := let ⟨_, h'⟩ := classical.some_spec (H.has_min p h) in h' _ xp open set protected noncomputable def sup {α} {r : α → α → Prop} (wf : well_founded r) (s : set α) (h : bounded r s) : α := wf.min { x | ∀a ∈ s, r a x } h protected lemma lt_sup {α} {r : α → α → Prop} (wf : well_founded r) {s : set α} (h : bounded r s) {x} (hx : x ∈ s) : r x (wf.sup s h) := min_mem wf { x | ∀a ∈ s, r a x } h x hx section open_locale classical protected noncomputable def succ {α} {r : α → α → Prop} (wf : well_founded r) (x : α) : α := if h : ∃y, r x y then wf.min { y | r x y } h else x protected lemma lt_succ {α} {r : α → α → Prop} (wf : well_founded r) {x : α} (h : ∃y, r x y) : r x (wf.succ x) := by { rw [well_founded.succ, dif_pos h], apply min_mem } end protected lemma lt_succ_iff {α} {r : α → α → Prop} [wo : is_well_order α r] {x : α} (h : ∃y, r x y) (y : α) : r y (wo.wf.succ x) ↔ r y x ∨ y = x := begin split, { intro h', have : ¬r x y, { intro hy, rw [well_founded.succ, dif_pos] at h', exact wo.wf.not_lt_min _ h hy h' }, rcases trichotomous_of r x y with hy | hy | hy, exfalso, exact this hy, right, exact hy.symm, left, exact hy }, rintro (hy | rfl), exact trans hy (wo.wf.lt_succ h), exact wo.wf.lt_succ h end end well_founded variable (r) local infix ` ≼ ` : 50 := r /-- A family of elements of α is directed (with respect to a relation `≼` on α) if there is a member of the family `≼`-above any pair in the family. -/ def directed {ι : Sort v} (f : ι → α) := ∀x y, ∃z, f x ≼ f z ∧ f y ≼ f z /-- A subset of α is directed if there is an element of the set `≼`-above any pair of elements in the set. -/ def directed_on (s : set α) := ∀ (x ∈ s) (y ∈ s), ∃z ∈ s, x ≼ z ∧ y ≼ z theorem directed_on_iff_directed {s} : @directed_on α r s ↔ directed r (coe : s → α) := by simp [directed, directed_on]; refine ball_congr (λ x hx, by simp; refl) theorem directed_comp {ι} (f : ι → β) (g : β → α) : directed r (g ∘ f) ↔ directed (g ⁻¹'o r) f := iff.rfl theorem directed_mono {s : α → α → Prop} {ι} (f : ι → α) (H : ∀ a b, r a b → s a b) (h : directed r f) : directed s f := λ a b, let ⟨c, h₁, h₂⟩ := h a b in ⟨c, H _ _ h₁, H _ _ h₂⟩ /-- A monotone function on a linear order is directed. -/ lemma directed_of_mono {ι} [decidable_linear_order ι] (f : ι → α) (H : ∀ i j, i ≤ j → f i ≼ f j) : directed (≼) f := λ a b, ⟨max a b, H _ _ (le_max_left _ _), H _ _ (le_max_right _ _)⟩ section prio set_option default_priority 100 -- see Note [default priority] class directed_order (α : Type u) extends preorder α := (directed : ∀ i j : α, ∃ k, i ≤ k ∧ j ≤ k) end prio
a919e729093d84f3ef00a2e2de055e0dc10ac6dc
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/library/init/meta/options.lean
4c4d06b9a69a07832d255aad2b953d42aa72f9e1
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
1,388
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.name universe variables u meta_constant options : Type 1 meta_constant options.size : options → nat meta_constant options.mk : options meta_constant options.contains : options → name → bool meta_constant options.set_bool : options → name → bool → options meta_constant options.set_nat : options → name → nat → options meta_constant options.set_string : options → name → string → options meta_constant options.get_bool : options → name → bool → bool meta_constant options.get_nat : options → name → nat → nat meta_constant options.get_string : options → name → string → string meta_constant options.join : options → options → options meta_constant options.fold {A : Type u} : options → A → (name → A → A) → A meta_constant options.has_decidable_eq : decidable_eq options attribute [instance] options.has_decidable_eq attribute [instance] meta_definition options.has_add : has_add options := has_add.mk options.join attribute [instance] meta_definition options.is_inhabited : inhabited options := inhabited.mk options.mk
52ff76cc07082d197918b6dcaf41674e31447e68
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/ring_theory/ring_hom_properties.lean
e83e147d9c865f92c204a0fc7a3fe1cb40a5452d
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
6,696
lean
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import algebra.category.Ring.constructions import algebra.category.Ring.colimits import category_theory.isomorphism import ring_theory.localization.away.basic import ring_theory.is_tensor_product /-! # Properties of ring homomorphisms > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We provide the basic framework for talking about properties of ring homomorphisms. The following meta-properties of predicates on ring homomorphisms are defined * `ring_hom.respects_iso`: `P` respects isomorphisms if `P f → P (e ≫ f)` and `P f → P (f ≫ e)`, where `e` is an isomorphism. * `ring_hom.stable_under_composition`: `P` is stable under composition if `P f → P g → P (f ≫ g)`. * `ring_hom.stable_under_base_change`: `P` is stable under base change if `P (S ⟶ Y)` implies `P (X ⟶ X ⊗[S] Y)`. -/ universe u open category_theory opposite category_theory.limits namespace ring_hom variable (P : ∀ {R S : Type u} [comm_ring R] [comm_ring S] (f : by exactI R →+* S), Prop) include P section respects_iso /-- A property `respects_iso` if it still holds when composed with an isomorphism -/ def respects_iso : Prop := (∀ {R S T : Type u} [comm_ring R] [comm_ring S] [comm_ring T], by exactI ∀ (f : R →+* S) (e : S ≃+* T) (hf : P f), P (e.to_ring_hom.comp f)) ∧ (∀ {R S T : Type u} [comm_ring R] [comm_ring S] [comm_ring T], by exactI ∀ (f : S →+* T) (e : R ≃+* S) (hf : P f), P (f.comp e.to_ring_hom)) variable {P} lemma respects_iso.cancel_left_is_iso (hP : respects_iso @P) {R S T : CommRing} (f : R ⟶ S) (g : S ⟶ T) [is_iso f] : P (f ≫ g) ↔ P g := ⟨λ H, by { convert hP.2 (f ≫ g) (as_iso f).symm.CommRing_iso_to_ring_equiv H, exact (is_iso.inv_hom_id_assoc _ _).symm }, hP.2 g (as_iso f).CommRing_iso_to_ring_equiv⟩ lemma respects_iso.cancel_right_is_iso (hP : respects_iso @P) {R S T : CommRing} (f : R ⟶ S) (g : S ⟶ T) [is_iso g] : P (f ≫ g) ↔ P f := ⟨λ H, by { convert hP.1 (f ≫ g) (as_iso g).symm.CommRing_iso_to_ring_equiv H, change f = f ≫ g ≫ (inv g), simp }, hP.1 f (as_iso g).CommRing_iso_to_ring_equiv⟩ lemma respects_iso.is_localization_away_iff (hP : ring_hom.respects_iso @P) {R S : Type*} (R' S' : Type*) [comm_ring R] [comm_ring S] [comm_ring R'] [comm_ring S'] [algebra R R'] [algebra S S'] (f : R →+* S) (r : R) [is_localization.away r R'] [is_localization.away (f r) S'] : P (localization.away_map f r) ↔ P (is_localization.away.map R' S' f r) := begin let e₁ : R' ≃+* localization.away r := (is_localization.alg_equiv (submonoid.powers r) _ _).to_ring_equiv, let e₂ : localization.away (f r) ≃+* S' := (is_localization.alg_equiv (submonoid.powers (f r)) _ _).to_ring_equiv, refine (hP.cancel_left_is_iso e₁.to_CommRing_iso.hom (CommRing.of_hom _)).symm.trans _, refine (hP.cancel_right_is_iso (CommRing.of_hom _) e₂.to_CommRing_iso.hom).symm.trans _, rw ← eq_iff_iff, congr' 1, dsimp [CommRing.of_hom, CommRing.of, bundled.of], refine is_localization.ring_hom_ext (submonoid.powers r) _, ext1, revert e₁ e₂, dsimp [ring_equiv.to_ring_hom, is_localization.away.map], simp only [category_theory.comp_apply, ring_equiv.refl_apply, is_localization.alg_equiv_apply, is_localization.ring_equiv_of_ring_equiv_apply, ring_hom.coe_mk, ring_equiv.to_fun_eq_coe, is_localization.ring_equiv_of_ring_equiv_eq, is_localization.map_eq], end end respects_iso section stable_under_composition /-- A property is `stable_under_composition` if the composition of two such morphisms still falls in the class. -/ def stable_under_composition : Prop := ∀ ⦃R S T⦄ [comm_ring R] [comm_ring S] [comm_ring T], by exactI ∀ (f : R →+* S) (g : S →+* T) (hf : P f) (hg : P g), P (g.comp f) variable {P} lemma stable_under_composition.respects_iso (hP : ring_hom.stable_under_composition @P) (hP' : ∀ {R S : Type*} [comm_ring R] [comm_ring S] (e : by exactI R ≃+* S), by exactI P e.to_ring_hom) : ring_hom.respects_iso @P := begin split, { introv H, resetI, apply hP, exacts [H, hP' e] }, { introv H, resetI, apply hP, exacts [hP' e, H] } end end stable_under_composition section stable_under_base_change /-- A morphism property `P` is `stable_under_base_change` if `P(S →+* A)` implies `P(B →+* A ⊗[S] B)`. -/ def stable_under_base_change : Prop := ∀ (R S R' S') [comm_ring R] [comm_ring S] [comm_ring R'] [comm_ring S'], by exactI ∀ [algebra R S] [algebra R R'] [algebra R S'] [algebra S S'] [algebra R' S'], by exactI ∀ [is_scalar_tower R S S'] [is_scalar_tower R R' S'], by exactI ∀ [algebra.is_pushout R S R' S'], P (algebra_map R S) → P (algebra_map R' S') lemma stable_under_base_change.mk (h₁ : respects_iso @P) (h₂ : ∀ ⦃R S T⦄ [comm_ring R] [comm_ring S] [comm_ring T], by exactI ∀ [algebra R S] [algebra R T], by exactI (P (algebra_map R T) → P (algebra.tensor_product.include_left.to_ring_hom : S →+* tensor_product R S T))) : stable_under_base_change @P := begin introv R h H, resetI, let e := h.symm.1.equiv, let f' := algebra.tensor_product.product_map (is_scalar_tower.to_alg_hom R R' S') (is_scalar_tower.to_alg_hom R S S'), have : ∀ x, e x = f' x, { intro x, change e.to_linear_map.restrict_scalars R x = f'.to_linear_map x, congr' 1, apply tensor_product.ext', intros x y, simp [is_base_change.equiv_tmul, algebra.smul_def] }, convert h₁.1 _ _ (h₂ H : P (_ : R' →+* _)), swap, { refine { map_mul' := λ x y, _, ..e }, change e (x * y) = e x * e y, simp_rw this, exact map_mul f' _ _ }, { ext, change _ = e (x ⊗ₜ[R] 1), dsimp only [e], rw [h.symm.1.equiv_tmul, algebra.smul_def, alg_hom.to_linear_map_apply, map_one, mul_one] } end omit P local attribute [instance] algebra.tensor_product.right_algebra lemma stable_under_base_change.pushout_inl (hP : ring_hom.stable_under_base_change @P) (hP' : ring_hom.respects_iso @P) {R S T : CommRing} (f : R ⟶ S) (g : R ⟶ T) (H : P g) : P (pushout.inl : S ⟶ pushout f g) := begin rw [← (show _ = pushout.inl, from colimit.iso_colimit_cocone_ι_inv ⟨_, CommRing.pushout_cocone_is_colimit f g⟩ walking_span.left), hP'.cancel_right_is_iso], letI := f.to_algebra, letI := g.to_algebra, dsimp only [CommRing.pushout_cocone_inl, pushout_cocone.ι_app_left], apply hP R T S (tensor_product R S T), exact H, end end stable_under_base_change end ring_hom
8679561b6ab86e95c3f59b6c9d29eb6f4579f777
54c9ed381c63410c9b6af3b0a1722c41152f037f
/Binport/OldRecursor.lean
22babff6f3738ed0ac41bb0d1d070b4a843c1491
[ "Apache-2.0" ]
permissive
dselsam/binport
0233f1aa961a77c4fc96f0dccc780d958c5efc6c
aef374df0e169e2c3f1dc911de240c076315805c
refs/heads/master
1,687,453,448,108
1,627,483,296,000
1,627,483,296,000
333,825,622
0
0
null
null
null
null
UTF-8
Lean
false
false
2,129
lean
/- Copyright (c) 2020 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import Binport.Util import Lean namespace Binport open Lean Lean.Meta def mkOldRecursor (indTy oldRecName : Name) : MetaM (Option Declaration) := do let some (ConstantInfo.inductInfo indI) ← getConst? indTy | throwError (toString indTy) let indTy' ← inferType (mkConst indI.name (indI.levelParams.map mkLevelParam)) let useDepElim ← forallTelescopeReducing indTy' $ fun _ indSort => do let Expr.sort level _ ← pure indSort | throwError (toString indSort) level.normalize != levelZero; if useDepElim then return none let some (ConstantInfo.recInfo recI) ← getConst? (indTy ++ "rec") | throwError (toString $ indTy ++ "rec") let crec := mkConst recI.name (recI.levelParams.map mkLevelParam); let recTy ← inferType crec; forallTelescopeReducing recTy $ fun args _ => do let (params, args) := args.splitAt recI.numParams; let (motive, args) := args.splitAt 1; let motive := motive.get! 0; let motiveTy ← inferType motive; forallTelescopeReducing motiveTy $ fun _ elimSort => do let Expr.sort elimLevel _ ← pure elimSort | throwError (toString elimSort) let (minorPremises, args) := args.splitAt recI.numMinors let (indices, major) := args.splitAt recI.numIndices let majorPremise := major.get! 0 let oldMotiveTy ← Meta.mkForallFVars indices (mkSort elimLevel) withLocalDecl `C BinderInfo.implicit oldMotiveTy $ fun oldMotive => do let newMotive ← Meta.mkLambdaFVars (indices.push majorPremise) (mkAppN oldMotive indices) let val ← Meta.mkLambdaFVars ((params).push oldMotive) $ mkAppN crec ((params).push newMotive) let ty ← inferType val pure $ Declaration.defnDecl { name := oldRecName, levelParams := recI.levelParams, type := ty, value := val, safety := DefinitionSafety.safe, hints := ReducibilityHints.abbrev, } end Binport
25f80ede13220932ba11527f4a8072b21a451427
48f4f349e1bb919d14ab7e5921d0cfe825f4c423
/folklore/derivatives.lean
7b375fdfbca94bf862e3f7c9709075f3c05d82e2
[]
no_license
thalesant/formalabstracts-2017
fdf4ff90d30ab1dcb6d4cf16a068a997ea5ecc80
c47181342c9e41954aa8d41f5049965b5f332bca
refs/heads/master
1,584,610,453,925
1,528,277,508,000
1,528,277,508,000
136,299,625
0
0
null
null
null
null
UTF-8
Lean
false
false
3,657
lean
/- Frechet derivatives on Banach space -/ import order.filter data.set meta_data data.list data.vector .real_axiom algebra.module data.finset.basic .metric .complex noncomputable theory namespace derivatives open set filter classical nat int list vector real_axiom metric finset complex local attribute [instance] prop_decidable universes u v w -- could do normed rings, non-multiplicative norms, as well. -- variables { α :Type u} {β : Type v} ( x : α ) (y : β) [ring α] [topological_space α] -- #check induced_space _ { x : α | x ≠ 0 } -- #check product_topology -- this must be somewhere already... /- def uncurry {α : Type u} {β : Type v} {γ : Type w} (f : α → β → γ ) (xy : α × β) := let (x,y) := xy in f x y def curry {α : Type u} {β : Type v} {γ : Type w} (f : α × β → γ ) (x : α) (y : β) := f (x,y) -/ class topological_ring (α : Type u) [rngtop : topological_space α] extends ring α := (minus_cont : continuous_map product_topology rngtop (λxy, xy.fst - xy.snd)) (time_cont : continuous_map product_topology rngtop (λxy, xy.fst * xy.snd)) class topological_field (α : Type u) [field α] [top : topological_space α] extends topological_ring α := (inv_cont : continuous_map (induced_space top { x : α | x ≠ 0 }) top (λx, x⁻¹)) variables {α : Type u} {β : Type v} (xy : α × β) -- #check let (x,y) := xy in (x : α) class multiplicative_normed_field (α : Type u) extends field α, metric_space α := (norm : α → ℝ) (multiplicative : ∀ x y, norm(x*y) = norm x * norm y) (norm_dist : ∀ x y, dist x y = norm (x - y)) --follows from metric --(positivity : ∀ x, norm x ≥ 0) --(norm0 : ∀ x, norm x = 0 ↔ x = 0) --(triangle_inequality : ∀ x y, norm(x + y) ≤ norm x + norm y) class topological_vector_space (α : Type u) (β : Type v) [field α] [X:topological_space β] extends vector_space α β := (closed_points : ∀ (x : β), is_closed X {x}) class normed_space (α : Type u) (β : Type v) [multiplicative_normed_field α] extends vector_space α β, metric_space β := (norm : β → ℝ := λ (v:β), dist v 0 ) (homogeneity : ∀ (c : α) (v : β), norm(c • v) = multiplicative_normed_field.norm c * norm v) (norm_dist : ∀ v w, dist v w = norm (v - w)) axiom exists_real_multiplicative_normed_field : (∃!p : multiplicative_normed_field ℝ, p.norm = real_abs) instance real_multiplicative_normed_field := classical.some exists_real_multiplicative_normed_field axiom exists_complex_multiplicative_normed_field : (∃!p : multiplicative_normed_field ℂ, p.norm = complex.norm) instance complex_multiplicative_normed_field := classical.some exists_complex_multiplicative_normed_field class banach_space (α : Type u) (β : Type v) [multiplicative_normed_field α] extends normed_space α β, complete_metric_space β class real_banach_space (β : Type v) extends banach_space ℝ β def linear { α : Type u} {β : Type v} {γ : Type w} [field α] [vector_space α β] [vector_space α γ] (f : β → γ) : Prop := (∀ (x : α) (v : β), f (x • v) = x • f v) ∧ (∀ v w, f (v + w) = f v + f w) -- bounded in a topological vector space --def bounded { α : Type u} [topological_vector_space α] /- class complex_vector_space β extends vector_space ℂ β class complex_normed_space (β : Type u) extends complex_vector_space β := (norm : β → ℝ) (positivity : ∀ v, norm v ≥ 0) (norm0 : ∀ v, norm v = 0 ↔ v = 0) (homogeneity : ∀ (c : ℂ) (v : β), norm(c • v) = complex.norm c * norm v) (triangle_inequality : ∀ v w, norm(v + w) ≤ norm v + norm w) -/ end derivatives
078fe30db9e4e7833866becd54973591cd0c6216
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/reduce2.lean
ff4c9d2bbcdb5b2926a4a9464c05f49c3b6f243b
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
129
lean
def fact : Nat → Nat | 0 => 1 | (n+1) => (n+1)*fact n def v1 := fact 10 theorem v1Eq : v1 = fact 10 := Eq.refl (fact 10)
91b6efea52333b5dc90b4e4a8ef39e84c767feb0
82e44445c70db0f03e30d7be725775f122d72f3e
/src/topology/continuous_on.lean
de17a427ced36c18880dfdc48ac98c71775bacf0
[ "Apache-2.0" ]
permissive
stjordanis/mathlib
51e286d19140e3788ef2c470bc7b953e4991f0c9
2568d41bca08f5d6bf39d915434c8447e21f42ee
refs/heads/master
1,631,748,053,501
1,627,938,886,000
1,627,938,886,000
228,728,358
0
0
Apache-2.0
1,576,630,588,000
1,576,630,587,000
null
UTF-8
Lean
false
false
47,115
lean
/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.constructions /-! # Neighborhoods and continuity relative to a subset This file defines relative versions * `nhds_within` of `nhds` * `continuous_on` of `continuous` * `continuous_within_at` of `continuous_at` and proves their basic properties, including the relationships between these restricted notions and the corresponding notions for the subtype equipped with the subspace topology. ## Notation * `𝓝 x`: the filter of neighborhoods of a point `x`; * `𝓟 s`: the principal filter of a set `s`; * `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`. -/ open set filter open_locale topological_space filter variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] @[simp] lemma nhds_bind_nhds_within {a : α} {s : set α} : (𝓝 a).bind (λ x, 𝓝[s] x) = 𝓝[s] a := bind_inf_principal.trans $ congr_arg2 _ nhds_bind_nhds rfl @[simp] lemma eventually_nhds_nhds_within {a : α} {s : set α} {p : α → Prop} : (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝[s] y, p x) ↔ ∀ᶠ x in 𝓝[s] a, p x := filter.ext_iff.1 nhds_bind_nhds_within {x | p x} lemma eventually_nhds_within_iff {a : α} {s : set α} {p : α → Prop} : (∀ᶠ x in 𝓝[s] a, p x) ↔ ∀ᶠ x in 𝓝 a, x ∈ s → p x := eventually_inf_principal @[simp] lemma eventually_nhds_within_nhds_within {a : α} {s : set α} {p : α → Prop} : (∀ᶠ y in 𝓝[s] a, ∀ᶠ x in 𝓝[s] y, p x) ↔ ∀ᶠ x in 𝓝[s] a, p x := begin refine ⟨λ h, _, λ h, (eventually_nhds_nhds_within.2 h).filter_mono inf_le_left⟩, simp only [eventually_nhds_within_iff] at h ⊢, exact h.mono (λ x hx hxs, (hx hxs).self_of_nhds hxs) end theorem nhds_within_eq (a : α) (s : set α) : 𝓝[s] a = ⨅ t ∈ {t : set α | a ∈ t ∧ is_open t}, 𝓟 (t ∩ s) := ((nhds_basis_opens a).inf_principal s).eq_binfi theorem nhds_within_univ (a : α) : 𝓝[set.univ] a = 𝓝 a := by rw [nhds_within, principal_univ, inf_top_eq] lemma nhds_within_has_basis {p : β → Prop} {s : β → set α} {a : α} (h : (𝓝 a).has_basis p s) (t : set α) : (𝓝[t] a).has_basis p (λ i, s i ∩ t) := h.inf_principal t lemma nhds_within_basis_open (a : α) (t : set α) : (𝓝[t] a).has_basis (λ u, a ∈ u ∧ is_open u) (λ u, u ∩ t) := nhds_within_has_basis (nhds_basis_opens a) t theorem mem_nhds_within {t : set α} {a : α} {s : set α} : t ∈ 𝓝[s] a ↔ ∃ u, is_open u ∧ a ∈ u ∧ u ∩ s ⊆ t := by simpa only [exists_prop, and_assoc, and_comm] using (nhds_within_basis_open a s).mem_iff lemma mem_nhds_within_iff_exists_mem_nhds_inter {t : set α} {a : α} {s : set α} : t ∈ 𝓝[s] a ↔ ∃ u ∈ 𝓝 a, u ∩ s ⊆ t := (nhds_within_has_basis (𝓝 a).basis_sets s).mem_iff lemma diff_mem_nhds_within_compl {X : Type*} [topological_space X] {x : X} {s : set X} (hs : s ∈ 𝓝 x) (t : set X) : s \ t ∈ 𝓝[tᶜ] x := diff_mem_inf_principal_compl hs t lemma nhds_of_nhds_within_of_nhds {s t : set α} {a : α} (h1 : s ∈ 𝓝 a) (h2 : t ∈ 𝓝[s] a) : (t ∈ 𝓝 a) := begin rcases mem_nhds_within_iff_exists_mem_nhds_inter.mp h2 with ⟨_, Hw, hw⟩, exact (nhds a).sets_of_superset ((nhds a).inter_sets Hw h1) hw, end lemma preimage_nhds_within_coinduced' {π : α → β} {s : set β} {t : set α} {a : α} (h : a ∈ t) (ht : is_open t) (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : π ⁻¹' s ∈ 𝓝[t] a := begin letI := topological_space.coinduced (λ x : t, π x) subtype.topological_space, rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩, refine mem_nhds_within_iff_exists_mem_nhds_inter.mpr ⟨π ⁻¹' V, mem_nhds_iff.mpr ⟨t ∩ π ⁻¹' V, inter_subset_right t (π ⁻¹' V), _, mem_sep h mem_V⟩, subset.trans (inter_subset_left _ _) (preimage_mono hVs)⟩, obtain ⟨u, hu1, hu2⟩ := is_open_induced_iff.mp (is_open_coinduced.1 V_op), rw [preimage_comp] at hu2, rw [set.inter_comm, ←(subtype.preimage_coe_eq_preimage_coe_iff.mp hu2)], exact hu1.inter ht, end lemma mem_nhds_within_of_mem_nhds {s t : set α} {a : α} (h : s ∈ 𝓝 a) : s ∈ 𝓝[t] a := mem_inf_sets_of_left h theorem self_mem_nhds_within {a : α} {s : set α} : s ∈ 𝓝[s] a := mem_inf_sets_of_right (mem_principal_self s) theorem inter_mem_nhds_within (s : set α) {t : set α} {a : α} (h : t ∈ 𝓝 a) : s ∩ t ∈ 𝓝[s] a := inter_mem_sets self_mem_nhds_within (mem_inf_sets_of_left h) theorem nhds_within_mono (a : α) {s t : set α} (h : s ⊆ t) : 𝓝[s] a ≤ 𝓝[t] a := inf_le_inf_left _ (principal_mono.mpr h) lemma pure_le_nhds_within {a : α} {s : set α} (ha : a ∈ s) : pure a ≤ 𝓝[s] a := le_inf (pure_le_nhds a) (le_principal_iff.2 ha) lemma mem_of_mem_nhds_within {a : α} {s t : set α} (ha : a ∈ s) (ht : t ∈ 𝓝[s] a) : a ∈ t := pure_le_nhds_within ha ht lemma filter.eventually.self_of_nhds_within {p : α → Prop} {s : set α} {x : α} (h : ∀ᶠ y in 𝓝[s] x, p y) (hx : x ∈ s) : p x := mem_of_mem_nhds_within hx h lemma tendsto_const_nhds_within {l : filter β} {s : set α} {a : α} (ha : a ∈ s) : tendsto (λ x : β, a) l (𝓝[s] a) := tendsto_const_pure.mono_right $ pure_le_nhds_within ha theorem nhds_within_restrict'' {a : α} (s : set α) {t : set α} (h : t ∈ 𝓝[s] a) : 𝓝[s] a = 𝓝[s ∩ t] a := le_antisymm (le_inf inf_le_left (le_principal_iff.mpr (inter_mem_sets self_mem_nhds_within h))) (inf_le_inf_left _ (principal_mono.mpr (set.inter_subset_left _ _))) theorem nhds_within_restrict' {a : α} (s : set α) {t : set α} (h : t ∈ 𝓝 a) : 𝓝[s] a = 𝓝[s ∩ t] a := nhds_within_restrict'' s $ mem_inf_sets_of_left h theorem nhds_within_restrict {a : α} (s : set α) {t : set α} (h₀ : a ∈ t) (h₁ : is_open t) : 𝓝[s] a = 𝓝[s ∩ t] a := nhds_within_restrict' s (is_open.mem_nhds h₁ h₀) theorem nhds_within_le_of_mem {a : α} {s t : set α} (h : s ∈ 𝓝[t] a) : 𝓝[t] a ≤ 𝓝[s] a := begin rcases mem_nhds_within.1 h with ⟨u, u_open, au, uts⟩, have : 𝓝[t] a = 𝓝[t ∩ u] a := nhds_within_restrict _ au u_open, rw [this, inter_comm], exact nhds_within_mono _ uts end theorem nhds_within_le_nhds {a : α} {s : set α} : 𝓝[s] a ≤ 𝓝 a := by { rw ← nhds_within_univ, apply nhds_within_le_of_mem, exact univ_mem_sets } theorem nhds_within_eq_nhds_within {a : α} {s t u : set α} (h₀ : a ∈ s) (h₁ : is_open s) (h₂ : t ∩ s = u ∩ s) : 𝓝[t] a = 𝓝[u] a := by rw [nhds_within_restrict t h₀ h₁, nhds_within_restrict u h₀ h₁, h₂] theorem nhds_within_eq_of_open {a : α} {s : set α} (h₀ : a ∈ s) (h₁ : is_open s) : 𝓝[s] a = 𝓝 a := inf_eq_left.2 $ le_principal_iff.2 $ is_open.mem_nhds h₁ h₀ lemma preimage_nhds_within_coinduced {π : α → β} {s : set β} {t : set α} {a : α} (h : a ∈ t) (ht : is_open t) (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : π ⁻¹' s ∈ 𝓝 a := by { rw ←nhds_within_eq_of_open h ht, exact preimage_nhds_within_coinduced' h ht hs } @[simp] theorem nhds_within_empty (a : α) : 𝓝[∅] a = ⊥ := by rw [nhds_within, principal_empty, inf_bot_eq] theorem nhds_within_union (a : α) (s t : set α) : 𝓝[s ∪ t] a = 𝓝[s] a ⊔ 𝓝[t] a := by { delta nhds_within, rw [←inf_sup_left, sup_principal] } theorem nhds_within_inter (a : α) (s t : set α) : 𝓝[s ∩ t] a = 𝓝[s] a ⊓ 𝓝[t] a := by { delta nhds_within, rw [inf_left_comm, inf_assoc, inf_principal, ←inf_assoc, inf_idem] } theorem nhds_within_inter' (a : α) (s t : set α) : 𝓝[s ∩ t] a = (𝓝[s] a) ⊓ 𝓟 t := by { delta nhds_within, rw [←inf_principal, inf_assoc] } theorem nhds_within_inter_of_mem {a : α} {s t : set α} (h : s ∈ 𝓝[t] a) : 𝓝[s ∩ t] a = 𝓝[t] a := by { rw [nhds_within_inter, inf_eq_right], exact nhds_within_le_of_mem h } @[simp] theorem nhds_within_singleton (a : α) : 𝓝[{a}] a = pure a := by rw [nhds_within, principal_singleton, inf_eq_right.2 (pure_le_nhds a)] @[simp] theorem nhds_within_insert (a : α) (s : set α) : 𝓝[insert a s] a = pure a ⊔ 𝓝[s] a := by rw [← singleton_union, nhds_within_union, nhds_within_singleton] lemma mem_nhds_within_insert {a : α} {s t : set α} : t ∈ 𝓝[insert a s] a ↔ a ∈ t ∧ t ∈ 𝓝[s] a := by simp lemma insert_mem_nhds_within_insert {a : α} {s t : set α} (h : t ∈ 𝓝[s] a) : insert a t ∈ 𝓝[insert a s] a := by simp [mem_sets_of_superset h] lemma nhds_within_prod_eq {α : Type*} [topological_space α] {β : Type*} [topological_space β] (a : α) (b : β) (s : set α) (t : set β) : 𝓝[s.prod t] (a, b) = 𝓝[s] a ×ᶠ 𝓝[t] b := by { delta nhds_within, rw [nhds_prod_eq, ←filter.prod_inf_prod, filter.prod_principal_principal] } lemma nhds_within_prod {α : Type*} [topological_space α] {β : Type*} [topological_space β] {s u : set α} {t v : set β} {a : α} {b : β} (hu : u ∈ 𝓝[s] a) (hv : v ∈ 𝓝[t] b) : (u.prod v) ∈ 𝓝[s.prod t] (a, b) := by { rw nhds_within_prod_eq, exact prod_mem_prod hu hv, } lemma nhds_within_pi_eq' {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} (hI : finite I) (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi I s] x = ⨅ i, comap (λ x, x i) (𝓝 (x i) ⊓ ⨅ (hi : i ∈ I), 𝓟 (s i)) := by simp only [nhds_within, nhds_pi, comap_inf, comap_infi, pi_def, comap_principal, ← infi_principal_finite hI, ← infi_inf_eq] lemma nhds_within_pi_eq {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} (hI : finite I) (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi I s] x = (⨅ i ∈ I, comap (λ x, x i) (𝓝[s i] (x i))) ⊓ ⨅ (i ∉ I), comap (λ x, x i) (𝓝 (x i)) := begin simp only [nhds_within, nhds_pi, pi_def, ← infi_principal_finite hI, comap_inf, comap_principal, function.eval], rw [infi_split _ (λ i, i ∈ I), inf_right_comm], simp only [infi_inf_eq] end lemma nhds_within_pi_univ_eq {ι : Type*} {α : ι → Type*} [fintype ι] [Π i, topological_space (α i)] (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi univ s] x = ⨅ i, comap (λ x, x i) 𝓝[s i] (x i) := by simpa [nhds_within] using nhds_within_pi_eq finite_univ s x lemma nhds_within_pi_univ_eq_bot {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {s : Π i, set (α i)} {x : Π i, α i} : 𝓝[pi univ s] x = ⊥ ↔ ∃ i, 𝓝[s i] (x i) = ⊥ := begin classical, split, { haveI : Π i, inhabited (α i) := λ i, ⟨x i⟩, simp only [nhds_within, nhds_pi, inf_principal_eq_bot, mem_infi_iff', mem_comap_sets], rintro ⟨I, hIf, V, hV, hVs⟩, choose! t htx htV using hV, contrapose! hVs, change ∀ i, ∃ᶠ y in 𝓝 (x i), y ∈ s i at hVs, have : ∀ i ∈ I, (s i ∩ t i).nonempty, from λ i hi, ((hVs i).and_eventually (htx i hi)).exists, choose! y hys hyt, choose z hzs using λ i, (hVs i).exists, suffices : I.piecewise y z ∈ (⋂ i ∈ I, V i) ∩ (pi univ s), from λ H, H this.1 this.2, refine ⟨mem_bInter $ λ i hi, htV i hi _, λ i hi', _⟩, { simp only [mem_preimage, piecewise_eq_of_mem _ _ _ hi, hyt i hi] }, { by_cases hi : i ∈ I; simp * } }, { rintro ⟨i, eq⟩, rw [← @map_eq_bot_iff _ _ _ (λ x : Π i, α i, x i)], refine eq_bot_mono _ eq, exact ((continuous_apply i).tendsto x).inf (tendsto_principal_principal.2 $ λ y hy, hy i trivial) } end lemma nhds_within_pi_eq_bot {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : 𝓝[pi I s] x = ⊥ ↔ ∃ i ∈ I, 𝓝[s i] (x i) = ⊥ := begin classical, rw [← univ_pi_piecewise I, nhds_within_pi_univ_eq_bot], refine exists_congr (λ i, _), by_cases hi : i ∈ I; simp [*, nhds_within_univ, nhds_ne_bot.ne] end lemma nhds_within_pi_ne_bot {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : (𝓝[pi I s] x).ne_bot ↔ ∀ i ∈ I, (𝓝[s i] (x i)).ne_bot := by simp [ne_bot_iff, nhds_within_pi_eq_bot] theorem filter.tendsto.piecewise_nhds_within {f g : α → β} {t : set α} [∀ x, decidable (x ∈ t)] {a : α} {s : set α} {l : filter β} (h₀ : tendsto f (𝓝[s ∩ t] a) l) (h₁ : tendsto g (𝓝[s ∩ tᶜ] a) l) : tendsto (piecewise t f g) (𝓝[s] a) l := by apply tendsto.piecewise; rwa ← nhds_within_inter' theorem filter.tendsto.if_nhds_within {f g : α → β} {p : α → Prop} [decidable_pred p] {a : α} {s : set α} {l : filter β} (h₀ : tendsto f (𝓝[s ∩ {x | p x}] a) l) (h₁ : tendsto g (𝓝[s ∩ {x | ¬ p x}] a) l) : tendsto (λ x, if p x then f x else g x) (𝓝[s] a) l := h₀.piecewise_nhds_within h₁ lemma map_nhds_within (f : α → β) (a : α) (s : set α) : map f (𝓝[s] a) = ⨅ t ∈ {t : set α | a ∈ t ∧ is_open t}, 𝓟 (f '' (t ∩ s)) := ((nhds_within_basis_open a s).map f).eq_binfi theorem tendsto_nhds_within_mono_left {f : α → β} {a : α} {s t : set α} {l : filter β} (hst : s ⊆ t) (h : tendsto f (𝓝[t] a) l) : tendsto f (𝓝[s] a) l := h.mono_left $ nhds_within_mono a hst theorem tendsto_nhds_within_mono_right {f : β → α} {l : filter β} {a : α} {s t : set α} (hst : s ⊆ t) (h : tendsto f l (𝓝[s] a)) : tendsto f l (𝓝[t] a) := h.mono_right (nhds_within_mono a hst) theorem tendsto_nhds_within_of_tendsto_nhds {f : α → β} {a : α} {s : set α} {l : filter β} (h : tendsto f (𝓝 a) l) : tendsto f (𝓝[s] a) l := h.mono_left inf_le_left theorem principal_subtype {α : Type*} (s : set α) (t : set {x // x ∈ s}) : 𝓟 t = comap coe (𝓟 ((coe : s → α) '' t)) := by rw [comap_principal, set.preimage_image_eq _ subtype.coe_injective] lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} : x ∈ closure s ↔ ne_bot (𝓝[s] x) := mem_closure_iff_cluster_pt lemma nhds_within_ne_bot_of_mem {s : set α} {x : α} (hx : x ∈ s) : ne_bot (𝓝[s] x) := mem_closure_iff_nhds_within_ne_bot.1 $ subset_closure hx lemma is_closed.mem_of_nhds_within_ne_bot {s : set α} (hs : is_closed s) {x : α} (hx : ne_bot $ 𝓝[s] x) : x ∈ s := by simpa only [hs.closure_eq] using mem_closure_iff_nhds_within_ne_bot.2 hx lemma dense_range.nhds_within_ne_bot {ι : Type*} {f : ι → α} (h : dense_range f) (x : α) : ne_bot (𝓝[range f] x) := mem_closure_iff_cluster_pt.1 (h x) lemma mem_closure_pi {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : x ∈ closure (pi I s) ↔ ∀ i ∈ I, x i ∈ closure (s i) := by simp only [mem_closure_iff_nhds_within_ne_bot, nhds_within_pi_ne_bot] lemma closure_pi_set {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] (I : set ι) (s : Π i, set (α i)) : closure (pi I s) = pi I (λ i, closure (s i)) := set.ext $ λ x, mem_closure_pi lemma dense_pi {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {s : Π i, set (α i)} (I : set ι) (hs : ∀ i ∈ I, dense (s i)) : dense (pi I s) := by simp only [dense_iff_closure_eq, closure_pi_set, pi_congr rfl (λ i hi, (hs i hi).closure_eq), pi_univ] lemma eventually_eq_nhds_within_iff {f g : α → β} {s : set α} {a : α} : (f =ᶠ[𝓝[s] a] g) ↔ ∀ᶠ x in 𝓝 a, x ∈ s → f x = g x := mem_inf_principal lemma eventually_eq_nhds_within_of_eq_on {f g : α → β} {s : set α} {a : α} (h : eq_on f g s) : f =ᶠ[𝓝[s] a] g := mem_inf_sets_of_right h lemma set.eq_on.eventually_eq_nhds_within {f g : α → β} {s : set α} {a : α} (h : eq_on f g s) : f =ᶠ[𝓝[s] a] g := eventually_eq_nhds_within_of_eq_on h lemma tendsto_nhds_within_congr {f g : α → β} {s : set α} {a : α} {l : filter β} (hfg : ∀ x ∈ s, f x = g x) (hf : tendsto f (𝓝[s] a) l) : tendsto g (𝓝[s] a) l := (tendsto_congr' $ eventually_eq_nhds_within_of_eq_on hfg).1 hf lemma eventually_nhds_with_of_forall {s : set α} {a : α} {p : α → Prop} (h : ∀ x ∈ s, p x) : ∀ᶠ x in 𝓝[s] a, p x := mem_inf_sets_of_right h lemma tendsto_nhds_within_of_tendsto_nhds_of_eventually_within {a : α} {l : filter β} {s : set α} (f : β → α) (h1 : tendsto f l (𝓝 a)) (h2 : ∀ᶠ x in l, f x ∈ s) : tendsto f l (𝓝[s] a) := tendsto_inf.2 ⟨h1, tendsto_principal.2 h2⟩ @[simp] lemma tendsto_nhds_within_range {a : α} {l : filter β} {f : β → α} : tendsto f l (𝓝[range f] a) ↔ tendsto f l (𝓝 a) := ⟨λ h, h.mono_right inf_le_left, λ h, tendsto_inf.2 ⟨h, tendsto_principal.2 $ eventually_of_forall mem_range_self⟩⟩ lemma filter.eventually_eq.eq_of_nhds_within {s : set α} {f g : α → β} {a : α} (h : f =ᶠ[𝓝[s] a] g) (hmem : a ∈ s) : f a = g a := h.self_of_nhds_within hmem lemma eventually_nhds_within_of_eventually_nhds {α : Type*} [topological_space α] {s : set α} {a : α} {p : α → Prop} (h : ∀ᶠ x in 𝓝 a, p x) : ∀ᶠ x in 𝓝[s] a, p x := mem_nhds_within_of_mem_nhds h /-! ### `nhds_within` and subtypes -/ theorem mem_nhds_within_subtype {s : set α} {a : {x // x ∈ s}} {t u : set {x // x ∈ s}} : t ∈ 𝓝[u] a ↔ t ∈ comap (coe : s → α) (𝓝[coe '' u] a) := by rw [nhds_within, nhds_subtype, principal_subtype, ←comap_inf, ←nhds_within] theorem nhds_within_subtype (s : set α) (a : {x // x ∈ s}) (t : set {x // x ∈ s}) : 𝓝[t] a = comap (coe : s → α) (𝓝[coe '' t] a) := filter.ext $ λ u, mem_nhds_within_subtype theorem nhds_within_eq_map_subtype_coe {s : set α} {a : α} (h : a ∈ s) : 𝓝[s] a = map (coe : s → α) (𝓝 ⟨a, h⟩) := by simpa only [subtype.range_coe] using (embedding_subtype_coe.map_nhds_eq ⟨a, h⟩).symm theorem tendsto_nhds_within_iff_subtype {s : set α} {a : α} (h : a ∈ s) (f : α → β) (l : filter β) : tendsto f (𝓝[s] a) l ↔ tendsto (s.restrict f) (𝓝 ⟨a, h⟩) l := by simp only [tendsto, nhds_within_eq_map_subtype_coe h, filter.map_map, restrict] variables [topological_space β] [topological_space γ] [topological_space δ] /-- A function between topological spaces is continuous at a point `x₀` within a subset `s` if `f x` tends to `f x₀` when `x` tends to `x₀` while staying within `s`. -/ def continuous_within_at (f : α → β) (s : set α) (x : α) : Prop := tendsto f (𝓝[s] x) (𝓝 (f x)) /-- If a function is continuous within `s` at `x`, then it tends to `f x` within `s` by definition. We register this fact for use with the dot notation, especially to use `tendsto.comp` as `continuous_within_at.comp` will have a different meaning. -/ lemma continuous_within_at.tendsto {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) : tendsto f (𝓝[s] x) (𝓝 (f x)) := h /-- A function between topological spaces is continuous on a subset `s` when it's continuous at every point of `s` within `s`. -/ def continuous_on (f : α → β) (s : set α) : Prop := ∀ x ∈ s, continuous_within_at f s x lemma continuous_on.continuous_within_at {f : α → β} {s : set α} {x : α} (hf : continuous_on f s) (hx : x ∈ s) : continuous_within_at f s x := hf x hx theorem continuous_within_at_univ (f : α → β) (x : α) : continuous_within_at f set.univ x ↔ continuous_at f x := by rw [continuous_at, continuous_within_at, nhds_within_univ] theorem continuous_within_at_iff_continuous_at_restrict (f : α → β) {x : α} {s : set α} (h : x ∈ s) : continuous_within_at f s x ↔ continuous_at (s.restrict f) ⟨x, h⟩ := tendsto_nhds_within_iff_subtype h f _ theorem continuous_within_at.tendsto_nhds_within {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : maps_to f s t) : tendsto f (𝓝[s] x) (𝓝[t] (f x)) := tendsto_inf.2 ⟨h, tendsto_principal.2 $ mem_inf_sets_of_right $ mem_principal_sets.2 $ ht⟩ theorem continuous_within_at.tendsto_nhds_within_image {f : α → β} {x : α} {s : set α} (h : continuous_within_at f s x) : tendsto f (𝓝[s] x) (𝓝[f '' s] (f x)) := h.tendsto_nhds_within (maps_to_image _ _) lemma continuous_within_at.prod_map {f : α → γ} {g : β → δ} {s : set α} {t : set β} {x : α} {y : β} (hf : continuous_within_at f s x) (hg : continuous_within_at g t y) : continuous_within_at (prod.map f g) (s.prod t) (x, y) := begin unfold continuous_within_at at *, rw [nhds_within_prod_eq, prod.map, nhds_prod_eq], exact hf.prod_map hg, end lemma continuous_within_at_pi {ι : Type*} {π : ι → Type*} [∀ i, topological_space (π i)] {f : α → Π i, π i} {s : set α} {x : α} : continuous_within_at f s x ↔ ∀ i, continuous_within_at (λ y, f y i) s x := tendsto_pi lemma continuous_on_pi {ι : Type*} {π : ι → Type*} [∀ i, topological_space (π i)] {f : α → Π i, π i} {s : set α} : continuous_on f s ↔ ∀ i, continuous_on (λ y, f y i) s := ⟨λ h i x hx, tendsto_pi.1 (h x hx) i, λ h x hx, tendsto_pi.2 (λ i, h i x hx)⟩ theorem continuous_on_iff {f : α → β} {s : set α} : continuous_on f s ↔ ∀ x ∈ s, ∀ t : set β, is_open t → f x ∈ t → ∃ u, is_open u ∧ x ∈ u ∧ u ∩ s ⊆ f ⁻¹' t := by simp only [continuous_on, continuous_within_at, tendsto_nhds, mem_nhds_within] theorem continuous_on_iff_continuous_restrict {f : α → β} {s : set α} : continuous_on f s ↔ continuous (s.restrict f) := begin rw [continuous_on, continuous_iff_continuous_at], split, { rintros h ⟨x, xs⟩, exact (continuous_within_at_iff_continuous_at_restrict f xs).mp (h x xs) }, intros h x xs, exact (continuous_within_at_iff_continuous_at_restrict f xs).mpr (h ⟨x, xs⟩) end theorem continuous_on_iff' {f : α → β} {s : set α} : continuous_on f s ↔ ∀ t : set β, is_open t → ∃ u, is_open u ∧ f ⁻¹' t ∩ s = u ∩ s := have ∀ t, is_open (s.restrict f ⁻¹' t) ↔ ∃ (u : set α), is_open u ∧ f ⁻¹' t ∩ s = u ∩ s, begin intro t, rw [is_open_induced_iff, set.restrict_eq, set.preimage_comp], simp only [subtype.preimage_coe_eq_preimage_coe_iff], split; { rintros ⟨u, ou, useq⟩, exact ⟨u, ou, useq.symm⟩ } end, by rw [continuous_on_iff_continuous_restrict, continuous_def]; simp only [this] theorem continuous_on_iff_is_closed {f : α → β} {s : set α} : continuous_on f s ↔ ∀ t : set β, is_closed t → ∃ u, is_closed u ∧ f ⁻¹' t ∩ s = u ∩ s := have ∀ t, is_closed (s.restrict f ⁻¹' t) ↔ ∃ (u : set α), is_closed u ∧ f ⁻¹' t ∩ s = u ∩ s, begin intro t, rw [is_closed_induced_iff, set.restrict_eq, set.preimage_comp], simp only [subtype.preimage_coe_eq_preimage_coe_iff, eq_comm] end, by rw [continuous_on_iff_continuous_restrict, continuous_iff_is_closed]; simp only [this] lemma continuous_on.prod_map {f : α → γ} {g : β → δ} {s : set α} {t : set β} (hf : continuous_on f s) (hg : continuous_on g t) : continuous_on (prod.map f g) (s.prod t) := λ ⟨x, y⟩ ⟨hx, hy⟩, continuous_within_at.prod_map (hf x hx) (hg y hy) lemma continuous_on_empty (f : α → β) : continuous_on f ∅ := λ x, false.elim theorem nhds_within_le_comap {x : α} {s : set α} {f : α → β} (ctsf : continuous_within_at f s x) : 𝓝[s] x ≤ comap f (𝓝[f '' s] (f x)) := map_le_iff_le_comap.1 ctsf.tendsto_nhds_within_image theorem continuous_within_at_iff_ptendsto_res (f : α → β) {x : α} {s : set α} : continuous_within_at f s x ↔ ptendsto (pfun.res f s) (𝓝 x) (𝓝 (f x)) := tendsto_iff_ptendsto _ _ _ _ lemma continuous_iff_continuous_on_univ {f : α → β} : continuous f ↔ continuous_on f univ := by simp [continuous_iff_continuous_at, continuous_on, continuous_at, continuous_within_at, nhds_within_univ] lemma continuous_within_at.mono {f : α → β} {s t : set α} {x : α} (h : continuous_within_at f t x) (hs : s ⊆ t) : continuous_within_at f s x := h.mono_left (nhds_within_mono x hs) lemma continuous_within_at.mono_of_mem {f : α → β} {s t : set α} {x : α} (h : continuous_within_at f t x) (hs : t ∈ 𝓝[s] x) : continuous_within_at f s x := h.mono_left (nhds_within_le_of_mem hs) lemma continuous_within_at_inter' {f : α → β} {s t : set α} {x : α} (h : t ∈ 𝓝[s] x) : continuous_within_at f (s ∩ t) x ↔ continuous_within_at f s x := by simp [continuous_within_at, nhds_within_restrict'' s h] lemma continuous_within_at_inter {f : α → β} {s t : set α} {x : α} (h : t ∈ 𝓝 x) : continuous_within_at f (s ∩ t) x ↔ continuous_within_at f s x := by simp [continuous_within_at, nhds_within_restrict' s h] lemma continuous_within_at_union {f : α → β} {s t : set α} {x : α} : continuous_within_at f (s ∪ t) x ↔ continuous_within_at f s x ∧ continuous_within_at f t x := by simp only [continuous_within_at, nhds_within_union, tendsto_sup] lemma continuous_within_at.union {f : α → β} {s t : set α} {x : α} (hs : continuous_within_at f s x) (ht : continuous_within_at f t x) : continuous_within_at f (s ∪ t) x := continuous_within_at_union.2 ⟨hs, ht⟩ lemma continuous_within_at.mem_closure_image {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (hx : x ∈ closure s) : f x ∈ closure (f '' s) := by haveI := (mem_closure_iff_nhds_within_ne_bot.1 hx); exact (mem_closure_of_tendsto h $ mem_sets_of_superset self_mem_nhds_within (subset_preimage_image f s)) lemma continuous_within_at.mem_closure {f : α → β} {s : set α} {x : α} {A : set β} (h : continuous_within_at f s x) (hx : x ∈ closure s) (hA : s ⊆ f⁻¹' A) : f x ∈ closure A := closure_mono (image_subset_iff.2 hA) (h.mem_closure_image hx) lemma continuous_within_at.image_closure {f : α → β} {s : set α} (hf : ∀ x ∈ closure s, continuous_within_at f s x) : f '' (closure s) ⊆ closure (f '' s) := begin rintros _ ⟨x, hx, rfl⟩, exact (hf x hx).mem_closure_image hx end lemma continuous_on.image_closure {f : α → β} {s : set α} (hf : continuous_on f (closure s)) : f '' (closure s) ⊆ closure (f '' s) := continuous_within_at.image_closure $ λ x hx, (hf x hx).mono subset_closure @[simp] lemma continuous_within_at_singleton {f : α → β} {x : α} : continuous_within_at f {x} x := by simp only [continuous_within_at, nhds_within_singleton, tendsto_pure_nhds] @[simp] lemma continuous_within_at_insert_self {f : α → β} {x : α} {s : set α} : continuous_within_at f (insert x s) x ↔ continuous_within_at f s x := by simp only [← singleton_union, continuous_within_at_union, continuous_within_at_singleton, true_and] alias continuous_within_at_insert_self ↔ _ continuous_within_at.insert_self lemma continuous_within_at.diff_iff {f : α → β} {s t : set α} {x : α} (ht : continuous_within_at f t x) : continuous_within_at f (s \ t) x ↔ continuous_within_at f s x := ⟨λ h, (h.union ht).mono $ by simp only [diff_union_self, subset_union_left], λ h, h.mono (diff_subset _ _)⟩ @[simp] lemma continuous_within_at_diff_self {f : α → β} {s : set α} {x : α} : continuous_within_at f (s \ {x}) x ↔ continuous_within_at f s x := continuous_within_at_singleton.diff_iff theorem is_open_map.continuous_on_image_of_left_inv_on {f : α → β} {s : set α} (h : is_open_map (s.restrict f)) {finv : β → α} (hleft : left_inv_on finv f s) : continuous_on finv (f '' s) := begin refine continuous_on_iff'.2 (λ t ht, ⟨f '' (t ∩ s), _, _⟩), { rw ← image_restrict, exact h _ (ht.preimage continuous_subtype_coe) }, { rw [inter_eq_self_of_subset_left (image_subset f (inter_subset_right t s)), hleft.image_inter'] }, end theorem is_open_map.continuous_on_range_of_left_inverse {f : α → β} (hf : is_open_map f) {finv : β → α} (hleft : function.left_inverse finv f) : continuous_on finv (range f) := begin rw [← image_univ], exact (hf.restrict is_open_univ).continuous_on_image_of_left_inv_on (λ x _, hleft x) end lemma continuous_on.congr_mono {f g : α → β} {s s₁ : set α} (h : continuous_on f s) (h' : eq_on g f s₁) (h₁ : s₁ ⊆ s) : continuous_on g s₁ := begin assume x hx, unfold continuous_within_at, have A := (h x (h₁ hx)).mono h₁, unfold continuous_within_at at A, rw ← h' hx at A, exact A.congr' h'.eventually_eq_nhds_within.symm end lemma continuous_on.congr {f g : α → β} {s : set α} (h : continuous_on f s) (h' : eq_on g f s) : continuous_on g s := h.congr_mono h' (subset.refl _) lemma continuous_on_congr {f g : α → β} {s : set α} (h' : eq_on g f s) : continuous_on g s ↔ continuous_on f s := ⟨λ h, continuous_on.congr h h'.symm, λ h, h.congr h'⟩ lemma continuous_at.continuous_within_at {f : α → β} {s : set α} {x : α} (h : continuous_at f x) : continuous_within_at f s x := continuous_within_at.mono ((continuous_within_at_univ f x).2 h) (subset_univ _) lemma continuous_within_at.continuous_at {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (hs : s ∈ 𝓝 x) : continuous_at f x := begin have : s = univ ∩ s, by rw univ_inter, rwa [this, continuous_within_at_inter hs, continuous_within_at_univ] at h end lemma continuous_on.continuous_at {f : α → β} {s : set α} {x : α} (h : continuous_on f s) (hx : s ∈ 𝓝 x) : continuous_at f x := (h x (mem_of_mem_nhds hx)).continuous_at hx lemma continuous_at.continuous_on {f : α → β} {s : set α} (hcont : ∀ x ∈ s, continuous_at f x) : continuous_on f s := λ x hx, (hcont x hx).continuous_within_at lemma continuous_within_at.comp {g : β → γ} {f : α → β} {s : set α} {t : set β} {x : α} (hg : continuous_within_at g t (f x)) (hf : continuous_within_at f s x) (h : s ⊆ f ⁻¹' t) : continuous_within_at (g ∘ f) s x := hg.tendsto.comp (hf.tendsto_nhds_within h) lemma continuous_within_at.comp' {g : β → γ} {f : α → β} {s : set α} {t : set β} {x : α} (hg : continuous_within_at g t (f x)) (hf : continuous_within_at f s x) : continuous_within_at (g ∘ f) (s ∩ f⁻¹' t) x := hg.comp (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _) lemma continuous_at.comp_continuous_within_at {g : β → γ} {f : α → β} {s : set α} {x : α} (hg : continuous_at g (f x)) (hf : continuous_within_at f s x) : continuous_within_at (g ∘ f) s x := hg.continuous_within_at.comp hf subset_preimage_univ lemma continuous_on.comp {g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : continuous_on g t) (hf : continuous_on f s) (h : s ⊆ f ⁻¹' t) : continuous_on (g ∘ f) s := λx hx, continuous_within_at.comp (hg _ (h hx)) (hf x hx) h lemma continuous_on.mono {f : α → β} {s t : set α} (hf : continuous_on f s) (h : t ⊆ s) : continuous_on f t := λx hx, (hf x (h hx)).mono_left (nhds_within_mono _ h) lemma continuous_on.comp' {g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : continuous_on g t) (hf : continuous_on f s) : continuous_on (g ∘ f) (s ∩ f⁻¹' t) := hg.comp (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _) lemma continuous.continuous_on {f : α → β} {s : set α} (h : continuous f) : continuous_on f s := begin rw continuous_iff_continuous_on_univ at h, exact h.mono (subset_univ _) end lemma continuous.continuous_within_at {f : α → β} {s : set α} {x : α} (h : continuous f) : continuous_within_at f s x := h.continuous_at.continuous_within_at lemma continuous.comp_continuous_on {g : β → γ} {f : α → β} {s : set α} (hg : continuous g) (hf : continuous_on f s) : continuous_on (g ∘ f) s := hg.continuous_on.comp hf subset_preimage_univ lemma continuous_on.comp_continuous {g : β → γ} {f : α → β} {s : set β} (hg : continuous_on g s) (hf : continuous f) (hs : ∀ x, f x ∈ s) : continuous (g ∘ f) := begin rw continuous_iff_continuous_on_univ at *, exact hg.comp hf (λ x _, hs x), end lemma continuous_within_at.preimage_mem_nhds_within {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝[s] x := h ht lemma set.left_inv_on.map_nhds_within_eq {f : α → β} {g : β → α} {x : β} {s : set β} (h : left_inv_on f g s) (hx : f (g x) = x) (hf : continuous_within_at f (g '' s) (g x)) (hg : continuous_within_at g s x) : map g (𝓝[s] x) = 𝓝[g '' s] (g x) := begin apply le_antisymm, { exact hg.tendsto_nhds_within (maps_to_image _ _) }, { have A : g ∘ f =ᶠ[𝓝[g '' s] (g x)] id, from h.right_inv_on_image.eq_on.eventually_eq_of_mem self_mem_nhds_within, refine le_map_of_right_inverse A _, simpa only [hx] using hf.tendsto_nhds_within (h.maps_to (surj_on_image _ _)) } end lemma function.left_inverse.map_nhds_eq {f : α → β} {g : β → α} {x : β} (h : function.left_inverse f g) (hf : continuous_within_at f (range g) (g x)) (hg : continuous_at g x) : map g (𝓝 x) = 𝓝[range g] (g x) := by simpa only [nhds_within_univ, image_univ] using (h.left_inv_on univ).map_nhds_within_eq (h x) (by rwa image_univ) hg.continuous_within_at lemma continuous_within_at.preimage_mem_nhds_within' {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : t ∈ 𝓝[f '' s] (f x)) : f ⁻¹' t ∈ 𝓝[s] x := h.tendsto_nhds_within (maps_to_image _ _) ht lemma continuous_within_at.congr_of_eventually_eq {f f₁ : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : continuous_within_at f₁ s x := by rwa [continuous_within_at, filter.tendsto, hx, filter.map_congr h₁] lemma continuous_within_at.congr {f f₁ : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (h₁ : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) : continuous_within_at f₁ s x := h.congr_of_eventually_eq (mem_sets_of_superset self_mem_nhds_within h₁) hx lemma continuous_within_at.congr_mono {f g : α → β} {s s₁ : set α} {x : α} (h : continuous_within_at f s x) (h' : eq_on g f s₁) (h₁ : s₁ ⊆ s) (hx : g x = f x): continuous_within_at g s₁ x := (h.mono h₁).congr h' hx lemma continuous_on_const {s : set α} {c : β} : continuous_on (λx, c) s := continuous_const.continuous_on lemma continuous_within_at_const {b : β} {s : set α} {x : α} : continuous_within_at (λ _:α, b) s x := continuous_const.continuous_within_at lemma continuous_on_id {s : set α} : continuous_on id s := continuous_id.continuous_on lemma continuous_within_at_id {s : set α} {x : α} : continuous_within_at id s x := continuous_id.continuous_within_at lemma continuous_on_open_iff {f : α → β} {s : set α} (hs : is_open s) : continuous_on f s ↔ (∀t, is_open t → is_open (s ∩ f⁻¹' t)) := begin rw continuous_on_iff', split, { assume h t ht, rcases h t ht with ⟨u, u_open, hu⟩, rw [inter_comm, hu], apply is_open.inter u_open hs }, { assume h t ht, refine ⟨s ∩ f ⁻¹' t, h t ht, _⟩, rw [@inter_comm _ s (f ⁻¹' t), inter_assoc, inter_self] } end lemma continuous_on.preimage_open_of_open {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_open s) (ht : is_open t) : is_open (s ∩ f⁻¹' t) := (continuous_on_open_iff hs).1 hf t ht lemma continuous_on.is_open_preimage {f : α → β} {s : set α} {t : set β} (h : continuous_on f s) (hs : is_open s) (hp : f ⁻¹' t ⊆ s) (ht : is_open t) : is_open (f ⁻¹' t) := begin convert (continuous_on_open_iff hs).mp h t ht, rw [inter_comm, inter_eq_self_of_subset_left hp], end lemma continuous_on.preimage_closed_of_closed {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_closed s) (ht : is_closed t) : is_closed (s ∩ f⁻¹' t) := begin rcases continuous_on_iff_is_closed.1 hf t ht with ⟨u, hu⟩, rw [inter_comm, hu.2], apply is_closed.inter hu.1 hs end lemma continuous_on.preimage_interior_subset_interior_preimage {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_open s) : s ∩ f⁻¹' (interior t) ⊆ s ∩ interior (f⁻¹' t) := calc s ∩ f ⁻¹' (interior t) ⊆ interior (s ∩ f ⁻¹' t) : interior_maximal (inter_subset_inter (subset.refl _) (preimage_mono interior_subset)) (hf.preimage_open_of_open hs is_open_interior) ... = s ∩ interior (f ⁻¹' t) : by rw [interior_inter, hs.interior_eq] lemma continuous_on_of_locally_continuous_on {f : α → β} {s : set α} (h : ∀x∈s, ∃t, is_open t ∧ x ∈ t ∧ continuous_on f (s ∩ t)) : continuous_on f s := begin assume x xs, rcases h x xs with ⟨t, open_t, xt, ct⟩, have := ct x ⟨xs, xt⟩, rwa [continuous_within_at, ← nhds_within_restrict _ xt open_t] at this end lemma continuous_on_open_of_generate_from {β : Type*} {s : set α} {T : set (set β)} {f : α → β} (hs : is_open s) (h : ∀t ∈ T, is_open (s ∩ f⁻¹' t)) : @continuous_on α β _ (topological_space.generate_from T) f s := begin rw continuous_on_open_iff, assume t ht, induction ht with u hu u v Tu Tv hu hv U hU hU', { exact h u hu }, { simp only [preimage_univ, inter_univ], exact hs }, { have : s ∩ f ⁻¹' (u ∩ v) = (s ∩ f ⁻¹' u) ∩ (s ∩ f ⁻¹' v), by { ext x, simp, split, finish, finish }, rw this, exact is_open.inter hu hv }, { rw [preimage_sUnion, inter_bUnion], exact is_open_bUnion hU' }, { exact hs } end lemma continuous_within_at.prod {f : α → β} {g : α → γ} {s : set α} {x : α} (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) : continuous_within_at (λx, (f x, g x)) s x := hf.prod_mk_nhds hg lemma continuous_on.prod {f : α → β} {g : α → γ} {s : set α} (hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, (f x, g x)) s := λx hx, continuous_within_at.prod (hf x hx) (hg x hx) lemma inducing.continuous_on_iff {f : α → β} {g : β → γ} (hg : inducing g) {s : set α} : continuous_on f s ↔ continuous_on (g ∘ f) s := begin simp only [continuous_on_iff_continuous_restrict, restrict_eq], conv_rhs { rw [function.comp.assoc, ← (inducing.continuous_iff hg)] }, end lemma embedding.continuous_on_iff {f : α → β} {g : β → γ} (hg : embedding g) {s : set α} : continuous_on f s ↔ continuous_on (g ∘ f) s := inducing.continuous_on_iff hg.1 lemma continuous_within_at_of_not_mem_closure {f : α → β} {s : set α} {x : α} : x ∉ closure s → continuous_within_at f s x := begin intros hx, rw [mem_closure_iff_nhds_within_ne_bot, ne_bot_iff, not_not] at hx, rw [continuous_within_at, hx], exact tendsto_bot, end lemma continuous_on.piecewise' {s t : set α} {f g : α → β} [∀ a, decidable (a ∈ t)] (hpf : ∀ a ∈ s ∩ frontier t, tendsto f (𝓝[s ∩ t] a) (𝓝 (piecewise t f g a))) (hpg : ∀ a ∈ s ∩ frontier t, tendsto g (𝓝[s ∩ tᶜ] a) (𝓝 (piecewise t f g a))) (hf : continuous_on f $ s ∩ t) (hg : continuous_on g $ s ∩ tᶜ) : continuous_on (piecewise t f g) s := begin intros x hx, by_cases hx' : x ∈ frontier t, { exact (hpf x ⟨hx, hx'⟩).piecewise_nhds_within (hpg x ⟨hx, hx'⟩) }, { rw [← inter_univ s, ← union_compl_self t, inter_union_distrib_left] at hx ⊢, cases hx, { apply continuous_within_at.union, { exact (hf x hx).congr (λ y hy, piecewise_eq_of_mem _ _ _ hy.2) (piecewise_eq_of_mem _ _ _ hx.2) }, { have : x ∉ closure tᶜ, from λ h, hx' ⟨subset_closure hx.2, by rwa closure_compl at h⟩, exact continuous_within_at_of_not_mem_closure (λ h, this (closure_inter_subset_inter_closure _ _ h).2) } }, { apply continuous_within_at.union, { have : x ∉ closure t, from (λ h, hx' ⟨h, (λ (h' : x ∈ interior t), hx.2 (interior_subset h'))⟩), exact continuous_within_at_of_not_mem_closure (λ h, this (closure_inter_subset_inter_closure _ _ h).2) }, { exact (hg x hx).congr (λ y hy, piecewise_eq_of_not_mem _ _ _ hy.2) (piecewise_eq_of_not_mem _ _ _ hx.2) } } } end lemma continuous_on.if' {s : set α} {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hpf : ∀ a ∈ s ∩ frontier {a | p a}, tendsto f (𝓝[s ∩ {a | p a}] a) (𝓝 $ if p a then f a else g a)) (hpg : ∀ a ∈ s ∩ frontier {a | p a}, tendsto g (𝓝[s ∩ {a | ¬p a}] a) (𝓝 $ if p a then f a else g a)) (hf : continuous_on f $ s ∩ {a | p a}) (hg : continuous_on g $ s ∩ {a | ¬p a}) : continuous_on (λ a, if p a then f a else g a) s := hf.piecewise' hpf hpg hg lemma continuous_on.if {α β : Type*} [topological_space α] [topological_space β] {p : α → Prop} [∀ a, decidable (p a)] {s : set α} {f g : α → β} (hp : ∀ a ∈ s ∩ frontier {a | p a}, f a = g a) (hf : continuous_on f $ s ∩ closure {a | p a}) (hg : continuous_on g $ s ∩ closure {a | ¬ p a}) : continuous_on (λa, if p a then f a else g a) s := begin apply continuous_on.if', { rintros a ha, simp only [← hp a ha, if_t_t], apply tendsto_nhds_within_mono_left (inter_subset_inter_right s subset_closure), exact hf a ⟨ha.1, ha.2.1⟩ }, { rintros a ha, simp only [hp a ha, if_t_t], apply tendsto_nhds_within_mono_left (inter_subset_inter_right s subset_closure), rcases ha with ⟨has, ⟨_, ha⟩⟩, rw [← mem_compl_iff, ← closure_compl] at ha, apply hg a ⟨has, ha⟩ }, { exact hf.mono (inter_subset_inter_right s subset_closure) }, { exact hg.mono (inter_subset_inter_right s subset_closure) } end lemma continuous_on.piecewise {s t : set α} {f g : α → β} [∀ a, decidable (a ∈ t)] (ht : ∀ a ∈ s ∩ frontier t, f a = g a) (hf : continuous_on f $ s ∩ closure t) (hg : continuous_on g $ s ∩ closure tᶜ) : continuous_on (piecewise t f g) s := hf.if ht hg lemma continuous_if' {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hpf : ∀ a ∈ frontier {x | p x}, tendsto f (𝓝[{x | p x}] a) (𝓝 $ ite (p a) (f a) (g a))) (hpg : ∀ a ∈ frontier {x | p x}, tendsto g (𝓝[{x | ¬p x}] a) (𝓝 $ ite (p a) (f a) (g a))) (hf : continuous_on f {x | p x}) (hg : continuous_on g {x | ¬p x}) : continuous (λ a, ite (p a) (f a) (g a)) := begin rw continuous_iff_continuous_on_univ, apply continuous_on.if'; simp *; assumption end lemma continuous_if {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hp : ∀ a ∈ frontier {x | p x}, f a = g a) (hf : continuous_on f (closure {x | p x})) (hg : continuous_on g (closure {x | ¬p x})) : continuous (λ a, if p a then f a else g a) := begin rw continuous_iff_continuous_on_univ, apply continuous_on.if; simp; assumption end lemma continuous.if {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hp : ∀ a ∈ frontier {x | p x}, f a = g a) (hf : continuous f) (hg : continuous g) : continuous (λ a, if p a then f a else g a) := continuous_if hp hf.continuous_on hg.continuous_on lemma continuous_piecewise {s : set α} {f g : α → β} [∀ a, decidable (a ∈ s)] (hs : ∀ a ∈ frontier s, f a = g a) (hf : continuous_on f (closure s)) (hg : continuous_on g (closure sᶜ)) : continuous (piecewise s f g) := continuous_if hs hf hg lemma continuous.piecewise {s : set α} {f g : α → β} [∀ a, decidable (a ∈ s)] (hs : ∀ a ∈ frontier s, f a = g a) (hf : continuous f) (hg : continuous g) : continuous (piecewise s f g) := hf.if hs hg lemma is_open.ite' {s s' t : set α} (hs : is_open s) (hs' : is_open s') (ht : ∀ x ∈ frontier t, x ∈ s ↔ x ∈ s') : is_open (t.ite s s') := begin classical, simp only [is_open_iff_continuous_mem, set.ite] at *, convert continuous_piecewise (λ x hx, propext (ht x hx)) hs.continuous_on hs'.continuous_on, ext x, by_cases hx : x ∈ t; simp [hx] end lemma is_open.ite {s s' t : set α} (hs : is_open s) (hs' : is_open s') (ht : s ∩ frontier t = s' ∩ frontier t) : is_open (t.ite s s') := hs.ite' hs' $ λ x hx, by simpa [hx] using ext_iff.1 ht x lemma ite_inter_closure_eq_of_inter_frontier_eq {s s' t : set α} (ht : s ∩ frontier t = s' ∩ frontier t) : t.ite s s' ∩ closure t = s ∩ closure t := by rw [closure_eq_self_union_frontier, inter_union_distrib_left, inter_union_distrib_left, ite_inter_self, ite_inter_of_inter_eq _ ht] lemma ite_inter_closure_compl_eq_of_inter_frontier_eq {s s' t : set α} (ht : s ∩ frontier t = s' ∩ frontier t) : t.ite s s' ∩ closure tᶜ = s' ∩ closure tᶜ := by { rw [← ite_compl, ite_inter_closure_eq_of_inter_frontier_eq], rwa [frontier_compl, eq_comm] } lemma continuous_on_piecewise_ite' {s s' t : set α} {f f' : α → β} [∀ x, decidable (x ∈ t)] (h : continuous_on f (s ∩ closure t)) (h' : continuous_on f' (s' ∩ closure tᶜ)) (H : s ∩ frontier t = s' ∩ frontier t) (Heq : eq_on f f' (s ∩ frontier t)) : continuous_on (t.piecewise f f') (t.ite s s') := begin apply continuous_on.piecewise, { rwa ite_inter_of_inter_eq _ H }, { rwa ite_inter_closure_eq_of_inter_frontier_eq H }, { rwa ite_inter_closure_compl_eq_of_inter_frontier_eq H } end lemma continuous_on_piecewise_ite {s s' t : set α} {f f' : α → β} [∀ x, decidable (x ∈ t)] (h : continuous_on f s) (h' : continuous_on f' s') (H : s ∩ frontier t = s' ∩ frontier t) (Heq : eq_on f f' (s ∩ frontier t)) : continuous_on (t.piecewise f f') (t.ite s s') := continuous_on_piecewise_ite' (h.mono (inter_subset_left _ _)) (h'.mono (inter_subset_left _ _)) H Heq lemma continuous_on_fst {s : set (α × β)} : continuous_on prod.fst s := continuous_fst.continuous_on lemma continuous_within_at_fst {s : set (α × β)} {p : α × β} : continuous_within_at prod.fst s p := continuous_fst.continuous_within_at lemma continuous_on_snd {s : set (α × β)} : continuous_on prod.snd s := continuous_snd.continuous_on lemma continuous_within_at_snd {s : set (α × β)} {p : α × β} : continuous_within_at prod.snd s p := continuous_snd.continuous_within_at lemma continuous_within_at.fst {f : α → β × γ} {s : set α} {a : α} (h : continuous_within_at f s a) : continuous_within_at (λ x, (f x).fst) s a := continuous_at_fst.comp_continuous_within_at h lemma continuous_within_at.snd {f : α → β × γ} {s : set α} {a : α} (h : continuous_within_at f s a) : continuous_within_at (λ x, (f x).snd) s a := continuous_at_snd.comp_continuous_within_at h lemma continuous_within_at_prod_iff {f : α → β × γ} {s : set α} {x : α} : continuous_within_at f s x ↔ continuous_within_at (prod.fst ∘ f) s x ∧ continuous_within_at (prod.snd ∘ f) s x := ⟨λ h, ⟨h.fst, h.snd⟩, by { rintro ⟨h1, h2⟩, convert h1.prod h2, ext, refl, refl }⟩
e0d51b28cb3254cc501ba1d85573e2c0b10d4c1a
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/topology/shrinking_lemma.lean
9224bb9a6526a603bed7ff30fd8b0d348a9b9f64
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
12,196
lean
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Reid Barton -/ import topology.separation /-! # The shrinking lemma In this file we prove a few versions of the shrinking lemma. The lemma says that in a normal topological space a point finite open covering can be “shrunk”: for a point finite open covering `u : ι → set X` there exists a refinement `v : ι → set X` such that `closure (v i) ⊆ u i`. For finite or countable coverings this lemma can be proved without the axiom of choice, see [ncatlab](https://ncatlab.org/nlab/show/shrinking+lemma) for details. We only formalize the most general result that works for any covering but needs the axiom of choice. We prove two versions of the lemma: * `exists_subset_Union_closure_subset` deals with a covering of a closed set in a normal space; * `exists_Union_eq_closure_subset` deals with a covering of the whole space. ## Tags normal space, shrinking lemma -/ open set function open_locale classical noncomputable theory variables {ι X : Type*} [topological_space X] [normal_space X] namespace shrinking_lemma /-- Auxiliary definition for the proof of `shrinking_lemma`. A partial refinement of a covering `⋃ i, u i` of a set `s` is a map `v : ι → set X` and a set `carrier : set ι` such that * `s ⊆ ⋃ i, v i`; * all `v i` are open; * if `i ∈ carrier v`, then `closure (v i) ⊆ u i`; * if `i ∉ carrier`, then `v i = u i`. This type is equipped with the folowing partial order: `v ≤ v'` if `v.carrier ⊆ v'.carrier` and `v i = v' i` for `i ∈ v.carrier`. We will use Zorn's lemma to prove that this type has a maximal element, then show that the maximal element must have `carrier = univ`. -/ @[nolint has_nonempty_instance] -- the trivial refinement needs `u` to be a covering structure partial_refinement (u : ι → set X) (s : set X) := (to_fun : ι → set X) (carrier : set ι) (is_open' : ∀ i, is_open (to_fun i)) (subset_Union' : s ⊆ ⋃ i, to_fun i) (closure_subset' : ∀ i ∈ carrier, closure (to_fun i) ⊆ (u i)) (apply_eq' : ∀ i ∉ carrier, to_fun i = u i) namespace partial_refinement variables {u : ι → set X} {s : set X} instance : has_coe_to_fun (partial_refinement u s) (λ _, ι → set X) := ⟨to_fun⟩ lemma subset_Union (v : partial_refinement u s) : s ⊆ ⋃ i, v i := v.subset_Union' lemma closure_subset (v : partial_refinement u s) {i : ι} (hi : i ∈ v.carrier) : closure (v i) ⊆ (u i) := v.closure_subset' i hi lemma apply_eq (v : partial_refinement u s) {i : ι} (hi : i ∉ v.carrier) : v i = u i := v.apply_eq' i hi protected lemma is_open (v : partial_refinement u s) (i : ι) : is_open (v i) := v.is_open' i protected lemma subset (v : partial_refinement u s) (i : ι) : v i ⊆ u i := if h : i ∈ v.carrier then subset.trans subset_closure (v.closure_subset h) else (v.apply_eq h).le attribute [ext] partial_refinement instance : partial_order (partial_refinement u s) := { le := λ v₁ v₂, v₁.carrier ⊆ v₂.carrier ∧ ∀ i ∈ v₁.carrier, v₁ i = v₂ i, le_refl := λ v, ⟨subset.refl _, λ _ _, rfl⟩, le_trans := λ v₁ v₂ v₃ h₁₂ h₂₃, ⟨subset.trans h₁₂.1 h₂₃.1, λ i hi, (h₁₂.2 i hi).trans (h₂₃.2 i $ h₁₂.1 hi)⟩, le_antisymm := λ v₁ v₂ h₁₂ h₂₁, have hc : v₁.carrier = v₂.carrier, from subset.antisymm h₁₂.1 h₂₁.1, ext _ _ (funext $ λ x, if hx : x ∈ v₁.carrier then h₁₂.2 _ hx else (v₁.apply_eq hx).trans (eq.symm $ v₂.apply_eq $ hc ▸ hx)) hc } /-- If two partial refinements `v₁`, `v₂` belong to a chain (hence, they are comparable) and `i` belongs to the carriers of both partial refinements, then `v₁ i = v₂ i`. -/ lemma apply_eq_of_chain {c : set (partial_refinement u s)} (hc : is_chain (≤) c) {v₁ v₂} (h₁ : v₁ ∈ c) (h₂ : v₂ ∈ c) {i} (hi₁ : i ∈ v₁.carrier) (hi₂ : i ∈ v₂.carrier) : v₁ i = v₂ i := begin wlog hle : v₁ ≤ v₂ := hc.total h₁ h₂ using [v₁ v₂, v₂ v₁], exact hle.2 _ hi₁, end /-- The carrier of the least upper bound of a non-empty chain of partial refinements is the union of their carriers. -/ def chain_Sup_carrier (c : set (partial_refinement u s)) : set ι := ⋃ v ∈ c, carrier v /-- Choice of an element of a nonempty chain of partial refinements. If `i` belongs to one of `carrier v`, `v ∈ c`, then `find c ne i` is one of these partial refinements. -/ def find (c : set (partial_refinement u s)) (ne : c.nonempty) (i : ι) : partial_refinement u s := if hi : ∃ v ∈ c, i ∈ carrier v then hi.some else ne.some lemma find_mem {c : set (partial_refinement u s)} (i : ι) (ne : c.nonempty) : find c ne i ∈ c := by { rw find, split_ifs, exacts [h.some_spec.fst, ne.some_spec] } lemma mem_find_carrier_iff {c : set (partial_refinement u s)} {i : ι} (ne : c.nonempty) : i ∈ (find c ne i).carrier ↔ i ∈ chain_Sup_carrier c := begin rw find, split_ifs, { have : i ∈ h.some.carrier ∧ i ∈ chain_Sup_carrier c, from ⟨h.some_spec.snd, mem_Union₂.2 h⟩, simp only [this] }, { have : i ∉ ne.some.carrier ∧ i ∉ chain_Sup_carrier c, from ⟨λ hi, h ⟨_, ne.some_spec, hi⟩, mt mem_Union₂.1 h⟩, simp only [this] } end lemma find_apply_of_mem {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty) {i v} (hv : v ∈ c) (hi : i ∈ carrier v) : find c ne i i = v i := apply_eq_of_chain hc (find_mem _ _) hv ((mem_find_carrier_iff _).2 $ mem_Union₂.2 ⟨v, hv, hi⟩) hi /-- Least upper bound of a nonempty chain of partial refinements. -/ def chain_Sup (c : set (partial_refinement u s)) (hc : is_chain (≤) c) (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) : partial_refinement u s := begin refine ⟨λ i, find c ne i i, chain_Sup_carrier c, λ i, (find _ _ _).is_open i, λ x hxs, mem_Union.2 _, λ i hi, (find c ne i).closure_subset ((mem_find_carrier_iff _).2 hi), λ i hi, (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi)⟩, rcases em (∃ i ∉ chain_Sup_carrier c, x ∈ u i) with ⟨i, hi, hxi⟩|hx, { use i, rwa (find c ne i).apply_eq (mt (mem_find_carrier_iff _).1 hi) }, { simp_rw [not_exists, not_imp_not, chain_Sup_carrier, mem_Union₂] at hx, haveI : nonempty (partial_refinement u s) := ⟨ne.some⟩, choose! v hvc hiv using hx, rcases (hfin x hxs).exists_maximal_wrt v _ (mem_Union.1 (hU hxs)) with ⟨i, hxi : x ∈ u i, hmax : ∀ j, x ∈ u j → v i ≤ v j → v i = v j⟩, rcases mem_Union.1 ((v i).subset_Union hxs) with ⟨j, hj⟩, use j, have hj' : x ∈ u j := (v i).subset _ hj, have : v j ≤ v i, from (hc.total (hvc _ hxi) (hvc _ hj')).elim (λ h, (hmax j hj' h).ge) id, rwa find_apply_of_mem hc ne (hvc _ hxi) (this.1 $ hiv _ hj') } end /-- `chain_Sup hu c hc ne hfin hU` is an upper bound of the chain `c`. -/ lemma le_chain_Sup {c : set (partial_refinement u s)} (hc : is_chain (≤) c) (ne : c.nonempty) (hfin : ∀ x ∈ s, {i | x ∈ u i}.finite) (hU : s ⊆ ⋃ i, u i) {v} (hv : v ∈ c) : v ≤ chain_Sup c hc ne hfin hU := ⟨λ i hi, mem_bUnion hv hi, λ i hi, (find_apply_of_mem hc _ hv hi).symm⟩ /-- If `s` is a closed set, `v` is a partial refinement, and `i` is an index such that `i ∉ v.carrier`, then there exists a partial refinement that is strictly greater than `v`. -/ lemma exists_gt (v : partial_refinement u s) (hs : is_closed s) (i : ι) (hi : i ∉ v.carrier) : ∃ v' : partial_refinement u s, v < v' := begin have I : s ∩ (⋂ j ≠ i, (v j)ᶜ) ⊆ v i, { simp only [subset_def, mem_inter_iff, mem_Inter, and_imp], intros x hxs H, rcases mem_Union.1 (v.subset_Union hxs) with ⟨j, hj⟩, exact (em (j = i)).elim (λ h, h ▸ hj) (λ h, (H j h hj).elim) }, have C : is_closed (s ∩ (⋂ j ≠ i, (v j)ᶜ)), from is_closed.inter hs (is_closed_bInter $ λ _ _, is_closed_compl_iff.2 $ v.is_open _), rcases normal_exists_closure_subset C (v.is_open i) I with ⟨vi, ovi, hvi, cvi⟩, refine ⟨⟨update v i vi, insert i v.carrier, _, _, _, _⟩, _, _⟩, { intro j, by_cases h : j = i; simp [h, ovi, v.is_open] }, { refine λ x hx, mem_Union.2 _, rcases em (∃ j ≠ i, x ∈ v j) with ⟨j, hji, hj⟩|h, { use j, rwa update_noteq hji }, { push_neg at h, use i, rw update_same, exact hvi ⟨hx, mem_bInter h⟩ } }, { rintro j (rfl|hj), { rwa [update_same, ← v.apply_eq hi] }, { rw update_noteq (ne_of_mem_of_not_mem hj hi), exact v.closure_subset hj } }, { intros j hj, rw [mem_insert_iff, not_or_distrib] at hj, rw [update_noteq hj.1, v.apply_eq hj.2] }, { refine ⟨subset_insert _ _, λ j hj, _⟩, exact (update_noteq (ne_of_mem_of_not_mem hj hi) _ _).symm }, { exact λ hle, hi (hle.1 $ mem_insert _ _) } end end partial_refinement end shrinking_lemma open shrinking_lemma variables {u : ι → set X} {s : set X} /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new open cover so that the closure of each new open set is contained in the corresponding original open set. -/ lemma exists_subset_Union_closure_subset (hs : is_closed s) (uo : ∀ i, is_open (u i)) (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i := begin classical, haveI : nonempty (partial_refinement u s) := ⟨⟨u, ∅, uo, us, λ _, false.elim, λ _ _, rfl⟩⟩, have : ∀ c : set (partial_refinement u s), is_chain (≤) c → c.nonempty → ∃ ub, ∀ v ∈ c, v ≤ ub, from λ c hc ne, ⟨partial_refinement.chain_Sup c hc ne uf us, λ v hv, partial_refinement.le_chain_Sup _ _ _ _ hv⟩, rcases zorn_nonempty_partial_order this with ⟨v, hv⟩, suffices : ∀ i, i ∈ v.carrier, from ⟨v, v.subset_Union, λ i, v.is_open _, λ i, v.closure_subset (this i)⟩, contrapose! hv, rcases hv with ⟨i, hi⟩, rcases v.exists_gt hs i hi with ⟨v', hlt⟩, exact ⟨v', hlt.le, hlt.ne'⟩ end /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new closed cover so that each new closed set is contained in the corresponding original open set. See also `exists_subset_Union_closure_subset` for a stronger statement. -/ lemma exists_subset_Union_closed_subset (hs : is_closed s) (uo : ∀ i, is_open (u i)) (uf : ∀ x ∈ s, {i | x ∈ u i}.finite) (us : s ⊆ ⋃ i, u i) : ∃ v : ι → set X, s ⊆ Union v ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i := let ⟨v, hsv, hvo, hv⟩ := exists_subset_Union_closure_subset hs uo uf us in ⟨λ i, closure (v i), subset.trans hsv (Union_mono $ λ i, subset_closure), λ i, is_closed_closure, hv⟩ /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new open cover so that the closure of each new open set is contained in the corresponding original open set. -/ lemma exists_Union_eq_closure_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite) (uU : (⋃ i, u i) = univ) : ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_open (v i)) ∧ ∀ i, closure (v i) ⊆ u i := let ⟨v, vU, hv⟩ := exists_subset_Union_closure_subset is_closed_univ uo (λ x _, uf x) uU.ge in ⟨v, univ_subset_iff.1 vU, hv⟩ /-- Shrinking lemma. A point-finite open cover of a closed subset of a normal space can be "shrunk" to a new closed cover so that each of the new closed sets is contained in the corresponding original open set. See also `exists_Union_eq_closure_subset` for a stronger statement. -/ lemma exists_Union_eq_closed_subset (uo : ∀ i, is_open (u i)) (uf : ∀ x, {i | x ∈ u i}.finite) (uU : (⋃ i, u i) = univ) : ∃ v : ι → set X, Union v = univ ∧ (∀ i, is_closed (v i)) ∧ ∀ i, v i ⊆ u i := let ⟨v, vU, hv⟩ := exists_subset_Union_closed_subset is_closed_univ uo (λ x _, uf x) uU.ge in ⟨v, univ_subset_iff.1 vU, hv⟩
0df08cc5e02fe0863afa8722c4260c1d8e229000
b70031c8e2c5337b91d7e70f1e0c5f528f7b0e77
/src/algebra/ring/basic.lean
2ff747d635384cb0df419d166e47dc62463ed164
[ "Apache-2.0" ]
permissive
molodiuc/mathlib
cae2ba3ef1601c1f42ca0b625c79b061b63fef5b
98ebe5a6739fbe254f9ee9d401882d4388f91035
refs/heads/master
1,674,237,127,059
1,606,353,533,000
1,606,353,533,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
38,353
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Amelia Livingston, Yury Kudryashov, Neil Strickland -/ import algebra.divisibility import data.set.basic /-! # Properties and homomorphisms of semirings and rings This file proves simple properties of semirings, rings and domains and their unit groups. It also defines bundled homomorphisms of semirings and rings. As with monoid and groups, we use the same structure `ring_hom a β`, a.k.a. `α →+* β`, for both homomorphism types. The unbundled homomorphisms are defined in `deprecated/ring`. They are deprecated and the plan is to slowly remove them from mathlib. ## Main definitions ring_hom, nonzero, domain, integral_domain ## Notations →+* for bundled ring homs (also use for semiring homs) ## Implementation notes There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. There is no `semiring_hom` -- the idea is that `ring_hom` is used. The constructor for a `ring_hom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `ring_hom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `ring_hom`, `semiring_hom`, `semiring`, `comm_semiring`, `ring`, `comm_ring`, `domain`, `integral_domain`, `nonzero`, `units` -/ universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {R : Type x} set_option old_structure_cmd true open function /-! ### `distrib` class -/ /-- A typeclass stating that multiplication is left and right distributive over addition. -/ @[protect_proj, ancestor has_mul has_add] class distrib (R : Type*) extends has_mul R, has_add R := (left_distrib : ∀ a b c : R, a * (b + c) = (a * b) + (a * c)) (right_distrib : ∀ a b c : R, (a + b) * c = (a * c) + (b * c)) lemma left_distrib [distrib R] (a b c : R) : a * (b + c) = a * b + a * c := distrib.left_distrib a b c alias left_distrib ← mul_add lemma right_distrib [distrib R] (a b c : R) : (a + b) * c = a * c + b * c := distrib.right_distrib a b c alias right_distrib ← add_mul /-- Pullback a `distrib` instance along an injective function. -/ protected def function.injective.distrib {S} [has_mul R] [has_add R] [distrib S] (f : R → S) (hf : injective f) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : distrib R := { mul := (*), add := (+), left_distrib := λ x y z, hf $ by simp only [*, left_distrib], right_distrib := λ x y z, hf $ by simp only [*, right_distrib] } /-- Pushforward a `distrib` instance along a surjective function. -/ protected def function.surjective.distrib {S} [distrib R] [has_add S] [has_mul S] (f : R → S) (hf : surjective f) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : distrib S := { mul := (*), add := (+), left_distrib := hf.forall₃.2 $ λ x y z, by simp only [← add, ← mul, left_distrib], right_distrib := hf.forall₃.2 $ λ x y z, by simp only [← add, ← mul, right_distrib] } /-! ### Semirings -/ /-- A semiring is a type with the following structures: additive commutative monoid (`add_comm_monoid`), multiplicative monoid (`monoid`), distributive laws (`distrib`), and multiplication by zero law (`mul_zero_class`). The actual definition extends `monoid_with_zero` instead of `monoid` and `mul_zero_class`. -/ @[protect_proj, ancestor add_comm_monoid monoid_with_zero distrib] class semiring (α : Type u) extends add_comm_monoid α, monoid_with_zero α, distrib α section semiring variables [semiring α] /-- Pullback a `semiring` instance along an injective function. -/ protected def function.injective.semiring [has_zero β] [has_one β] [has_add β] [has_mul β] (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : semiring β := { .. hf.monoid_with_zero f zero one mul, .. hf.add_comm_monoid f zero add, .. hf.distrib f add mul } /-- Pullback a `semiring` instance along an injective function. -/ protected def function.surjective.semiring [has_zero β] [has_one β] [has_add β] [has_mul β] (f : α → β) (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : semiring β := { .. hf.monoid_with_zero f zero one mul, .. hf.add_comm_monoid f zero add, .. hf.distrib f add mul } lemma one_add_one_eq_two : 1 + 1 = (2 : α) := by unfold bit0 theorem two_mul (n : α) : 2 * n = n + n := eq.trans (right_distrib 1 1 n) (by simp) lemma distrib_three_right (a b c d : α) : (a + b + c) * d = a * d + b * d + c * d := by simp [right_distrib] theorem mul_two (n : α) : n * 2 = n + n := (left_distrib n 1 1).trans (by simp) theorem bit0_eq_two_mul (n : α) : bit0 n = 2 * n := (two_mul _).symm @[to_additive] lemma mul_ite {α} [has_mul α] (P : Prop) [decidable P] (a b c : α) : a * (if P then b else c) = if P then a * b else a * c := by split_ifs; refl @[to_additive] lemma ite_mul {α} [has_mul α] (P : Prop) [decidable P] (a b c : α) : (if P then a else b) * c = if P then a * c else b * c := by split_ifs; refl -- We make `mul_ite` and `ite_mul` simp lemmas, -- but not `add_ite` or `ite_add`. -- The problem we're trying to avoid is dealing with -- summations of the form `∑ x in s, (f x + ite P 1 0)`, -- in which `add_ite` followed by `sum_ite` would needlessly slice up -- the `f x` terms according to whether `P` holds at `x`. -- There doesn't appear to be a corresponding difficulty so far with -- `mul_ite` and `ite_mul`. attribute [simp] mul_ite ite_mul @[simp] lemma mul_boole {α} [semiring α] (P : Prop) [decidable P] (a : α) : a * (if P then 1 else 0) = if P then a else 0 := by simp @[simp] lemma boole_mul {α} [semiring α] (P : Prop) [decidable P] (a : α) : (if P then 1 else 0) * a = if P then a else 0 := by simp lemma ite_mul_zero_left {α : Type*} [mul_zero_class α] (P : Prop) [decidable P] (a b : α) : ite P (a * b) 0 = ite P a 0 * b := by { by_cases h : P; simp [h], } lemma ite_mul_zero_right {α : Type*} [mul_zero_class α] (P : Prop) [decidable P] (a b : α) : ite P (a * b) 0 = a * ite P b 0 := by { by_cases h : P; simp [h], } /-- An element `a` of a semiring is even if there exists `k` such `a = 2*k`. -/ def even (a : α) : Prop := ∃ k, a = 2*k lemma even_iff_two_dvd {a : α} : even a ↔ 2 ∣ a := iff.rfl /-- An element `a` of a semiring is odd if there exists `k` such `a = 2*k + 1`. -/ def odd (a : α) : Prop := ∃ k, a = 2*k + 1 end semiring namespace add_monoid_hom /-- Left multiplication by an element of a (semi)ring is an `add_monoid_hom` -/ def mul_left {R : Type*} [semiring R] (r : R) : R →+ R := { to_fun := (*) r, map_zero' := mul_zero r, map_add' := mul_add r } @[simp] lemma coe_mul_left {R : Type*} [semiring R] (r : R) : ⇑(mul_left r) = (*) r := rfl /-- Right multiplication by an element of a (semi)ring is an `add_monoid_hom` -/ def mul_right {R : Type*} [semiring R] (r : R) : R →+ R := { to_fun := λ a, a * r, map_zero' := zero_mul r, map_add' := λ _ _, add_mul _ _ r } @[simp] lemma coe_mul_right {R : Type*} [semiring R] (r : R) : ⇑(mul_right r) = (* r) := rfl lemma mul_right_apply {R : Type*} [semiring R] (a r : R) : mul_right r a = a * r := rfl end add_monoid_hom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `monoid_hom` and `monoid_with_zero_hom` in order to put the fields in a sensible order, even though `monoid_with_zero_hom` already extends `monoid_hom`. -/ structure ring_hom (α : Type*) (β : Type*) [semiring α] [semiring β] extends monoid_hom α β, add_monoid_hom α β, monoid_with_zero_hom α β infixr ` →+* `:25 := ring_hom /-- Reinterpret a ring homomorphism `f : R →+* S` as a `monoid_with_zero_hom R S`. The `simp`-normal form is `(f : monoid_with_zero_hom R S)`. -/ add_decl_doc ring_hom.to_monoid_with_zero_hom /-- Reinterpret a ring homomorphism `f : R →+* S` as a monoid homomorphism `R →* S`. The `simp`-normal form is `(f : R →* S)`. -/ add_decl_doc ring_hom.to_monoid_hom /-- Reinterpret a ring homomorphism `f : R →+* S` as an additive monoid homomorphism `R →+ S`. The `simp`-normal form is `(f : R →+ S)`. -/ add_decl_doc ring_hom.to_add_monoid_hom namespace ring_hom section coe /-! Throughout this section, some `semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variables {rα : semiring α} {rβ : semiring β} include rα rβ instance : has_coe_to_fun (α →+* β) := ⟨_, ring_hom.to_fun⟩ initialize_simps_projections ring_hom (to_fun → apply) @[simp] lemma to_fun_eq_coe (f : α →+* β) : f.to_fun = f := rfl @[simp] lemma coe_mk (f : α → β) (h₁ h₂ h₃ h₄) : ⇑(⟨f, h₁, h₂, h₃, h₄⟩ : α →+* β) = f := rfl instance has_coe_monoid_hom : has_coe (α →+* β) (α →* β) := ⟨ring_hom.to_monoid_hom⟩ @[simp, norm_cast] lemma coe_monoid_hom (f : α →+* β) : ⇑(f : α →* β) = f := rfl @[simp] lemma to_monoid_hom_eq_coe (f : α →+* β) : f.to_monoid_hom = f := rfl @[simp] lemma coe_monoid_hom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨f, h₁, h₂, h₃, h₄⟩ : α →+* β) : α →* β) = ⟨f, h₁, h₂⟩ := rfl instance has_coe_add_monoid_hom : has_coe (α →+* β) (α →+ β) := ⟨ring_hom.to_add_monoid_hom⟩ @[simp, norm_cast] lemma coe_add_monoid_hom (f : α →+* β) : ⇑(f : α →+ β) = f := rfl @[simp] lemma to_add_monoid_hom_eq_coe (f : α →+* β) : f.to_add_monoid_hom = f := rfl @[simp] lemma coe_add_monoid_hom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨f, h₁, h₂, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨f, h₃, h₄⟩ := rfl end coe variables [rα : semiring α] [rβ : semiring β] section include rα rβ variables (f : α →+* β) {x y : α} {rα rβ} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := congr_arg (λ h : α →+* β, h x) h theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := congr_arg (λ x : α, f x) h theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := by cases f; cases g; cases h; refl @[ext] theorem ext ⦃f g : α →+* β⦄ (h : ∀ x, f x = g x) : f = g := coe_inj (funext h) theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ theorem coe_add_monoid_hom_injective : function.injective (coe : (α →+* β) → (α →+ β)) := λ f g h, ext (λ x, add_monoid_hom.congr_fun h x) theorem coe_monoid_hom_injective : function.injective (coe : (α →+* β) → (α →* β)) := λ f g h, ext (λ x, monoid_hom.congr_fun h x) /-- Ring homomorphisms map zero to zero. -/ @[simp] lemma map_zero (f : α →+* β) : f 0 = 0 := f.map_zero' /-- Ring homomorphisms map one to one. -/ @[simp] lemma map_one (f : α →+* β) : f 1 = 1 := f.map_one' /-- Ring homomorphisms preserve addition. -/ @[simp] lemma map_add (f : α →+* β) (a b : α) : f (a + b) = f a + f b := f.map_add' a b /-- Ring homomorphisms preserve multiplication. -/ @[simp] lemma map_mul (f : α →+* β) (a b : α) : f (a * b) = f a * f b := f.map_mul' a b /-- Ring homomorphisms preserve `bit0`. -/ @[simp] lemma map_bit0 (f : α →+* β) (a : α) : f (bit0 a) = bit0 (f a) := map_add _ _ _ /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 (f : α →+* β) (a : α) : f (bit1 a) = bit1 (f a) := by simp [bit1] /-- `f : R →+* S` has a trivial codomain iff `f 1 = 0`. -/ lemma codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0 := by rw [map_one, eq_comm] /-- `f : R →+* S` has a trivial codomain iff it has a trivial range. -/ lemma codomain_trivial_iff_range_trivial : (0 : β) = 1 ↔ (∀ x, f x = 0) := f.codomain_trivial_iff_map_one_eq_zero.trans ⟨λ h x, by rw [←mul_one x, map_mul, h, mul_zero], λ h, h 1⟩ /-- `f : R →+* S` has a trivial codomain iff its range is `{0}`. -/ lemma codomain_trivial_iff_range_eq_singleton_zero : (0 : β) = 1 ↔ set.range f = {0} := f.codomain_trivial_iff_range_trivial.trans ⟨ λ h, set.ext (λ y, ⟨λ ⟨x, hx⟩, by simp [←hx, h x], λ hy, ⟨0, by simpa using hy.symm⟩⟩), λ h x, set.mem_singleton_iff.mp (h ▸ set.mem_range_self x)⟩ /-- `f : R →+* S` doesn't map `1` to `0` if `S` is nontrivial -/ lemma map_one_ne_zero [nontrivial β] : f 1 ≠ 0 := mt f.codomain_trivial_iff_map_one_eq_zero.mpr zero_ne_one /-- If there is a homomorphism `f : R →+* S` and `S` is nontrivial, then `R` is nontrivial. -/ lemma domain_nontrivial [nontrivial β] : nontrivial α := ⟨⟨1, 0, mt (λ h, show f 1 = 0, by rw [h, map_zero]) f.map_one_ne_zero⟩⟩ lemma is_unit_map (f : α →+* β) {a : α} (h : is_unit a) : is_unit (f a) := h.map (f.to_monoid_hom) end /-- The identity ring homomorphism from a semiring to itself. -/ def id (α : Type*) [semiring α] : α →+* α := by refine {to_fun := id, ..}; intros; refl include rα instance : inhabited (α →+* α) := ⟨id α⟩ @[simp] lemma id_apply (x : α) : ring_hom.id α x = x := rfl variable {rγ : semiring γ} include rβ rγ /-- Composition of ring homomorphisms is a ring homomorphism. -/ def comp (hnp : β →+* γ) (hmn : α →+* β) : α →+* γ := { to_fun := hnp ∘ hmn, map_zero' := by simp, map_one' := by simp, map_add' := λ x y, by simp, map_mul' := λ x y, by simp} /-- Composition of semiring homomorphisms is associative. -/ lemma comp_assoc {δ} {rδ: semiring δ} (f : α →+* β) (g : β →+* γ) (h : γ →+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[simp] lemma coe_comp (hnp : β →+* γ) (hmn : α →+* β) : (hnp.comp hmn : α → γ) = hnp ∘ hmn := rfl lemma comp_apply (hnp : β →+* γ) (hmn : α →+* β) (x : α) : (hnp.comp hmn : α → γ) x = (hnp (hmn x)) := rfl omit rγ @[simp] lemma comp_id (f : α →+* β) : f.comp (id α) = f := ext $ λ x, rfl @[simp] lemma id_comp (f : α →+* β) : (id β).comp f = f := ext $ λ x, rfl omit rβ instance : monoid (α →+* α) := { one := id α, mul := comp, mul_one := comp_id, one_mul := id_comp, mul_assoc := λ f g h, comp_assoc _ _ _ } lemma one_def : (1 : α →+* α) = id α := rfl @[simp] lemma coe_one : ⇑(1 : α →+* α) = _root_.id := rfl lemma mul_def (f g : α →+* α) : f * g = f.comp g := rfl @[simp] lemma coe_mul (f g : α →+* α) : ⇑(f * g) = f ∘ g := rfl include rβ rγ lemma cancel_right {g₁ g₂ : β →+* γ} {f : α →+* β} (hf : surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, ring_hom.ext $ (forall_iff_forall_surj hf).1 (ext_iff.1 h), λ h, h ▸ rfl⟩ lemma cancel_left {g : β →+* γ} {f₁ f₂ : α →+* β} (hg : injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, ring_hom.ext $ λ x, hg $ by rw [← comp_apply, h, comp_apply], λ h, h ▸ rfl⟩ omit rα rβ rγ end ring_hom /-- A commutative semiring is a `semiring` with commutative multiplication. In other words, it is a type with the following structures: additive commutative monoid (`add_comm_monoid`), multiplicative commutative monoid (`comm_monoid`), distributive laws (`distrib`), and multiplication by zero law (`mul_zero_class`). -/ @[protect_proj, ancestor semiring comm_monoid] class comm_semiring (α : Type u) extends semiring α, comm_monoid α @[priority 100] -- see Note [lower instance priority] instance comm_semiring.to_comm_monoid_with_zero [comm_semiring α] : comm_monoid_with_zero α := { .. comm_semiring.to_comm_monoid α, .. comm_semiring.to_semiring α } section comm_semiring variables [comm_semiring α] [comm_semiring β] {a b c : α} @[priority 100] -- see Note [lower instance priority] instance comm_semiring.comm_monoid_with_zero : comm_monoid_with_zero α := { .. (‹_› : comm_semiring α) } /-- Pullback a `semiring` instance along an injective function. -/ protected def function.injective.comm_semiring [has_zero γ] [has_one γ] [has_add γ] [has_mul γ] (f : γ → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : comm_semiring γ := { .. hf.semiring f zero one add mul, .. hf.comm_semigroup f mul } /-- Pullback a `semiring` instance along an injective function. -/ protected def function.surjective.comm_semiring [has_zero γ] [has_one γ] [has_add γ] [has_mul γ] (f : α → γ) (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) : comm_semiring γ := { .. hf.semiring f zero one add mul, .. hf.comm_semigroup f mul } lemma add_mul_self_eq (a b : α) : (a + b) * (a + b) = a*a + 2*a*b + b*b := calc (a + b)*(a + b) = a*a + (1+1)*a*b + b*b : by simp [add_mul, mul_add, mul_comm, add_assoc] ... = a*a + 2*a*b + b*b : by rw one_add_one_eq_two theorem dvd_add (h₁ : a ∣ b) (h₂ : a ∣ c) : a ∣ b + c := dvd.elim h₁ (λ d hd, dvd.elim h₂ (λ e he, dvd.intro (d + e) (by simp [left_distrib, hd, he]))) @[simp] theorem two_dvd_bit0 : 2 ∣ bit0 a := ⟨a, bit0_eq_two_mul _⟩ lemma ring_hom.map_dvd (f : α →+* β) {a b : α} : a ∣ b → f a ∣ f b := λ ⟨z, hz⟩, ⟨f z, by rw [hz, f.map_mul]⟩ end comm_semiring /-! ### Rings -/ /-- A ring is a type with the following structures: additive commutative group (`add_comm_group`), multiplicative monoid (`monoid`), and distributive laws (`distrib`). Equivalently, a ring is a `semiring` with a negation operation making it an additive group. -/ @[protect_proj, ancestor add_comm_group monoid distrib] class ring (α : Type u) extends add_comm_group α, monoid α, distrib α section ring variables [ring α] {a b c d e : α} /- The instance from `ring` to `semiring` happens often in linear algebra, for which all the basic definitions are given in terms of semirings, but many applications use rings or fields. We increase a little bit its priority above 100 to try it quickly, but remaining below the default 1000 so that more specific instances are tried first. -/ @[priority 200] instance ring.to_semiring : semiring α := { zero_mul := λ a, add_left_cancel $ show 0 * a + 0 * a = 0 * a + 0, by rw [← add_mul, zero_add, add_zero], mul_zero := λ a, add_left_cancel $ show a * 0 + a * 0 = a * 0 + 0, by rw [← mul_add, add_zero, add_zero], ..‹ring α› } /-- Pullback a `ring` instance along an injective function. -/ protected def function.injective.ring [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : ring β := { .. hf.add_comm_group f zero add neg, .. hf.monoid f one mul, .. hf.distrib f add mul } /-- Pullback a `ring` instance along an injective function. -/ protected def function.surjective.ring [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : α → β) (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : ring β := { .. hf.add_comm_group f zero add neg, .. hf.monoid f one mul, .. hf.distrib f add mul } lemma neg_mul_eq_neg_mul (a b : α) : -(a * b) = -a * b := neg_eq_of_add_eq_zero begin rw [← right_distrib, add_right_neg, zero_mul] end lemma neg_mul_eq_mul_neg (a b : α) : -(a * b) = a * -b := neg_eq_of_add_eq_zero begin rw [← left_distrib, add_right_neg, mul_zero] end @[simp] lemma neg_mul_eq_neg_mul_symm (a b : α) : - a * b = - (a * b) := eq.symm (neg_mul_eq_neg_mul a b) @[simp] lemma mul_neg_eq_neg_mul_symm (a b : α) : a * - b = - (a * b) := eq.symm (neg_mul_eq_mul_neg a b) lemma neg_mul_neg (a b : α) : -a * -b = a * b := by simp lemma neg_mul_comm (a b : α) : -a * b = a * -b := by simp theorem neg_eq_neg_one_mul (a : α) : -a = -1 * a := by simp lemma mul_sub_left_distrib (a b c : α) : a * (b - c) = a * b - a * c := calc a * (b - c) = a * b + a * -c : left_distrib a b (-c) ... = a * b - a * c : by simp [sub_eq_add_neg] alias mul_sub_left_distrib ← mul_sub lemma mul_sub_right_distrib (a b c : α) : (a - b) * c = a * c - b * c := calc (a - b) * c = a * c + -b * c : right_distrib a (-b) c ... = a * c - b * c : by simp [sub_eq_add_neg] alias mul_sub_right_distrib ← sub_mul /-- An element of a ring multiplied by the additive inverse of one is the element's additive inverse. -/ lemma mul_neg_one (a : α) : a * -1 = -a := by simp /-- The additive inverse of one multiplied by an element of a ring is the element's additive inverse. -/ lemma neg_one_mul (a : α) : -1 * a = -a := by simp /-- An iff statement following from right distributivity in rings and the definition of subtraction. -/ theorem mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d := calc a * e + c = b * e + d ↔ a * e + c = d + b * e : by simp [add_comm] ... ↔ a * e + c - b * e = d : iff.intro (λ h, begin rw h, simp end) (λ h, begin rw ← h, simp end) ... ↔ (a - b) * e + c = d : begin simp [sub_mul, sub_add_eq_add_sub] end /-- A simplification of one side of an equation exploiting right distributivity in rings and the definition of subtraction. -/ theorem sub_mul_add_eq_of_mul_add_eq_mul_add : a * e + c = b * e + d → (a - b) * e + c = d := assume h, calc (a - b) * e + c = (a * e + c) - b * e : begin simp [sub_mul, sub_add_eq_add_sub] end ... = d : begin rw h, simp [@add_sub_cancel α] end end ring namespace units variables [ring α] {a b : α} /-- Each element of the group of units of a ring has an additive inverse. -/ instance : has_neg (units α) := ⟨λu, ⟨-↑u, -↑u⁻¹, by simp, by simp⟩ ⟩ /-- Representing an element of a ring's unit group as an element of the ring commutes with mapping this element to its additive inverse. -/ @[simp, norm_cast] protected theorem coe_neg (u : units α) : (↑-u : α) = -u := rfl @[simp, norm_cast] protected theorem coe_neg_one : ((-1 : units α) : α) = -1 := rfl /-- Mapping an element of a ring's unit group to its inverse commutes with mapping this element to its additive inverse. -/ @[simp] protected theorem neg_inv (u : units α) : (-u)⁻¹ = -u⁻¹ := rfl /-- An element of a ring's unit group equals the additive inverse of its additive inverse. -/ @[simp] protected theorem neg_neg (u : units α) : - -u = u := units.ext $ neg_neg _ /-- Multiplication of elements of a ring's unit group commutes with mapping the first argument to its additive inverse. -/ @[simp] protected theorem neg_mul (u₁ u₂ : units α) : -u₁ * u₂ = -(u₁ * u₂) := units.ext $ neg_mul_eq_neg_mul_symm _ _ /-- Multiplication of elements of a ring's unit group commutes with mapping the second argument to its additive inverse. -/ @[simp] protected theorem mul_neg (u₁ u₂ : units α) : u₁ * -u₂ = -(u₁ * u₂) := units.ext $ (neg_mul_eq_mul_neg _ _).symm /-- Multiplication of the additive inverses of two elements of a ring's unit group equals multiplication of the two original elements. -/ @[simp] protected theorem neg_mul_neg (u₁ u₂ : units α) : -u₁ * -u₂ = u₁ * u₂ := by simp /-- The additive inverse of an element of a ring's unit group equals the additive inverse of one times the original element. -/ protected theorem neg_eq_neg_one_mul (u : units α) : -u = -1 * u := by simp end units namespace ring_hom /-- Ring homomorphisms preserve additive inverse. -/ @[simp] theorem map_neg {α β} [ring α] [ring β] (f : α →+* β) (x : α) : f (-x) = -(f x) := (f : α →+ β).map_neg x /-- Ring homomorphisms preserve subtraction. -/ @[simp] theorem map_sub {α β} [ring α] [ring β] (f : α →+* β) (x y : α) : f (x - y) = (f x) - (f y) := (f : α →+ β).map_sub x y /-- A ring homomorphism is injective iff its kernel is trivial. -/ theorem injective_iff {α β} [ring α] [semiring β] (f : α →+* β) : function.injective f ↔ (∀ a, f a = 0 → a = 0) := (f : α →+ β).injective_iff /-- Makes a ring homomorphism from a monoid homomorphism of rings which preserves addition. -/ def mk' {γ} [semiring α] [ring γ] (f : α →* γ) (map_add : ∀ a b : α, f (a + b) = f a + f b) : α →+* γ := { to_fun := f, .. add_monoid_hom.mk' f map_add, .. f } end ring_hom /-- A commutative ring is a `ring` with commutative multiplication. -/ @[protect_proj, ancestor ring comm_semigroup] class comm_ring (α : Type u) extends ring α, comm_semigroup α @[priority 100] -- see Note [lower instance priority] instance comm_ring.to_comm_semiring [s : comm_ring α] : comm_semiring α := { mul_zero := mul_zero, zero_mul := zero_mul, ..s } section comm_ring variables [comm_ring α] {a b c : α} /-- Pullback a `ring` instance along an injective function. -/ protected def function.injective.comm_ring [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : comm_ring β := { .. hf.ring f zero one add mul neg, .. hf.comm_semigroup f mul } /-- Pullback a `ring` instance along an injective function. -/ protected def function.surjective.comm_ring [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : α → β) (hf : surjective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : comm_ring β := { .. hf.ring f zero one add mul neg, .. hf.comm_semigroup f mul } local attribute [simp] add_assoc add_comm add_left_comm mul_comm theorem dvd_neg_of_dvd (h : a ∣ b) : (a ∣ -b) := dvd.elim h (assume c, assume : b = a * c, dvd.intro (-c) (by simp [this])) theorem dvd_of_dvd_neg (h : a ∣ -b) : (a ∣ b) := let t := dvd_neg_of_dvd h in by rwa neg_neg at t theorem dvd_neg_iff_dvd (a b : α) : (a ∣ -b) ↔ (a ∣ b) := ⟨dvd_of_dvd_neg, dvd_neg_of_dvd⟩ theorem neg_dvd_of_dvd (h : a ∣ b) : -a ∣ b := dvd.elim h (assume c, assume : b = a * c, dvd.intro (-c) (by simp [this])) theorem dvd_of_neg_dvd (h : -a ∣ b) : a ∣ b := let t := neg_dvd_of_dvd h in by rwa neg_neg at t theorem neg_dvd_iff_dvd (a b : α) : (-a ∣ b) ↔ (a ∣ b) := ⟨dvd_of_neg_dvd, neg_dvd_of_dvd⟩ theorem dvd_sub (h₁ : a ∣ b) (h₂ : a ∣ c) : a ∣ b - c := dvd_add h₁ (dvd_neg_of_dvd h₂) theorem dvd_add_iff_left (h : a ∣ c) : a ∣ b ↔ a ∣ b + c := ⟨λh₂, dvd_add h₂ h, λH, by have t := dvd_sub H h; rwa add_sub_cancel at t⟩ theorem dvd_add_iff_right (h : a ∣ b) : a ∣ c ↔ a ∣ b + c := by rw add_comm; exact dvd_add_iff_left h theorem two_dvd_bit1 : 2 ∣ bit1 a ↔ (2 : α) ∣ 1 := (dvd_add_iff_right (@two_dvd_bit0 _ _ a)).symm /-- Representation of a difference of two squares in a commutative ring as a product. -/ theorem mul_self_sub_mul_self (a b : α) : a * a - b * b = (a + b) * (a - b) := by rw [add_mul, mul_sub, mul_sub, mul_comm a b, sub_add_sub_cancel] lemma mul_self_sub_one (a : α) : a * a - 1 = (a + 1) * (a - 1) := by rw [← mul_self_sub_mul_self, mul_one] /-- An element a of a commutative ring divides the additive inverse of an element b iff a divides b. -/ @[simp] lemma dvd_neg (a b : α) : (a ∣ -b) ↔ (a ∣ b) := ⟨dvd_of_dvd_neg, dvd_neg_of_dvd⟩ /-- The additive inverse of an element a of a commutative ring divides another element b iff a divides b. -/ @[simp] lemma neg_dvd (a b : α) : (-a ∣ b) ↔ (a ∣ b) := ⟨dvd_of_neg_dvd, neg_dvd_of_dvd⟩ /-- If an element a divides another element c in a commutative ring, a divides the sum of another element b with c iff a divides b. -/ theorem dvd_add_left (h : a ∣ c) : a ∣ b + c ↔ a ∣ b := (dvd_add_iff_left h).symm /-- If an element a divides another element b in a commutative ring, a divides the sum of b and another element c iff a divides c. -/ theorem dvd_add_right (h : a ∣ b) : a ∣ b + c ↔ a ∣ c := (dvd_add_iff_right h).symm /-- An element a divides the sum a + b if and only if a divides b.-/ @[simp] lemma dvd_add_self_left {a b : α} : a ∣ a + b ↔ a ∣ b := dvd_add_right (dvd_refl a) /-- An element a divides the sum b + a if and only if a divides b.-/ @[simp] lemma dvd_add_self_right {a b : α} : a ∣ b + a ↔ a ∣ b := dvd_add_left (dvd_refl a) /-- Vieta's formula for a quadratic equation, relating the coefficients of the polynomial with its roots. This particular version states that if we have a root `x` of a monic quadratic polynomial, then there is another root `y` such that `x + y` is negative the `a_1` coefficient and `x * y` is the `a_0` coefficient. -/ lemma Vieta_formula_quadratic {b c x : α} (h : x * x - b * x + c = 0) : ∃ y : α, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c := begin have : c = -(x * x - b * x) := (neg_eq_of_add_eq_zero h).symm, have : c = x * (b - x), by subst this; simp [mul_sub, mul_comm], refine ⟨b - x, _, by simp, by rw this⟩, rw [this, sub_add, ← sub_mul, sub_self] end lemma dvd_mul_sub_mul {k a b x y : α} (hab : k ∣ a - b) (hxy : k ∣ x - y) : k ∣ a * x - b * y := begin convert dvd_add (dvd_mul_of_dvd_right hxy a) (dvd_mul_of_dvd_left hab y), rw [mul_sub_left_distrib, mul_sub_right_distrib], simp only [sub_eq_add_neg, add_assoc, neg_add_cancel_left], end lemma dvd_iff_dvd_of_dvd_sub {a b c : α} (h : a ∣ (b - c)) : (a ∣ b ↔ a ∣ c) := begin split, { intro h', convert dvd_sub h' h, exact eq.symm (sub_sub_self b c) }, { intro h', convert dvd_add h h', exact eq_add_of_sub_eq rfl } end end comm_ring lemma succ_ne_self [ring α] [nontrivial α] (a : α) : a + 1 ≠ a := λ h, one_ne_zero ((add_right_inj a).mp (by simp [h])) lemma pred_ne_self [ring α] [nontrivial α] (a : α) : a - 1 ≠ a := λ h, one_ne_zero (neg_injective ((add_right_inj a).mp (by { convert h, simp }))) /-- A domain is a ring with no zero divisors, i.e. satisfying the condition `a * b = 0 ↔ a = 0 ∨ b = 0`. Alternatively, a domain is an integral domain without assuming commutativity of multiplication. -/ @[protect_proj] class domain (α : Type u) extends ring α, nontrivial α := (eq_zero_or_eq_zero_of_mul_eq_zero : ∀ a b : α, a * b = 0 → a = 0 ∨ b = 0) section domain variable [domain α] @[priority 100] -- see Note [lower instance priority] instance domain.to_no_zero_divisors : no_zero_divisors α := ⟨domain.eq_zero_or_eq_zero_of_mul_eq_zero⟩ @[priority 100] -- see Note [lower instance priority] instance domain.to_cancel_monoid_with_zero : cancel_monoid_with_zero α := { mul_left_cancel_of_ne_zero := λ a b c ha, by { rw [← sub_eq_zero, ← mul_sub], simp [ha, sub_eq_zero] }, mul_right_cancel_of_ne_zero := λ a b c hb, by { rw [← sub_eq_zero, ← sub_mul], simp [hb, sub_eq_zero] }, .. (infer_instance : semiring α) } /-- Pullback a `domain` instance along an injective function. -/ protected def function.injective.domain [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : domain β := { .. hf.ring f zero one add mul neg, .. pullback_nonzero f zero one, .. hf.no_zero_divisors f zero mul } end domain /-! ### Integral domains -/ /-- An integral domain is a commutative ring with no zero divisors, i.e. satisfying the condition `a * b = 0 ↔ a = 0 ∨ b = 0`. Alternatively, an integral domain is a domain with commutative multiplication. -/ @[protect_proj, ancestor comm_ring domain] class integral_domain (α : Type u) extends comm_ring α, domain α section integral_domain variables [integral_domain α] {a b c d e : α} @[priority 100] -- see Note [lower instance priority] instance integral_domain.to_comm_cancel_monoid_with_zero : comm_cancel_monoid_with_zero α := { ..comm_semiring.to_comm_monoid_with_zero, ..domain.to_cancel_monoid_with_zero } /-- Pullback an `integral_domain` instance along an injective function. -/ protected def function.injective.integral_domain [has_zero β] [has_one β] [has_add β] [has_mul β] [has_neg β] (f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y) (neg : ∀ x, f (-x) = -f x) : integral_domain β := { .. hf.comm_ring f zero one add mul neg, .. hf.domain f zero one add mul neg } lemma mul_self_eq_mul_self_iff {a b : α} : a * a = b * b ↔ a = b ∨ a = -b := by rw [← sub_eq_zero, mul_self_sub_mul_self, mul_eq_zero, or_comm, sub_eq_zero, add_eq_zero_iff_eq_neg] lemma mul_self_eq_one_iff {a : α} : a * a = 1 ↔ a = 1 ∨ a = -1 := by rw [← mul_self_eq_mul_self_iff, one_mul] /-- In the unit group of an integral domain, a unit is its own inverse iff the unit is one or one's additive inverse. -/ lemma units.inv_eq_self_iff (u : units α) : u⁻¹ = u ↔ u = 1 ∨ u = -1 := by { rw inv_eq_iff_mul_eq_one, simp only [units.ext_iff], push_cast, exact mul_self_eq_one_iff } end integral_domain namespace ring variables [ring R] open_locale classical /-- Introduce a function `inverse` on a ring `R`, which sends `x` to `x⁻¹` if `x` is invertible and to `0` otherwise. This definition is somewhat ad hoc, but one needs a fully (rather than partially) defined inverse function for some purposes, including for calculus. -/ noncomputable def inverse : R → R := λ x, if h : is_unit x then (((classical.some h)⁻¹ : units R) : R) else 0 /-- By definition, if `x` is invertible then `inverse x = x⁻¹`. -/ @[simp] lemma inverse_unit (a : units R) : inverse (a : R) = (a⁻¹ : units R) := begin simp [is_unit_unit, inverse], exact units.inv_unique (classical.some_spec (is_unit_unit a)), end /-- By definition, if `x` is not invertible then `inverse x = 0`. -/ @[simp] lemma inverse_non_unit (x : R) (h : ¬(is_unit x)) : inverse x = 0 := dif_neg h end ring /-- A predicate to express that a ring is an integral domain. This is mainly useful because such a predicate does not contain data, and can therefore be easily transported along ring isomorphisms. -/ structure is_integral_domain (R : Type u) [ring R] extends nontrivial R : Prop := (mul_comm : ∀ (x y : R), x * y = y * x) (eq_zero_or_eq_zero_of_mul_eq_zero : ∀ x y : R, x * y = 0 → x = 0 ∨ y = 0) -- The linter does not recognize that is_integral_domain.to_nontrivial is a structure -- projection, disable it attribute [nolint def_lemma doc_blame] is_integral_domain.to_nontrivial /-- Every integral domain satisfies the predicate for integral domains. -/ lemma integral_domain.to_is_integral_domain (R : Type u) [integral_domain R] : is_integral_domain R := { .. (‹_› : integral_domain R) } /-- If a ring satisfies the predicate for integral domains, then it can be endowed with an `integral_domain` instance whose data is definitionally equal to the existing data. -/ def is_integral_domain.to_integral_domain (R : Type u) [ring R] (h : is_integral_domain R) : integral_domain R := { .. (‹_› : ring R), .. (‹_› : is_integral_domain R) } namespace semiconj_by @[simp] lemma add_right [distrib R] {a x y x' y' : R} (h : semiconj_by a x y) (h' : semiconj_by a x' y') : semiconj_by a (x + x') (y + y') := by simp only [semiconj_by, left_distrib, right_distrib, h.eq, h'.eq] @[simp] lemma add_left [distrib R] {a b x y : R} (ha : semiconj_by a x y) (hb : semiconj_by b x y) : semiconj_by (a + b) x y := by simp only [semiconj_by, left_distrib, right_distrib, ha.eq, hb.eq] variables [ring R] {a b x y x' y' : R} lemma neg_right (h : semiconj_by a x y) : semiconj_by a (-x) (-y) := by simp only [semiconj_by, h.eq, neg_mul_eq_neg_mul_symm, mul_neg_eq_neg_mul_symm] @[simp] lemma neg_right_iff : semiconj_by a (-x) (-y) ↔ semiconj_by a x y := ⟨λ h, neg_neg x ▸ neg_neg y ▸ h.neg_right, semiconj_by.neg_right⟩ lemma neg_left (h : semiconj_by a x y) : semiconj_by (-a) x y := by simp only [semiconj_by, h.eq, neg_mul_eq_neg_mul_symm, mul_neg_eq_neg_mul_symm] @[simp] lemma neg_left_iff : semiconj_by (-a) x y ↔ semiconj_by a x y := ⟨λ h, neg_neg a ▸ h.neg_left, semiconj_by.neg_left⟩ @[simp] lemma neg_one_right (a : R) : semiconj_by a (-1) (-1) := (one_right a).neg_right @[simp] lemma neg_one_left (x : R) : semiconj_by (-1) x x := (semiconj_by.one_left x).neg_left @[simp] lemma sub_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') : semiconj_by a (x - x') (y - y') := h.add_right h'.neg_right @[simp] lemma sub_left (ha : semiconj_by a x y) (hb : semiconj_by b x y) : semiconj_by (a - b) x y := ha.add_left hb.neg_left end semiconj_by namespace commute @[simp] theorem add_right [distrib R] {a b c : R} : commute a b → commute a c → commute a (b + c) := semiconj_by.add_right @[simp] theorem add_left [distrib R] {a b c : R} : commute a c → commute b c → commute (a + b) c := semiconj_by.add_left variables [ring R] {a b c : R} theorem neg_right : commute a b → commute a (- b) := semiconj_by.neg_right @[simp] theorem neg_right_iff : commute a (-b) ↔ commute a b := semiconj_by.neg_right_iff theorem neg_left : commute a b → commute (- a) b := semiconj_by.neg_left @[simp] theorem neg_left_iff : commute (-a) b ↔ commute a b := semiconj_by.neg_left_iff @[simp] theorem neg_one_right (a : R) : commute a (-1) := semiconj_by.neg_one_right a @[simp] theorem neg_one_left (a : R): commute (-1) a := semiconj_by.neg_one_left a @[simp] theorem sub_right : commute a b → commute a c → commute a (b - c) := semiconj_by.sub_right @[simp] theorem sub_left : commute a c → commute b c → commute (a - b) c := semiconj_by.sub_left end commute
8787ffe8e351edb9134cea0cff09dc2caa752f23
5412d79aa1dc0b521605c38bef9f0d4557b5a29d
/stage0/src/Init/Data/Format/Basic.lean
4212d3b4b2b14b21810b433f4826b77640ed65fb
[ "Apache-2.0" ]
permissive
smunix/lean4
a450ec0927dc1c74816a1bf2818bf8600c9fc9bf
3407202436c141e3243eafbecb4b8720599b970a
refs/heads/master
1,676,334,875,188
1,610,128,510,000
1,610,128,521,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,271
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import Init.Control.State import Init.Data.Int.Basic import Init.Data.String.Basic namespace Std inductive Format.FlattenBehavior where | allOrNone | fill deriving Inhabited, BEq open Format inductive Format where | nil : Format | line : Format | text : String → Format | nest (indent : Int) : Format → Format | append : Format → Format → Format | group : Format → (behavior : FlattenBehavior := FlattenBehavior.allOrNone) → Format deriving Inhabited namespace Format def fill (f : Format) : Format := group f (behavior := FlattenBehavior.fill) @[export lean_format_append] protected def appendEx (a b : Format) : Format := append a b @[export lean_format_group] protected def groupEx : Format → Format := group instance : Append Format := ⟨Format.append⟩ instance : Coe String Format := ⟨text⟩ def join (xs : List Format) : Format := xs.foldl (·++·) "" def isNil : Format → Bool | nil => true | _ => false private structure SpaceResult where foundLine : Bool := false foundFlattenedHardLine : Bool := false space : Nat := 0 deriving Inhabited @[inline] private def merge (w : Nat) (r₁ : SpaceResult) (r₂ : Nat → SpaceResult) : SpaceResult := if r₁.space > w || r₁.foundLine then r₁ else let r₂ := r₂ (w - r₁.space); { r₂ with space := r₁.space + r₂.space } private def spaceUptoLine : Format → Bool → Nat → SpaceResult | nil, flatten, w => {} | line, flatten, w => if flatten then { space := 1 } else { foundLine := true } | text s, flatten, w => let p := s.posOf '\n'; let off := s.offsetOfPos p; { foundLine := p != s.bsize, foundFlattenedHardLine := flatten && p != s.bsize, space := off } | append f₁ f₂, flatten, w => merge w (spaceUptoLine f₁ flatten w) (spaceUptoLine f₂ flatten) | nest _ f, flatten, w => spaceUptoLine f flatten w | group f _, _, w => spaceUptoLine f true w private structure WorkItem where f : Format indent : Int private structure WorkGroup where flatten : Bool flb : FlattenBehavior items : List WorkItem private partial def spaceUptoLine' : List WorkGroup → Nat → SpaceResult | [], w => {} | { items := [], .. }::gs, w => spaceUptoLine' gs w | g@{ items := i::is, .. }::gs, w => merge w (spaceUptoLine i.f g.flatten w) (spaceUptoLine' ({ g with items := is }::gs)) private structure State where out : String := "" column : Nat := 0 private def pushGroup (flb : FlattenBehavior) (items : List WorkItem) (gs : List WorkGroup) (w : Nat) : StateM State (List WorkGroup) := do let k := (← get).column -- Flatten group if it + the remainder (gs) fits in the remaining space. For `fill`, measure only up to the next (ungrouped) line break. let g := { flatten := flb == FlattenBehavior.allOrNone, flb := flb, items := items : WorkGroup } let r := spaceUptoLine' [g] (w-k) let r' := merge (w-k) r (spaceUptoLine' gs); -- Prevent flattening if any item contains a hard line break, except within `fill` if it is ungrouped (=> unflattened) return { g with flatten := !r.foundFlattenedHardLine && r'.space <= w-k }::gs private def pushOutput (s : String) : StateM State Unit := modify fun st => { st with out := st.out ++ s, column := st.column + s.length } private def pushNewline (indent : Nat) : StateM State Unit := modify fun st => { st with out := st.out ++ "\n".pushn ' ' indent, column := indent } private partial def be (w : Nat) : List WorkGroup → StateM State Unit | [] => pure () | { items := [], .. }::gs => be w gs | g@{ items := i::is, .. }::gs => do let gs' (is' : List WorkItem) := { g with items := is' }::gs; match i.f with | nil => be w (gs' is) | append f₁ f₂ => be w (gs' ({ i with f := f₁ }::{ i with f := f₂ }::is)) | nest n f => be w (gs' ({ i with f := f, indent := i.indent + n }::is)) | text s => let p := s.posOf '\n' if p == s.bsize then pushOutput s be w (gs' is) else pushOutput (s.extract 0 p) pushNewline i.indent.toNat let is := { i with f := s.extract (s.next p) s.bsize }::is -- after a hard line break, re-evaluate whether to flatten the remaining group pushGroup g.flb is gs w >>= be w | line => match g.flb with | FlattenBehavior.allOrNone => if g.flatten then -- flatten line = text " " pushOutput " " be w (gs' is) else pushNewline i.indent.toNat be w (gs' is) | FlattenBehavior.fill => let breakHere := do pushNewline i.indent.toNat -- make new `fill` group and recurse pushGroup FlattenBehavior.fill is gs w >>= be w -- if preceding fill item fit in a single line, try to fit next one too if g.flatten then let gs'@(g'::_) ← pushGroup FlattenBehavior.fill is gs (w - " ".length) | panic "unreunreachable" if g'.flatten then pushOutput " "; be w gs' -- TODO: use `return` else breakHere else breakHere | group f flb => if g.flatten then -- flatten (group f) = flatten f be w (gs' ({ i with f := f }::is)) else pushGroup flb [{ i with f := f }] (gs' is) w >>= be w @[inline] def bracket (l : String) (f : Format) (r : String) : Format := group (nest l.length $ l ++ f ++ r) @[inline] def paren (f : Format) : Format := bracket "(" f ")" @[inline] def sbracket (f : Format) : Format := bracket "[" f "]" @[inline] def bracketFill (l : String) (f : Format) (r : String) : Format := fill (nest l.length $ l ++ f ++ r) def defIndent := 2 def defUnicode := true def defWidth := 120 @[export lean_format_pretty] def pretty (f : Format) (w : Nat := defWidth) : String := let (_, st) := be w [{ flb := FlattenBehavior.allOrNone, flatten := false, items := [{ f := f, indent := 0 }] }] {}; st.out end Format class ToFormat (α : Type u) where format : α → Format export ToFormat (format) def fmt {α : Type u} [ToFormat α] : α → Format := format -- note: must take precendence over the above instance to avoid premature formatting instance : ToFormat Format where format f := f instance : ToFormat String where format s := Format.text s def Format.joinSep {α : Type u} [ToFormat α] : List α → Format → Format | [], sep => nil | [a], sep => format a | a::as, sep => format a ++ sep ++ joinSep as sep def Format.prefixJoin {α : Type u} [ToFormat α] (pre : Format) : List α → Format | [] => nil | a::as => pre ++ format a ++ prefixJoin pre as def Format.joinSuffix {α : Type u} [ToFormat α] : List α → Format → Format | [], suffix => nil | a::as, suffix => format a ++ suffix ++ joinSuffix as suffix end Std open Std open Std.Format
500c6ca2114d64b0cc3a494cc66a79df9b496f63
fa01e273a2a9f22530e6adb1ed7d4f54bb15c8d7
/src/N2O/Network/Web/Default.lean
ecd2951eebfd2dfcb879d84b8288fe97d972874b
[ "LicenseRef-scancode-mit-taylor-variant", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
o89/n2o
4c99afb11fff0a1e3dae6b3bc8a3b7fc42c314ac
58c1fbf4ef892ed86bdc6b78ec9ca5a403715c2d
refs/heads/master
1,670,314,676,229
1,669,086,375,000
1,669,086,375,000
200,506,953
16
6
null
null
null
null
UTF-8
Lean
false
false
28
lean
import N2O.Network.Web.HTTP
fefbbc5565f43c50215d6f144550b381600504a4
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/order/complete_boolean_algebra.lean
1fa1701de2b3f0ae5524788b86b8f6a07be1f971
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
4,043
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Theory of complete Boolean algebras. -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.order.complete_lattice import Mathlib.PostPort universes u_1 l u w namespace Mathlib /-- A complete distributive lattice is a bit stronger than the name might suggest; perhaps completely distributive lattice is more descriptive, as this class includes a requirement that the lattice join distribute over *arbitrary* infima, and similarly for the dual. -/ class complete_distrib_lattice (α : Type u_1) extends complete_lattice α where infi_sup_le_sup_Inf : ∀ (a : α) (s : set α), (infi fun (b : α) => infi fun (H : b ∈ s) => a ⊔ b) ≤ a ⊔ Inf s inf_Sup_le_supr_inf : ∀ (a : α) (s : set α), a ⊓ Sup s ≤ supr fun (b : α) => supr fun (H : b ∈ s) => a ⊓ b theorem sup_Inf_eq {α : Type u} [complete_distrib_lattice α] {a : α} {s : set α} : a ⊔ Inf s = infi fun (b : α) => infi fun (H : b ∈ s) => a ⊔ b := le_antisymm (le_infi fun (i : α) => le_infi fun (h : i ∈ s) => sup_le_sup_left (Inf_le h) a) (complete_distrib_lattice.infi_sup_le_sup_Inf a s) theorem Inf_sup_eq {α : Type u} [complete_distrib_lattice α] {b : α} {s : set α} : Inf s ⊔ b = infi fun (a : α) => infi fun (H : a ∈ s) => a ⊔ b := sorry theorem inf_Sup_eq {α : Type u} [complete_distrib_lattice α] {a : α} {s : set α} : a ⊓ Sup s = supr fun (b : α) => supr fun (H : b ∈ s) => a ⊓ b := le_antisymm (complete_distrib_lattice.inf_Sup_le_supr_inf a s) (supr_le fun (i : α) => supr_le fun (h : i ∈ s) => inf_le_inf_left a (le_Sup h)) theorem Sup_inf_eq {α : Type u} [complete_distrib_lattice α] {b : α} {s : set α} : Sup s ⊓ b = supr fun (a : α) => supr fun (H : a ∈ s) => a ⊓ b := sorry theorem Inf_sup_Inf {α : Type u} [complete_distrib_lattice α] {s : set α} {t : set α} : Inf s ⊔ Inf t = infi fun (p : α × α) => infi fun (H : p ∈ set.prod s t) => prod.fst p ⊔ prod.snd p := sorry theorem Sup_inf_Sup {α : Type u} [complete_distrib_lattice α] {s : set α} {t : set α} : Sup s ⊓ Sup t = supr fun (p : α × α) => supr fun (H : p ∈ set.prod s t) => prod.fst p ⊓ prod.snd p := sorry protected instance complete_distrib_lattice.bounded_distrib_lattice {α : Type u} [d : complete_distrib_lattice α] : bounded_distrib_lattice α := bounded_distrib_lattice.mk complete_distrib_lattice.sup complete_distrib_lattice.le complete_distrib_lattice.lt complete_distrib_lattice.le_refl complete_distrib_lattice.le_trans complete_distrib_lattice.le_antisymm complete_distrib_lattice.le_sup_left complete_distrib_lattice.le_sup_right complete_distrib_lattice.sup_le complete_distrib_lattice.inf complete_distrib_lattice.inf_le_left complete_distrib_lattice.inf_le_right complete_distrib_lattice.le_inf sorry complete_distrib_lattice.top complete_distrib_lattice.le_top complete_distrib_lattice.bot complete_distrib_lattice.bot_le /-- A complete boolean algebra is a completely distributive boolean algebra. -/ class complete_boolean_algebra (α : Type u_1) extends boolean_algebra α, complete_distrib_lattice α where theorem compl_infi {α : Type u} {ι : Sort w} [complete_boolean_algebra α] {f : ι → α} : infi fᶜ = supr fun (i : ι) => f iᶜ := le_antisymm (compl_le_of_compl_le (le_infi fun (i : ι) => compl_le_of_compl_le (le_supr (compl ∘ f) i))) (supr_le fun (i : ι) => compl_le_compl (infi_le f i)) theorem compl_supr {α : Type u} {ι : Sort w} [complete_boolean_algebra α] {f : ι → α} : supr fᶜ = infi fun (i : ι) => f iᶜ := sorry theorem compl_Inf {α : Type u} [complete_boolean_algebra α] {s : set α} : Inf sᶜ = supr fun (i : α) => supr fun (H : i ∈ s) => iᶜ := sorry theorem compl_Sup {α : Type u} [complete_boolean_algebra α] {s : set α} : Sup sᶜ = infi fun (i : α) => infi fun (H : i ∈ s) => iᶜ := sorry
45ef38daa1981bc6392e81823c058612ee863c9c
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/tactic/interval_cases.lean
9cffa15e8d41a9ecf6730414b4e43f15b6fe7993
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
11,244
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import tactic.fin_cases import data.fin.interval -- These imports aren't required to compile this file, import data.int.interval -- but they are needed at the use site for the tactic to work import data.pnat.interval -- (on values of type fin/int/pnat) import data.pnat.basic /-! # Case bash on variables in finite intervals This file provides the tactic `interval_cases`. `interval_cases n` will: 1. inspect hypotheses looking for lower and upper bounds of the form `a ≤ n` and `n < b` (in `ℕ`, `ℤ`, `ℕ+`, bounds of the form `a < n` and `n ≤ b` are also allowed), and also makes use of lower and upper bounds found via `le_top` and `bot_le` (so for example if `n : ℕ`, then the bound `0 ≤ n` is automatically found). 2. call `fin_cases` on the synthesised hypothesis `n ∈ set.Ico a b`, assuming an appropriate `fintype` instance can be found for the type of `n`. The variable `n` can belong to any type `α`, with the following restrictions: * only bounds on which `expr.to_rat` succeeds will be considered "explicit" (TODO: generalise this?) * an instance of `decidable_eq α` is available, * an explicit lower bound can be found among the hypotheses, or from `bot_le n`, * an explicit upper bound can be found among the hypotheses, or from `le_top n`, * if multiple bounds are located, an instance of `linear_order α` is available, and * an instance of `fintype set.Ico l u` is available for the relevant bounds. You can also explicitly specify a lower and upper bound to use, as `interval_cases using hl hu`, where the hypotheses should be of the form `hl : a ≤ n` and `hu : n < b`. In that case, `interval_cases` calls `fin_cases` on the resulting hypothesis `h : n ∈ set.Ico a b`. -/ open set namespace tactic namespace interval_cases /-- If `e` easily implies `(%%n < %%b)` for some explicit `b`, return that proof. -/ -- We use `expr.to_rat` merely to decide if an `expr` is an explicit number. -- It would be more natural to use `expr.to_int`, but that hasn't been implemented. meta def gives_upper_bound (n e : expr) : tactic expr := do t ← infer_type e, match t with | `(%%n' < %%b) := do guard (n = n'), b ← b.to_rat, return e | `(%%b > %%n') := do guard (n = n'), b ← b.to_rat, return e | `(%%n' ≤ %%b) := do guard (n = n'), b ← b.to_rat, tn ← infer_type n, match tn with | `(ℕ) := to_expr ``(nat.lt_add_one_iff.mpr %%e) | `(ℕ+) := to_expr ``(pnat.lt_add_one_iff.mpr %%e) | `(ℤ) := to_expr ``(int.lt_add_one_iff.mpr %%e) | _ := failed end | `(%%b ≥ %%n') := do guard (n = n'), b ← b.to_rat, tn ← infer_type n, match tn with | `(ℕ) := to_expr ``(nat.lt_add_one_iff.mpr %%e) | `(ℕ+) := to_expr ``(pnat.lt_add_one_iff.mpr %%e) | `(ℤ) := to_expr ``(int.lt_add_one_iff.mpr %%e) | _ := failed end | _ := failed end /-- If `e` easily implies `(%%n ≥ %%b)` for some explicit `b`, return that proof. -/ meta def gives_lower_bound (n e : expr) : tactic expr := do t ← infer_type e, match t with | `(%%n' ≥ %%b) := do guard (n = n'), b ← b.to_rat, return e | `(%%b ≤ %%n') := do guard (n = n'), b ← b.to_rat, return e | `(%%n' > %%b) := do guard (n = n'), b ← b.to_rat, tn ← infer_type n, match tn with | `(ℕ) := to_expr ``(nat.add_one_le_iff.mpr %%e) | `(ℕ+) := to_expr ``(pnat.add_one_le_iff.mpr %%e) | `(ℤ) := to_expr ``(int.add_one_le_iff.mpr %%e) | _ := failed end | `(%%b < %%n') := do guard (n = n'), b ← b.to_rat, tn ← infer_type n, match tn with | `(ℕ) := to_expr ``(nat.add_one_le_iff.mpr %%e) | `(ℕ+) := to_expr ``(pnat.add_one_le_iff.mpr %%e) | `(ℤ) := to_expr ``(int.add_one_le_iff.mpr %%e) | _ := failed end | _ := failed end /-- Combine two upper bounds. -/ meta def combine_upper_bounds : option expr → option expr → tactic (option expr) | none none := return none | (some prf) none := return $ some prf | none (some prf) := return $ some prf | (some prf₁) (some prf₂) := do option.some <$> to_expr ``(lt_min %%prf₁ %%prf₂) /-- Combine two lower bounds. -/ meta def combine_lower_bounds : option expr → option expr → tactic (option expr) | none none := return $ none | (some prf) none := return $ some prf | none (some prf) := return $ some prf | (some prf₁) (some prf₂) := do option.some <$> to_expr ``(max_le %%prf₂ %%prf₁) /-- Inspect a given expression, using it to update a set of upper and lower bounds on `n`. -/ meta def update_bounds (n : expr) (bounds : option expr × option expr) (e : expr) : tactic (option expr × option expr) := do nlb ← try_core $ gives_lower_bound n e, nub ← try_core $ gives_upper_bound n e, clb ← combine_lower_bounds bounds.1 nlb, cub ← combine_upper_bounds bounds.2 nub, return (clb, cub) /-- Attempt to find a lower bound for the variable `n`, by evaluating `bot_le n`. -/ meta def initial_lower_bound (n : expr) : tactic expr := do e ← to_expr ``(@bot_le _ _ _ %%n), t ← infer_type e, match t with | `(%%b ≤ %%n) := do return e | _ := failed end /-- Attempt to find an upper bound for the variable `n`, by evaluating `le_top n`. -/ meta def initial_upper_bound (n : expr) : tactic expr := do e ← to_expr ``(@le_top _ _ _ %%n), match e with | `(%%n ≤ %%b) := do tn ← infer_type n, e ← match tn with | `(ℕ) := to_expr ``(nat.add_one_le_iff.mpr %%e) | `(ℕ+) := to_expr ``(pnat.add_one_le_iff.mpr %%e) | `(ℤ) := to_expr ``(int.add_one_le_iff.mpr %%e) | _ := failed end, return e | _ := failed end /-- Inspect the local hypotheses for upper and lower bounds on a variable `n`. -/ meta def get_bounds (n : expr) : tactic (expr × expr) := do hl ← try_core (initial_lower_bound n), hu ← try_core (initial_upper_bound n), lc ← local_context, r ← lc.mfoldl (update_bounds n) (hl, hu), match r with | (_, none) := fail "No upper bound located." | (none, _) := fail "No lower bound located." | (some lb_prf, some ub_prf) := return (lb_prf, ub_prf) end /-- The finset of elements of a set `s` for which we have `fintype s`. -/ def set_elems {α} [decidable_eq α] (s : set α) [fintype s] : finset α := (fintype.elems s).image subtype.val /-- Each element of `s` is a member of `set_elems s`. -/ lemma mem_set_elems {α} [decidable_eq α] (s : set α) [fintype s] {a : α} (h : a ∈ s) : a ∈ set_elems s := finset.mem_image.2 ⟨⟨a, h⟩, fintype.complete _, rfl⟩ end interval_cases open interval_cases /-- Call `fin_cases` on membership of the finset built from an `Ico` interval corresponding to a lower and an upper bound. Here `hl` should be an expression of the form `a ≤ n`, for some explicit `a`, and `hu` should be of the form `n < b`, for some explicit `b`. By default `interval_cases_using` automatically generates a name for the new hypothesis. The name can be specified via the optional argument `n`. -/ meta def interval_cases_using (hl hu : expr) (n : option name) : tactic unit := to_expr ``(mem_set_elems (Ico _ _) ⟨%%hl, %%hu⟩) >>= (if hn : n.is_some then note (option.get hn) else note_anon none) >>= fin_cases_at none none setup_tactic_parser namespace interactive local postfix (name := parser.optional) `?`:9001 := optional /-- `interval_cases n` searches for upper and lower bounds on a variable `n`, and if bounds are found, splits into separate cases for each possible value of `n`. As an example, in ``` example (n : ℕ) (w₁ : n ≥ 3) (w₂ : n < 5) : n = 3 ∨ n = 4 := begin interval_cases n, all_goals {simp} end ``` after `interval_cases n`, the goals are `3 = 3 ∨ 3 = 4` and `4 = 3 ∨ 4 = 4`. You can also explicitly specify a lower and upper bound to use, as `interval_cases using hl hu`. The hypotheses should be in the form `hl : a ≤ n` and `hu : n < b`, in which case `interval_cases` calls `fin_cases` on the resulting fact `n ∈ set.Ico a b`. You can specify a name `h` for the new hypothesis, as `interval_cases n with h` or `interval_cases n using hl hu with h`. -/ meta def interval_cases (n : parse texpr?) (bounds : parse (tk "using" *> (prod.mk <$> ident <*> ident))?) (lname : parse (tk "with" *> ident)?) : tactic unit := do if h : n.is_some then (do guard bounds.is_none <|> fail "Do not use the `using` keyword if specifying the variable explicitly.", n ← to_expr (option.get h), (hl, hu) ← get_bounds n, tactic.interval_cases_using hl hu lname) else if h' : bounds.is_some then (do [hl, hu] ← [(option.get h').1, (option.get h').2].mmap get_local, tactic.interval_cases_using hl hu lname) else fail ("Call `interval_cases n` (specifying a variable), or `interval_cases lb ub`\n" ++ "(specifying a lower bound and upper bound on the same variable).") /-- `interval_cases n` searches for upper and lower bounds on a variable `n`, and if bounds are found, splits into separate cases for each possible value of `n`. As an example, in ``` example (n : ℕ) (w₁ : n ≥ 3) (w₂ : n < 5) : n = 3 ∨ n = 4 := begin interval_cases n, all_goals {simp} end ``` after `interval_cases n`, the goals are `3 = 3 ∨ 3 = 4` and `4 = 3 ∨ 4 = 4`. You can also explicitly specify a lower and upper bound to use, as `interval_cases using hl hu`. The hypotheses should be in the form `hl : a ≤ n` and `hu : n < b`, in which case `interval_cases` calls `fin_cases` on the resulting fact `n ∈ set.Ico a b`. You can also explicitly specify a name to use for the hypothesis added, as `interval_cases n with hn` or `interval_cases n using hl hu with hn`. In particular, `interval_cases n` 1) inspects hypotheses looking for lower and upper bounds of the form `a ≤ n` and `n < b` (although in `ℕ`, `ℤ`, and `ℕ+` bounds of the form `a < n` and `n ≤ b` are also allowed), and also makes use of lower and upper bounds found via `le_top` and `bot_le` (so for example if `n : ℕ`, then the bound `0 ≤ n` is found automatically), then 2) calls `fin_cases` on the synthesised hypothesis `n ∈ set.Ico a b`, assuming an appropriate `fintype` instance can be found for the type of `n`. The variable `n` can belong to any type `α`, with the following restrictions: * only bounds on which `expr.to_rat` succeeds will be considered "explicit" (TODO: generalise this?) * an instance of `decidable_eq α` is available, * an explicit lower bound can be found amongst the hypotheses, or from `bot_le n`, * an explicit upper bound can be found amongst the hypotheses, or from `le_top n`, * if multiple bounds are located, an instance of `linear_order α` is available, and * an instance of `fintype set.Ico l u` is available for the relevant bounds. -/ add_tactic_doc { name := "interval_cases", category := doc_category.tactic, decl_names := [`tactic.interactive.interval_cases], tags := ["case bashing"] } end interactive end tactic
84605979b5a7c109e1ec0625484763e987c3860b
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/src/Lean/Compiler/LCNF/Simp/DiscrM.lean
2117a67dd07452cf4c7c9469f58644da35a6bb39
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
3,215
lean
/- Copyright (c) 2022 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Compiler.LCNF.CompilerM import Lean.Compiler.LCNF.Types import Lean.Compiler.LCNF.InferType import Lean.Compiler.LCNF.Simp.Basic namespace Lean.Compiler.LCNF namespace Simp structure DiscrM.Context where /-- A mapping from discriminant to constructor application it is equal to in the current context. -/ discrCtorMap : FVarIdMap Expr := {} /-- A mapping from constructor application to discriminant it is equal to in the current context. -/ ctorDiscrMap : PersistentExprMap FVarId := {} /-- Helper monad for tracking mappings from discriminant to constructor applications and back. The combinator `withDiscrCtor` should be used when visiting `cases` alternatives. -/ abbrev DiscrM := ReaderT DiscrM.Context CompilerM /-- This method uses `findExpr`, and if the result is a free variable, checks whether it is in the map `discrCtorMap`. We use this method when simplifying projections and cases-constructor. -/ def findCtor (e : Expr) : DiscrM Expr := do let e ← findExpr e let .fvar fvarId := e | return e let some ctor := (← read).discrCtorMap.find? fvarId | return e return ctor /-- If `type` is an inductive datatype, return its universe levels and parameters. -/ def getIndInfo? (type : Expr) : CoreM (Option (List Level × Array Expr)) := do let type := type.headBeta let .const declName us := type.getAppFn | return none let .inductInfo info ← getConstInfo declName | return none unless type.getAppNumArgs >= info.numParams do return none return some (us, type.getAppArgs[:info.numParams]) /-- Execute `x` with the information that `discr = ctorName ctorFields`. We use this information to simplify nested cases on the same discriminant. -/ def withDiscrCtorImp (discr : FVarId) (ctorName : Name) (ctorFields : Array Param) (x : DiscrM α) : DiscrM α := do let ctorInfo ← getConstInfoCtor ctorName let fieldArgs := ctorFields.map (.fvar ·.fvarId) if let some (us, params) ← getIndInfo? (← getType discr) then let ctor := mkAppN (mkAppN (mkConst ctorName us) params) fieldArgs withReader (fun ctx => { ctx with discrCtorMap := ctx.discrCtorMap.insert discr ctor, ctorDiscrMap := ctx.ctorDiscrMap.insert ctor discr }) do x else -- For the discrCtor map, the constructor parameters are irrelevant for optimizations that use this information let ctor := mkAppN (mkAppN (mkConst ctorName) (mkArray ctorInfo.numParams erasedExpr)) fieldArgs withReader (fun ctx => { ctx with discrCtorMap := ctx.discrCtorMap.insert discr ctor }) do x @[inline, inheritDoc withDiscrCtorImp] def withDiscrCtor [MonadFunctorT DiscrM m] (discr : FVarId) (ctorName : Name) (ctorFields : Array Param) : m α → m α := monadMap (m := DiscrM) <| withDiscrCtorImp discr ctorName ctorFields def simpCtorDiscrCore? (e : Expr) : DiscrM (Option Expr) := do let some discr := (← read).ctorDiscrMap.find? e | return none unless (← compatibleTypes (← getType discr) (← inferType e)) do return none return some <| .fvar discr end Simp end Lean.Compiler.LCNF
e601a9faa5ef425040916bf1bb1e76e9a6100268
9c1ad797ec8a5eddb37d34806c543602d9a6bf70
/category.lean
4a50af076022345e94c8157a3adbaa76b751568d
[]
no_license
timjb/lean-category-theory
816eefc3a0582c22c05f4ee1c57ed04e57c0982f
12916cce261d08bb8740bc85e0175b75fb2a60f4
refs/heads/master
1,611,078,926,765
1,492,080,000,000
1,492,080,000,000
88,348,246
0
0
null
1,492,262,499,000
1,492,262,498,000
null
UTF-8
Lean
false
false
2,510
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Stephen Morgan, Scott Morrison import .tactics /- -- We've decided that Obj and Hom should be fields of Category, rather than parameters. -- Mostly this is for the sake of simpler signatures, but it's possible that it is not the right choice. -- Functor and NaturalTransformation are each parameterized by both their source and target. -/ namespace tqft.categories structure {u v} Category := (Obj : Type u) (Hom : Obj → Obj → Type v) (identity : Π X : Obj, Hom X X) (compose : Π { X Y Z : Obj }, Hom X Y → Hom Y Z → Hom X Z) (left_identity : ∀ { X Y : Obj } (f : Hom X Y), compose (identity X) f = f) (right_identity : ∀ { X Y : Obj } (f : Hom X Y), compose f (identity Y) = f) (associativity : ∀ { W X Y Z : Obj } (f : Hom W X) (g : Hom X Y) (h : Hom Y Z), compose (compose f g) h = compose f (compose g h)) attribute [simp] Category.left_identity attribute [simp] Category.right_identity attribute [ematch] Category.associativity attribute [pointwise] Category.identity -- instance Category_to_Hom : has_coe_to_fun Category := -- { F := λ C, C.Obj → C.Obj → Type v, -- coe := Category.Hom } @[ematch] lemma Category.identity_idempotent ( C : Category ) ( X : C.Obj ) : C.identity X = C.compose (C.identity X) (C.identity X) := ♮ open Category -- TODO, eventually unify this code with the corresponding code for Graph, perhaps just by making Categories Graphs. inductive {u v} morphism_path { C : Category.{u v} } : Obj C → Obj C → Type (max u v) | nil : Π ( h : C.Obj ), morphism_path h h | cons : Π { h s t : C.Obj } ( e : C.Hom h s ) ( l : morphism_path s t ), morphism_path h t notation a :: b := morphism_path.cons a b notation `c[` l:(foldr `, ` (h t, morphism_path.cons h t) morphism_path.nil _ `]`) := l definition {u v} concatenate_paths { C : Category.{u v} } : Π { x y z : C.Obj }, morphism_path x y → morphism_path y z → morphism_path x z | ._ ._ _ (morphism_path.nil _) q := q | ._ ._ _ (@morphism_path.cons ._ _ _ _ e p') q := morphism_path.cons e (concatenate_paths p' q) definition {u v} Category.compose_path ( C : Category.{u v} ) : Π { X Y : C.Obj }, morphism_path X Y → C.Hom X Y | X ._ (morphism_path.nil ._) := C.identity X | _ _ (@morphism_path.cons ._ ._ _ ._ e p) := C.compose e (Category.compose_path p) end tqft.categories
5d80654c7e3cd66f553952a44d91d064875857d9
3f48345ac9bbaa421714efc9872a0409379bb4ae
/src/help_functions.lean
2f2bec1d2cb077ec197672d19be0a130cc0907c3
[]
no_license
QaisHamarneh/Coalgebra-in-Lean
b4318ee6d83780e5c734eb78fed98b1fe8016f7e
bd0452df98bc64b608e5dfd7babc42c301bb6a46
refs/heads/master
1,663,371,200,241
1,661,004,695,000
1,661,004,695,000
209,798,828
0
0
null
null
null
null
UTF-8
Lean
false
false
10,377
lean
import category_theory.category import category_theory.types import tactic.tidy namespace help_functions universe u open classical function set variables {A B C : Type u} lemma eq_in_set {A : Type u} {S: set A} {a b: S} : a.val = b.val ↔ a = b := by {cases a, cases b, dsimp at *, simp at *} @[simp , tidy] def inclusion (S : set A) : S → A := λ s , s notation S ` ↪ ` A := @inclusion A S @[simp , tidy] lemma inclusion_id (A : Type u) (S : set A) (s : S) : (inclusion S) s = s := by simp @[simp , tidy] lemma inj_inclusion (A : Type u) (S : set A) : injective (inclusion S) := by tidy @[simp , tidy] lemma comp_inclusion (A : Type u) (S T: set A) (h: S ⊆ T) : (S ↪ A) = (T ↪ A) ∘ (set.inclusion h) := by tidy noncomputable def graph_to_map (G : A → B → Prop) (h : ∀ a : A , ∃! b : B, G a b) : A → B := λ a , some (h a) def map_to_graph (f : A → B): set (A × B ):= λ r, r.2 = f r.1 lemma bij_map_to_graph_fst (f : A → B) : let π₁ : (map_to_graph f) → A := λ r , r.val.1 in bijective π₁ := begin let R : set (A × B) := map_to_graph f, let π₁ : R → A := λ r , r.val.1, have inj : injective π₁ := begin assume a₁ a₂ (πa₁_πa₂ : a₁.val.1 = a₂.val.1), have a1_p : a₁.val.2 = f a₁.val.1 := a₁.property, have a2_p : a₂.val.2 = f a₂.val.1 := a₂.property, have a_a : f a₁.val.1 = f a₂.val.1 := by tidy, have a2_p : a₁.val.2 = a₂.val.2 := by simp [a1_p, a2_p, a_a], tidy end, have sur : surjective π₁ := begin intro a, let r := (⟨a , f a⟩ : A × B), have r_R : r ∈ R := have r2_fr1 : r.2 = f r.1 := by simp, r2_fr1, use r, tidy end, exact ⟨inj, sur⟩ end noncomputable def invrs (f : A ⟶ B) (bij : bijective f) : B ⟶ A := some (iff.elim_left bijective_iff_has_inverse bij) lemma invrs_id (f : A ⟶ B) (bij : bijective f) : f ∘ (invrs f bij) = id := begin have h0 : left_inverse (some _) f ∧ right_inverse (some _) f := some_spec (iff.elim_left bijective_iff_has_inverse bij), have h1: right_inverse _ f := and.elim_right h0, by tidy end lemma id_invrs (f : A ⟶ B) (bij : bijective f) : (invrs f bij) ∘ f = id := begin have h0 : left_inverse (some _) f ∧ right_inverse (some _) f := some_spec (iff.elim_left bijective_iff_has_inverse bij), have h1: left_inverse _ f := and.elim_left h0, by tidy end def kern (f : A ⟶ B) : A → A → Prop := λ a₁ a₂ , f a₁ = f a₂ def sub_kern (f : A ⟶ B) (g : A → C) : Prop := ∀ a₁ a₂, kern f a₁ a₂ → kern g a₁ a₂ @[simp, tidy] def kern_comp (f : A ⟶ B) (g : B → C) : sub_kern f (g ∘ f) := assume a b k_f, have f_ab : f a = f b := k_f, show g (f a) = g (f b), from by rw [f_ab] def emptyOrNot (S : set A) : (nonempty S) ∨ ¬ (nonempty S) := em (nonempty S) noncomputable def nonemptyInhabited {S : set A} (h : nonempty S) : inhabited S := inhabited.mk (choice h) lemma map_from_empty (S : set A) (B : Type u) : (¬ ∃ s : S , true) → ∀ f₁ f₂ : S → B, f₁ = f₂ := assume h f₁ f₂, show f₁ = f₂, from have h0 : ∀ s : S , false := by tidy, by tidy lemma nonempty_notexists {S : set A}: ¬ nonempty S → (¬ ∃ s : S , true) := assume nonemp ext, show false, from nonemp (nonempty_of_exists ext) lemma only_one {p q: A → Prop} (ex_uni : ∃! a , p a) (ex : ∃ a , p a ∧ q a) : ∃! a , p a ∧ q a := let a : A := some ex_uni in have h : _ := some_spec ex_uni, have h1 : ∀ a₁ , p a₁ → a₁ = a := and.right h, let a₁ : A := some ex in have h2 : p a₁ ∧ q a₁ := some_spec ex, have h3 : a₁ = a := h1 a₁ (and.left h2), have h4 : ∀ a₂ , p a₂ ∧ q a₂ → a₂ = a₁ := λ a₂ pq, by rw [h3, (h1 a₂ (and.left pq))], exists.intro a₁ ⟨ h2 , h4⟩ lemma eq_range_if_surjective (f: A ⟶ B) (g: B ⟶ C) (sur: surjective f) : range g = range (g ∘ f):= calc range g = image g (univ) : by simp ... = image g (range f) : by rw [range_iff_surjective.2 sur] ... = range (g ∘ f) : by tidy lemma sub_kern_if_injective {X Y Z U : Type u} (e : X ⟶ Y) (f : Y ⟶ U) (g : X ⟶ Z) (m : Z ⟶ U) (h : e ≫ f = g ≫ m) (inj: injective m) : sub_kern e g := begin assume x₁ x₂ xxe, have h01 : e x₁ = e x₂ := xxe, have h02 : m (g x₁) = m (g x₂) := calc m (g x₁) = (g ≫ m) x₁ : rfl ... = (e ≫ f) x₁ : by rw h ... = f (e x₁) : rfl ... = f (e x₂) : by rw h01 ... = (e ≫ f) x₂ : rfl ... = (g ≫ m) x₂ : by rw h, exact inj h02 end lemma eq_sets {A : Type u} {S T : set A} : (∀a : A ,a ∈ S ↔ a ∈ T) ↔ S = T := begin split, assume h, have h1 : ∀s : S , s.val ∈ T := λ s, (h s.val).1 s.property, have h2 : ∀t : T , t.val ∈ S := λ t, (h t.val).2 t.property, simp at *, ext1 x, split, intros s, exact h1 x s, intros t, exact h2 x t, intro h, intro a, induction h, refl end @[tidy] def fun_of_two_eq_sets {A B: Type u} {S T : set A} (h: ∀a : A ,a ∈ S ↔ a ∈ T) (f: S → B): T → B := λ t , f ⟨t.val , (h t.val).2 t.property⟩ @[tidy] lemma eq_fun_of_eq_sets {A B: Type u} (S T : set A) (h: ∀a : A ,a ∈ S ↔ a ∈ T) (f: S → B): let fT : T → B := (fun_of_two_eq_sets h f) in ∀ s , f s = fT ⟨ s.val , (h s.val).1 s.property⟩ := by tidy @[tidy] lemma def_of_range {A B: Type u} (T: set A) (f: T → B) (b : B) : (∃ (a : A) (h : a ∈ T), f ⟨a, h⟩ = b) ↔ b ∈ range f := by tidy @[tidy] lemma eq_ranges {A B: Type u} {S T : set A} (h: ∀a : A ,a ∈ S ↔ a ∈ T) (f: S → B): let fT : T → B := (fun_of_two_eq_sets h f) in range f = range fT := begin intro fT, have h1 : ∀b : B ,b ∈ range f ↔ b ∈ range fT := begin intro b, split, intro bf, let s := some bf, have spec : f s = b := some_spec bf, have eq : fT ⟨ s.val , (h s.val).1 s.property⟩ = f s := eq.symm (eq_fun_of_eq_sets S T h f s), have ex : ∃ t : T , fT t = b := exists.intro (⟨ s.val , (h s.val).1 s.property⟩ : T) (by rw [eq , spec]), exact ex, intro bfT, tidy end, exact eq_sets.1 h1 end def img_comp {X Y Z : Type u} (f : X → Y) (g : Y → Z) (s : set X): image g (image f s) = image (g ∘ f) s := begin have h3: ∀ z : Z, (z ∈ image g (image f s)) ↔ (z ∈ image (g ∘ f) s) := begin intro z, split, intro el, cases el with fa specFA, cases specFA.1 with a specA, use a, split, exact specA.1, simp [specA.2 , specFA.2], intro ex, cases ex with a spec, have fa_Y : f a ∈ image f s := begin use a, tidy end, have gfa_Z : g (f a) ∈ image g (image f s) := begin use f a, split, simp, tidy end, rw ← spec.2, exact gfa_Z end, exact eq_sets.1 h3 end lemma not_and_left {p q : Prop}: ¬ (p ∧ q) → p → ¬ q := λ hnpq , λ hp , λ hq, absurd (and.intro hp hq) hnpq lemma not_and_right {p q : Prop}: ¬ (p ∧ q) → q → ¬ p := λ hnpq , λ hp , by {intros a, simp at *, solve_by_elim} end help_functions def if_func (p : Prop) [decidable p] : Prop := if p then p else ¬p lemma solving_if_func (p : Prop) [d : decidable p] : if_func p := match d with | is_true h := h | is_false nh := nh end def fun_using_if_fun (p : Prop) [decidable p] : ℕ := let some_fun : Prop := -- same thing with let ... in if p then p else ¬p in have some_proof : some_fun := begin dsimp [some_fun], -- some_fun, split_ifs, exact h, exact h end, 1 def fun_using_if_fun_tactic (p : Prop) [decidable p] : ℕ := begin let some_fun : Prop := -- same thing with let ... in if p then p else ¬p, have some_proof : some_fun := begin dsimp [some_fun], split_ifs, exact h, exact h end, exact 1 end def eff_len {A : Type*} [inhabited A] (n : ℕ) : list A → ℕ | [] := n | (h::tl) := (eff_len tl) def subsubset {A: Type*} {V : set A} {U : set V} : set A := subtype.val '' U -- or just u.val
9976cba4f26215931a2b5306976370c7091fc3c1
5a6ff5f8d173cbfe51967eb4c96837e3a791fe3d
/mm0-lean/x86/lemmas.lean
f544402a26272a98f343e7cffcf3a20238f563ec
[ "CC0-1.0" ]
permissive
digama0/mm0
491ac09146708aa1bb775007bf3dbe339ffc0096
98496badaf6464e56ed7b4204e7d54b85667cb01
refs/heads/master
1,692,321,030,902
1,686,254,458,000
1,686,254,458,000
172,456,790
273
38
CC0-1.0
1,689,939,563,000
1,551,080,059,000
Rust
UTF-8
Lean
false
false
62,553
lean
import x86.x86 data.list.basic data.zmod.basic namespace bitvec theorem of_nat_zero (n) : bitvec.of_nat n 0 = 0 := by induction n; [refl, exact congr_arg (vector.cons ff) n_ih] theorem of_nat_one (n) : bitvec.of_nat n 1 = 1 := by cases n; [refl, exact congr_arg (vector.cons tt) (of_nat_zero _)] theorem from_bits_fill_eq : ∀ {n b l} (e : list.length l = n), from_bits_fill b l = ⟨l, e⟩ | 0 b [] e := rfl | (n+1) b (a :: l) e := by rw [from_bits_fill, from_bits_fill_eq (nat.succ.inj e)]; refl theorem bits_to_nat_zero (n) : bits_to_nat (list.repeat ff n) = 0 := by simp [bits_to_nat]; induction n; simp * @[simp] theorem bits_to_nat_cons (a l) : bits_to_nat (a :: l) = nat.bit a (bits_to_nat l) := rfl @[simp] theorem to_nat_nil : to_nat vector.nil = 0 := rfl @[simp] theorem to_nat_zero (n) : to_nat (0 : bitvec n) = 0 := bits_to_nat_zero _ @[simp] theorem to_nat_cons (b) {n} (v : bitvec n) : to_nat (b :: v) = nat.bit b (to_nat v) := by cases v; refl @[simp] theorem of_nat_succ (n i : ℕ) : bitvec.of_nat n.succ i = i.bodd :: bitvec.of_nat n i.div2 := by rw [bitvec.of_nat, nat.bodd_div2_eq, bitvec.of_nat] @[simp] theorem of_nat_bit (n : ℕ) (b i) : bitvec.of_nat n.succ (nat.bit b i) = b :: bitvec.of_nat n i := by rw [of_nat_succ, nat.div2_bit, nat.bodd_bit] theorem of_nat_bits_to_nat {n} (l : list bool) : bitvec.of_nat n (bits_to_nat l) = from_bits_fill ff l := begin rw bits_to_nat, induction l generalizing n, exact of_nat_zero _, cases n, refl, simp [*, bits_to_nat, from_bits_fill, bitvec.of_nat, nat.bodd_bit, nat.div2_bit] end theorem of_nat_bits_to_nat_eq {n} (l : list bool) (e : l.length = n) : bitvec.of_nat n (bits_to_nat l) = ⟨l, e⟩ := begin induction n generalizing l; cases l; injection e, refl, simp [bits_to_nat, nat.div2_bit, nat.bodd_bit], exact congr_arg (vector.cons l_hd) (n_ih _ h_1) end @[simp] theorem of_nat_to_nat : ∀ {n} (v : bitvec n), bitvec.of_nat n (to_nat v) = v | n ⟨l, e⟩ := of_nat_bits_to_nat_eq l e theorem to_nat_of_nat_aux (m n b) : nat.bit b (n % 2 ^ m) = nat.bit b n % 2 ^ nat.succ m := begin have := nat.mod_add_div (n.bit b) (2^m * 2), conv at this { to_rhs, rw [nat.bit_val, ← nat.mod_add_div n (2^m), mul_add, add_right_comm, ← nat.bit_val, mul_left_comm, ← mul_assoc] }, rw [nat.pow_succ], refine add_right_cancel (this.symm.trans _), congr' 2, rw [mul_comm, ← nat.div_div_eq_div_mul, ← nat.div2_val, nat.div2_bit] end theorem to_nat_of_nat (m n) : to_nat (bitvec.of_nat m n) = n % 2 ^ m := begin induction m generalizing n, { simp [bitvec.of_nat, to_nat], refl }, simp [bitvec.of_nat, m_ih], conv { to_rhs, rw ← nat.bit_decomp n }, apply to_nat_of_nat_aux end theorem to_nat_lt_pow2 {n} (v : bitvec n) : to_nat v < 2 ^ n := begin rw [← of_nat_to_nat v, to_nat_of_nat], exact nat.mod_lt _ (nat.pow_pos dec_trivial _), end local attribute [instance] def pow2_pos (n : ℕ) : fact (0 < 2^n) := nat.pow_pos dec_trivial _ def to_zmod {n} (v : bitvec n) : zmod (2^n) := bitvec.to_nat v def of_zmod {n} (i : zmod (2^n)) : bitvec n := bitvec.of_nat _ i.val theorem to_zmod_of_zmod {n} (i : zmod (2^n)) : to_zmod (of_zmod i) = i := ((zmod.eq_iff_modeq_nat _).2 (by convert nat.modeq.mod_modeq _ _; apply to_nat_of_nat)).trans (zmod.cast_val _) theorem of_zmod_to_zmod {n} (v : bitvec n) : of_zmod (to_zmod v) = v := by unfold of_zmod to_zmod; convert of_nat_to_nat v; exact zmod.val_cast_of_lt (to_nat_lt_pow2 _) theorem of_nat_eq_iff_modeq {m n₁ n₂} : bitvec.of_nat m n₁ = bitvec.of_nat m n₂ ↔ n₁ ≡ n₂ [MOD 2 ^ m] := begin dunfold nat.modeq, split; intro h, { rw [← to_nat_of_nat, h, to_nat_of_nat] }, { rw [← of_nat_to_nat (bitvec.of_nat m n₁), to_nat_of_nat, h, ← to_nat_of_nat, of_nat_to_nat] }, end theorem of_nat_eq_of_zmod (m n) : bitvec.of_nat m n = bitvec.of_zmod n := eq.symm $ of_nat_eq_iff_modeq.2 $ by convert nat.modeq.mod_modeq _ _; apply zmod.val_cast_nat theorem to_zmod_zero (n) : to_zmod (0 : bitvec n) = 0 := by rw [to_zmod, to_nat_zero]; refl theorem of_zmod_zero (n) : (of_zmod 0 : bitvec n) = 0 := by rw [← to_zmod_zero, of_zmod_to_zmod] theorem of_zmod_one (n) : (of_zmod 1 : bitvec n) = 1 := begin cases n, {refl}, change bitvec.of_nat _ (_) = _, haveI : fact (1 < 2 ^ n.succ) := @nat.pow_lt_pow_of_lt_right _ dec_trivial 0 _ (nat.succ_pos _), rw [zmod.val_one, of_nat_one], end theorem to_zmod_one (n) : to_zmod (1 : bitvec n) = 1 := by rw [← of_zmod_one, to_zmod_of_zmod] theorem to_zmod_add {n} (a b : bitvec n) : to_zmod (a + b) = to_zmod a + to_zmod b := show to_zmod (bitvec.of_nat _ _) = _, by rw [of_nat_eq_of_zmod, to_zmod_of_zmod, to_zmod, to_zmod, nat.cast_add] theorem to_zmod_mul {n} (a b : bitvec n) : to_zmod (a * b) = to_zmod a * to_zmod b := show to_zmod (bitvec.of_nat _ _) = _, by rw [of_nat_eq_of_zmod, to_zmod_of_zmod, to_zmod, to_zmod, nat.cast_mul] theorem to_zmod_neg {n} (a : bitvec n) : to_zmod (-a) = -to_zmod a := show to_zmod (bitvec.of_nat _ _) = _, begin rw [of_nat_eq_of_zmod, to_zmod_of_zmod, eq_neg_iff_add_eq_zero, to_zmod, ← nat.cast_add, nat.sub_add_cancel (le_of_lt (to_nat_lt_pow2 _))], exact zmod.cast_self _, end theorem of_zmod_add {n} (a b : zmod (2^n)) : of_zmod (a + b) = of_zmod a + of_zmod b := by conv_lhs {rw [← to_zmod_of_zmod a, ← to_zmod_of_zmod b]}; rw [← to_zmod_add, of_zmod_to_zmod] theorem of_zmod_mul {n} (a b : zmod (2^n)) : of_zmod (a * b) = of_zmod a * of_zmod b := by conv_lhs {rw [← to_zmod_of_zmod a, ← to_zmod_of_zmod b]}; rw [← to_zmod_mul, of_zmod_to_zmod] theorem of_zmod_neg {n} (a : zmod (2^n)) : of_zmod (-a) = -of_zmod a := by conv_lhs {rw [← to_zmod_of_zmod a]}; rw [← to_zmod_neg, of_zmod_to_zmod] instance (n : ℕ) : add_comm_semigroup (bitvec n) := { add_assoc := λ a b c, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_to_zmod c, ← of_zmod_add, ← of_zmod_add, add_assoc, of_zmod_add, of_zmod_add], add_comm := λ a b, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_add, add_comm, of_zmod_add], ..bitvec.has_add } instance (n : ℕ) : comm_semigroup (bitvec n) := { mul_assoc := λ a b c, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_to_zmod c, ← of_zmod_mul, ← of_zmod_mul, mul_assoc, of_zmod_mul, of_zmod_mul], mul_comm := λ a b, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_mul, mul_comm, of_zmod_mul], ..bitvec.has_mul } instance (n : ℕ) : comm_ring (bitvec n) := { zero_add := λ a, by rw [← of_zmod_to_zmod a, ← of_zmod_zero, ← of_zmod_add, zero_add], add_zero := λ a, by rw [← of_zmod_to_zmod a, ← of_zmod_zero, ← of_zmod_add, add_zero], add_left_neg := λ a, by rw [← of_zmod_to_zmod a, ← of_zmod_neg, ← of_zmod_add, add_left_neg, ← of_zmod_zero], one_mul := λ a, by rw [← of_zmod_to_zmod a, ← of_zmod_one, ← of_zmod_mul, one_mul], mul_one := λ a, by rw [← of_zmod_to_zmod a, ← of_zmod_one, ← of_zmod_mul, mul_one], left_distrib := λ a b c, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_to_zmod c, ← of_zmod_add, ← of_zmod_mul, left_distrib, of_zmod_add, of_zmod_mul, of_zmod_mul]; refl, right_distrib := λ a b c, by rw [← of_zmod_to_zmod a, ← of_zmod_to_zmod b, ← of_zmod_to_zmod c, ← of_zmod_add, ← of_zmod_mul, right_distrib, of_zmod_add, of_zmod_mul, of_zmod_mul]; refl, ..bitvec.has_zero, ..bitvec.has_one, ..bitvec.has_neg, ..bitvec.add_comm_semigroup n, ..bitvec.comm_semigroup n } theorem to_nat_nth {n} (i j) : (bitvec.of_nat n i).nth j = i.test_bit j.1 := begin generalize e : bitvec.of_nat n i = v, cases v with l e', cases j with j h, rw [vector.nth], dsimp only, induction n generalizing i l j, cases h, cases l; injection e', simp [bitvec.of_nat] at e, generalize_hyp e₂ : bitvec.of_nat n_n i.div2 = v at e, cases v with l e₂', injection e, cases h_2, cases j; simp, refl, rw [← nat.bit_decomp i, nat.test_bit_succ], exact n_ih _ _ _ _ e₂ (nat.lt_of_succ_lt_succ h) end theorem of_nat_from_bits_fill (n m i) (h : n ≤ m) : bitvec.of_nat n i = from_bits_fill ff (bitvec.of_nat m i).1 := begin generalize e : bitvec.of_nat m i = v, cases v with l h, simp, induction n generalizing m i l e, exact (vector.eq_nil _).trans (vector.eq_nil _).symm, rw [of_nat_succ], cases m, cases h, rw [of_nat_succ] at e, generalize e' : bitvec.of_nat m i.div2 = v, cases v with l' h', rw e' at e, injection e, subst l, rw [n_ih _ _ (nat.le_of_succ_le_succ h) _ _ e', from_bits_fill], end theorem of_nat_bit0_aux {n} (j : bitvec (nat.succ n)) : bit0 j = ff :: from_bits_fill ff (j.val) := begin change bitvec.of_nat n.succ (bit0 (to_nat j)) = _, rw [of_nat_succ, nat.bodd_bit0, nat.div2_bit0, to_nat, of_nat_bits_to_nat] end theorem of_nat_bit0 (n i) : bitvec.of_nat n (bit0 i) = bit0 (bitvec.of_nat n i) := begin induction n generalizing i, refl, rw [of_nat_succ, nat.bodd_bit0, nat.div2_bit0], rw [of_nat_from_bits_fill _ _ _ (nat.le_succ _)], generalize : bitvec.of_nat n_n.succ i = j, rw of_nat_bit0_aux, end theorem of_nat_bit1 (n i) : bitvec.of_nat n (bit1 i) = bit1 (bitvec.of_nat n i) := begin induction n generalizing i, refl, rw [of_nat_succ, nat.bodd_bit1, nat.div2_bit1], rw [of_nat_from_bits_fill _ _ _ (nat.le_succ _)], generalize : bitvec.of_nat n_n.succ i = j, change _ = bitvec.of_nat _ (to_nat (bit0 j) + bit0 (@to_nat n_n 0) + 1), rw [to_nat_zero], change _ = bitvec.of_nat _ (to_nat (bit0 j) + 1), rw [of_nat_bit0_aux, to_nat_cons], change _ = bitvec.of_nat _ (nat.bit tt _), rw [of_nat_bit, of_nat_to_nat], end theorem add_nat_assoc {n} (v : bitvec n) (a b : ℕ) : v + a + b = v + (a + b : ℕ) := by rw [nat.cast_add, add_assoc] theorem of_nat_add {n} (a b : ℕ) : bitvec.of_nat n (a + b) = bitvec.of_nat n a + bitvec.of_nat n b := by simp [of_nat_eq_of_zmod, of_zmod_add] theorem of_nat_succ' {n} (a : ℕ) : bitvec.of_nat n a.succ = bitvec.of_nat n a + 1 := (of_nat_add a 1).trans $ by simp [of_nat_one] theorem of_nat_mul {n} (a b : ℕ) : bitvec.of_nat n (a * b) = bitvec.of_nat n a * bitvec.of_nat n b := by simp [of_nat_eq_of_zmod, of_zmod_mul] theorem coe_eq_of_nat {n} (a : ℕ) : (a : bitvec n) = bitvec.of_nat n a := begin induction a, exact (bitvec.of_nat_zero _).symm, rw [of_nat_succ', ← a_ih], refl, end theorem coe_to_nat {n} (v : bitvec n) : (to_nat v : bitvec n) = v := by rw [coe_eq_of_nat, of_nat_to_nat] theorem bits_to_nat_inj : ∀ {l₁ l₂}, bits_to_nat l₁ = bits_to_nat l₂ → l₁.length = l₂.length → l₁ = l₂ | [] [] _ _ := rfl | (a :: l₁) (b :: l₂) e e' := begin rw [bits_to_nat_cons, bits_to_nat_cons] at e, rw [← nat.bodd_bit a (bits_to_nat l₁), e, nat.bodd_bit, @bits_to_nat_inj l₁ l₂ _ (nat.succ.inj e')], rw [← nat.div2_bit a (bits_to_nat l₁), e, nat.div2_bit] end theorem to_nat_inj {n v₁ v₂} (h : @bitvec.to_nat n v₁ = bitvec.to_nat v₂) : v₁ = v₂ := subtype.eq $ bits_to_nat_inj h (v₁.2.trans v₂.2.symm) theorem coe_shl {n} (a b) : (nat.shiftl a b : bitvec n) = bitvec.shl a b := begin rw [shl, coe_eq_of_nat, nat.shiftl_eq_mul_pow, nat.shiftl_eq_mul_pow], refine of_nat_eq_iff_modeq.2 (nat.modeq.modeq_mul_right _ _), rw [← of_nat_eq_iff_modeq, of_nat_to_nat, coe_eq_of_nat], end theorem sign_iff_neg {n v} : @bitvec.sign n v ↔ bitvec.to_int v < 0 := begin unfold bitvec.to_int, cases sign v; simp, norm_cast, exact to_nat_lt_pow2 _ end theorem to_int_inj {n v₁ v₂} (h : @bitvec.to_int n v₁ = bitvec.to_int v₂) : v₁ = v₂ := begin have : sign v₁ = sign v₂, { apply bool.coe_bool_iff.1, rw [sign_iff_neg, sign_iff_neg, h] }, revert h, unfold bitvec.to_int, rw this, cases sign v₂; simp; exact to_nat_inj end theorem pow2_eq_zero {n} : (2 ^ n : bitvec n) = 0 := begin suffices : ((2 ^ n : ℕ) : bitvec n) = 0, {exact_mod_cast this}, have := to_nat_of_nat n (2^n), apply to_nat_inj, rw [coe_eq_of_nat, to_nat_of_nat, nat.mod_self, to_nat_zero], end theorem coe_to_int {n} (v : bitvec n) : (to_int v : bitvec n) = v := by unfold to_int; cases sign v; simp [coe_to_nat, pow2_eq_zero] @[class] def reify {n} (v : bitvec n) (l : out_param (list bool)) : Prop := from_bits_fill ff l = v theorem reify.mk {n} (v) {l} [h : @reify n v l] : from_bits_fill ff l = v := h theorem reify_eq {n v l l'} [@reify n v l] (h : l' = v.1) : l' = (@from_bits_fill ff l n).1 := by rwa reify.mk v theorem reify_eq' {n v l l'} [@reify n v l] (h : l' = v) : l' = @from_bits_fill ff l n := by rwa reify.mk v theorem reify_eq₂ {n v₁ l₁ v₂ l₂} [@reify n v₁ l₁] [@reify n v₂ l₂] (h : v₁ = v₂) : @from_bits_fill ff l₁ n = from_bits_fill ff l₂ := by rwa [reify.mk v₁, reify.mk v₂] theorem reify_iff {n v l} : @reify n v l ↔ bitvec.of_nat n (bits_to_nat l) = v := iff_of_eq $ congr_arg (= v) (of_nat_bits_to_nat _).symm instance reify_0 {n} : @reify n 0 [] := rfl instance reify_1 {n} : @reify n 1 [tt] := by cases n; exact rfl instance reify_bit0 {n} (v l) [h : @reify n v l] : reify (bit0 v) (ff :: l) := reify_iff.2 $ by have := of_nat_bit0 n (bits_to_nat l); rwa [reify_iff.1 h] at this instance reify_bit1 {n} (v l) [h : @reify n v l] : reify (bit1 v) (tt :: l) := reify_iff.2 $ by have := of_nat_bit1 n (bits_to_nat l); rwa [reify_iff.1 h] at this end bitvec namespace x86 def split_bits_spec : list (Σ n, bitvec n) → list bool → Prop | [] l := list.all l bnot | (⟨n, v⟩ :: s) l := let ⟨l₁, l₂⟩ := l.split_at n in (@bitvec.from_bits_fill ff l₁ n).1 = v.1 ∧ split_bits_spec s l₂ theorem split_bits_ok {l s} : split_bits (bitvec.bits_to_nat l) s → split_bits_spec s l := begin generalize e₁ : bitvec.bits_to_nat l = n, induction s generalizing l n, rintro ⟨⟩, { induction l, constructor, cases l_hd, { exact bool.band_intro rfl (l_ih (not_imp_not.1 (nat.bit_ne_zero _) e₁)) }, { cases nat.bit1_ne_zero _ e₁ } }, { rcases s_hd with ⟨i, l', e₂⟩, unfold split_bits_spec, generalize e₃ : l.split_at i = p, cases p with l₁ l₂, dsimp [split_bits_spec], induction i with i generalizing l' l₁ l₂ e₂ l n; cases l'; injection e₂, { rintro ⟨⟩, cases e₃, exact ⟨rfl, s_ih _ e₁ a_a⟩ }, { generalize e₄ : (⟨l'_hd :: l'_tl, e₂⟩ : bitvec _) = f, rintro ⟨⟩, cases a_bs with _ pr, injection e₄, cases h_2, generalize e₅ : l.tail.split_at i = p, cases p with l₁' l₂', have : bitvec.bits_to_nat l.tail = nat.div2 n, { subst e₁, cases l, refl, exact (nat.div2_bit _ _).symm }, rcases i_ih _ _ _ h_1 _ this e₅ a_a with ⟨e₆, h'⟩, replace e₆ : bitvec.from_bits_fill ff l₁' = ⟨l'_tl, pr⟩ := subtype.eq e₆, cases l, { cases e₃, have : (l₁', l₂') = ([], []), {cases i; cases e₅; refl}, cases this, simp [bitvec.from_bits_fill, h', vector.repeat] at e₆ ⊢, cases e₁, exact ⟨rfl, e₆⟩ }, { rw [list.split_at, show l_tl.split_at i = (l₁', l₂'), from e₅] at e₃, cases e₃, rw [bitvec.from_bits_fill, ← e₁, e₆], refine ⟨_, h'⟩, simp [vector.cons], exact (nat.bodd_bit _ _).symm } } } end theorem split_bits.determ_l {n₁ n₂ l} (h₁ : split_bits n₁ l) (h₂ : split_bits n₂ l) : n₁ = n₂ := begin induction l generalizing n₁ n₂, {cases h₁, cases h₂, refl}, rcases l_hd with ⟨_, l', rfl⟩, induction l' generalizing n₁ n₂, { cases h₁, cases h₂, exact l_ih h₁_a h₂_a }, { have : ∀ {n l'}, split_bits n l' → l' = ⟨_, l'_hd :: l'_tl, rfl⟩ :: l_tl → l'_hd = nat.bodd n ∧ split_bits (nat.div2 n) (⟨_, l'_tl, rfl⟩ :: l_tl), { intros, cases a; try {cases a_1}, rcases a_bs with ⟨l₂, rfl⟩, injection a_1, cases h_2, cases congr_arg (λ v : Σ n, bitvec n, v.2.1) h_1, exact ⟨rfl, a_a⟩ }, rcases this h₁ rfl with ⟨rfl, h₁'⟩, rcases this h₂ rfl with ⟨e, h₂'⟩, rw [← nat.bit_decomp n₁, e, l'_ih h₁' h₂', nat.bit_decomp] } end theorem split_bits.determ {n l₁ l₂} (h₁ : split_bits n l₁) (h₂ : split_bits n l₂) (h : l₁.map sigma.fst = l₂.map sigma.fst) : l₁ = l₂ := begin induction l₁ generalizing n l₂; cases l₂; injection h, refl, cases l₁_hd with i v₁, cases l₂_hd with _ v₂, cases h_1, clear h h_1, induction i with i generalizing v₁ v₂ n, { cases h₁, cases h₂, rw l₁_ih h₁_a h₂_a h_2 }, { cases h₁, cases h₂, cases i_ih _ _ h₁_a h₂_a, refl } end theorem bits_to_byte.determ_l {n m w1 w2 l} : @bits_to_byte n m w1 l → @bits_to_byte n m w2 l → w1 = w2 | ⟨e₁, h₁⟩ ⟨_, h₂⟩ := bitvec.to_nat_inj $ split_bits.determ_l h₁ h₂ theorem bits_to_byte.determ_l_aux {n m w1 w2 l l'} : @bits_to_byte n m w1 l → @bits_to_byte n m w2 (l ++ l') → (w1, l') = (w2, []) | ⟨e₁, h₁⟩ ⟨e₂, h₂⟩ := begin simp, suffices, refine ⟨_, this⟩, swap, { apply list.length_eq_zero.1, apply @add_left_cancel _ _ l.length, rw [add_zero, ← list.length_append, e₁, e₂] }, clear bits_to_byte.determ_l_aux, subst this, rw list.append_nil at h₂, exact bitvec.to_nat_inj (split_bits.determ_l h₁ h₂) end theorem bits_to_byte.determ {n m w l1 l2} : @bits_to_byte n m w l1 → @bits_to_byte n m w l2 → l1 = l2 | ⟨e₁, h₁⟩ ⟨e₂, h₂⟩ := list.map_injective_iff.2 (by rintro x y ⟨⟩; refl) (split_bits.determ h₁ h₂ (by rw [list.map_map, list.map_map, (_ : _∘_ = _), list.map_const _ 8, e₁, list.map_const, e₂]; refl)) theorem read_prefixes.determ {r₁ r₂ l} : read_prefixes r₁ l → read_prefixes r₂ l → r₁ = r₂ := begin intros h₁ h₂, cases h₁; cases h₂; congr, cases split_bits.determ h₁_a h₂_a rfl, refl, end @[elab_as_eliminator] theorem byte_split {C : byte → Sort*} : ∀ b : byte, (∀ b0 b1 b2 b3 b4 b5 b6 b7, C ⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩) → C b | ⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩ H := H _ _ _ _ _ _ _ _ def binop.from_bits : ∀ (b0 b1 b2 b3 : bool), binop | ff ff ff ff := binop.add | tt ff ff ff := binop.or | ff tt ff ff := binop.adc | tt tt ff ff := binop.sbb | ff ff tt ff := binop.and | tt ff tt ff := binop.sub | ff tt tt ff := binop.xor | tt tt tt ff := binop.cmp | ff ff ff tt := binop.rol | tt ff ff tt := binop.ror | ff tt ff tt := binop.rcl | tt tt ff tt := binop.rcr | ff ff tt tt := binop.shl | tt ff tt tt := binop.shr | ff tt tt tt := binop.tst | tt tt tt tt := binop.sar theorem binop.bits_eq {b0 b1 b2 b3 e op} : binop.bits op ⟨[b0, b1, b2, b3], e⟩ → op = binop.from_bits b0 b1 b2 b3 := begin generalize e' : (⟨[b0, b1, b2, b3], e⟩ : bitvec 4) = v, intro h, induction h; { cases bitvec.reify_eq (congr_arg subtype.val e'), refl } end theorem binop.bits.determ : ∀ {op1 op2 v}, binop.bits op1 v → binop.bits op2 v → op1 = op2 | op1 op2 ⟨[b0, b1, b2, b3], _⟩ h1 h2 := (binop.bits_eq h1).trans (binop.bits_eq h2).symm def basic_cond.from_bits : ∀ (b0 b1 b2 : bool), option basic_cond | ff ff ff := some basic_cond.o | tt ff ff := some basic_cond.b | ff tt ff := some basic_cond.e | tt tt ff := some basic_cond.na | ff ff tt := some basic_cond.s | tt ff tt := none | ff tt tt := some basic_cond.l | tt tt tt := some basic_cond.ng theorem basic_cond.bits_eq {b0 b1 b2 e c} : basic_cond.bits c ⟨[b0, b1, b2], e⟩ → basic_cond.from_bits b0 b1 b2 = some c := begin generalize e' : (⟨[b0, b1, b2], e⟩ : bitvec 3) = v, intro h, induction h; { cases bitvec.reify_eq (congr_arg subtype.val e'), refl } end def cond_code.from_bits (b0 b1 b2 b3 : bool) : option cond_code := option.map (cond_code.mk b0) (basic_cond.from_bits b1 b2 b3) theorem cond_code.bits_eq {b0 b1 b2 b3 e c} : cond_code.bits c ⟨[b0, b1, b2, b3], e⟩ → cond_code.from_bits b0 b1 b2 b3 = some c := begin rintro ⟨⟩, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases subtype.eq h₁, rw [cond_code.from_bits, basic_cond.bits_eq a_a_1], refl end theorem cond_code.bits.determ : ∀ {c1 c2 v}, cond_code.bits c1 v → cond_code.bits c2 v → c1 = c2 | c1 c2 ⟨[b0, b1, b2, b3], _⟩ h1 h2 := option.some_inj.1 $ (cond_code.bits_eq h1).symm.trans (cond_code.bits_eq h2) theorem read_displacement_ne_3 {mod disp l} : read_displacement mod disp l → mod ≠ 3 := by rintro ⟨⟩ ⟨⟩ theorem read_displacement.determ_aux {mod disp1 disp2 l l'} (h₁ : read_displacement mod disp1 l) (h₂ : read_displacement mod disp2 (l ++ l')) : (disp1, l') = (disp2, []) := begin cases h₁; cases h₂; try {refl}, cases bits_to_byte.determ_l_aux h₁_a h₂_a, refl end theorem read_displacement.determ {mod disp1 disp2 l} (h₁ : read_displacement mod disp1 l) (h₂ : read_displacement mod disp2 l) : disp1 = disp2 := by cases read_displacement.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_sib_displacement_ne_3 {mod bbase w Base l} : read_sib_displacement mod bbase w Base l → mod ≠ 3 := by rw [read_sib_displacement]; split_ifs; [ {rcases h with ⟨_, rfl⟩; rintro _ ⟨⟩}, exact λ h, read_displacement_ne_3 h.1] theorem read_sib_displacement.determ_aux {mod bbase w1 w2 Base1 Base2 l l'} (h₁ : read_sib_displacement mod bbase w1 Base1 l) (h₂ : read_sib_displacement mod bbase w2 Base2 (l ++ l')) : (w1, Base1, l') = (w2, Base2, []) := begin rw read_sib_displacement at h₁ h₂, split_ifs at h₁ h₂, { rcases h₁ with ⟨w, rfl, rfl, h1⟩, rcases h₂ with ⟨_, rfl, rfl, h2⟩, cases bits_to_byte.determ_l_aux h1 h2, refl }, { rcases h₁ with ⟨h1, rfl⟩, rcases h₂ with ⟨h2, rfl⟩, cases read_displacement.determ_aux h1 h2, refl }, end theorem read_sib_displacement.determ {mod bbase w1 w2 Base1 Base2 l} (h₁ : read_sib_displacement mod bbase w1 Base1 l) (h₂ : read_sib_displacement mod bbase w2 Base2 l) : (w1, Base1) = (w2, Base2) := by cases read_sib_displacement.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_SIB_ne_3 {rex mod rm l} : read_SIB rex mod rm l → mod ≠ 3 := by rintro ⟨⟩; exact read_sib_displacement_ne_3 a_a_1 theorem read_SIB.determ_aux {rex mod rm1 rm2 l l'} (h₁ : read_SIB rex mod rm1 l) (h₂ : read_SIB rex mod rm2 (l ++ l')) : (rm1, l') = (rm2, []) := begin cases h₁, cases h₂, cases split_bits.determ h₁_a h₂_a rfl, cases read_sib_displacement.determ_aux h₁_a_1 h₂_a_1, refl end theorem read_SIB.determ {rex mod rm1 rm2 l} (h₁ : read_SIB rex mod rm1 l) (h₂ : read_SIB rex mod rm2 l) : rm1 = rm2 := by cases read_SIB.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_ModRM_nil {rex reg r} : ¬ read_ModRM rex reg r [] := by rintro ⟨⟩ def read_ModRM' (rex : REX) (r : RM) (rm : bitvec 3) (mod : bitvec 2) (l : list byte) : Prop := if mod = 3 then r = RM.reg (rex_reg rex.B rm) ∧ l = [] else if rm = 4 then read_SIB rex mod r l else if rm = 5 ∧ mod = 0 then ∃ i : word, i.to_list_byte l ∧ r = RM.mem none base.rip (EXTS i) else ∃ disp, read_displacement mod disp l ∧ r = RM.mem none (base.reg (rex_reg rex.B rm)) disp theorem read_ModRM_ModRM' {rex : REX} {reg : regnum} {r : RM} {rm reg_opc : bitvec 3} {mod : bitvec 2} {b : byte} {l : list byte} (h₁ : split_bits b.to_nat [⟨3, rm⟩, ⟨3, reg_opc⟩, ⟨2, mod⟩]) (h₂ : read_ModRM rex reg r (b :: l)) : reg = rex_reg rex.R reg_opc ∧ read_ModRM' rex r rm mod l := begin generalize_hyp e : list.cons b l = l' at h₂, induction h₂; cases e; cases split_bits.determ h₁ h₂_a rfl; refine ⟨rfl, _⟩, { rw [read_ModRM', if_neg, if_neg, if_pos], exact ⟨_, h₂_a_1, rfl⟩, all_goals {exact dec_trivial} }, { rw [read_ModRM', if_pos], exact ⟨rfl, rfl⟩, exact dec_trivial }, { rw [read_ModRM', if_neg (read_SIB_ne_3 h₂_a_1), if_pos], exact h₂_a_1, refl }, { rw [read_ModRM', if_neg (read_displacement_ne_3 h₂_a_3), if_neg h₂_a_1, if_neg h₂_a_2], exact ⟨_, h₂_a_3, rfl⟩ }, end theorem read_ModRM_split {rex reg r b l} (h : read_ModRM rex reg r (b :: l)) : ∃ rm reg_opc mod, split_bits b.to_nat [⟨3, rm⟩, ⟨3, reg_opc⟩, ⟨2, mod⟩] := by cases h; exact ⟨_, _, _, by assumption⟩ theorem read_ModRM.determ_aux {rex reg1 r1 reg2 r2 l l'} (h₁ : read_ModRM rex reg1 r1 l) (h₂ : read_ModRM rex reg2 r2 (l ++ l')) : (reg1, r1, l') = (reg2, r2, []) := begin simp, cases l with b l, {cases read_ModRM_nil h₁}, rcases read_ModRM_split h₁ with ⟨rm, reg_opc, r, s⟩, rcases read_ModRM_ModRM' s h₁ with ⟨rfl, h₁'⟩, rcases read_ModRM_ModRM' s h₂ with ⟨rfl, h₂'⟩, refine ⟨rfl, _⟩, clear h₁ h₂ s, unfold read_ModRM' at h₁' h₂', split_ifs at h₁' h₂', { rw h₁'.2 at h₂', exact ⟨h₁'.1.trans h₂'.1.symm, h₂'.2⟩ }, { cases read_SIB.determ_aux h₁' h₂', exact ⟨rfl, rfl⟩ }, { rcases h₁' with ⟨i1, h11, h12⟩, rcases h₂' with ⟨i2, h21, h22⟩, cases bits_to_byte.determ_l_aux h11 h21, exact ⟨h12.trans h22.symm, rfl⟩ }, { rcases h₁' with ⟨i1, h11, h12⟩, rcases h₂' with ⟨i2, h21, h22⟩, cases read_displacement.determ_aux h11 h21, exact ⟨h12.trans h22.symm, rfl⟩ }, end theorem read_ModRM.determ {rex reg1 r1 reg2 r2 l} (h₁ : read_ModRM rex reg1 r1 l) (h₂ : read_ModRM rex reg2 r2 l) : (reg1, r1) = (reg2, r2) := by cases read_ModRM.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_ModRM.determ₂ {rex reg1 r1 reg2 r2 l1 l2 l1' l2'} (h₁ : read_ModRM rex reg1 r1 l1) (h₂ : read_ModRM rex reg2 r2 l2) (e : l1 ++ l1' = l2 ++ l2') : (reg1, r1, l1, l1') = (reg2, r2, l2, l2') := begin have : ∀ {reg1 r1 reg2 r2 l1 l2 l1' l2'} (h₁ : read_ModRM rex reg1 r1 l1) (h₂ : read_ModRM rex reg2 r2 l2) (e : ∃ a', l2 = l1 ++ a' ∧ l1' = a' ++ l2'), (l1, l1') = (l2, l2'), { intros, rcases e_1 with ⟨l3, rfl, rfl⟩, cases read_ModRM.determ_aux h₁_1 h₂_1, simp }, cases (list.append_eq_append_iff.1 e).elim (λ h, this h₁ h₂ h) (λ h, (this h₂ h₁ h).symm), cases read_ModRM.determ h₁ h₂, refl, end theorem read_opcode_ModRM.determ_aux {rex v1 r1 v2 r2 l l'} (h₁ : read_opcode_ModRM rex v1 r1 l) (h₂ : read_opcode_ModRM rex v2 r2 (l ++ l')) : (v1, r1, l') = (v2, r2, []) := begin cases h₁, cases h₂, cases read_ModRM.determ_aux h₁_a h₂_a, cases split_bits.determ h₁_a_1 h₂_a_1 rfl, refl, end theorem read_opcode_ModRM.determ {rex v1 r1 v2 r2 l} (h₁ : read_opcode_ModRM rex v1 r1 l) (h₂ : read_opcode_ModRM rex v2 r2 l) : (v1, r1) = (v2, r2) := by cases read_opcode_ModRM.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_opcode_ModRM.determ₂_aux {rex v1 r1 v2 r2 l1 l2 l1' l2' l'} (h₁ : read_opcode_ModRM rex v1 r1 l1) (h₂ : read_opcode_ModRM rex v2 r2 l2) (e : l1 ++ l1' ++ l' = l2 ++ l2') : (v1, r1, l1, l1' ++ l') = (v2, r2, l2, l2') := begin cases h₁, cases h₂, rw [list.append_assoc, list.append_eq_append_iff] at e, rcases e with ⟨x, rfl, e⟩ | ⟨x, rfl, rfl⟩, { cases read_ModRM.determ_aux h₁_a h₂_a, cases e, cases split_bits.determ h₁_a_1 h₂_a_1 rfl, rw list.append_nil, refl }, { cases read_ModRM.determ_aux h₂_a h₁_a, cases split_bits.determ h₁_a_1 h₂_a_1 rfl, rw list.append_nil, refl }, end theorem read_opcode_ModRM.determ₂ {rex v1 r1 v2 r2 l1 l2 l1' l2'} (h₁ : read_opcode_ModRM rex v1 r1 l1) (h₂ : read_opcode_ModRM rex v2 r2 l2) : l1 ++ l1' = l2 ++ l2' → (v1, r1, l1, l1') = (v2, r2, l2, l2') := by simpa using @read_opcode_ModRM.determ₂_aux _ _ _ _ _ _ _ l1' l2' [] h₁ h₂ theorem read_imm8.determ_aux {w1 w2 l l'} (h₁ : read_imm8 w1 l) (h₂ : read_imm8 w2 (l ++ l')) : (w1, l') = (w2, []) := by cases h₁; cases h₂; refl theorem read_imm16.determ_aux {w1 w2 l l'} (h₁ : read_imm16 w1 l) (h₂ : read_imm16 w2 (l ++ l')) : (w1, l') = (w2, []) := by cases h₁; cases h₂; cases bits_to_byte.determ_l_aux h₁_a h₂_a; refl theorem read_imm32.determ_aux {w1 w2 l l'} (h₁ : read_imm32 w1 l) (h₂ : read_imm32 w2 (l ++ l')) : (w1, l') = (w2, []) := by cases h₁; cases h₂; cases bits_to_byte.determ_l_aux h₁_a h₂_a; refl theorem read_imm8.determ {w1 w2 l} (h₁ : read_imm8 w1 l) (h₂ : read_imm8 w2 l) : w1 = w2 := by cases h₁; cases h₂; refl theorem read_imm16.determ {w1 w2 l} (h₁ : read_imm16 w1 l) (h₂ : read_imm16 w2 l) : w1 = w2 := by cases h₁; cases h₂; cases bits_to_byte.determ_l h₁_a h₂_a; refl theorem read_imm32.determ {w1 w2 l} (h₁ : read_imm32 w1 l) (h₂ : read_imm32 w2 l) : w1 = w2 := by cases h₁; cases h₂; cases bits_to_byte.determ_l h₁_a h₂_a; refl theorem read_imm.determ_aux : ∀ {sz w1 w2 l l'}, read_imm sz w1 l → read_imm sz w2 (l ++ l') → (w1, l') = (w2, []) | (wsize.Sz8 _) _ _ _ _ := read_imm8.determ_aux | wsize.Sz16 _ _ _ _ := read_imm16.determ_aux | wsize.Sz32 _ _ _ _ := read_imm32.determ_aux | wsize.Sz64 _ _ _ _ := read_imm32.determ_aux theorem read_full_imm.determ_aux : ∀ {sz w1 w2 l l'}, read_full_imm sz w1 l → read_full_imm sz w2 (l ++ l') → (w1, l') = (w2, []) | (wsize.Sz8 _) _ _ _ _ := read_imm8.determ_aux | wsize.Sz16 _ _ _ _ := read_imm16.determ_aux | wsize.Sz32 _ _ _ _ := read_imm32.determ_aux | wsize.Sz64 _ _ _ _ := bits_to_byte.determ_l_aux theorem read_imm.determ {sz w1 w2 l} (h₁ : read_imm sz w1 l) (h₂ : read_imm sz w2 l) : w1 = w2 := by cases read_imm.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem read_full_imm.determ {sz w1 w2 l} (h₁ : read_full_imm sz w1 l) (h₂ : read_full_imm sz w2 l) : w1 = w2 := by cases read_full_imm.determ_aux h₁ (by rw list.append_nil; exact h₂); refl def decode_two' (rex : REX) (a : ast) (b0 b1 b2 b3 b4 b5 b6 b7 : bool) (l : list byte) : Prop := cond b7 (cond b6 ( -- xadd [b1, b2, b3, b4, b5] = [ff, ff, ff, ff, ff] ∧ let v := b0, sz := op_size_W rex v in ∃ reg r, read_ModRM rex reg r l ∧ a = ast.xadd sz r reg) (cond b5 (cond b2 ( -- movsx [b1, b4] = [tt, tt] ∧ let sz2 := op_size_W rex tt, sz := if b0 then wsize.Sz16 else wsize.Sz8 rex.is_some in ∃ reg r, read_ModRM rex reg r l ∧ a = (if b3 then ast.movsx else ast.movzx) sz (dest_src.R_rm reg r) sz2) ( -- cmpxchg [b1, b4] = [ff, tt] ∧ let v := b0, sz := op_size_W rex v in ∃ reg r, read_ModRM rex reg r l ∧ a = ast.cmpxchg sz r reg)) (cond b4 ( -- setcc ∃ reg r code, read_ModRM rex reg r l ∧ cond_code.from_bits b0 b1 b2 b3 = some code ∧ a = ast.setcc code rex.is_some r) ( -- jcc ∃ imm code, read_imm32 imm l ∧ cond_code.from_bits b0 b1 b2 b3 = some code ∧ a = ast.jcc code imm)))) (cond b6 ( -- cmov [b4, b5] = [ff, ff] ∧ let sz := op_size tt rex.W tt in ∃ reg r code, read_ModRM rex reg r l ∧ cond_code.from_bits b0 b1 b2 b3 = some code ∧ a = ast.cmov code sz (dest_src.R_rm reg r)) ( -- syscall [b0, b1, b2, b3, b4, b5] = [tt, ff, tt, ff, ff, ff] ∧ a = ast.syscall ∧ l = [])) theorem decode_two_two' {rex a b0 b1 b2 b3 b4 b5 b6 b7 l} : decode_two rex a (⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩ :: l) → decode_two' rex a b0 b1 b2 b3 b4 b5 b6 b7 l := begin generalize e : (⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩ :: l : list byte) = l', intro a, cases a, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨rfl, _, _, _, a_a_1, cond_code.bits_eq a_a_2, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨_, _, a_a_1, cond_code.bits_eq a_a_2, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨_, _, _, a_a_1, cond_code.bits_eq a_a_2, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, ⟨⟩, h₂, _⟩, cases bitvec.reify_eq h₁, cases bitvec.reify_eq h₂, exact ⟨rfl, _, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, _, a_a_1, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, rfl, rfl⟩ }, end theorem decode_two_nil {rex a} : ¬ decode_two rex a []. theorem decode_two.determ_aux {rex a₁ a₂ l l'} : decode_two rex a₁ l → decode_two rex a₂ (l ++ l') → (a₁, l') = (a₂, []) := begin cases l with b l, {exact decode_two_nil.elim}, apply byte_split b, introv h1 h2, replace h1 := decode_two_two' h1, replace h2 := decode_two_two' h2, unfold decode_two' at h1 h2, repeat { do `(cond %%e _ _) ← tactic.get_local `h1 >>= tactic.infer_type, tactic.cases e $> (); `[dsimp only [cond] at h1 h2] }, { rcases h1.2 with ⟨rfl, rfl⟩, rcases h2.2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1.2 with ⟨reg1, r1, h11, h12, h13, rfl⟩, rcases h2.2 with ⟨reg2, r2, h21, h22, h23, rfl⟩, cases read_ModRM.determ_aux h12 h22, cases h13.symm.trans h23, refl }, { rcases h1 with ⟨imm1, code1, h11, h12, rfl⟩, rcases h2 with ⟨imm2, code2, h21, h22, rfl⟩, cases read_imm32.determ_aux h11 h21, cases h12.symm.trans h22, refl }, { rcases h1 with ⟨reg1, r1, code1, h11, h12, rfl⟩, rcases h2 with ⟨reg2, r2, code2, h21, h22, rfl⟩, cases read_ModRM.determ_aux h11 h21, cases h12.symm.trans h22, refl }, { rcases h1 with ⟨reg1, r1, code1, h11, h12, rfl⟩, rcases h2 with ⟨reg2, r2, code2, h21, h22, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨reg1, r1, h11, rfl⟩, rcases h2.2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨reg1, r1, h11, rfl⟩, rcases h2.2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, end theorem decode_two.determ {rex a₁ a₂ l} (h₁ : decode_two rex a₁ l) (h₂ : decode_two rex a₂ l) : a₁ = a₂ := by cases decode_two.determ_aux h₁ (by rw list.append_nil; exact h₂); refl def decode_hi' (v : bool) (sz : wsize) (r : RM) : ∀ (b0 b1 b2 x : bool), ast → list byte → Prop | ff ff ff ff a l := ∃ imm, read_imm sz imm l ∧ a = ast.binop binop.tst sz (dest_src.Rm_i r imm) | ff tt ff ff a l := a = ast.unop unop.not sz r ∧ l = [] | tt tt ff ff a l := a = ast.unop unop.neg sz r ∧ l = [] | ff ff tt ff a l := a = ast.mul sz r ∧ l = [] | ff tt tt ff a l := a = ast.div sz r ∧ l = [] | ff ff ff tt a l := a = ast.unop unop.inc sz r ∧ l = [] | tt ff ff tt a l := a = ast.unop unop.dec sz r ∧ l = [] | ff tt ff tt a l := a = ast.call (imm_rm.rm r) ∧ l = [] | ff ff tt tt a l := a = ast.jump r ∧ l = [] | ff tt tt tt a l := a = ast.push (imm_rm.rm r) ∧ l = [] | _ _ _ _ a l := false theorem decode_hi_hi' {v sz r x b0 b1 b2 a l} (h : decode_hi v sz r x ⟨[b0, b1, b2], rfl⟩ a l) : decode_hi' v sz r b0 b1 b2 x a l := begin generalize_hyp e : (⟨[b0, b1, b2], rfl⟩ : bitvec 3) = opc at h, induction h; cases congr_arg subtype.val (bitvec.reify_eq' e), exact ⟨_, h_a, rfl⟩, all_goals { exact ⟨rfl, rfl⟩ } end theorem decode_hi.determ_aux {v sz r x a₁ a₂ l l'} : ∀ {opc}, decode_hi v sz r x opc a₁ l → decode_hi v sz r x opc a₂ (l ++ l') → (a₁, l') = (a₂, []) | ⟨[b0, b1, b2], _⟩ h1 h2 := begin replace h1 := decode_hi_hi' h1, replace h2 := decode_hi_hi' h2, clear decode_hi.determ_aux, cases b0; cases b1; cases b2; cases x; cases h1; cases h2, { cases read_imm.determ_aux h1_h.1 h2_h.1, cases h1_h.2.trans h2_h.2.symm, refl }, all_goals { rw [h1_left, ← h2_left], cases h1_right, cases h2_right, refl } end theorem decode_hi.determ {v sz r x opc a₁ a₂ l} (h₁ : decode_hi v sz r x opc a₁ l) (h₂ : decode_hi v sz r x opc a₂ l) : a₁ = a₂ := by cases decode_hi.determ_aux h₁ (by rw list.append_nil; exact h₂); refl def decode_aux' (rex : REX) (a : ast) (b0 b1 b2 b3 b4 b5 b6 b7 : bool) (l : list byte) : Prop := cond b7 (cond b6 (cond b5 (cond b4 (cond b2 (cond b1 ( -- hi let v := b0, sz := op_size_W rex v in ∃ opc r l1 l2, read_opcode_ModRM rex opc r l1 ∧ decode_hi v sz r b3 opc a l2 ∧ l = l1 ++ l2) ( -- cmc b0 = tt ∧ a = ast.cmc ∧ l = [])) ( -- clc, stc [b1, b3] = [ff, tt] ∧ a = cond b0 ast.stc ast.clc ∧ l = [])) (cond b0 ( -- jump [b2, b3] = [ff, tt] ∧ ∃ imm, (if b1 then read_imm8 imm l else read_imm32 imm l) ∧ a = ast.jcc cond_code.always imm) ( -- call [b2, b3] = [ff, tt] ∧ ∃ imm, read_imm32 imm l ∧ a = ast.call (imm_rm.imm imm)))) ( let v := b0, sz := op_size_W rex v in cond b4 ( -- binop_hi_reg [b2, b3] = [ff, ff] ∧ ∃ opc r op, read_opcode_ModRM rex opc r l ∧ opc ≠ 6 ∧ binop.bits op (rex_reg tt opc) ∧ let src_dst := if b1 then dest_src.Rm_r r RCX else dest_src.Rm_i r 1 in a = ast.binop op sz src_dst) (cond b3 ( -- leave [b0, b1, b2] = [tt, ff, ff] ∧ a = ast.leave ∧ l = []) (cond b2 ( -- mov_imm b1 = tt ∧ ∃ opc r imm l1 l2, read_opcode_ModRM rex opc r l1 ∧ read_imm sz imm l2 ∧ a = ast.mov sz (dest_src.Rm_i r imm) ∧ l = l1 ++ l2) (cond b1 ( -- ret ∃ imm, (if v then imm = 0 ∧ l = [] else read_imm16 imm l) ∧ a = ast.ret imm) ( -- binop_hi ∃ opc r imm op l1 l2, read_opcode_ModRM rex opc r l1 ∧ opc ≠ 6 ∧ binop.bits op (rex_reg tt opc) ∧ read_imm8 imm l2 ∧ a = ast.binop op sz (dest_src.Rm_i r imm) ∧ l = l1 ++ l2)))))) (cond b5 (cond b4 ( -- mov64 let v := b3, sz := op_size_W rex v in ∃ imm, read_full_imm sz imm l ∧ a = ast.mov sz (dest_src.Rm_i (RM.reg ⟨[b0, b1, b2, rex.B], rfl⟩) imm)) ( -- test_rax [b1, b2, b3] = [ff, ff, tt] ∧ let v := b0, sz := op_size tt rex.W v in ∃ imm, read_imm sz imm l ∧ a = ast.binop binop.tst sz (dest_src.Rm_i (RM.reg RAX) imm))) (cond b4 ( -- xchg_rax b3 = ff ∧ let sz := op_size tt rex.W tt in a = ast.xchg sz (RM.reg RAX) ⟨[b0, b1, b2, rex.B], rfl⟩ ∧ l = []) (cond b3 (cond b2 (cond b1 ( -- pop_rm b0 = tt ∧ ∃ r, read_opcode_ModRM rex 0 r l ∧ a = ast.pop r) ( -- lea b0 = tt ∧ ∃ reg r, let sz := op_size tt rex.W tt in read_ModRM rex reg r l ∧ RM.is_mem r ∧ a = ast.lea sz (dest_src.R_rm reg r))) ( -- mov let v := b0, sz := op_size_W rex v in ∃ reg r, read_ModRM rex reg r l ∧ let src_dst := if b1 then dest_src.R_rm reg r else dest_src.Rm_r r reg in a = ast.mov sz src_dst)) (cond b2 ( let v := b0, sz := op_size_W rex v in -- xchg, test ∃ reg r, read_ModRM rex reg r l ∧ a = cond b1 (ast.xchg sz r reg) (ast.binop binop.tst sz (dest_src.Rm_r r reg))) ( -- binop_imm, binop_imm8 let sz := op_size_W rex (cond b1 tt b0) in ∃ opc r l1 imm l2 op, read_opcode_ModRM rex opc r l1 ∧ binop.bits op (EXTZ opc) ∧ cond b1 (read_imm8 imm l2) (read_imm sz imm l2) ∧ a = ast.binop op sz (dest_src.Rm_i r imm) ∧ l = l1 ++ l2)))))) (cond b6 (cond b5 (cond b4 ( -- jcc8 ∃ code imm, cond_code.from_bits b0 b1 b2 b3 = some code ∧ read_imm8 imm l ∧ a = ast.jcc code imm) (cond b3 ( -- push_imm [b0, b2] = [ff, ff] ∧ ∃ imm, read_imm (if b1 then wsize.Sz8 ff else wsize.Sz32) imm l ∧ a = ast.push (imm_rm.imm imm)) ( -- movsx [b0, b1, b2] = [tt, tt, ff] ∧ ∃ reg r, read_ModRM rex reg r l ∧ a = ast.movsx wsize.Sz32 (dest_src.R_rm reg r) wsize.Sz64))) (cond b4 ( -- pop, push_rm let reg := RM.reg ⟨[b0, b1, b2, rex.B], rfl⟩ in a = cond b3 (ast.pop reg) (ast.push (imm_rm.rm reg)) ∧ l = []) ( -- prefix byte false))) (cond b2 (cond b1 ( -- decode_two [b0, b3, b4, b5] = [tt, tt, ff, ff] ∧ decode_two rex a l) ( -- binop_imm_rax let v := b0, sz := op_size_W rex v, op := binop.from_bits b3 b4 b5 ff in ∃ imm, read_imm sz imm l ∧ a = ast.binop op sz (dest_src.Rm_i (RM.reg RAX) imm))) ( -- binop1 let v := b0, d := b1, sz := op_size_W rex v, op := binop.from_bits b3 b4 b5 ff in ∃ reg r, read_ModRM rex reg r l ∧ let src_dst := if d then dest_src.R_rm reg r else dest_src.Rm_r r reg in a = ast.binop op sz src_dst))) theorem decode_aux_aux' {rex a b0 b1 b2 b3 b4 b5 b6 b7 l} : decode_aux rex a (⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩ :: l) → decode_aux' rex a b0 b1 b2 b3 b4 b5 b6 b7 l := begin generalize e : (⟨[b0, b1, b2, b3, b4, b5, b6, b7], rfl⟩ :: l : list byte) = l', intro a, cases a, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, ⟨⟩, ⟨⟩, h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, cases binop.bits_eq a_a_2, exact ⟨_, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, h₂, h₃, _⟩, cases bitvec.reify_eq h₁, cases subtype.eq h₂, cases bitvec.reify_eq h₃, cases binop.bits_eq a_a_1, exact ⟨_, a_a_2, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, _, _, _, _, _, a_a_1, a_a_3, a_a_2, rfl, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), exact ⟨_, _, _, _, _, _, a_a, a_a_1, a_a_2, rfl, h_2⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, _, _, _, _, _, a_a_1, a_a_2, a_a_3, a_a_4, rfl, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, ⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, _, _, a_a_1, a_a_2, a_a_3, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, a_a_1⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, _, _, a_a, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, ⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, ⟨⟩, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨_, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, _, _, _, _, a_a_1, a_a_2, rfl, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨rfl, rfl, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, ⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨rfl, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨rfl, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, _, a_a, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, ⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨h₁, h₂, _⟩, cases subtype.eq h₁, cases bitvec.reify_eq h₂, exact ⟨_, _, cond_code.bits_eq a_a_1, a_a_2, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, _, a_a, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, a_a_1, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, rfl, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, _, _, a_a, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨_, _, a_a_1, rfl⟩ }, { cases e, rcases split_bits_ok a_a with ⟨⟨⟩, h₁, _⟩, cases bitvec.reify_eq h₁, exact ⟨rfl, _, a_a_1, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, rfl, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, rfl, rfl⟩ }, { injection e, cases congr_arg subtype.val (bitvec.reify_eq' h_1), cases h_2, exact ⟨rfl, rfl, rfl⟩ }, { cases e, rcases split_bits_ok a_a_1 with ⟨⟨⟩, h₁, ⟨⟩, h₂, _⟩, cases bitvec.reify_eq h₁, cases bitvec.reify_eq h₂, exact ⟨_, _, _, _, a_a_2, a_a_3, rfl⟩ }, end theorem decode_aux_nil {rex a} : ¬ decode_aux rex a []. theorem decode_aux.determ_aux {rex a₁ a₂ l l'} : decode_aux rex a₁ l → decode_aux rex a₂ (l ++ l') → (a₁, l') = (a₂, []) := begin cases l with b l, {exact decode_aux_nil.elim}, apply byte_split b, introv h1 h2, replace h1 := decode_aux_aux' h1, replace h2 := decode_aux_aux' h2, unfold decode_aux' at h1 h2, repeat { do `(cond %%e _ _) ← tactic.get_local `h1 >>= tactic.infer_type, tactic.cases e $> (); `[dsimp only [cond] at h1 h2] }, { rcases h1 with ⟨reg1, r1, h11, rfl⟩, rcases h2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1 with ⟨imm1, h11, rfl⟩, rcases h2 with ⟨imm2, h21, rfl⟩, cases read_imm.determ_aux h11 h21, refl }, { exact decode_two.determ_aux h1.2 h2.2 }, { cases h2 }, { rcases h1 with ⟨rfl, rfl⟩, rcases h2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1.2 with ⟨reg1, r1, h11, rfl⟩, rcases h2.2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨imm1, h11, rfl⟩, rcases h2.2 with ⟨imm2, h21, rfl⟩, cases read_imm.determ_aux h11 h21, refl }, { rcases h1 with ⟨code1, imm1, h11, h12, rfl⟩, rcases h2 with ⟨code2, imm2, h21, h22, rfl⟩, cases h11.symm.trans h21, cases read_imm8.determ_aux h12 h22, refl }, { rcases h1 with ⟨opc1, r1, l11, imm1, l12, op1, h11, h12, h13, rfl, rfl⟩, rcases h2 with ⟨opc2, r2, l21, imm2, l22, op2, h21, h22, h23, rfl, e⟩, cases read_opcode_ModRM.determ₂_aux h11 h21 e, cases binop.bits.determ h12 h22, cases b1, { cases read_imm.determ_aux h13 h23, refl }, { cases read_imm8.determ_aux h13 h23, refl } }, { rcases h1 with ⟨reg1, r1, h11, rfl⟩, rcases h2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1 with ⟨reg1, r1, h11, rfl⟩, rcases h2 with ⟨reg2, r2, h21, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨reg1, r1, h11, h12, rfl⟩, rcases h2.2 with ⟨reg2, r2, h21, h22, rfl⟩, cases read_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨r1, h11, h12, rfl⟩, rcases h2.2 with ⟨r2, h21, h22, rfl⟩, cases read_opcode_ModRM.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨rfl, rfl⟩, rcases h2.2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1.2 with ⟨imm1, h11, rfl⟩, rcases h2.2 with ⟨imm2, h21, rfl⟩, cases read_imm.determ_aux h11 h21, refl }, { rcases h1 with ⟨imm1, h11, rfl⟩, rcases h2 with ⟨imm2, h21, rfl⟩, cases read_full_imm.determ_aux h11 h21, refl }, { rcases h1 with ⟨opc1, r1, imm1, op1, l11, l12, h11, _, h12, h13, rfl, rfl⟩, rcases h2 with ⟨opc2, r2, imm2, op2, l21, l22, h21, _, h22, h23, rfl, e⟩, cases read_opcode_ModRM.determ₂_aux h11 h21 e, cases binop.bits.determ h12 h22, cases read_imm8.determ_aux h13 h23, refl }, { rcases h1 with ⟨imm1, h11, rfl⟩, rcases h2 with ⟨imm2, h21, rfl⟩, split_ifs at h11 h21, { rcases h11 with ⟨rfl, rfl⟩, rcases h21 with ⟨rfl, ⟨⟩⟩, refl }, { cases read_imm16.determ_aux h11 h21, refl } }, { rcases h1 with ⟨opc1, r1, imm1, op1, l11, l12, h11, h12, rfl, rfl⟩, rcases h2 with ⟨opc2, r2, imm2, op2, l21, l22, h21, h22, rfl, e⟩, cases read_opcode_ModRM.determ₂_aux h11 h21 e, cases read_imm.determ_aux h12 h22, refl }, { rcases h1.2 with ⟨rfl, rfl⟩, rcases h2.2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1.2 with ⟨opc1, r1, op1, h11, _, h12, rfl⟩, rcases h2.2 with ⟨opc2, r2, op2, h21, _, h22, rfl⟩, cases read_opcode_ModRM.determ_aux h11 h21, cases binop.bits.determ h12 h22, refl }, { rcases h1.2 with ⟨imm1, h11, rfl⟩, rcases h2.2 with ⟨imm2, h21, rfl⟩, cases read_imm32.determ_aux h11 h21, refl }, { rcases h1.2 with ⟨imm1, h11, rfl⟩, rcases h2.2 with ⟨imm2, h21, rfl⟩, split_ifs at h11 h21, { cases read_imm8.determ_aux h11 h21, refl }, { cases read_imm32.determ_aux h11 h21, refl } }, { rcases h1.2 with ⟨rfl, rfl⟩, rcases h2.2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1.2 with ⟨rfl, rfl⟩, rcases h2.2 with ⟨rfl, ⟨⟩⟩, refl }, { rcases h1 with ⟨opc1, r1, l11, l12, h11, h12, rfl⟩, rcases h2 with ⟨opc2, r2, l21, l22, h21, h22, e⟩, cases read_opcode_ModRM.determ₂_aux h11 h21 e, exact decode_hi.determ_aux h12 h22 }, end theorem decode_aux.determ {rex a₁ a₂ l} (h₁ : decode_aux rex a₁ l) (h₂ : decode_aux rex a₂ l) : a₁ = a₂ := by cases decode_aux.determ_aux h₁ (by rw list.append_nil; exact h₂); refl theorem decode.no_prefix {rex rex' a l b l'} : read_prefixes rex l → b ∈ l → ¬ decode_aux rex' a (b :: l') := begin rintro ⟨⟩ (rfl|⟨⟨⟩⟩), -- generalize e : b :: l' = l₂, revert a_1_a, apply byte_split b, intros, rcases split_bits_ok a_1_a with ⟨_, ⟨⟩, _⟩, exact decode_aux_aux' end theorem decode_nil {a} : ¬ decode a [] := begin generalize e : [] = l, rintro ⟨⟩, cases a_1_l1; cases e, exact decode_aux_nil a_1_a_2 end theorem decode.determ_aux {a₁ a₂ l l'} (h₁ : decode a₁ l) (h₂ : decode a₂ (l ++ l')) : (a₁, l') = (a₂, []) := begin generalize_hyp e : l ++ l' = x at h₂, induction h₁, induction h₂, rw [list.append_assoc, list.append_eq_append_iff] at e, rcases e with ⟨_|⟨b, x⟩, rfl, e⟩ | ⟨_|⟨b, x⟩, rfl, rfl⟩, { rw list.append_nil at h₂_a_1, cases e, cases read_prefixes.determ h₁_a_1 h₂_a_1, exact decode_aux.determ_aux h₁_a_2 h₂_a_2 }, { cases h₁_l2 with b' l2, cases decode_aux_nil h₁_a_2, injection e, subst b', cases decode.no_prefix h₂_a_1 (list.mem_append_right _ (or.inl rfl)) h₁_a_2 }, { rw list.append_nil at h₁_a_1, cases read_prefixes.determ h₁_a_1 h₂_a_1, exact decode_aux.determ_aux h₁_a_2 h₂_a_2 }, { cases decode.no_prefix h₁_a_1 (list.mem_append_right _ (or.inl rfl)) h₂_a_2 }, end theorem decode.determ {a₁ a₂ l} (h₁ : decode a₁ l) (h₂ : decode a₂ l) : a₁ = a₂ := by cases decode.determ_aux h₁ (by rw list.append_nil; exact h₂); refl instance : add_comm_monoid perm := { zero := ⟨ff, ff, ff⟩, add_assoc := λ a b c, show perm.mk (_||_||_) (_||_||_) (_||_||_) = _, by repeat {rw bool.bor_assoc}; refl, zero_add := λ ⟨r, w, x⟩, show perm.mk (ff||_) (ff||_) (ff||_) = _, by repeat {rw ff_bor}, add_zero := λ ⟨r, w, x⟩, show perm.mk (_||ff) (_||ff) (_||ff) = _, by repeat {rw bor_ff}, add_comm := λ a b, show perm.mk (_||_) (_||_) (_||_) = _, by rw [bool.bor_comm, bool.bor_comm a.isW, bool.bor_comm a.isX]; refl, ..perm.has_add } theorem perm.add_self : ∀ p : perm, p + p = p | ⟨r, w, x⟩ := show perm.mk (r||r) (w||w) (x||x) = _, by repeat {rw bor_self} instance : partial_order perm := { le_refl := perm.add_self, le_trans := λ a b c (h₁ : a + b = b) (h₂ : b + c = c), show a + c = c, by rw [← h₂, ← add_assoc, h₁], le_antisymm := λ a b (h₁ : a + b = b) (h₂ : b + a = a), by rw [← h₂, add_comm, h₁], ..perm.has_le } theorem perm.le_add_left {p₁ p₂ : perm} : p₁ ≤ p₁ + p₂ := show _=_, by rw [← add_assoc, perm.add_self] theorem mem.read1.determ {p1 p2 m a b1 b2} : mem.read1 p1 m a b1 → mem.read1 p2 m a b2 → b1 = b2 := by rintro ⟨_, rfl, _⟩ ⟨_, rfl, _⟩; refl theorem mem.read'.determ_aux {p1 p2 m a l1 l2} (h₁ : mem.read' p1 m a l1) (h₂ : mem.read' p2 m a l2) : l1 <+: l2 ∨ l2 <+: l1 := begin induction h₁ generalizing l2, { exact or.inl (list.nil_prefix _) }, cases h₂, { exact or.inr (list.nil_prefix _) }, cases h₁_a.determ h₂_a, rw [list.prefix_cons_inj, list.prefix_cons_inj], exact h₁_ih h₂_a_1, end theorem mem.read'.determ_len {p1 p2 m a l1 l2} (h₁ : mem.read' p1 m a l1) (h₂ : mem.read' p2 m a l2) (h : l1.length = l2.length) : l1 = l2 := (mem.read'.determ_aux h₁ h₂).elim (λ h', list.eq_of_prefix_of_length_eq h' h) (λ h', (list.eq_of_prefix_of_length_eq h' h.symm).symm) theorem mem_decode.determ {p1 p2 m a l1 l2 ast1 ast2} (m₁ : mem.read' p1 m a l1) (h₁ : decode ast1 l1) (m₂ : mem.read' p2 m a l2) (h₂ : decode ast2 l2) : (ast1, l1) = (ast2, l2) := begin rcases mem.read'.determ_aux m₁ m₂ with ⟨x, rfl⟩ | ⟨x, rfl⟩, { cases decode.determ_aux h₁ h₂, simp }, { cases decode.determ_aux h₂ h₁, simp }, end theorem config.step_noIO {k k₁ k₂} : config.step k k₁ → ¬ config.isIO k k₂ := λ h₁ h₂, begin cases h₁, cases h₂, cases mem_decode.determ h₁_a_1 h₁_a_2 h₂_a h₂_a_1, rcases h₁_a_3 with ⟨_, s₁, _, ⟨⟩, _⟩ end theorem mem.write1.determ {m a b m₁ m₂} (h₁ : mem.write1 m a b m₁) (h₂ : mem.write1 m a b m₂) : m₁ = m₂ := by cases h₁; cases h₂; refl theorem mem.write.determ {m a l m₁ m₂} (h₁ : mem.write m a l m₁) (h₂ : mem.write m a l m₂) : m₁ = m₂ := begin induction h₁ generalizing m₂; cases h₂, refl, cases mem.write1.determ h₁_a h₂_a, cases h₁_ih h₂_a_1, refl end theorem config.write_mem.determ {k a l k₁ k₂} (h₁ : config.write_mem k a l k₁) (h₂ : config.write_mem k a l k₂) : k₁ = k₂ := by cases h₁; cases h₂; cases mem.write.determ h₁_a_1 h₂_a_1; refl theorem EA.write.determ {k ea sz v k₁ k₂} (h₁ : EA.write k ea sz v k₁) (h₂ : EA.write k ea sz v k₂) : k₁ = k₂ := begin cases h₁; cases h₂, refl, cases bits_to_byte.determ h₁_a_1 h₂_a_1, exact config.write_mem.determ h₁_a_2 h₂_a_2 end theorem config.isIO.determ {k k₁ k₂} : config.isIO k k₁ → config.isIO k k₂ → ∃ k' v₁ v₂, k₁ = config.set_reg k' 11 v₁ ∧ k₂ = config.set_reg k' 11 v₂ := begin rintro ⟨l₁, _, m₁, d₁, _, _, ⟨⟩, ⟨⟩, k', a₁, q₁, _, ⟨⟨⟩, rfl⟩, h₁⟩ ⟨l₂, _, m₂, d₂, _, _, ⟨⟩, ⟨⟩, k'', a₂, q₂, _, ⟨⟨⟩, rfl⟩, h₂⟩, cases mem_decode.determ m₁ d₁ m₂ d₂, cases EA.write.determ a₁ a₂, cases h₁, cases h₂, exact ⟨_, _, _, rfl, rfl⟩ end theorem config.step.no_exit {k k₁ r} : config.step k k₁ → ¬ config.exit k r := λ h ⟨k', h', _⟩, config.step_noIO h h' theorem set_reg_ne {k r r' q} (h : r' ≠ r) : (config.set_reg k r q).regs r' = k.regs r' := if_neg h theorem config.set_reg_11_exec_exit {k v r} : exec_exit (config.set_reg k 11 v) r ↔ exec_exit k r := begin split; rintro ⟨e⟩; split, { rwa set_reg_ne at e, rintro ⟨⟩ }, { rwa set_reg_ne, rintro ⟨⟩ }, end theorem config.isIO.determ_exec {k k₁ k₂ r} (h₁ : config.isIO k k₁) (h₂ : config.isIO k k₂) : exec_exit k₁ r ↔ exec_exit k₂ r := begin rcases h₁.determ h₂ with ⟨k', v₁, v₂, rfl, rfl⟩, simp [config.set_reg_11_exec_exit], end theorem exec_io.no_exit {i o k i' o' k' ret r} : exec_io i o k (k.regs RAX) i' o' k' ret → ¬ exec_exit k r := begin rintro h ⟨e⟩, rw e at h, rcases h with ⟨_, _, _, _, e⟩ | ⟨_, _, _, _, _, _, _, e⟩; cases bitvec.reify_eq₂ e, end theorem read_from_fd.io_part {fd i H_dat i'} (H : read_from_fd fd i H_dat i') : i' <:+ i := begin cases H, apply list.suffix_refl, exact ⟨_, rfl⟩ end theorem exec_read.io_part {i k fd count i' k' ret} (H : exec_read i k fd count i' k' ret) : i' <:+ i := begin cases H, apply list.suffix_refl, exact read_from_fd.io_part H_a_2 end theorem exec_io.io_part {k₁ i₁ o₁ k₂ i₂ o₂ call ret} (H : exec_io i₁ o₁ k₁ call i₂ o₂ k₂ ret) : i₂ <:+ i₁ ∧ o₁ <+: o₂ := begin induction H, exact ⟨list.suffix_refl _, list.prefix_refl _⟩, exact ⟨exec_read.io_part H_a_2, list.prefix_refl _⟩, end theorem kcfg.step.no_exit {k k' r} : kcfg.step k k' → ¬ config.exit k.k r := begin rintro (⟨_, _, _, _, h⟩ | ⟨_, _, k₁, k₂, _, _, _, _, h₁, h⟩), { exact h.no_exit }, { rintro ⟨k₃, h₂, e⟩, exact h.no_exit ((h₁.determ_exec h₂).2 e) }, end theorem kcfg.step.io_part {k₁ i₁ o₁ k₂ i₂ o₂} (H : kcfg.step ⟨i₁, o₁, k₁⟩ ⟨i₂, o₂, k₂⟩) : i₂ <:+ i₁ ∧ o₁ <+: o₂ := begin cases H, exact ⟨list.suffix_refl _, list.prefix_refl _⟩, exact exec_io.io_part H_a_1 end @[simp] theorem EXTZ_id {n} (w : bitvec n) : EXTZ w = w := begin suffices : ∀ l n, list.length l = n → (@EXTZ_aux l n).to_list = l, { exact subtype.eq (this w.1 _ w.2) }, intro l, induction l; intros n e; cases e, {refl}, unfold EXTZ_aux, rw [vector.to_list_cons, l_ih _ rfl], end @[simp] theorem EXTS_id {n} (w : bitvec n) : EXTS w = w := begin suffices : ∀ l a n, list.length l = n → (@EXTS_aux l a n).to_list = l, { exact subtype.eq (this w.1 _ _ w.2) }, intro l, induction l; intros n a e; cases e, {refl}, unfold EXTS_aux, rw [vector.to_list_cons, l_ih _ _ rfl], end theorem EA.read_reg_64 {r k q} : (EA.r r).read k wsize.Sz64 q ↔ q = k.regs r := by simp [EA.read] theorem EA.readq_reg_64 {r k q} : (EA.r r).readq k wsize.Sz64 q ↔ q = k.regs r := by simp [EA.readq, EA.read_reg_64] theorem EA.write_reg_64 {r k q k'} : (EA.r r).write k wsize.Sz64 q k' ↔ k' = k.set_reg r q := by split; [{rintro ⟨⟩, refl}, {rintro rfl, constructor}] theorem EA.writeq_reg_64 {r k q k'} : (EA.r r).writeq k wsize.Sz64 q k' ↔ k' = k.set_reg r q := by simp [EA.writeq, EA.write_reg_64] theorem mem.set.read'_exists {p m q w b v} (h1 : mem.read' p m q v) : ∃ v', mem.read' p (m.set w b) q v' := begin induction h1, {exact ⟨_, mem.read'.nil _⟩}, cases h1_ih with v1 ih, rcases h1_a with ⟨_, rfl, h1⟩, exact ⟨_, mem.read'.cons ⟨_, rfl, h1⟩ ih⟩, end theorem mem.write.read'_exists {p m q a v v2 m'} (h1 : mem.read' p m q v) (h2 : mem.write m a v2 m') : ∃ v', mem.read' p m' q v' := begin induction h2 generalizing v, {exact ⟨_, h1⟩}, cases h2_a with h3 h4, cases mem.set.read'_exists h1 with v1 h1, exact h2_ih h1, end theorem EA.read.determ {k ea sz w1 w2} (h1 : EA.read k ea sz w1) (h2 : EA.read k ea sz w2) : w1 = w2 := begin cases ea, { exact h1.trans h2.symm }, { cases sz, cases sz, all_goals {exact h1.trans h2.symm} }, { rcases h1 with ⟨_, a1, b1⟩, rcases h2 with ⟨_, a2, b2⟩, cases a1.determ_len a2 (b1.1.trans b2.1.symm), exact bits_to_byte.determ_l b1 b2 }, end theorem EA.readq.determ {k ea sz q1 q2} : EA.readq k ea sz q1 → EA.readq k ea sz q2 → q1 = q2 | ⟨a1, b1, e1⟩ ⟨a2, b2, e2⟩ := by cases b1.determ b2; exact e1.trans e2.symm theorem hoare_p.bind {P P' : kcfg → Prop} (H : ∀ {{k}}, P k → hoare_p P' k) {k} : hoare_p P k → hoare_p P' k := begin intro h, induction h, exact H h_a, exact hoare_p.step h_a (λ k', h_ih _), by_cases h_ret = 0, { cases H (h_a_1 h), { exact hoare_p.zero a }, { cases a with k' h, cases h.no_exit h_a }, { exact hoare_p.exit _ _ a a_1 } }, { exact hoare_p.exit _ _ h_a h.elim }, end theorem hoare_p.mono {P P' : kcfg → Prop} (H : ∀ {{k}}, P k → P' k) {k} : hoare_p P k → hoare_p P' k := hoare_p.bind (λ k h, hoare_p.zero (H h)) end x86
e8813162b0500c789389bc167933d111217fe428
649957717d58c43b5d8d200da34bf374293fe739
/src/category_theory/limits/limits.lean
58959b1adc003455918c443c8da79c7b3c86e090
[ "Apache-2.0" ]
permissive
Vtec234/mathlib
b50c7b21edea438df7497e5ed6a45f61527f0370
fb1848bbbfce46152f58e219dc0712f3289d2b20
refs/heads/master
1,592,463,095,113
1,562,737,749,000
1,562,737,749,000
196,202,858
0
0
Apache-2.0
1,562,762,338,000
1,562,762,337,000
null
UTF-8
Lean
false
false
31,729
lean
-- Copyright (c) 2018 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Reid Barton, Mario Carneiro, Scott Morrison, Floris van Doorn import category_theory.whiskering import category_theory.yoneda import category_theory.limits.cones import category_theory.eq_to_hom open category_theory category_theory.category category_theory.functor opposite namespace category_theory.limits universes v u u' u'' w -- declare the `v`'s first; see `category_theory.category` for an explanation -- See the notes at the top of cones.lean, explaining why we can't allow `J : Prop` here. variables {J K : Type v} [small_category J] [small_category K] variables {C : Type u} [𝒞 : category.{v+1} C] include 𝒞 variables {F : J ⥤ C} /-- A cone `t` on `F` is a limit cone if each cone on `F` admits a unique cone morphism to `t`. -/ structure is_limit (t : cone F) := (lift : Π (s : cone F), s.X ⟶ t.X) (fac' : ∀ (s : cone F) (j : J), lift s ≫ t.π.app j = s.π.app j . obviously) (uniq' : ∀ (s : cone F) (m : s.X ⟶ t.X) (w : ∀ j : J, m ≫ t.π.app j = s.π.app j), m = lift s . obviously) restate_axiom is_limit.fac' attribute [simp] is_limit.fac restate_axiom is_limit.uniq' attribute [class] is_limit namespace is_limit instance subsingleton {t : cone F} : subsingleton (is_limit t) := ⟨by intros P Q; cases P; cases Q; congr; ext; solve_by_elim⟩ /- Repackaging the definition in terms of cone morphisms. -/ def lift_cone_morphism {t : cone F} (h : is_limit t) (s : cone F) : s ⟶ t := { hom := h.lift s } lemma uniq_cone_morphism {s t : cone F} (h : is_limit t) {f f' : s ⟶ t} : f = f' := have ∀ {g : s ⟶ t}, g = h.lift_cone_morphism s, by intro g; ext; exact h.uniq _ _ g.w, this.trans this.symm def mk_cone_morphism {t : cone F} (lift : Π (s : cone F), s ⟶ t) (uniq' : ∀ (s : cone F) (m : s ⟶ t), m = lift s) : is_limit t := { lift := λ s, (lift s).hom, uniq' := λ s m w, have cone_morphism.mk m w = lift s, by apply uniq', congr_arg cone_morphism.hom this } /-- Limit cones on `F` are unique up to isomorphism. -/ def unique {s t : cone F} (P : is_limit s) (Q : is_limit t) : s ≅ t := { hom := Q.lift_cone_morphism s, inv := P.lift_cone_morphism t, hom_inv_id' := P.uniq_cone_morphism, inv_hom_id' := Q.uniq_cone_morphism } def of_iso_limit {r t : cone F} (P : is_limit r) (i : r ≅ t) : is_limit t := is_limit.mk_cone_morphism (λ s, P.lift_cone_morphism s ≫ i.hom) (λ s m, by rw ←i.comp_inv_eq; apply P.uniq_cone_morphism) variables {t : cone F} lemma hom_lift (h : is_limit t) {W : C} (m : W ⟶ t.X) : m = h.lift { X := W, π := { app := λ b, m ≫ t.π.app b } } := h.uniq { X := W, π := { app := λ b, m ≫ t.π.app b } } m (λ b, rfl) /-- Two morphisms into a limit are equal if their compositions with each cone morphism are equal. -/ lemma hom_ext (h : is_limit t) {W : C} {f f' : W ⟶ t.X} (w : ∀ j, f ≫ t.π.app j = f' ≫ t.π.app j) : f = f' := by rw [h.hom_lift f, h.hom_lift f']; congr; exact funext w /-- The universal property of a limit cone: a map `W ⟶ X` is the same as a cone on `F` with vertex `W`. -/ def hom_iso (h : is_limit t) (W : C) : (W ⟶ t.X) ≅ ((const J).obj W ⟶ F) := { hom := λ f, (t.extend f).π, inv := λ π, h.lift { X := W, π := π }, hom_inv_id' := by ext f; apply h.hom_ext; intro j; simp; dsimp; refl } @[simp] lemma hom_iso_hom (h : is_limit t) {W : C} (f : W ⟶ t.X) : (is_limit.hom_iso h W).hom f = (t.extend f).π := rfl /-- The limit of `F` represents the functor taking `W` to the set of cones on `F` with vertex `W`. -/ def nat_iso (h : is_limit t) : yoneda.obj t.X ≅ F.cones := nat_iso.of_components (λ W, is_limit.hom_iso h (unop W)) (by tidy) def hom_iso' (h : is_limit t) (W : C) : ((W ⟶ t.X) : Type v) ≅ { p : Π j, W ⟶ F.obj j // ∀ {j j'} (f : j ⟶ j'), p j ≫ F.map f = p j' } := h.hom_iso W ≪≫ { hom := λ π, ⟨λ j, π.app j, λ j j' f, by convert ←(π.naturality f).symm; apply id_comp⟩, inv := λ p, { app := λ j, p.1 j, naturality' := λ j j' f, begin dsimp, rw [id_comp], exact (p.2 f).symm end } } /-- If G : C → D is a faithful functor which sends t to a limit cone, then it suffices to check that the induced maps for the image of t can be lifted to maps of C. -/ def of_faithful {t : cone F} {D : Type u'} [category.{v+1} D] (G : C ⥤ D) [faithful G] (ht : is_limit (G.map_cone t)) (lift : Π (s : cone F), s.X ⟶ t.X) (h : ∀ s, G.map (lift s) = ht.lift (G.map_cone s)) : is_limit t := { lift := lift, fac' := λ s j, by apply G.injectivity; rw [G.map_comp, h]; apply ht.fac, uniq' := λ s m w, begin apply G.injectivity, rw h, refine ht.uniq (G.map_cone s) _ (λ j, _), convert ←congr_arg (λ f, G.map f) (w j), apply G.map_comp end } end is_limit def is_limit_iso_unique_cone_morphism {t : cone F} : is_limit t ≅ Π s, unique (s ⟶ t) := { hom := λ h s, { default := h.lift_cone_morphism s, uniq := λ _, h.uniq_cone_morphism }, inv := λ h, { lift := λ s, (h s).default.hom, uniq' := λ s f w, congr_arg cone_morphism.hom ((h s).uniq ⟨f, w⟩) } } /-- A cocone `t` on `F` is a colimit cocone if each cocone on `F` admits a unique cocone morphism from `t`. -/ structure is_colimit (t : cocone F) := (desc : Π (s : cocone F), t.X ⟶ s.X) (fac' : ∀ (s : cocone F) (j : J), t.ι.app j ≫ desc s = s.ι.app j . obviously) (uniq' : ∀ (s : cocone F) (m : t.X ⟶ s.X) (w : ∀ j : J, t.ι.app j ≫ m = s.ι.app j), m = desc s . obviously) restate_axiom is_colimit.fac' attribute [simp] is_colimit.fac restate_axiom is_colimit.uniq' attribute [class] is_colimit namespace is_colimit instance subsingleton {t : cocone F} : subsingleton (is_colimit t) := ⟨by intros P Q; cases P; cases Q; congr; ext; solve_by_elim⟩ /- Repackaging the definition in terms of cone morphisms. -/ def desc_cocone_morphism {t : cocone F} (h : is_colimit t) (s : cocone F) : t ⟶ s := { hom := h.desc s } lemma uniq_cocone_morphism {s t : cocone F} (h : is_colimit t) {f f' : t ⟶ s} : f = f' := have ∀ {g : t ⟶ s}, g = h.desc_cocone_morphism s, by intro g; ext; exact h.uniq _ _ g.w, this.trans this.symm def mk_cocone_morphism {t : cocone F} (desc : Π (s : cocone F), t ⟶ s) (uniq' : ∀ (s : cocone F) (m : t ⟶ s), m = desc s) : is_colimit t := { desc := λ s, (desc s).hom, uniq' := λ s m w, have cocone_morphism.mk m w = desc s, by apply uniq', congr_arg cocone_morphism.hom this } /-- Limit cones on `F` are unique up to isomorphism. -/ def unique {s t : cocone F} (P : is_colimit s) (Q : is_colimit t) : s ≅ t := { hom := P.desc_cocone_morphism t, inv := Q.desc_cocone_morphism s, hom_inv_id' := P.uniq_cocone_morphism, inv_hom_id' := Q.uniq_cocone_morphism } def of_iso_colimit {r t : cocone F} (P : is_colimit r) (i : r ≅ t) : is_colimit t := is_colimit.mk_cocone_morphism (λ s, i.inv ≫ P.desc_cocone_morphism s) (λ s m, by rw i.eq_inv_comp; apply P.uniq_cocone_morphism) variables {t : cocone F} lemma hom_desc (h : is_colimit t) {W : C} (m : t.X ⟶ W) : m = h.desc { X := W, ι := { app := λ b, t.ι.app b ≫ m, naturality' := by intros; erw [←assoc, t.ι.naturality, comp_id, comp_id] } } := h.uniq { X := W, ι := { app := λ b, t.ι.app b ≫ m, naturality' := _ } } m (λ b, rfl) /-- Two morphisms out of a colimit are equal if their compositions with each cocone morphism are equal. -/ lemma hom_ext (h : is_colimit t) {W : C} {f f' : t.X ⟶ W} (w : ∀ j, t.ι.app j ≫ f = t.ι.app j ≫ f') : f = f' := by rw [h.hom_desc f, h.hom_desc f']; congr; exact funext w /-- The universal property of a colimit cocone: a map `X ⟶ W` is the same as a cocone on `F` with vertex `W`. -/ def hom_iso (h : is_colimit t) (W : C) : (t.X ⟶ W) ≅ (F ⟶ (const J).obj W) := { hom := λ f, (t.extend f).ι, inv := λ ι, h.desc { X := W, ι := ι }, hom_inv_id' := by ext f; apply h.hom_ext; intro j; simp; dsimp; refl } @[simp] lemma hom_iso_hom (h : is_colimit t) {W : C} (f : t.X ⟶ W) : (is_colimit.hom_iso h W).hom f = (t.extend f).ι := rfl /-- The colimit of `F` represents the functor taking `W` to the set of cocones on `F` with vertex `W`. -/ def nat_iso (h : is_colimit t) : coyoneda.obj (op t.X) ≅ F.cocones := nat_iso.of_components (is_colimit.hom_iso h) (by intros; ext; dsimp; rw ←assoc; refl) def hom_iso' (h : is_colimit t) (W : C) : ((t.X ⟶ W) : Type v) ≅ { p : Π j, F.obj j ⟶ W // ∀ {j j' : J} (f : j ⟶ j'), F.map f ≫ p j' = p j } := h.hom_iso W ≪≫ { hom := λ ι, ⟨λ j, ι.app j, λ j j' f, by convert ←(ι.naturality f); apply comp_id⟩, inv := λ p, { app := λ j, p.1 j, naturality' := λ j j' f, begin dsimp, rw [comp_id], exact (p.2 f) end } } /-- If G : C → D is a faithful functor which sends t to a colimit cocone, then it suffices to check that the induced maps for the image of t can be lifted to maps of C. -/ def of_faithful {t : cocone F} {D : Type u'} [category.{v+1} D] (G : C ⥤ D) [faithful G] (ht : is_colimit (G.map_cocone t)) (desc : Π (s : cocone F), t.X ⟶ s.X) (h : ∀ s, G.map (desc s) = ht.desc (G.map_cocone s)) : is_colimit t := { desc := desc, fac' := λ s j, by apply G.injectivity; rw [G.map_comp, h]; apply ht.fac, uniq' := λ s m w, begin apply G.injectivity, rw h, refine ht.uniq (G.map_cocone s) _ (λ j, _), convert ←congr_arg (λ f, G.map f) (w j), apply G.map_comp end } end is_colimit def is_colimit_iso_unique_cocone_morphism {t : cocone F} : is_colimit t ≅ Π s, unique (t ⟶ s) := { hom := λ h s, { default := h.desc_cocone_morphism s, uniq := λ _, h.uniq_cocone_morphism }, inv := λ h, { desc := λ s, (h s).default.hom, uniq' := λ s f w, congr_arg cocone_morphism.hom ((h s).uniq ⟨f, w⟩) } } section limit /-- `has_limit F` represents a particular chosen limit of the diagram `F`. -/ class has_limit (F : J ⥤ C) := (cone : cone F) (is_limit : is_limit cone . tactic.apply_instance) variables (J C) /-- `C` has limits of shape `J` if we have chosen a particular limit of every functor `F : J ⥤ C`. -/ class has_limits_of_shape := (has_limit : Π F : J ⥤ C, has_limit F) /-- `C` has all (small) limits if it has limits of every shape. -/ class has_limits := (has_limits_of_shape : Π (J : Type v) [𝒥 : small_category J], has_limits_of_shape J C) variables {J C} instance has_limit_of_has_limits_of_shape {J : Type v} [small_category J] [H : has_limits_of_shape J C] (F : J ⥤ C) : has_limit F := has_limits_of_shape.has_limit F instance has_limits_of_shape_of_has_limits {J : Type v} [small_category J] [H : has_limits.{v} C] : has_limits_of_shape J C := has_limits.has_limits_of_shape C J /- Interface to the `has_limit` class. -/ def limit.cone (F : J ⥤ C) [has_limit F] : cone F := has_limit.cone F def limit (F : J ⥤ C) [has_limit F] := (limit.cone F).X def limit.π (F : J ⥤ C) [has_limit F] (j : J) : limit F ⟶ F.obj j := (limit.cone F).π.app j @[simp] lemma limit.cone_π {F : J ⥤ C} [has_limit F] (j : J) : (limit.cone F).π.app j = limit.π _ j := rfl @[simp] lemma limit.w (F : J ⥤ C) [has_limit F] {j j' : J} (f : j ⟶ j') : limit.π F j ≫ F.map f = limit.π F j' := (limit.cone F).w f instance limit.is_limit (F : J ⥤ C) [has_limit F] : is_limit (limit.cone F) := has_limit.is_limit.{v} F def limit.lift (F : J ⥤ C) [has_limit F] (c : cone F) : c.X ⟶ limit F := (limit.is_limit F).lift c @[simp] lemma limit.is_limit_lift {F : J ⥤ C} [has_limit F] (c : cone F) : (limit.is_limit F).lift c = limit.lift F c := rfl @[simp] lemma limit.lift_π {F : J ⥤ C} [has_limit F] (c : cone F) (j : J) : limit.lift F c ≫ limit.π F j = c.π.app j := is_limit.fac _ c j def limit.cone_morphism {F : J ⥤ C} [has_limit F] (c : cone F) : cone_morphism c (limit.cone F) := (limit.is_limit F).lift_cone_morphism c @[simp] lemma limit.cone_morphism_hom {F : J ⥤ C} [has_limit F] (c : cone F) : (limit.cone_morphism c).hom = limit.lift F c := rfl @[simp] lemma limit.cone_morphism_π {F : J ⥤ C} [has_limit F] (c : cone F) (j : J) : (limit.cone_morphism c).hom ≫ limit.π F j = c.π.app j := by erw is_limit.fac @[extensionality] lemma limit.hom_ext {F : J ⥤ C} [has_limit F] {X : C} {f f' : X ⟶ limit F} (w : ∀ j, f ≫ limit.π F j = f' ≫ limit.π F j) : f = f' := (limit.is_limit F).hom_ext w def limit.hom_iso (F : J ⥤ C) [has_limit F] (W : C) : (W ⟶ limit F) ≅ (F.cones.obj (op W)) := (limit.is_limit F).hom_iso W @[simp] lemma limit.hom_iso_hom (F : J ⥤ C) [has_limit F] {W : C} (f : W ⟶ limit F) : (limit.hom_iso F W).hom f = (const J).map f ≫ (limit.cone F).π := (limit.is_limit F).hom_iso_hom f def limit.hom_iso' (F : J ⥤ C) [has_limit F] (W : C) : ((W ⟶ limit F) : Type v) ≅ { p : Π j, W ⟶ F.obj j // ∀ {j j' : J} (f : j ⟶ j'), p j ≫ F.map f = p j' } := (limit.is_limit F).hom_iso' W lemma limit.lift_extend {F : J ⥤ C} [has_limit F] (c : cone F) {X : C} (f : X ⟶ c.X) : limit.lift F (c.extend f) = f ≫ limit.lift F c := by obviously def has_limit_of_iso {F G : J ⥤ C} [has_limit F] (α : F ≅ G) : has_limit G := { cone := (cones.postcompose α.hom).obj (limit.cone F), is_limit := { lift := λ s, limit.lift F ((cones.postcompose α.inv).obj s), fac' := λ s j, begin rw [cones.postcompose_obj_π, nat_trans.comp_app, limit.cone_π], rw [category.assoc_symm, limit.lift_π], simp end, uniq' := λ s m w, begin apply limit.hom_ext, intro j, rw [limit.lift_π, cones.postcompose_obj_π, nat_trans.comp_app, ←nat_iso.app_inv, iso.eq_comp_inv], simpa using w j end } } section pre variables (F) [has_limit F] (E : K ⥤ J) [has_limit (E ⋙ F)] def limit.pre : limit F ⟶ limit (E ⋙ F) := limit.lift (E ⋙ F) { X := limit F, π := { app := λ k, limit.π F (E.obj k) } } @[simp] lemma limit.pre_π (k : K) : limit.pre F E ≫ limit.π (E ⋙ F) k = limit.π F (E.obj k) := by erw is_limit.fac @[simp] lemma limit.lift_pre (c : cone F) : limit.lift F c ≫ limit.pre F E = limit.lift (E ⋙ F) (c.whisker E) := by ext; simp variables {L : Type v} [small_category L] variables (D : L ⥤ K) [has_limit (D ⋙ E ⋙ F)] @[simp] lemma limit.pre_pre : limit.pre F E ≫ limit.pre (E ⋙ F) D = limit.pre F (D ⋙ E) := by ext j; erw [assoc, limit.pre_π, limit.pre_π, limit.pre_π]; refl end pre section post variables {D : Type u'} [𝒟 : category.{v+1} D] include 𝒟 variables (F) [has_limit F] (G : C ⥤ D) [has_limit (F ⋙ G)] def limit.post : G.obj (limit F) ⟶ limit (F ⋙ G) := limit.lift (F ⋙ G) { X := G.obj (limit F), π := { app := λ j, G.map (limit.π F j), naturality' := by intros j j' f; erw [←G.map_comp, limits.cone.w, id_comp]; refl } } @[simp] lemma limit.post_π (j : J) : limit.post F G ≫ limit.π (F ⋙ G) j = G.map (limit.π F j) := by erw is_limit.fac @[simp] lemma limit.lift_post (c : cone F) : G.map (limit.lift F c) ≫ limit.post F G = limit.lift (F ⋙ G) (G.map_cone c) := by ext; rw [assoc, limit.post_π, ←G.map_comp, limit.lift_π, limit.lift_π]; refl @[simp] lemma limit.post_post {E : Type u''} [category.{v+1} E] (H : D ⥤ E) [has_limit ((F ⋙ G) ⋙ H)] : /- H G (limit F) ⟶ H (limit (F ⋙ G)) ⟶ limit ((F ⋙ G) ⋙ H) equals -/ /- H G (limit F) ⟶ limit (F ⋙ (G ⋙ H)) -/ H.map (limit.post F G) ≫ limit.post (F ⋙ G) H = limit.post F (G ⋙ H) := by ext; erw [assoc, limit.post_π, ←H.map_comp, limit.post_π, limit.post_π]; refl end post lemma limit.pre_post {D : Type u'} [category.{v+1} D] (E : K ⥤ J) (F : J ⥤ C) (G : C ⥤ D) [has_limit F] [has_limit (E ⋙ F)] [has_limit (F ⋙ G)] [has_limit ((E ⋙ F) ⋙ G)] : /- G (limit F) ⟶ G (limit (E ⋙ F)) ⟶ limit ((E ⋙ F) ⋙ G) vs -/ /- G (limit F) ⟶ limit F ⋙ G ⟶ limit (E ⋙ (F ⋙ G)) or -/ G.map (limit.pre F E) ≫ limit.post (E ⋙ F) G = limit.post F G ≫ limit.pre (F ⋙ G) E := by ext; erw [assoc, limit.post_π, ←G.map_comp, limit.pre_π, assoc, limit.pre_π, limit.post_π]; refl open category_theory.equivalence instance has_limit_equivalence_comp (e : K ≌ J) [has_limit F] : has_limit (e.functor ⋙ F) := { cone := cone.whisker e.functor (limit.cone F), is_limit := let e' := cones.postcompose (e.inv_fun_id_assoc F).hom in { lift := λ s, limit.lift F (e'.obj (cone.whisker e.inverse s)), fac' := λ s j, begin dsimp, rw [limit.lift_π], dsimp [e'], erw [inv_fun_id_assoc_hom_app, counit_functor, ←s.π.naturality, id_comp] end, uniq' := λ s m w, begin apply limit.hom_ext, intro j, erw [limit.lift_π, ←limit.w F (e.counit_iso.hom.app j)], slice_lhs 1 2 { erw [w (e.inverse.obj j)] }, simp end } } def has_limit_of_equivalence_comp (e : K ≌ J) [has_limit (e.functor ⋙ F)] : has_limit F := begin haveI : has_limit (e.inverse ⋙ e.functor ⋙ F) := limits.has_limit_equivalence_comp e.symm, apply has_limit_of_iso (e.inv_fun_id_assoc F), end -- `has_limit_comp_equivalence` and `has_limit_of_comp_equivalence` -- are proved in `category_theory/adjunction/limits.lean`. section lim_functor variables [has_limits_of_shape J C] /-- `limit F` is functorial in `F`, when `C` has all limits of shape `J`. -/ def lim : (J ⥤ C) ⥤ C := { obj := λ F, limit F, map := λ F G α, limit.lift G { X := limit F, π := { app := λ j, limit.π F j ≫ α.app j, naturality' := λ j j' f, by erw [id_comp, assoc, ←α.naturality, ←assoc, limit.w] } }, map_comp' := λ F G H α β, by ext; erw [assoc, is_limit.fac, is_limit.fac, ←assoc, is_limit.fac, assoc]; refl } variables {F} {G : J ⥤ C} (α : F ⟶ G) @[simp] lemma lim.map_π (j : J) : lim.map α ≫ limit.π G j = limit.π F j ≫ α.app j := by apply is_limit.fac @[simp] lemma limit.lift_map (c : cone F) : limit.lift F c ≫ lim.map α = limit.lift G ((cones.postcompose α).obj c) := by ext; rw [assoc, lim.map_π, ←assoc, limit.lift_π, limit.lift_π]; refl lemma limit.map_pre [has_limits_of_shape K C] (E : K ⥤ J) : lim.map α ≫ limit.pre G E = limit.pre F E ≫ lim.map (whisker_left E α) := by ext; rw [assoc, limit.pre_π, lim.map_π, assoc, lim.map_π, ←assoc, limit.pre_π]; refl lemma limit.map_pre' [has_limits_of_shape.{v} K C] (F : J ⥤ C) {E₁ E₂ : K ⥤ J} (α : E₁ ⟶ E₂) : limit.pre F E₂ = limit.pre F E₁ ≫ lim.map (whisker_right α F) := by ext1; simp [(category.assoc _ _ _ _).symm] lemma limit.id_pre (F : J ⥤ C) : limit.pre F (functor.id _) = lim.map (functor.left_unitor F).inv := by tidy lemma limit.map_post {D : Type u'} [category.{v+1} D] [has_limits_of_shape J D] (H : C ⥤ D) : /- H (limit F) ⟶ H (limit G) ⟶ limit (G ⋙ H) vs H (limit F) ⟶ limit (F ⋙ H) ⟶ limit (G ⋙ H) -/ H.map (lim.map α) ≫ limit.post G H = limit.post F H ≫ lim.map (whisker_right α H) := begin ext, rw [assoc, limit.post_π, ←H.map_comp, lim.map_π, H.map_comp], rw [assoc, lim.map_π, ←assoc, limit.post_π], refl end def lim_yoneda : lim ⋙ yoneda ≅ category_theory.cones J C := nat_iso.of_components (λ F, nat_iso.of_components (λ W, limit.hom_iso F (unop W)) (by tidy)) (by tidy) end lim_functor def has_limits_of_shape_of_equivalence {J' : Type v} [small_category J'] (e : J ≌ J') [has_limits_of_shape J C] : has_limits_of_shape J' C := by { constructor, intro F, apply has_limit_of_equivalence_comp e, apply_instance } end limit section colimit /-- `has_colimit F` represents a particular chosen colimit of the diagram `F`. -/ class has_colimit (F : J ⥤ C) := (cocone : cocone F) (is_colimit : is_colimit cocone . tactic.apply_instance) variables (J C) /-- `C` has colimits of shape `J` if we have chosen a particular colimit of every functor `F : J ⥤ C`. -/ class has_colimits_of_shape := (has_colimit : Π F : J ⥤ C, has_colimit F) /-- `C` has all (small) colimits if it has colimits of every shape. -/ class has_colimits := (has_colimits_of_shape : Π (J : Type v) [𝒥 : small_category J], has_colimits_of_shape J C) variables {J C} instance has_colimit_of_has_colimits_of_shape {J : Type v} [small_category J] [H : has_colimits_of_shape J C] (F : J ⥤ C) : has_colimit F := has_colimits_of_shape.has_colimit F instance has_colimits_of_shape_of_has_colimits {J : Type v} [small_category J] [H : has_colimits.{v} C] : has_colimits_of_shape J C := has_colimits.has_colimits_of_shape C J /- Interface to the `has_colimit` class. -/ def colimit.cocone (F : J ⥤ C) [has_colimit F] : cocone F := has_colimit.cocone F def colimit (F : J ⥤ C) [has_colimit F] := (colimit.cocone F).X def colimit.ι (F : J ⥤ C) [has_colimit F] (j : J) : F.obj j ⟶ colimit F := (colimit.cocone F).ι.app j @[simp] lemma colimit.cocone_ι {F : J ⥤ C} [has_colimit F] (j : J) : (colimit.cocone F).ι.app j = colimit.ι _ j := rfl @[simp] lemma colimit.w (F : J ⥤ C) [has_colimit F] {j j' : J} (f : j ⟶ j') : F.map f ≫ colimit.ι F j' = colimit.ι F j := (colimit.cocone F).w f instance colimit.is_colimit (F : J ⥤ C) [has_colimit F] : is_colimit (colimit.cocone F) := has_colimit.is_colimit.{v} F def colimit.desc (F : J ⥤ C) [has_colimit F] (c : cocone F) : colimit F ⟶ c.X := (colimit.is_colimit F).desc c @[simp] lemma colimit.is_colimit_desc {F : J ⥤ C} [has_colimit F] (c : cocone F) : (colimit.is_colimit F).desc c = colimit.desc F c := rfl @[simp] lemma colimit.ι_desc {F : J ⥤ C} [has_colimit F] (c : cocone F) (j : J) : colimit.ι F j ≫ colimit.desc F c = c.ι.app j := is_colimit.fac _ c j /-- We have lots of lemmas describing how to simplify `colimit.ι F j ≫ _`, and combined with `colimit.ext` we rely on these lemmas for many calculations. However, since `category.assoc` is a `@[simp]` lemma, often expressions are right associated, and it's hard to apply these lemmas about `colimit.ι`. We thus define some additional `@[simp]` lemmas, with an arbitrary extra morphism. -/ @[simp] lemma colimit.ι_desc_assoc {F : J ⥤ C} [has_colimit F] (c : cocone F) (j : J) {Y : C} (f : c.X ⟶ Y) : colimit.ι F j ≫ colimit.desc F c ≫ f = c.ι.app j ≫ f := by rw [←category.assoc, colimit.ι_desc] def colimit.cocone_morphism {F : J ⥤ C} [has_colimit F] (c : cocone F) : cocone_morphism (colimit.cocone F) c := (colimit.is_colimit F).desc_cocone_morphism c @[simp] lemma colimit.cocone_morphism_hom {F : J ⥤ C} [has_colimit F] (c : cocone F) : (colimit.cocone_morphism c).hom = colimit.desc F c := rfl @[simp] lemma colimit.ι_cocone_morphism {F : J ⥤ C} [has_colimit F] (c : cocone F) (j : J) : colimit.ι F j ≫ (colimit.cocone_morphism c).hom = c.ι.app j := by erw is_colimit.fac @[extensionality] lemma colimit.hom_ext {F : J ⥤ C} [has_colimit F] {X : C} {f f' : colimit F ⟶ X} (w : ∀ j, colimit.ι F j ≫ f = colimit.ι F j ≫ f') : f = f' := (colimit.is_colimit F).hom_ext w def colimit.hom_iso (F : J ⥤ C) [has_colimit F] (W : C) : (colimit F ⟶ W) ≅ (F.cocones.obj W) := (colimit.is_colimit F).hom_iso W @[simp] lemma colimit.hom_iso_hom (F : J ⥤ C) [has_colimit F] {W : C} (f : colimit F ⟶ W) : (colimit.hom_iso F W).hom f = (colimit.cocone F).ι ≫ (const J).map f := (colimit.is_colimit F).hom_iso_hom f def colimit.hom_iso' (F : J ⥤ C) [has_colimit F] (W : C) : ((colimit F ⟶ W) : Type v) ≅ { p : Π j, F.obj j ⟶ W // ∀ {j j'} (f : j ⟶ j'), F.map f ≫ p j' = p j } := (colimit.is_colimit F).hom_iso' W lemma colimit.desc_extend (F : J ⥤ C) [has_colimit F] (c : cocone F) {X : C} (f : c.X ⟶ X) : colimit.desc F (c.extend f) = colimit.desc F c ≫ f := begin ext1, rw [←category.assoc], simp end def has_colimit_of_iso {F G : J ⥤ C} [has_colimit F] (α : G ≅ F) : has_colimit G := { cocone := (cocones.precompose α.hom).obj (colimit.cocone F), is_colimit := { desc := λ s, colimit.desc F ((cocones.precompose α.inv).obj s), fac' := λ s j, begin rw [cocones.precompose_obj_ι, nat_trans.comp_app, colimit.cocone_ι], rw [category.assoc, colimit.ι_desc, ←nat_iso.app_hom, ←iso.eq_inv_comp], refl end, uniq' := λ s m w, begin apply colimit.hom_ext, intro j, rw [colimit.ι_desc, cocones.precompose_obj_ι, nat_trans.comp_app, ←nat_iso.app_inv, iso.eq_inv_comp], simpa using w j end } } section pre variables (F) [has_colimit F] (E : K ⥤ J) [has_colimit (E ⋙ F)] def colimit.pre : colimit (E ⋙ F) ⟶ colimit F := colimit.desc (E ⋙ F) { X := colimit F, ι := { app := λ k, colimit.ι F (E.obj k) } } @[simp] lemma colimit.ι_pre (k : K) : colimit.ι (E ⋙ F) k ≫ colimit.pre F E = colimit.ι F (E.obj k) := by erw is_colimit.fac @[simp] lemma colimit.ι_pre_assoc (k : K) {Z : C} (f : colimit F ⟶ Z) : colimit.ι (E ⋙ F) k ≫ (colimit.pre F E) ≫ f = ((colimit.ι F (E.obj k)) : (E ⋙ F).obj k ⟶ colimit F) ≫ f := by rw [←category.assoc, colimit.ι_pre] @[simp] lemma colimit.pre_desc (c : cocone F) : colimit.pre F E ≫ colimit.desc F c = colimit.desc (E ⋙ F) (c.whisker E) := by ext; rw [←assoc, colimit.ι_pre]; simp variables {L : Type v} [small_category L] variables (D : L ⥤ K) [has_colimit (D ⋙ E ⋙ F)] @[simp] lemma colimit.pre_pre : colimit.pre (E ⋙ F) D ≫ colimit.pre F E = colimit.pre F (D ⋙ E) := begin ext j, rw [←assoc, colimit.ι_pre, colimit.ι_pre], letI : has_colimit ((D ⋙ E) ⋙ F) := show has_colimit (D ⋙ E ⋙ F), by apply_instance, exact (colimit.ι_pre F (D ⋙ E) j).symm end end pre section post variables {D : Type u'} [𝒟 : category.{v+1} D] include 𝒟 variables (F) [has_colimit F] (G : C ⥤ D) [has_colimit (F ⋙ G)] def colimit.post : colimit (F ⋙ G) ⟶ G.obj (colimit F) := colimit.desc (F ⋙ G) { X := G.obj (colimit F), ι := { app := λ j, G.map (colimit.ι F j), naturality' := by intros j j' f; erw [←G.map_comp, limits.cocone.w, comp_id]; refl } } @[simp] lemma colimit.ι_post (j : J) : colimit.ι (F ⋙ G) j ≫ colimit.post F G = G.map (colimit.ι F j) := by erw is_colimit.fac @[simp] lemma colimit.ι_post_assoc (j : J) {Y : D} (f : G.obj (colimit F) ⟶ Y) : colimit.ι (F ⋙ G) j ≫ colimit.post F G ≫ f = G.map (colimit.ι F j) ≫ f := by rw [←category.assoc, colimit.ι_post] @[simp] lemma colimit.post_desc (c : cocone F) : colimit.post F G ≫ G.map (colimit.desc F c) = colimit.desc (F ⋙ G) (G.map_cocone c) := by ext; rw [←assoc, colimit.ι_post, ←G.map_comp, colimit.ι_desc, colimit.ι_desc]; refl @[simp] lemma colimit.post_post {E : Type u''} [category.{v+1} E] (H : D ⥤ E) [has_colimit ((F ⋙ G) ⋙ H)] : /- H G (colimit F) ⟶ H (colimit (F ⋙ G)) ⟶ colimit ((F ⋙ G) ⋙ H) equals -/ /- H G (colimit F) ⟶ colimit (F ⋙ (G ⋙ H)) -/ colimit.post (F ⋙ G) H ≫ H.map (colimit.post F G) = colimit.post F (G ⋙ H) := begin ext, rw [←assoc, colimit.ι_post, ←H.map_comp, colimit.ι_post], exact (colimit.ι_post F (G ⋙ H) j).symm end end post lemma colimit.pre_post {D : Type u'} [category.{v+1} D] (E : K ⥤ J) (F : J ⥤ C) (G : C ⥤ D) [has_colimit F] [has_colimit (E ⋙ F)] [has_colimit (F ⋙ G)] [has_colimit ((E ⋙ F) ⋙ G)] : /- G (colimit F) ⟶ G (colimit (E ⋙ F)) ⟶ colimit ((E ⋙ F) ⋙ G) vs -/ /- G (colimit F) ⟶ colimit F ⋙ G ⟶ colimit (E ⋙ (F ⋙ G)) or -/ colimit.post (E ⋙ F) G ≫ G.map (colimit.pre F E) = colimit.pre (F ⋙ G) E ≫ colimit.post F G := begin ext, rw [←assoc, colimit.ι_post, ←G.map_comp, colimit.ι_pre, ←assoc], letI : has_colimit (E ⋙ F ⋙ G) := show has_colimit ((E ⋙ F) ⋙ G), by apply_instance, erw [colimit.ι_pre (F ⋙ G) E j, colimit.ι_post] end open category_theory.equivalence instance has_colimit_equivalence_comp (e : K ≌ J) [has_colimit F] : has_colimit (e.functor ⋙ F) := { cocone := cocone.whisker e.functor (colimit.cocone F), is_colimit := let e' := cocones.precompose (e.inv_fun_id_assoc F).inv in { desc := λ s, colimit.desc F (e'.obj (cocone.whisker e.inverse s)), fac' := λ s j, begin dsimp, rw [colimit.ι_desc], dsimp [e'], erw [inv_fun_id_assoc_inv_app, ←functor_unit, s.ι.naturality, comp_id], refl end, uniq' := λ s m w, begin apply colimit.hom_ext, intro j, erw [colimit.ι_desc], have := w (e.inverse.obj j), simp at this, erw [←colimit.w F (e.counit_iso.hom.app j)] at this, erw [assoc, ←iso.eq_inv_comp (F.map_iso $ e.counit_iso.app j)] at this, erw [this], simp end } } def has_colimit_of_equivalence_comp (e : K ≌ J) [has_colimit (e.functor ⋙ F)] : has_colimit F := begin haveI : has_colimit (e.inverse ⋙ e.functor ⋙ F) := limits.has_colimit_equivalence_comp e.symm, apply has_colimit_of_iso (e.inv_fun_id_assoc F).symm, end section colim_functor variables [has_colimits_of_shape J C] /-- `colimit F` is functorial in `F`, when `C` has all colimits of shape `J`. -/ def colim : (J ⥤ C) ⥤ C := { obj := λ F, colimit F, map := λ F G α, colimit.desc F { X := colimit G, ι := { app := λ j, α.app j ≫ colimit.ι G j, naturality' := λ j j' f, by erw [comp_id, ←assoc, α.naturality, assoc, colimit.w] } }, map_comp' := λ F G H α β, by ext; erw [←assoc, is_colimit.fac, is_colimit.fac, assoc, is_colimit.fac, ←assoc]; refl } variables {F} {G : J ⥤ C} (α : F ⟶ G) @[simp] lemma colim.ι_map (j : J) : colimit.ι F j ≫ colim.map α = α.app j ≫ colimit.ι G j := by apply is_colimit.fac @[simp] lemma colim.ι_map_assoc (j : J) {Y : C} (f : colimit G ⟶ Y) : colimit.ι F j ≫ colim.map α ≫ f = α.app j ≫ colimit.ι G j ≫ f := by rw [←category.assoc, colim.ι_map, category.assoc] @[simp] lemma colimit.map_desc (c : cocone G) : colim.map α ≫ colimit.desc G c = colimit.desc F ((cocones.precompose α).obj c) := by ext; rw [←assoc, colim.ι_map, assoc, colimit.ι_desc, colimit.ι_desc]; refl lemma colimit.pre_map [has_colimits_of_shape K C] (E : K ⥤ J) : colimit.pre F E ≫ colim.map α = colim.map (whisker_left E α) ≫ colimit.pre G E := by ext; rw [←assoc, colimit.ι_pre, colim.ι_map, ←assoc, colim.ι_map, assoc, colimit.ι_pre]; refl lemma colimit.pre_map' [has_colimits_of_shape.{v} K C] (F : J ⥤ C) {E₁ E₂ : K ⥤ J} (α : E₁ ⟶ E₂) : colimit.pre F E₁ = colim.map (whisker_right α F) ≫ colimit.pre F E₂ := by ext1; simp [(category.assoc _ _ _ _).symm] lemma colimit.pre_id (F : J ⥤ C) : colimit.pre F (functor.id _) = colim.map (functor.left_unitor F).hom := by tidy lemma colimit.map_post {D : Type u'} [category.{v+1} D] [has_colimits_of_shape J D] (H : C ⥤ D) : /- H (colimit F) ⟶ H (colimit G) ⟶ colimit (G ⋙ H) vs H (colimit F) ⟶ colimit (F ⋙ H) ⟶ colimit (G ⋙ H) -/ colimit.post F H ≫ H.map (colim.map α) = colim.map (whisker_right α H) ≫ colimit.post G H:= begin ext, rw [←assoc, colimit.ι_post, ←H.map_comp, colim.ι_map, H.map_comp], rw [←assoc, colim.ι_map, assoc, colimit.ι_post], refl end def colim_coyoneda : colim.op ⋙ coyoneda ≅ category_theory.cocones J C := nat_iso.of_components (λ F, nat_iso.of_components (colimit.hom_iso (unop F)) (by tidy)) (by tidy) end colim_functor def has_colimits_of_shape_of_equivalence {J' : Type v} [small_category J'] (e : J ≌ J') [has_colimits_of_shape J C] : has_colimits_of_shape J' C := by { constructor, intro F, apply has_colimit_of_equivalence_comp e, apply_instance } end colimit end category_theory.limits
de683555eaff70c2d14f1ed25131fd83e8f67b7e
4727251e0cd73359b15b664c3170e5d754078599
/src/linear_algebra/affine_space/midpoint.lean
8072c8c35a2fa3367bf38b4eafe90faca5c101ff
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
8,339
lean
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import algebra.char_p.invertible import linear_algebra.affine_space.affine_equiv /-! # Midpoint of a segment ## Main definitions * `midpoint R x y`: midpoint of the segment `[x, y]`. We define it for `x` and `y` in a module over a ring `R` with invertible `2`. * `add_monoid_hom.of_map_midpoint`: construct an `add_monoid_hom` given a map `f` such that `f` sends zero to zero and midpoints to midpoints. ## Main theorems * `midpoint_eq_iff`: `z` is the midpoint of `[x, y]` if and only if `x + y = z + z`, * `midpoint_unique`: `midpoint R x y` does not depend on `R`; * `midpoint x y` is linear both in `x` and `y`; * `point_reflection_midpoint_left`, `point_reflection_midpoint_right`: `equiv.point_reflection (midpoint R x y)` swaps `x` and `y`. We do not mark most lemmas as `@[simp]` because it is hard to tell which side is simpler. ## Tags midpoint, add_monoid_hom -/ open affine_map affine_equiv section variables (R : Type*) {V V' P P' : Type*} [ring R] [invertible (2:R)] [add_comm_group V] [module R V] [add_torsor V P] [add_comm_group V'] [module R V'] [add_torsor V' P'] include V /-- `midpoint x y` is the midpoint of the segment `[x, y]`. -/ def midpoint (x y : P) : P := line_map x y (⅟2:R) variables {R} {x y z : P} include V' @[simp] lemma affine_map.map_midpoint (f : P →ᵃ[R] P') (a b : P) : f (midpoint R a b) = midpoint R (f a) (f b) := f.apply_line_map a b _ @[simp] lemma affine_equiv.map_midpoint (f : P ≃ᵃ[R] P') (a b : P) : f (midpoint R a b) = midpoint R (f a) (f b) := f.apply_line_map a b _ omit V' @[simp] lemma affine_equiv.point_reflection_midpoint_left (x y : P) : point_reflection R (midpoint R x y) x = y := by rw [midpoint, point_reflection_apply, line_map_apply, vadd_vsub, vadd_vadd, ← add_smul, ← two_mul, mul_inv_of_self, one_smul, vsub_vadd] lemma midpoint_comm (x y : P) : midpoint R x y = midpoint R y x := by rw [midpoint, ← line_map_apply_one_sub, one_sub_inv_of_two, midpoint] @[simp] lemma affine_equiv.point_reflection_midpoint_right (x y : P) : point_reflection R (midpoint R x y) y = x := by rw [midpoint_comm, affine_equiv.point_reflection_midpoint_left] lemma midpoint_vsub_midpoint (p₁ p₂ p₃ p₄ : P) : midpoint R p₁ p₂ -ᵥ midpoint R p₃ p₄ = midpoint R (p₁ -ᵥ p₃) (p₂ -ᵥ p₄) := line_map_vsub_line_map _ _ _ _ _ lemma midpoint_vadd_midpoint (v v' : V) (p p' : P) : midpoint R v v' +ᵥ midpoint R p p' = midpoint R (v +ᵥ p) (v' +ᵥ p') := line_map_vadd_line_map _ _ _ _ _ lemma midpoint_eq_iff {x y z : P} : midpoint R x y = z ↔ point_reflection R z x = y := eq_comm.trans ((injective_point_reflection_left_of_module R x).eq_iff' (affine_equiv.point_reflection_midpoint_left x y)).symm @[simp] lemma midpoint_vsub_left (p₁ p₂ : P) : midpoint R p₁ p₂ -ᵥ p₁ = (⅟2:R) • (p₂ -ᵥ p₁) := line_map_vsub_left _ _ _ @[simp] lemma midpoint_vsub_right (p₁ p₂ : P) : midpoint R p₁ p₂ -ᵥ p₂ = (⅟2:R) • (p₁ -ᵥ p₂) := by rw [midpoint_comm, midpoint_vsub_left] @[simp] lemma left_vsub_midpoint (p₁ p₂ : P) : p₁ -ᵥ midpoint R p₁ p₂ = (⅟2:R) • (p₁ -ᵥ p₂) := left_vsub_line_map _ _ _ @[simp] lemma right_vsub_midpoint (p₁ p₂ : P) : p₂ -ᵥ midpoint R p₁ p₂ = (⅟2:R) • (p₂ -ᵥ p₁) := by rw [midpoint_comm, left_vsub_midpoint] @[simp] lemma midpoint_sub_left (v₁ v₂ : V) : midpoint R v₁ v₂ - v₁ = (⅟2:R) • (v₂ - v₁) := midpoint_vsub_left v₁ v₂ @[simp] lemma midpoint_sub_right (v₁ v₂ : V) : midpoint R v₁ v₂ - v₂ = (⅟2:R) • (v₁ - v₂) := midpoint_vsub_right v₁ v₂ @[simp] lemma left_sub_midpoint (v₁ v₂ : V) : v₁ - midpoint R v₁ v₂ = (⅟2:R) • (v₁ - v₂) := left_vsub_midpoint v₁ v₂ @[simp] lemma right_sub_midpoint (v₁ v₂ : V) : v₂ - midpoint R v₁ v₂ = (⅟2:R) • (v₂ - v₁) := right_vsub_midpoint v₁ v₂ variable (R) lemma midpoint_eq_midpoint_iff_vsub_eq_vsub {x x' y y' : P} : midpoint R x y = midpoint R x' y' ↔ x -ᵥ x' = y' -ᵥ y := by rw [← @vsub_eq_zero_iff_eq V, midpoint_vsub_midpoint, midpoint_eq_iff, point_reflection_apply, vsub_eq_sub, zero_sub, vadd_eq_add, add_zero, neg_eq_iff_neg_eq, neg_vsub_eq_vsub_rev, eq_comm] lemma midpoint_eq_iff' {x y z : P} : midpoint R x y = z ↔ equiv.point_reflection z x = y := midpoint_eq_iff /-- `midpoint` does not depend on the ring `R`. -/ lemma midpoint_unique (R' : Type*) [ring R'] [invertible (2:R')] [module R' V] (x y : P) : midpoint R x y = midpoint R' x y := (midpoint_eq_iff' R).2 $ (midpoint_eq_iff' R').1 rfl @[simp] lemma midpoint_self (x : P) : midpoint R x x = x := line_map_same_apply _ _ @[simp] lemma midpoint_add_self (x y : V) : midpoint R x y + midpoint R x y = x + y := calc midpoint R x y +ᵥ midpoint R x y = midpoint R x y +ᵥ midpoint R y x : by rw midpoint_comm ... = x + y : by rw [midpoint_vadd_midpoint, vadd_eq_add, vadd_eq_add, add_comm, midpoint_self] lemma midpoint_zero_add (x y : V) : midpoint R 0 (x + y) = midpoint R x y := (midpoint_eq_midpoint_iff_vsub_eq_vsub R).2 $ by simp [sub_add_eq_sub_sub_swap] lemma midpoint_eq_smul_add (x y : V) : midpoint R x y = (⅟2 : R) • (x + y) := by rw [midpoint_eq_iff, point_reflection_apply, vsub_eq_sub, vadd_eq_add, sub_add_eq_add_sub, ← two_smul R, smul_smul, mul_inv_of_self, one_smul, add_sub_cancel'] @[simp] lemma midpoint_self_neg (x : V) : midpoint R x (-x) = 0 := by rw [midpoint_eq_smul_add, add_neg_self, smul_zero] @[simp] lemma midpoint_neg_self (x : V) : midpoint R (-x) x = 0 := by simpa using midpoint_self_neg R (-x) @[simp] lemma midpoint_sub_add (x y : V) : midpoint R (x - y) (x + y) = x := by rw [sub_eq_add_neg, ← vadd_eq_add, ← vadd_eq_add, ← midpoint_vadd_midpoint]; simp @[simp] lemma midpoint_add_sub (x y : V) : midpoint R (x + y) (x - y) = x := by rw midpoint_comm; simp end lemma line_map_inv_two {R : Type*} {V P : Type*} [division_ring R] [char_zero R] [add_comm_group V] [module R V] [add_torsor V P] (a b : P) : line_map a b (2⁻¹:R) = midpoint R a b := rfl lemma line_map_one_half {R : Type*} {V P : Type*} [division_ring R] [char_zero R] [add_comm_group V] [module R V] [add_torsor V P] (a b : P) : line_map a b (1/2:R) = midpoint R a b := by rw [one_div, line_map_inv_two] lemma homothety_inv_of_two {R : Type*} {V P : Type*} [comm_ring R] [invertible (2:R)] [add_comm_group V] [module R V] [add_torsor V P] (a b : P) : homothety a (⅟2:R) b = midpoint R a b := rfl lemma homothety_inv_two {k : Type*} {V P : Type*} [field k] [char_zero k] [add_comm_group V] [module k V] [add_torsor V P] (a b : P) : homothety a (2⁻¹:k) b = midpoint k a b := rfl lemma homothety_one_half {k : Type*} {V P : Type*} [field k] [char_zero k] [add_comm_group V] [module k V] [add_torsor V P] (a b : P) : homothety a (1/2:k) b = midpoint k a b := by rw [one_div, homothety_inv_two] @[simp] lemma pi_midpoint_apply {k ι : Type*} {V : Π i : ι, Type*} {P : Π i : ι, Type*} [field k] [invertible (2:k)] [Π i, add_comm_group (V i)] [Π i, module k (V i)] [Π i, add_torsor (V i) (P i)] (f g : Π i, P i) (i : ι) : midpoint k f g i = midpoint k (f i) (g i) := rfl namespace add_monoid_hom variables (R R' : Type*) {E F : Type*} [ring R] [invertible (2:R)] [add_comm_group E] [module R E] [ring R'] [invertible (2:R')] [add_comm_group F] [module R' F] /-- A map `f : E → F` sending zero to zero and midpoints to midpoints is an `add_monoid_hom`. -/ def of_map_midpoint (f : E → F) (h0 : f 0 = 0) (hm : ∀ x y, f (midpoint R x y) = midpoint R' (f x) (f y)) : E →+ F := { to_fun := f, map_zero' := h0, map_add' := λ x y, calc f (x + y) = f 0 + f (x + y) : by rw [h0, zero_add] ... = midpoint R' (f 0) (f (x + y)) + midpoint R' (f 0) (f (x + y)) : (midpoint_add_self _ _ _).symm ... = f (midpoint R x y) + f (midpoint R x y) : by rw [← hm, midpoint_zero_add] ... = f x + f y : by rw [hm, midpoint_add_self] } @[simp] lemma coe_of_map_midpoint (f : E → F) (h0 : f 0 = 0) (hm : ∀ x y, f (midpoint R x y) = midpoint R' (f x) (f y)) : ⇑(of_map_midpoint R R' f h0 hm) = f := rfl end add_monoid_hom
19dde77ca056c0a2f66922e6f5f07364a65de33b
510e96af568b060ed5858226ad954c258549f143
/data/list/sort.lean
0c654be1c80e57e1fd0f6f48f9d1afa43912453b
[]
no_license
Shamrock-Frost/library_dev
cb6d1739237d81e17720118f72ba0a6db8a5906b
0245c71e4931d3aceeacf0aea776454f6ee03c9c
refs/heads/master
1,609,481,034,595
1,500,165,215,000
1,500,165,347,000
97,350,162
0
0
null
1,500,164,969,000
1,500,164,969,000
null
UTF-8
Lean
false
false
15,953
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Insertion sort and merge sort. -/ import .perm -- TODO(Jeremy): move this namespace nat theorem add_pos_left {m : ℕ} (h : m > 0) (n : ℕ) : m + n > 0 := calc m + n > 0 + n : nat.add_lt_add_right h n ... = n : nat.zero_add n ... ≥ 0 : zero_le n theorem add_pos_right (m : ℕ) {n : ℕ} (h : n > 0) : m + n > 0 := begin rw add_comm, exact add_pos_left h m end theorem add_pos_iff_pos_or_pos (m n : ℕ) : m + n > 0 ↔ m > 0 ∨ n > 0 := iff.intro begin intro h, cases m with m, {simp [zero_add] at h, exact or.inr h}, exact or.inl (succ_pos _) end begin intro h, cases h with mpos npos, { apply add_pos_left mpos }, apply add_pos_right _ npos end lemma succ_le_succ_iff (m n : ℕ) : succ m ≤ succ n ↔ m ≤ n := ⟨le_of_succ_le_succ, succ_le_succ⟩ lemma lt_succ_iff_le (m n : ℕ) : m < succ n ↔ m ≤ n := succ_le_succ_iff m n end nat namespace list section sorted universe variable uu variables {α : Type uu} (r : α → α → Prop) def sorted : list α → Prop | [] := true | (a :: l) := sorted l ∧ ∀ b ∈ l, r a b theorem sorted_nil : sorted r nil := trivial theorem sorted_singleton (a : α) : sorted r [a] := ⟨sorted_nil r, λ b h, absurd h (not_mem_nil b)⟩ theorem sorted_of_sorted_cons {a : α} {l : list α} (h : sorted r (a :: l)) : sorted r l := h^.left theorem forall_mem_rel_of_sorted_cons {a : α} {l : list α} (h : sorted r (a :: l)) : ∀ b ∈ l, r a b := h^.right theorem sorted_cons {a : α} {l : list α} (h₁ : sorted r l) (h₂ : ∀ b ∈ l, r a b) : sorted r (a :: l) := ⟨h₁, h₂⟩ end sorted /- sorting procedures -/ section sort universe variable uu parameters {α : Type uu} (r : α → α → Prop) [decidable_rel r] local infix `≼` : 50 := r /- insertion sort -/ section insertion_sort def ordered_insert (a : α) : list α → list α | [] := [a] | (b :: l) := if a ≼ b then a :: (b :: l) else b :: ordered_insert l --@[simp] --theorem ordered_insert_nil (a : α) : ordered_insert a [] = [a] := rfl --@[simp] --theorem ordered_insert_cons (a b : α) (l : list α) : -- ordered_insert a (b :: l) = if a ≼ b then a :: (b :: l) else b :: ordered_insert a l := --rfl def insertion_sort : list α → list α | [] := [] | (b :: l) := ordered_insert b (insertion_sort l) --attribute [simp] insertion_sort.equations.eqn_1 insertion_sort.equations.eqn_2 section correctness parameter [deceqα : decidable_eq α] include deceqα open perm -- TODO(Jeremy): anonymous type class parameters don't work well theorem count_ordered_insert_eq (b a : α) : ∀ l, count b (ordered_insert a l) = count b (a :: l) | [] := by simp [ordered_insert] | (c :: l) := if h : a ≼ c then begin unfold ordered_insert, simp [if_pos, h] end else by simp [ordered_insert, if_neg, h, count_cons', count_ordered_insert_eq] theorem mem_ordered_insert_iff (b a : α) (l : list α) : b ∈ ordered_insert a l ↔ b ∈ a :: l := begin repeat {rw mem_iff_count_pos}, simp [count_ordered_insert_eq] end theorem perm_insertion_sort : ∀ l : list α, insertion_sort l ~ l | [] := perm.nil | (b :: l) := perm_of_forall_count_eq (assume a, by simp [insertion_sort, count_ordered_insert_eq, count_cons', count_eq_count_of_perm (perm_insertion_sort l) a]) section total_and_transitive variables (totr : total r) (transr : transitive r) include totr transr theorem sorted_ordered_insert (a : α) : ∀ l, sorted r l → sorted r (ordered_insert a l) | [] := assume h, sorted_singleton r a | (b :: l) := assume h, have sorted r l, from sorted_of_sorted_cons r h, have h₀ : ∀ c ∈ l, b ≼ c, from forall_mem_rel_of_sorted_cons r h, if h' : a ≼ b then begin simp [ordered_insert, if_pos, h'], exact have ∀ c ∈ b :: l, a ≼ c, from assume c, suppose c ∈ b :: l, or.elim (eq_or_mem_of_mem_cons this) (suppose c = b, this^.symm ▸ ‹a ≼ b›) (suppose c ∈ l, transr ‹a ≼ b› (h₀ _ this)), show sorted r (a :: b :: l), from sorted_cons r h this end else have b ≼ a, from or.resolve_left (totr a b) h', begin simp [ordered_insert, if_neg, ‹¬ a ≼ b›], exact have h₁ : sorted r (ordered_insert r a l), from sorted_ordered_insert l ‹sorted r l›, have h₂ : ∀ c ∈ ordered_insert r a l, b ≼ c, from assume c, suppose c ∈ ordered_insert r a l, have c ∈ a :: l, from (mem_ordered_insert_iff r c a l)^.mp this, or.elim (eq_or_mem_of_mem_cons this) (suppose c = a, begin rw this, exact ‹b ≼ a› end) (suppose c ∈ l, h₀ c this), show sorted r (b :: ordered_insert r a l), from sorted_cons r h₁ h₂ end theorem sorted_insert_sort : ∀ l, sorted r (insertion_sort l) | [] := sorted_nil r | (a :: l) := sorted_ordered_insert totr transr a _ (sorted_insert_sort l) end total_and_transitive end correctness end insertion_sort /- merge sort -/ section merge_sort -- TODO(Jeremy): observation: if instead we write (a :: (split l).1, b :: (split l).2), the -- equation compiler can't prove the third equation def split : list α → list α × list α | [] := ([], []) | [a] := ([a], []) | (a :: b :: l) := match split l with | (l₁, l₂) := (a :: l₁, b :: l₂) end -- TODO(Jeremy): the cases is needed because the internal split_match gets a pair private theorem split_cons_cons_aux (a b : α) (l : list α) : split (a :: b :: l) = match split l with | (l₁, l₂) := (a :: l₁, b :: l₂) end := rfl @[simp] theorem split_cons_cons (a b : α) (l : list α) : split (a :: b :: l) = (a :: (split l).1, b :: (split l).2) := begin rw [split_cons_cons_aux], cases split l, reflexivity end theorem length_split_fst_le : ∀ l : list α, length ((split l).1) ≤ length l | [] := nat.le_refl 0 | [a] := nat.le_refl 1 | (a :: b :: l) := begin simp [split_cons_cons, -add_comm], exact nat.succ_le_succ (nat.le_succ_of_le (length_split_fst_le l)) end theorem length_split_snd_le : ∀ l : list α, length ((split l).2) ≤ length l | [] := nat.le_refl 0 | [a] := nat.zero_le 1 | (a :: b :: l) := begin simp [-add_comm], transitivity, { apply add_le_add_right (length_split_snd_le l) }, simp [nat.one_add, nat.le_succ] end theorem length_split_cons_cons_fst_lt (a b : α) (l : list α) : length (split (a :: b :: l)).1 < length (a :: b :: l) := begin simp [-add_comm], exact add_lt_add_of_le_of_lt (length_split_fst_le l) (nat.le_refl _) end theorem length_split_cons_cons_snd_lt (a b : α) (l : list α) : length (split (a :: b :: l)).2 < length (a :: b :: l) := begin simp [-add_comm], exact add_lt_add_of_le_of_lt (length_split_snd_le l) (nat.le_refl _) end -- Do the well-founded recursion by hand, until the function definition system supports it. private def merge.F : Π p : list α × list α, (Π p₁ : list α × list α, length p₁.1 + length p₁.2 < length p.1 + length p.2 → list α) → list α | ([], l) f := l | (a :: l, []) f := a :: l | (a :: l, b :: l') f := if a ≼ b then a :: f (l, b :: l') begin simp [-add_comm], apply nat.le_refl end else b :: f (a :: l, l') begin apply nat.le_refl end def merge := well_founded.fix (inv_image.wf _ nat.lt_wf) merge.F theorem merge.def (p : list α × list α) : merge p = merge.F p (λ p h, merge p) := well_founded.fix_eq (inv_image.wf _ nat.lt_wf) merge.F p @[simp] theorem merge.equations.eq_1 (l : list α) : merge ([], l) = l := begin rw merge.def, reflexivity end @[simp] theorem merge.equations.eq_2 (a : α) (l : list α) : merge (a :: l, []) = a :: l := begin rw merge.def, reflexivity end @[simp] theorem merge.equations.eq_3 (a b : α) (l l' : list α) : merge (a :: l, b :: l') = if a ≼ b then a :: merge (l, b :: l') else b :: merge (a :: l, l') := begin rw merge.def, reflexivity end private def merge_sort.F : Π l : list α, (Π l₁ : list α, length l₁ < length l → list α) → list α | [] f := [] | [a] f := [a] | (a :: b :: l) f := let p := split (a :: b :: l), l₁ := f p.1 (length_split_cons_cons_fst_lt a b l), l₂ := f p.2 (length_split_cons_cons_snd_lt a b l) in merge (l₁, l₂) def merge_sort := well_founded.fix (inv_image.wf _ nat.lt_wf) merge_sort.F theorem merge_sort.def (l : list α) : merge_sort l = merge_sort.F l (λ l h, merge_sort l) := well_founded.fix_eq (inv_image.wf _ nat.lt_wf) merge_sort.F l @[simp] theorem merge_sort.equations.eq_1 : merge_sort [] = [] := begin rw merge_sort.def, reflexivity end @[simp] theorem merge_sort.equations.eq_2 (a : α) : merge_sort [a] = [a] := begin rw merge_sort.def, reflexivity end @[simp] theorem merge_sort.equations.eq_3 (a b : α) (l : list α) : merge_sort (a :: b :: l) = let p := split (a :: b :: l) in merge (merge_sort p.1, merge_sort p.2) := begin rw merge_sort.def, reflexivity end section correctness parameter [deceqα : decidable_eq α] include deceqα theorem count_split (a : α) : ∀ l : list α, count a (split l).1 + count a (split l).2 = count a l | [] := rfl | [a] := rfl | (a :: b :: l) := begin simp [count_cons'], rw [←count_split l], simp end private def count_merge.F (c : α) : Π p : list α × list α, (Π p₁ : list α × list α, length p₁.1 + length p₁.2 < length p.1 + length p.2 → count c (merge p₁) = count c p₁.1 + count c p₁.2) → count c (merge p) = count c p.1 + count c p.2 | ([], l) f := by simp | (a :: l, []) f := by simp | (a :: l, b :: l') f := if h : a ≼ b then begin have hrec := f (l, b :: l') begin simp [-add_comm], apply nat.le_refl end, simp [if_pos, h, count_cons', hrec] end else begin have hrec := f (a :: l, l') begin apply nat.le_refl end, simp [if_neg, h, count_cons', hrec] end theorem count_merge (c : α) : ∀ p : list α × list α, count c (merge p) = count c p.1 + count c p.2 := well_founded.fix (inv_image.wf _ nat.lt_wf) (count_merge.F c) theorem mem_merge_iff (a : α) (p : list α × list α) : a ∈ merge p ↔ a ∈ p.1 ∨ a ∈ p.2 := begin repeat { rw mem_iff_count_pos }, simp [count_merge, nat.add_pos_iff_pos_or_pos] end private def perm_merge_sort.F : Π l : list α, (Π l₁ : list α, length l₁ < length l → merge_sort l₁ ~ l₁) → merge_sort l ~ l | [] f := by simp; exact perm.refl _ | [a] f := by simp; exact perm.refl _ | (a :: b :: l) f := perm.perm_of_forall_count_eq begin intro c, let hrec₁ := perm.count_eq_count_of_perm (f _ (length_split_cons_cons_fst_lt a b l)) c, let hrec₂ := perm.count_eq_count_of_perm (f _ (length_split_cons_cons_snd_lt a b l)) c, simp at hrec₁, simp at hrec₂, simp [hrec₁, hrec₂, count_merge, count_split, count_cons'] end theorem perm_merge_sort : ∀ l : list α, merge_sort l ~ l := well_founded.fix (inv_image.wf _ nat.lt_wf) perm_merge_sort.F section total_and_transitive variables (totr : total r) (transr : transitive r) include totr transr private def sorted_merge.F : Π p : list α × list α, (Π p₁ : list α × list α, length p₁.1 + length p₁.2 < length p.1 + length p.2 → (sorted r p₁.1 → sorted r p₁.2 → sorted r (merge p₁))) → sorted r p.1 → sorted r p.2 → sorted r (merge p) | ([], l) f h₁ h₂ := begin simp, exact h₂ end | (a :: l, []) f h₁ h₂ := begin simp, exact h₁ end | (a :: l, b :: l') f h₁ h₂ := have sorted r l, from sorted_of_sorted_cons r h₁, have sorted r l', from sorted_of_sorted_cons r h₂, have h₁₀ : ∀ c ∈ l, a ≼ c, from forall_mem_rel_of_sorted_cons r h₁, have h₂₀ : ∀ c ∈ l', b ≼ c, from forall_mem_rel_of_sorted_cons r h₂, if h : a ≼ b then begin have hrec := f (l, b :: l') begin simp [-add_comm], apply nat.le_refl end, simp [if_pos, h], exact have h₃ : sorted r (merge r (l, b :: l')), from hrec ‹sorted r l› h₂, have h₄ : ∀ c ∈ merge r (l, b :: l'), a ≼ c, begin intros c hc, rw mem_merge_iff at hc, exact or.elim hc (suppose c ∈ l, show a ≼ c, from h₁₀ c this) (suppose c ∈ b :: l', or.elim (eq_or_mem_of_mem_cons this) (suppose c = b, show a ≼ c, from this^.symm ▸ ‹a ≼ b›) (suppose c ∈ l', show a ≼ c, from transr ‹a ≼ b› (h₂₀ c this))) end, show sorted r (a :: merge r (l, b :: l')), from sorted_cons r h₃ h₄ end else have h' : b ≼ a, from or.resolve_left (totr a b) h, begin have hrec := f (a :: l, l') begin apply nat.le_refl end, simp [if_neg, h], exact have h₃ : sorted r (merge r (a :: l, l')), from hrec h₁ ‹sorted r l'›, have h₄ : ∀ c ∈ merge r (a :: l, l'), b ≼ c, begin intros c hc, rw mem_merge_iff at hc, exact or.elim hc (suppose c ∈ a :: l, or.elim (eq_or_mem_of_mem_cons this) (suppose c = a, show b ≼ c, from this^.symm ▸ ‹b ≼ a›) (suppose c ∈ l, show b ≼ c, from transr ‹b ≼ a› (h₁₀ c this))) (suppose c ∈ l', show b ≼ c, from h₂₀ c this) end, show sorted r (b :: merge r (a :: l, l')), from sorted_cons r h₃ h₄ end theorem sorted_merge : Π {p : list α × list α}, sorted r p.1 → sorted r p.2 → sorted r (merge p) := well_founded.fix (inv_image.wf _ nat.lt_wf) (sorted_merge.F totr transr) /- elaboration of sorted_merge_sort.F takes forever private def sorted_merge_sort.F : Π l : list α, (Π l₁ : list α, length l₁ < length l → sorted r (merge_sort l₁)) → sorted r (merge_sort l) | [] f := by simp; exact sorted_nil r | [a] f := by simp; exact sorted_singleton r a | (a :: b :: l) f := begin simp, apply sorted_merge r totr transr, -- this should be handled by the simplifier, i.e. cancel out +1 and rewrite _ < _ + 1 to _ <= _ { dsimp, apply f, show length (split l)^.fst + (1 + 0) < length l + (1 + 1), exact add_lt_add_of_le_of_lt (length_split_fst_le l) (add_lt_add_of_le_of_lt (le_refl 1) zero_lt_one) }, { dsimp, apply f, show length (split l)^.snd + (1 + 0) < length l + (1 + 1), exact add_lt_add_of_le_of_lt (length_split_snd_le l) (add_lt_add_of_le_of_lt (le_refl 1) zero_lt_one) } end theorem sorted_merge_sort : ∀ l : list α, sorted r (merge_sort l) := well_founded.fix (inv_image.wf _ nat.lt_wf) (sorted_merge_sort.F totr transr) -/ end total_and_transitive end correctness end merge_sort end sort /- try them out! -/ --vm_eval insertion_sort (λ m n : ℕ, m ≤ n) [5, 27, 221, 95, 17, 43, 7, 2, 98, 567, 23, 12] --vm_eval merge_sort (λ m n : ℕ, m ≤ n) [5, 27, 221, 95, 17, 43, 7, 2, 98, 567, 23, 12] end list
8f240a299ecd45d48126e0f805307208150d5f40
4727251e0cd73359b15b664c3170e5d754078599
/src/data/set/lattice.lean
c9943dcd78cb7c83916d420171ee9432cf90d2a0
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
65,709
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Johannes Hölzl, Mario Carneiro -/ import data.nat.basic import order.complete_boolean_algebra import order.directed import order.galois_connection /-! # The set lattice This file provides usual set notation for unions and intersections, a `complete_lattice` instance for `set α`, and some more set constructions. ## Main declarations * `set.Union`: Union of an indexed family of sets. * `set.Inter`: Intersection of an indexed family of sets. * `set.sInter`: **s**et **Inter**. Intersection of sets belonging to a set of sets. * `set.sUnion`: **s**et **Union**. Union of sets belonging to a set of sets. This is actually defined in core Lean. * `set.sInter_eq_bInter`, `set.sUnion_eq_bInter`: Shows that `⋂₀ s = ⋂ x ∈ s, x` and `⋃₀ s = ⋃ x ∈ s, x`. * `set.complete_boolean_algebra`: `set α` is a `complete_boolean_algebra` with `≤ = ⊆`, `< = ⊂`, `⊓ = ∩`, `⊔ = ∪`, `⨅ = ⋂`, `⨆ = ⋃` and `\` as the set difference. See `set.boolean_algebra`. * `set.kern_image`: For a function `f : α → β`, `s.kern_image f` is the set of `y` such that `f ⁻¹ y ⊆ s`. * `set.seq`: Union of the image of a set under a **seq**uence of functions. `seq s t` is the union of `f '' t` over all `f ∈ s`, where `t : set α` and `s : set (α → β)`. * `set.Union_eq_sigma_of_disjoint`: Equivalence between `⋃ i, t i` and `Σ i, t i`, where `t` is an indexed family of disjoint sets. ## Naming convention In lemma names, * `⋃ i, s i` is called `Union` * `⋂ i, s i` is called `Inter` * `⋃ i j, s i j` is called `Union₂`. This is a `Union` inside a `Union`. * `⋂ i j, s i j` is called `Inter₂`. This is an `Inter` inside an `Inter`. * `⋃ i ∈ s, t i` is called `bUnion` for "bounded `Union`". This is the special case of `Union₂` where `j : i ∈ s`. * `⋂ i ∈ s, t i` is called `bInter` for "bounded `Inter`". This is the special case of `Inter₂` where `j : i ∈ s`. ## Notation * `⋃`: `set.Union` * `⋂`: `set.Inter` * `⋃₀`: `set.sUnion` * `⋂₀`: `set.sInter` -/ open function tactic set universes u variables {α β γ : Type*} {ι ι' ι₂ : Sort*} {κ κ₁ κ₂ : ι → Sort*} {κ' : ι' → Sort*} namespace set /-! ### Complete lattice and complete Boolean algebra instances -/ instance : has_Inf (set α) := ⟨λ s, {a | ∀ t ∈ s, a ∈ t}⟩ instance : has_Sup (set α) := ⟨sUnion⟩ /-- Intersection of a set of sets. -/ def sInter (S : set (set α)) : set α := Inf S prefix `⋂₀ `:110 := sInter @[simp] theorem mem_sInter {x : α} {S : set (set α)} : x ∈ ⋂₀ S ↔ ∀ t ∈ S, x ∈ t := iff.rfl /-- Indexed union of a family of sets -/ def Union (s : ι → set β) : set β := supr s /-- Indexed intersection of a family of sets -/ def Inter (s : ι → set β) : set β := infi s notation `⋃` binders `, ` r:(scoped f, Union f) := r notation `⋂` binders `, ` r:(scoped f, Inter f) := r @[simp] lemma Sup_eq_sUnion (S : set (set α)) : Sup S = ⋃₀ S := rfl @[simp] lemma Inf_eq_sInter (S : set (set α)) : Inf S = ⋂₀ S := rfl @[simp] lemma supr_eq_Union (s : ι → set α) : supr s = Union s := rfl @[simp] lemma infi_eq_Inter (s : ι → set α) : infi s = Inter s := rfl @[simp] lemma mem_Union {x : α} {s : ι → set α} : x ∈ (⋃ i, s i) ↔ ∃ i, x ∈ s i := ⟨λ ⟨t, ⟨⟨a, (t_eq : s a = t)⟩, (h : x ∈ t)⟩⟩, ⟨a, t_eq.symm ▸ h⟩, λ ⟨a, h⟩, ⟨s a, ⟨⟨a, rfl⟩, h⟩⟩⟩ @[simp] lemma mem_Inter {x : α} {s : ι → set α} : x ∈ (⋂ i, s i) ↔ ∀ i, x ∈ s i := ⟨λ (h : ∀ a ∈ {a : set α | ∃ i, s i = a}, x ∈ a) a, h (s a) ⟨a, rfl⟩, λ h t ⟨a, (eq : s a = t)⟩, eq ▸ h a⟩ lemma mem_Union₂ {x : γ} {s : Π i, κ i → set γ} : x ∈ (⋃ i j, s i j) ↔ ∃ i j, x ∈ s i j := by simp_rw mem_Union lemma mem_Inter₂ {x : γ} {s : Π i, κ i → set γ} : x ∈ (⋂ i j, s i j) ↔ ∀ i j, x ∈ s i j := by simp_rw mem_Inter lemma mem_Union_of_mem {s : ι → set α} {a : α} (i : ι) (ha : a ∈ s i) : a ∈ ⋃ i, s i := mem_Union.2 ⟨i, ha⟩ lemma mem_Union₂_of_mem {s : Π i, κ i → set α} {a : α} {i : ι} (j : κ i) (ha : a ∈ s i j) : a ∈ ⋃ i j, s i j := mem_Union₂.2 ⟨i, j, ha⟩ lemma mem_Inter_of_mem {s : ι → set α} {a : α} (h : ∀ i, a ∈ s i) : a ∈ ⋂ i, s i := mem_Inter.2 h lemma mem_Inter₂_of_mem {s : Π i, κ i → set α} {a : α} (h : ∀ i j, a ∈ s i j) : a ∈ ⋂ i j, s i j := mem_Inter₂.2 h theorem mem_sUnion {x : α} {S : set (set α)} : x ∈ ⋃₀ S ↔ ∃ t ∈ S, x ∈ t := iff.rfl instance : complete_boolean_algebra (set α) := { Sup := Sup, Inf := Inf, le_Sup := λ s t t_in a a_in, ⟨t, ⟨t_in, a_in⟩⟩, Sup_le := λ s t h a ⟨t', ⟨t'_in, a_in⟩⟩, h t' t'_in a_in, le_Inf := λ s t h a a_in t' t'_in, h t' t'_in a_in, Inf_le := λ s t t_in a h, h _ t_in, infi_sup_le_sup_Inf := λ s S x, iff.mp $ by simp [forall_or_distrib_left], inf_Sup_le_supr_inf := λ s S x, iff.mp $ by simp [exists_and_distrib_left], .. set.boolean_algebra, .. pi.complete_lattice } /-- `set.image` is monotone. See `set.image_image` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : monotone (image f) := λ s t, image_subset _ theorem _root_.monotone.inter [preorder β] {f g : β → set α} (hf : monotone f) (hg : monotone g) : monotone (λ x, f x ∩ g x) := hf.inf hg theorem _root_.antitone.inter [preorder β] {f g : β → set α} (hf : antitone f) (hg : antitone g) : antitone (λ x, f x ∩ g x) := hf.inf hg theorem _root_.monotone.union [preorder β] {f g : β → set α} (hf : monotone f) (hg : monotone g) : monotone (λ x, f x ∪ g x) := hf.sup hg theorem _root_.antitone.union [preorder β] {f g : β → set α} (hf : antitone f) (hg : antitone g) : antitone (λ x, f x ∪ g x) := hf.sup hg theorem monotone_set_of [preorder α] {p : α → β → Prop} (hp : ∀ b, monotone (λ a, p a b)) : monotone (λ a, {b | p a b}) := λ a a' h b, hp b h theorem antitone_set_of [preorder α] {p : α → β → Prop} (hp : ∀ b, antitone (λ a, p a b)) : antitone (λ a, {b | p a b}) := λ a a' h b, hp b h /-- Quantifying over a set is antitone in the set -/ lemma antitone_bforall {P : α → Prop} : antitone (λ s : set α, ∀ x ∈ s, P x) := λ s t hst h x hx, h x $ hst hx section galois_connection variables {f : α → β} protected lemma image_preimage : galois_connection (image f) (preimage f) := λ a b, image_subset_iff /-- `kern_image f s` is the set of `y` such that `f ⁻¹ y ⊆ s`. -/ def kern_image (f : α → β) (s : set α) : set β := {y | ∀ ⦃x⦄, f x = y → x ∈ s} protected lemma preimage_kern_image : galois_connection (preimage f) (kern_image f) := λ a b, ⟨ λ h x hx y hy, have f y ∈ a, from hy.symm ▸ hx, h this, λ h x (hx : f x ∈ a), h hx rfl⟩ end galois_connection /-! ### Union and intersection over an indexed family of sets -/ instance : order_top (set α) := { top := univ, le_top := by simp } @[congr] theorem Union_congr_Prop {p q : Prop} {f₁ : p → set α} {f₂ : q → set α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : Union f₁ = Union f₂ := supr_congr_Prop pq f @[congr] theorem Inter_congr_Prop {p q : Prop} {f₁ : p → set α} {f₂ : q → set α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : Inter f₁ = Inter f₂ := infi_congr_Prop pq f lemma Union_eq_if {p : Prop} [decidable p] (s : set α) : (⋃ h : p, s) = if p then s else ∅ := supr_eq_if _ lemma Union_eq_dif {p : Prop} [decidable p] (s : p → set α) : (⋃ (h : p), s h) = if h : p then s h else ∅ := supr_eq_dif _ lemma Inter_eq_if {p : Prop} [decidable p] (s : set α) : (⋂ h : p, s) = if p then s else univ := infi_eq_if _ lemma Infi_eq_dif {p : Prop} [decidable p] (s : p → set α) : (⋂ (h : p), s h) = if h : p then s h else univ := infi_eq_dif _ lemma exists_set_mem_of_union_eq_top {ι : Type*} (t : set ι) (s : ι → set β) (w : (⋃ i ∈ t, s i) = ⊤) (x : β) : ∃ (i ∈ t), x ∈ s i := begin have p : x ∈ ⊤ := set.mem_univ x, simpa only [←w, set.mem_Union] using p, end lemma nonempty_of_union_eq_top_of_nonempty {ι : Type*} (t : set ι) (s : ι → set α) (H : nonempty α) (w : (⋃ i ∈ t, s i) = ⊤) : t.nonempty := begin obtain ⟨x, m, -⟩ := exists_set_mem_of_union_eq_top t s w H.some, exact ⟨x, m⟩, end theorem set_of_exists (p : ι → β → Prop) : {x | ∃ i, p i x} = ⋃ i, {x | p i x} := ext $ λ i, mem_Union.symm theorem set_of_forall (p : ι → β → Prop) : {x | ∀ i, p i x} = ⋂ i, {x | p i x} := ext $ λ i, mem_Inter.symm lemma Union_subset {s : ι → set α} {t : set α} (h : ∀ i, s i ⊆ t) : (⋃ i, s i) ⊆ t := @supr_le (set α) _ _ _ _ h lemma Union₂_subset {s : Π i, κ i → set α} {t : set α} (h : ∀ i j, s i j ⊆ t) : (⋃ i j, s i j) ⊆ t := Union_subset $ λ x, Union_subset (h x) theorem subset_Inter {t : set β} {s : ι → set β} (h : ∀ i, t ⊆ s i) : t ⊆ ⋂ i, s i := @le_infi (set β) _ _ _ _ h lemma subset_Inter₂ {s : set α} {t : Π i, κ i → set α} (h : ∀ i j, s ⊆ t i j) : s ⊆ ⋂ i j, t i j := subset_Inter $ λ x, subset_Inter $ h x @[simp] lemma Union_subset_iff {s : ι → set α} {t : set α} : (⋃ i, s i) ⊆ t ↔ ∀ i, s i ⊆ t := ⟨λ h i, subset.trans (le_supr s _) h, Union_subset⟩ lemma Union₂_subset_iff {s : Π i, κ i → set α} {t : set α} : (⋃ i j, s i j) ⊆ t ↔ ∀ i j, s i j ⊆ t := by simp_rw Union_subset_iff @[simp] lemma subset_Inter_iff {s : set α} {t : ι → set α} : s ⊆ (⋂ i, t i) ↔ ∀ i, s ⊆ t i := @le_infi_iff (set α) _ _ _ _ @[simp] lemma subset_Inter₂_iff {s : set α} {t : Π i, κ i → set α} : s ⊆ (⋂ i j, t i j) ↔ ∀ i j, s ⊆ t i j := by simp_rw subset_Inter_iff lemma subset_Union : ∀ (s : ι → set β) (i : ι), s i ⊆ ⋃ i, s i := le_supr lemma Inter_subset : ∀ (s : ι → set β) (i : ι), (⋂ i, s i) ⊆ s i := infi_le lemma subset_Union₂ {s : Π i, κ i → set α} (i : ι) (j : κ i) : s i j ⊆ ⋃ i j, s i j := @le_supr₂ (set α) _ _ _ _ i j lemma Inter₂_subset {s : Π i, κ i → set α} (i : ι) (j : κ i) : (⋂ i j, s i j) ⊆ s i j := @infi₂_le (set α) _ _ _ _ i j /-- This rather trivial consequence of `subset_Union`is convenient with `apply`, and has `i` explicit for this purpose. -/ lemma subset_Union_of_subset {s : set α} {t : ι → set α} (i : ι) (h : s ⊆ t i) : s ⊆ ⋃ i, t i := @le_supr_of_le (set α) _ _ _ _ i h /-- This rather trivial consequence of `Inter_subset`is convenient with `apply`, and has `i` explicit for this purpose. -/ lemma Inter_subset_of_subset {s : ι → set α} {t : set α} (i : ι) (h : s i ⊆ t) : (⋂ i, s i) ⊆ t := @infi_le_of_le (set α) _ _ _ _ i h lemma Union_mono {s t : ι → set α} (h : ∀ i, s i ⊆ t i) : (⋃ i, s i) ⊆ ⋃ i, t i := @supr_mono (set α) _ _ s t h lemma Union₂_mono {s t : Π i, κ i → set α} (h : ∀ i j, s i j ⊆ t i j) : (⋃ i j, s i j) ⊆ ⋃ i j, t i j := @supr₂_mono (set α) _ _ _ s t h lemma Inter_mono {s t : ι → set α} (h : ∀ i, s i ⊆ t i) : (⋂ i, s i) ⊆ ⋂ i, t i := @infi_mono (set α) _ _ s t h lemma Inter₂_mono {s t : Π i, κ i → set α} (h : ∀ i j, s i j ⊆ t i j) : (⋂ i j, s i j) ⊆ ⋂ i j, t i j := @infi₂_mono (set α) _ _ _ s t h lemma Union_mono' {s : ι → set α} {t : ι₂ → set α} (h : ∀ i, ∃ j, s i ⊆ t j) : (⋃ i, s i) ⊆ ⋃ i, t i := @supr_mono' (set α) _ _ _ s t h lemma Union₂_mono' {s : Π i, κ i → set α} {t : Π i', κ' i' → set α} (h : ∀ i j, ∃ i' j', s i j ⊆ t i' j') : (⋃ i j, s i j) ⊆ ⋃ i' j', t i' j' := @supr₂_mono' (set α) _ _ _ _ _ s t h lemma Inter_mono' {s : ι → set α} {t : ι' → set α} (h : ∀ j, ∃ i, s i ⊆ t j) : (⋂ i, s i) ⊆ (⋂ j, t j) := set.subset_Inter $ λ j, let ⟨i, hi⟩ := h j in Inter_subset_of_subset i hi lemma Inter₂_mono' {s : Π i, κ i → set α} {t : Π i', κ' i' → set α} (h : ∀ i' j', ∃ i j, s i j ⊆ t i' j') : (⋂ i j, s i j) ⊆ ⋂ i' j', t i' j' := subset_Inter₂_iff.2 $ λ i' j', let ⟨i, j, hst⟩ := h i' j' in (Inter₂_subset _ _).trans hst lemma Union₂_subset_Union (κ : ι → Sort*) (s : ι → set α) : (⋃ i (j : κ i), s i) ⊆ ⋃ i, s i := Union_mono $ λ i, Union_subset $ λ h, subset.rfl lemma Inter_subset_Inter₂ (κ : ι → Sort*) (s : ι → set α) : (⋂ i, s i) ⊆ ⋂ i (j : κ i), s i := Inter_mono $ λ i, subset_Inter $ λ h, subset.rfl lemma Union_set_of (P : ι → α → Prop) : (⋃ i, {x : α | P i x}) = {x : α | ∃ i, P i x} := by { ext, exact mem_Union } lemma Inter_set_of (P : ι → α → Prop) : (⋂ i, {x : α | P i x}) = {x : α | ∀ i, P i x} := by { ext, exact mem_Inter } lemma Union_congr_of_surjective {f : ι → set α} {g : ι₂ → set α} (h : ι → ι₂) (h1 : surjective h) (h2 : ∀ x, g (h x) = f x) : (⋃ x, f x) = ⋃ y, g y := h1.supr_congr h h2 lemma Inter_congr_of_surjective {f : ι → set α} {g : ι₂ → set α} (h : ι → ι₂) (h1 : surjective h) (h2 : ∀ x, g (h x) = f x) : (⋂ x, f x) = ⋂ y, g y := h1.infi_congr h h2 theorem Union_const [nonempty ι] (s : set β) : (⋃ i : ι, s) = s := supr_const theorem Inter_const [nonempty ι] (s : set β) : (⋂ i : ι, s) = s := infi_const @[simp] theorem compl_Union (s : ι → set β) : (⋃ i, s i)ᶜ = (⋂ i, (s i)ᶜ) := compl_supr lemma compl_Union₂ (s : Π i, κ i → set α) : (⋃ i j, s i j)ᶜ = ⋂ i j, (s i j)ᶜ := by simp_rw compl_Union @[simp] theorem compl_Inter (s : ι → set β) : (⋂ i, s i)ᶜ = (⋃ i, (s i)ᶜ) := compl_infi lemma compl_Inter₂ (s : Π i, κ i → set α) : (⋂ i j, s i j)ᶜ = ⋃ i j, (s i j)ᶜ := by simp_rw compl_Inter -- classical -- complete_boolean_algebra theorem Union_eq_compl_Inter_compl (s : ι → set β) : (⋃ i, s i) = (⋂ i, (s i)ᶜ)ᶜ := by simp only [compl_Inter, compl_compl] -- classical -- complete_boolean_algebra theorem Inter_eq_compl_Union_compl (s : ι → set β) : (⋂ i, s i) = (⋃ i, (s i)ᶜ)ᶜ := by simp only [compl_Union, compl_compl] theorem inter_Union (s : set β) (t : ι → set β) : s ∩ (⋃ i, t i) = ⋃ i, s ∩ t i := inf_supr_eq _ _ theorem Union_inter (s : set β) (t : ι → set β) : (⋃ i, t i) ∩ s = ⋃ i, t i ∩ s := supr_inf_eq _ _ theorem Union_union_distrib (s : ι → set β) (t : ι → set β) : (⋃ i, s i ∪ t i) = (⋃ i, s i) ∪ (⋃ i, t i) := supr_sup_eq theorem Inter_inter_distrib (s : ι → set β) (t : ι → set β) : (⋂ i, s i ∩ t i) = (⋂ i, s i) ∩ (⋂ i, t i) := infi_inf_eq theorem union_Union [nonempty ι] (s : set β) (t : ι → set β) : s ∪ (⋃ i, t i) = ⋃ i, s ∪ t i := sup_supr theorem Union_union [nonempty ι] (s : set β) (t : ι → set β) : (⋃ i, t i) ∪ s = ⋃ i, t i ∪ s := supr_sup theorem inter_Inter [nonempty ι] (s : set β) (t : ι → set β) : s ∩ (⋂ i, t i) = ⋂ i, s ∩ t i := inf_infi theorem Inter_inter [nonempty ι] (s : set β) (t : ι → set β) : (⋂ i, t i) ∩ s = ⋂ i, t i ∩ s := infi_inf -- classical theorem union_Inter (s : set β) (t : ι → set β) : s ∪ (⋂ i, t i) = ⋂ i, s ∪ t i := sup_infi_eq _ _ theorem Union_diff (s : set β) (t : ι → set β) : (⋃ i, t i) \ s = ⋃ i, t i \ s := Union_inter _ _ theorem diff_Union [nonempty ι] (s : set β) (t : ι → set β) : s \ (⋃ i, t i) = ⋂ i, s \ t i := by rw [diff_eq, compl_Union, inter_Inter]; refl theorem diff_Inter (s : set β) (t : ι → set β) : s \ (⋂ i, t i) = ⋃ i, s \ t i := by rw [diff_eq, compl_Inter, inter_Union]; refl lemma directed_on_Union {r} {f : ι → set α} (hd : directed (⊆) f) (h : ∀ x, directed_on r (f x)) : directed_on r (⋃ x, f x) := by simp only [directed_on, exists_prop, mem_Union, exists_imp_distrib]; exact λ a₁ b₁ fb₁ a₂ b₂ fb₂, let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂, ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) in ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ lemma Union_inter_subset {ι α} {s t : ι → set α} : (⋃ i, s i ∩ t i) ⊆ (⋃ i, s i) ∩ (⋃ i, t i) := by { rintro x ⟨_, ⟨i, rfl⟩, xs, xt⟩, exact ⟨⟨_, ⟨i, rfl⟩, xs⟩, _, ⟨i, rfl⟩, xt⟩ } lemma Union_inter_of_monotone {ι α} [semilattice_sup ι] {s t : ι → set α} (hs : monotone s) (ht : monotone t) : (⋃ i, s i ∩ t i) = (⋃ i, s i) ∩ (⋃ i, t i) := begin ext x, refine ⟨λ hx, Union_inter_subset hx, _⟩, rintro ⟨⟨_, ⟨i, rfl⟩, xs⟩, _, ⟨j, rfl⟩, xt⟩, exact ⟨_, ⟨i ⊔ j, rfl⟩, hs le_sup_left xs, ht le_sup_right xt⟩ end /-- An equality version of this lemma is `Union_Inter_of_monotone` in `data.set.finite`. -/ lemma Union_Inter_subset {s : ι → ι' → set α} : (⋃ j, ⋂ i, s i j) ⊆ ⋂ i, ⋃ j, s i j := by { rintro x ⟨_, ⟨i, rfl⟩, hx⟩ _ ⟨j, rfl⟩, exact ⟨_, ⟨i, rfl⟩, hx _ ⟨j, rfl⟩⟩ } lemma Union_option {ι} (s : option ι → set α) : (⋃ o, s o) = s none ∪ ⋃ i, s (some i) := supr_option s lemma Inter_option {ι} (s : option ι → set α) : (⋂ o, s o) = s none ∩ ⋂ i, s (some i) := infi_option s section variables (p : ι → Prop) [decidable_pred p] lemma Union_dite (f : Π i, p i → set α) (g : Π i, ¬p i → set α) : (⋃ i, if h : p i then f i h else g i h) = (⋃ i (h : p i), f i h) ∪ (⋃ i (h : ¬ p i), g i h) := supr_dite _ _ _ lemma Union_ite (f g : ι → set α) : (⋃ i, if p i then f i else g i) = (⋃ i (h : p i), f i) ∪ (⋃ i (h : ¬ p i), g i) := Union_dite _ _ _ lemma Inter_dite (f : Π i, p i → set α) (g : Π i, ¬p i → set α) : (⋂ i, if h : p i then f i h else g i h) = (⋂ i (h : p i), f i h) ∩ (⋂ i (h : ¬ p i), g i h) := infi_dite _ _ _ lemma Inter_ite (f g : ι → set α) : (⋂ i, if p i then f i else g i) = (⋂ i (h : p i), f i) ∩ (⋂ i (h : ¬ p i), g i) := Inter_dite _ _ _ end lemma image_projection_prod {ι : Type*} {α : ι → Type*} {v : Π (i : ι), set (α i)} (hv : (pi univ v).nonempty) (i : ι) : (λ (x : Π (i : ι), α i), x i) '' (⋂ k, (λ (x : Π (j : ι), α j), x k) ⁻¹' v k) = v i:= begin classical, apply subset.antisymm, { simp [Inter_subset] }, { intros y y_in, simp only [mem_image, mem_Inter, mem_preimage], rcases hv with ⟨z, hz⟩, refine ⟨function.update z i y, _, update_same i y z⟩, rw @forall_update_iff ι α _ z i y (λ i t, t ∈ v i), exact ⟨y_in, λ j hj, by simpa using hz j⟩ }, end /-! ### Unions and intersections indexed by `Prop` -/ @[simp] theorem Inter_false {s : false → set α} : Inter s = univ := infi_false @[simp] theorem Union_false {s : false → set α} : Union s = ∅ := supr_false @[simp] theorem Inter_true {s : true → set α} : Inter s = s trivial := infi_true @[simp] theorem Union_true {s : true → set α} : Union s = s trivial := supr_true @[simp] theorem Inter_exists {p : ι → Prop} {f : Exists p → set α} : (⋂ x, f x) = (⋂ i (h : p i), f ⟨i, h⟩) := infi_exists @[simp] theorem Union_exists {p : ι → Prop} {f : Exists p → set α} : (⋃ x, f x) = (⋃ i (h : p i), f ⟨i, h⟩) := supr_exists @[simp] lemma Union_empty : (⋃ i : ι, ∅ : set α) = ∅ := supr_bot @[simp] lemma Inter_univ : (⋂ i : ι, univ : set α) = univ := infi_top section variables {s : ι → set α} @[simp] lemma Union_eq_empty : (⋃ i, s i) = ∅ ↔ ∀ i, s i = ∅ := supr_eq_bot @[simp] lemma Inter_eq_univ : (⋂ i, s i) = univ ↔ ∀ i, s i = univ := infi_eq_top @[simp] lemma nonempty_Union : (⋃ i, s i).nonempty ↔ ∃ i, (s i).nonempty := by simp [← ne_empty_iff_nonempty] @[simp] lemma nonempty_bUnion {t : set α} {s : α → set β} : (⋃ i ∈ t, s i).nonempty ↔ ∃ i ∈ t, (s i).nonempty := by simp [← ne_empty_iff_nonempty] lemma Union_nonempty_index (s : set α) (t : s.nonempty → set β) : (⋃ h, t h) = ⋃ x ∈ s, t ⟨x, ‹_›⟩ := supr_exists end @[simp] theorem Inter_Inter_eq_left {b : β} {s : Π x : β, x = b → set α} : (⋂ x (h : x = b), s x h) = s b rfl := infi_infi_eq_left @[simp] theorem Inter_Inter_eq_right {b : β} {s : Π x : β, b = x → set α} : (⋂ x (h : b = x), s x h) = s b rfl := infi_infi_eq_right @[simp] theorem Union_Union_eq_left {b : β} {s : Π x : β, x = b → set α} : (⋃ x (h : x = b), s x h) = s b rfl := supr_supr_eq_left @[simp] theorem Union_Union_eq_right {b : β} {s : Π x : β, b = x → set α} : (⋃ x (h : b = x), s x h) = s b rfl := supr_supr_eq_right theorem Inter_or {p q : Prop} (s : p ∨ q → set α) : (⋂ h, s h) = (⋂ h : p, s (or.inl h)) ∩ (⋂ h : q, s (or.inr h)) := infi_or theorem Union_or {p q : Prop} (s : p ∨ q → set α) : (⋃ h, s h) = (⋃ i, s (or.inl i)) ∪ (⋃ j, s (or.inr j)) := supr_or theorem Union_and {p q : Prop} (s : p ∧ q → set α) : (⋃ h, s h) = ⋃ hp hq, s ⟨hp, hq⟩ := supr_and theorem Inter_and {p q : Prop} (s : p ∧ q → set α) : (⋂ h, s h) = ⋂ hp hq, s ⟨hp, hq⟩ := infi_and theorem Union_comm (s : ι → ι' → set α) : (⋃ i i', s i i') = ⋃ i' i, s i i' := supr_comm theorem Inter_comm (s : ι → ι' → set α) : (⋂ i i', s i i') = ⋂ i' i, s i i' := infi_comm @[simp] theorem bUnion_and (p : ι → Prop) (q : ι → ι' → Prop) (s : Π x y, p x ∧ q x y → set α) : (⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h) = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [Union_and, @Union_comm _ ι'] @[simp] theorem bUnion_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : Π x y, p y ∧ q x y → set α) : (⋃ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h) = ⋃ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [Union_and, @Union_comm _ ι] @[simp] theorem bInter_and (p : ι → Prop) (q : ι → ι' → Prop) (s : Π x y, p x ∧ q x y → set α) : (⋂ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h) = ⋂ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y ⟨hx, hy⟩ := by simp only [Inter_and, @Inter_comm _ ι'] @[simp] theorem bInter_and' (p : ι' → Prop) (q : ι → ι' → Prop) (s : Π x y, p y ∧ q x y → set α) : (⋂ (x : ι) (y : ι') (h : p y ∧ q x y), s x y h) = ⋂ (y : ι') (hy : p y) (x : ι) (hx : q x y), s x y ⟨hy, hx⟩ := by simp only [Inter_and, @Inter_comm _ ι] @[simp] theorem Union_Union_eq_or_left {b : β} {p : β → Prop} {s : Π x : β, (x = b ∨ p x) → set α} : (⋃ x h, s x h) = s b (or.inl rfl) ∪ ⋃ x (h : p x), s x (or.inr h) := by simp only [Union_or, Union_union_distrib, Union_Union_eq_left] @[simp] theorem Inter_Inter_eq_or_left {b : β} {p : β → Prop} {s : Π x : β, (x = b ∨ p x) → set α} : (⋂ x h, s x h) = s b (or.inl rfl) ∩ ⋂ x (h : p x), s x (or.inr h) := by simp only [Inter_or, Inter_inter_distrib, Inter_Inter_eq_left] /-! ### Bounded unions and intersections -/ /-- A specialization of `mem_Union₂`. -/ theorem mem_bUnion {s : set α} {t : α → set β} {x : α} {y : β} (xs : x ∈ s) (ytx : y ∈ t x) : y ∈ ⋃ x ∈ s, t x := mem_Union₂_of_mem xs ytx /-- A specialization of `mem_Inter₂`. -/ theorem mem_bInter {s : set α} {t : α → set β} {y : β} (h : ∀ x ∈ s, y ∈ t x) : y ∈ ⋂ x ∈ s, t x := mem_Inter₂_of_mem h /-- A specialization of `subset_Union₂`. -/ theorem subset_bUnion_of_mem {s : set α} {u : α → set β} {x : α} (xs : x ∈ s) : u x ⊆ (⋃ x ∈ s, u x) := subset_Union₂ x xs /-- A specialization of `Inter₂_subset`. -/ theorem bInter_subset_of_mem {s : set α} {t : α → set β} {x : α} (xs : x ∈ s) : (⋂ x ∈ s, t x) ⊆ t x := Inter₂_subset x xs theorem bUnion_subset_bUnion_left {s s' : set α} {t : α → set β} (h : s ⊆ s') : (⋃ x ∈ s, t x) ⊆ (⋃ x ∈ s', t x) := Union₂_subset $ λ x hx, subset_bUnion_of_mem $ h hx theorem bInter_subset_bInter_left {s s' : set α} {t : α → set β} (h : s' ⊆ s) : (⋂ x ∈ s, t x) ⊆ (⋂ x ∈ s', t x) := subset_Inter₂ $ λ x hx, bInter_subset_of_mem $ h hx lemma bUnion_mono {s s' : set α} {t t' : α → set β} (hs : s' ⊆ s) (h : ∀ x ∈ s, t x ⊆ t' x) : (⋃ x ∈ s', t x) ⊆ ⋃ x ∈ s, t' x := (bUnion_subset_bUnion_left hs).trans $ Union₂_mono h lemma bInter_mono {s s' : set α} {t t' : α → set β} (hs : s ⊆ s') (h : ∀ x ∈ s, t x ⊆ t' x) : (⋂ x ∈ s', t x) ⊆ (⋂ x ∈ s, t' x) := (bInter_subset_bInter_left hs).trans $ Inter₂_mono h lemma Union_congr {s t : ι → set α} (h : ∀ i, s i = t i) : (⋃ i, s i) = ⋃ i, t i := supr_congr h lemma Inter_congr {s t : ι → set α} (h : ∀ i, s i = t i) : (⋂ i, s i) = ⋂ i, t i := infi_congr h lemma Union₂_congr {s t : Π i, κ i → set α} (h : ∀ i j, s i j = t i j) : (⋃ i j, s i j) = ⋃ i j, t i j := Union_congr $ λ i, Union_congr $ h i lemma Inter₂_congr {s t : Π i, κ i → set α} (h : ∀ i j, s i j = t i j) : (⋂ i j, s i j) = ⋂ i j, t i j := Inter_congr $ λ i, Inter_congr $ h i theorem bUnion_eq_Union (s : set α) (t : Π x ∈ s, set β) : (⋃ x ∈ s, t x ‹_›) = (⋃ x : s, t x x.2) := supr_subtype' theorem bInter_eq_Inter (s : set α) (t : Π x ∈ s, set β) : (⋂ x ∈ s, t x ‹_›) = (⋂ x : s, t x x.2) := infi_subtype' theorem Union_subtype (p : α → Prop) (s : {x // p x} → set β) : (⋃ x : {x // p x}, s x) = ⋃ x (hx : p x), s ⟨x, hx⟩ := supr_subtype theorem Inter_subtype (p : α → Prop) (s : {x // p x} → set β) : (⋂ x : {x // p x}, s x) = ⋂ x (hx : p x), s ⟨x, hx⟩ := infi_subtype theorem bInter_empty (u : α → set β) : (⋂ x ∈ (∅ : set α), u x) = univ := infi_emptyset theorem bInter_univ (u : α → set β) : (⋂ x ∈ @univ α, u x) = ⋂ x, u x := infi_univ @[simp] lemma bUnion_self (s : set α) : (⋃ x ∈ s, s) = s := subset.antisymm (Union₂_subset $ λ x hx, subset.refl s) (λ x hx, mem_bUnion hx hx) @[simp] lemma Union_nonempty_self (s : set α) : (⋃ h : s.nonempty, s) = s := by rw [Union_nonempty_index, bUnion_self] -- TODO(Jeremy): here is an artifact of the encoding of bounded intersection: -- without dsimp, the next theorem fails to type check, because there is a lambda -- in a type that needs to be contracted. Using simp [eq_of_mem_singleton xa] also works. theorem bInter_singleton (a : α) (s : α → set β) : (⋂ x ∈ ({a} : set α), s x) = s a := infi_singleton theorem bInter_union (s t : set α) (u : α → set β) : (⋂ x ∈ s ∪ t, u x) = (⋂ x ∈ s, u x) ∩ (⋂ x ∈ t, u x) := infi_union theorem bInter_insert (a : α) (s : set α) (t : α → set β) : (⋂ x ∈ insert a s, t x) = t a ∩ (⋂ x ∈ s, t x) := by simp -- TODO(Jeremy): another example of where an annotation is needed theorem bInter_pair (a b : α) (s : α → set β) : (⋂ x ∈ ({a, b} : set α), s x) = s a ∩ s b := by rw [bInter_insert, bInter_singleton] lemma bInter_inter {ι α : Type*} {s : set ι} (hs : s.nonempty) (f : ι → set α) (t : set α) : (⋂ i ∈ s, f i ∩ t) = (⋂ i ∈ s, f i) ∩ t := begin haveI : nonempty s := hs.to_subtype, simp [bInter_eq_Inter, ← Inter_inter] end lemma inter_bInter {ι α : Type*} {s : set ι} (hs : s.nonempty) (f : ι → set α) (t : set α) : (⋂ i ∈ s, t ∩ f i) = t ∩ ⋂ i ∈ s, f i := begin rw [inter_comm, ← bInter_inter hs], simp [inter_comm] end theorem bUnion_empty (s : α → set β) : (⋃ x ∈ (∅ : set α), s x) = ∅ := supr_emptyset theorem bUnion_univ (s : α → set β) : (⋃ x ∈ @univ α, s x) = ⋃ x, s x := supr_univ theorem bUnion_singleton (a : α) (s : α → set β) : (⋃ x ∈ ({a} : set α), s x) = s a := supr_singleton @[simp] theorem bUnion_of_singleton (s : set α) : (⋃ x ∈ s, {x}) = s := ext $ by simp theorem bUnion_union (s t : set α) (u : α → set β) : (⋃ x ∈ s ∪ t, u x) = (⋃ x ∈ s, u x) ∪ (⋃ x ∈ t, u x) := supr_union @[simp] lemma Union_coe_set {α β : Type*} (s : set α) (f : s → set β) : (⋃ i, f i) = ⋃ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := Union_subtype _ _ @[simp] lemma Inter_coe_set {α β : Type*} (s : set α) (f : s → set β) : (⋂ i, f i) = ⋂ i ∈ s, f ⟨i, ‹i ∈ s›⟩ := Inter_subtype _ _ theorem bUnion_insert (a : α) (s : set α) (t : α → set β) : (⋃ x ∈ insert a s, t x) = t a ∪ (⋃ x ∈ s, t x) := by simp theorem bUnion_pair (a b : α) (s : α → set β) : (⋃ x ∈ ({a, b} : set α), s x) = s a ∪ s b := by simp lemma inter_Union₂ (s : set α) (t : Π i, κ i → set α) : s ∩ (⋃ i j, t i j) = ⋃ i j, s ∩ t i j := by simp only [inter_Union] lemma Union₂_inter (s : Π i, κ i → set α) (t : set α) : (⋃ i j, s i j) ∩ t = ⋃ i j, s i j ∩ t := by simp_rw Union_inter theorem mem_sUnion_of_mem {x : α} {t : set α} {S : set (set α)} (hx : x ∈ t) (ht : t ∈ S) : x ∈ ⋃₀ S := ⟨t, ht, hx⟩ -- is this theorem really necessary? theorem not_mem_of_not_mem_sUnion {x : α} {t : set α} {S : set (set α)} (hx : x ∉ ⋃₀ S) (ht : t ∈ S) : x ∉ t := λ h, hx ⟨t, ht, h⟩ theorem sInter_subset_of_mem {S : set (set α)} {t : set α} (tS : t ∈ S) : ⋂₀ S ⊆ t := Inf_le tS theorem subset_sUnion_of_mem {S : set (set α)} {t : set α} (tS : t ∈ S) : t ⊆ ⋃₀ S := le_Sup tS lemma subset_sUnion_of_subset {s : set α} (t : set (set α)) (u : set α) (h₁ : s ⊆ u) (h₂ : u ∈ t) : s ⊆ ⋃₀ t := subset.trans h₁ (subset_sUnion_of_mem h₂) theorem sUnion_subset {S : set (set α)} {t : set α} (h : ∀ t' ∈ S, t' ⊆ t) : (⋃₀ S) ⊆ t := Sup_le h @[simp] theorem sUnion_subset_iff {s : set (set α)} {t : set α} : ⋃₀ s ⊆ t ↔ ∀ t' ∈ s, t' ⊆ t := @Sup_le_iff (set α) _ _ _ theorem subset_sInter {S : set (set α)} {t : set α} (h : ∀ t' ∈ S, t ⊆ t') : t ⊆ (⋂₀ S) := le_Inf h @[simp] theorem subset_sInter_iff {S : set (set α)} {t : set α} : t ⊆ (⋂₀ S) ↔ ∀ t' ∈ S, t ⊆ t' := @le_Inf_iff (set α) _ _ _ theorem sUnion_subset_sUnion {S T : set (set α)} (h : S ⊆ T) : ⋃₀ S ⊆ ⋃₀ T := sUnion_subset $ λ s hs, subset_sUnion_of_mem (h hs) theorem sInter_subset_sInter {S T : set (set α)} (h : S ⊆ T) : ⋂₀ T ⊆ ⋂₀ S := subset_sInter $ λ s hs, sInter_subset_of_mem (h hs) @[simp] theorem sUnion_empty : ⋃₀ ∅ = (∅ : set α) := Sup_empty @[simp] theorem sInter_empty : ⋂₀ ∅ = (univ : set α) := Inf_empty @[simp] theorem sUnion_singleton (s : set α) : ⋃₀ {s} = s := Sup_singleton @[simp] theorem sInter_singleton (s : set α) : ⋂₀ {s} = s := Inf_singleton @[simp] theorem sUnion_eq_empty {S : set (set α)} : (⋃₀ S) = ∅ ↔ ∀ s ∈ S, s = ∅ := Sup_eq_bot @[simp] theorem sInter_eq_univ {S : set (set α)} : (⋂₀ S) = univ ↔ ∀ s ∈ S, s = univ := Inf_eq_top @[simp] theorem nonempty_sUnion {S : set (set α)} : (⋃₀ S).nonempty ↔ ∃ s ∈ S, set.nonempty s := by simp [← ne_empty_iff_nonempty] lemma nonempty.of_sUnion {s : set (set α)} (h : (⋃₀ s).nonempty) : s.nonempty := let ⟨s, hs, _⟩ := nonempty_sUnion.1 h in ⟨s, hs⟩ lemma nonempty.of_sUnion_eq_univ [nonempty α] {s : set (set α)} (h : ⋃₀ s = univ) : s.nonempty := nonempty.of_sUnion $ h.symm ▸ univ_nonempty theorem sUnion_union (S T : set (set α)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T := Sup_union theorem sInter_union (S T : set (set α)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T := Inf_union @[simp] theorem sUnion_insert (s : set α) (T : set (set α)) : ⋃₀ (insert s T) = s ∪ ⋃₀ T := Sup_insert @[simp] theorem sInter_insert (s : set α) (T : set (set α)) : ⋂₀ (insert s T) = s ∩ ⋂₀ T := Inf_insert theorem sUnion_pair (s t : set α) : ⋃₀ {s, t} = s ∪ t := Sup_pair theorem sInter_pair (s t : set α) : ⋂₀ {s, t} = s ∩ t := Inf_pair @[simp] theorem sUnion_image (f : α → set β) (s : set α) : ⋃₀ (f '' s) = ⋃ x ∈ s, f x := Sup_image @[simp] theorem sInter_image (f : α → set β) (s : set α) : ⋂₀ (f '' s) = ⋂ x ∈ s, f x := Inf_image @[simp] theorem sUnion_range (f : ι → set β) : ⋃₀ (range f) = ⋃ x, f x := rfl @[simp] theorem sInter_range (f : ι → set β) : ⋂₀ (range f) = ⋂ x, f x := rfl lemma Union_eq_univ_iff {f : ι → set α} : (⋃ i, f i) = univ ↔ ∀ x, ∃ i, x ∈ f i := by simp only [eq_univ_iff_forall, mem_Union] lemma Union₂_eq_univ_iff {s : Π i, κ i → set α} : (⋃ i j, s i j) = univ ↔ ∀ a, ∃ i j, a ∈ s i j := by simp only [Union_eq_univ_iff, mem_Union] lemma sUnion_eq_univ_iff {c : set (set α)} : ⋃₀ c = univ ↔ ∀ a, ∃ b ∈ c, a ∈ b := by simp only [eq_univ_iff_forall, mem_sUnion] -- classical lemma Inter_eq_empty_iff {f : ι → set α} : (⋂ i, f i) = ∅ ↔ ∀ x, ∃ i, x ∉ f i := by simp [set.eq_empty_iff_forall_not_mem] -- classical lemma Inter₂_eq_empty_iff {s : Π i, κ i → set α} : (⋂ i j, s i j) = ∅ ↔ ∀ a, ∃ i j, a ∉ s i j := by simp only [eq_empty_iff_forall_not_mem, mem_Inter, not_forall] -- classical lemma sInter_eq_empty_iff {c : set (set α)} : ⋂₀ c = ∅ ↔ ∀ a, ∃ b ∈ c, a ∉ b := by simp [set.eq_empty_iff_forall_not_mem] -- classical @[simp] theorem nonempty_Inter {f : ι → set α} : (⋂ i, f i).nonempty ↔ ∃ x, ∀ i, x ∈ f i := by simp [← ne_empty_iff_nonempty, Inter_eq_empty_iff] -- classical @[simp] lemma nonempty_Inter₂ {s : Π i, κ i → set α} : (⋂ i j, s i j).nonempty ↔ ∃ a, ∀ i j, a ∈ s i j := by simp [← ne_empty_iff_nonempty, Inter_eq_empty_iff] -- classical @[simp] theorem nonempty_sInter {c : set (set α)}: (⋂₀ c).nonempty ↔ ∃ a, ∀ b ∈ c, a ∈ b := by simp [← ne_empty_iff_nonempty, sInter_eq_empty_iff] -- classical theorem compl_sUnion (S : set (set α)) : (⋃₀ S)ᶜ = ⋂₀ (compl '' S) := ext $ λ x, by simp -- classical theorem sUnion_eq_compl_sInter_compl (S : set (set α)) : ⋃₀ S = (⋂₀ (compl '' S))ᶜ := by rw [←compl_compl (⋃₀ S), compl_sUnion] -- classical theorem compl_sInter (S : set (set α)) : (⋂₀ S)ᶜ = ⋃₀ (compl '' S) := by rw [sUnion_eq_compl_sInter_compl, compl_compl_image] -- classical theorem sInter_eq_compl_sUnion_compl (S : set (set α)) : ⋂₀ S = (⋃₀ (compl '' S))ᶜ := by rw [←compl_compl (⋂₀ S), compl_sInter] theorem inter_empty_of_inter_sUnion_empty {s t : set α} {S : set (set α)} (hs : t ∈ S) (h : s ∩ ⋃₀ S = ∅) : s ∩ t = ∅ := eq_empty_of_subset_empty $ by rw ← h; exact inter_subset_inter_right _ (subset_sUnion_of_mem hs) theorem range_sigma_eq_Union_range {γ : α → Type*} (f : sigma γ → β) : range f = ⋃ a, range (λ b, f ⟨a, b⟩) := set.ext $ by simp theorem Union_eq_range_sigma (s : α → set β) : (⋃ i, s i) = range (λ a : Σ i, s i, a.2) := by simp [set.ext_iff] theorem Union_image_preimage_sigma_mk_eq_self {ι : Type*} {σ : ι → Type*} (s : set (sigma σ)) : (⋃ i, sigma.mk i '' (sigma.mk i ⁻¹' s)) = s := begin ext x, simp only [mem_Union, mem_image, mem_preimage], split, { rintro ⟨i, a, h, rfl⟩, exact h }, { intro h, cases x with i a, exact ⟨i, a, h, rfl⟩ } end lemma sigma.univ (X : α → Type*) : (set.univ : set (Σ a, X a)) = ⋃ a, range (sigma.mk a) := set.ext $ λ x, iff_of_true trivial ⟨range (sigma.mk x.1), set.mem_range_self _, x.2, sigma.eta x⟩ lemma sUnion_mono {s t : set (set α)} (h : s ⊆ t) : (⋃₀ s) ⊆ (⋃₀ t) := sUnion_subset $ λ t' ht', subset_sUnion_of_mem $ h ht' lemma Union_subset_Union_const {s : set α} (h : ι → ι₂) : (⋃ i : ι, s) ⊆ (⋃ j : ι₂, s) := @supr_const_mono (set α) ι ι₂ _ s h @[simp] lemma Union_singleton_eq_range {α β : Type*} (f : α → β) : (⋃ (x : α), {f x}) = range f := by { ext x, simp [@eq_comm _ x] } lemma Union_of_singleton (α : Type*) : (⋃ x, {x} : set α) = univ := by simp lemma Union_of_singleton_coe (s : set α) : (⋃ (i : s), {i} : set α) = s := by simp lemma sUnion_eq_bUnion {s : set (set α)} : (⋃₀ s) = (⋃ (i : set α) (h : i ∈ s), i) := by rw [← sUnion_image, image_id'] lemma sInter_eq_bInter {s : set (set α)} : (⋂₀ s) = (⋂ (i : set α) (h : i ∈ s), i) := by rw [← sInter_image, image_id'] lemma sUnion_eq_Union {s : set (set α)} : (⋃₀ s) = (⋃ (i : s), i) := by simp only [←sUnion_range, subtype.range_coe] lemma sInter_eq_Inter {s : set (set α)} : (⋂₀ s) = (⋂ (i : s), i) := by simp only [←sInter_range, subtype.range_coe] lemma union_eq_Union {s₁ s₂ : set α} : s₁ ∪ s₂ = ⋃ b : bool, cond b s₁ s₂ := sup_eq_supr s₁ s₂ lemma inter_eq_Inter {s₁ s₂ : set α} : s₁ ∩ s₂ = ⋂ b : bool, cond b s₁ s₂ := inf_eq_infi s₁ s₂ lemma sInter_union_sInter {S T : set (set α)} : (⋂₀ S) ∪ (⋂₀ T) = (⋂ p ∈ S ×ˢ T, (p : (set α) × (set α)).1 ∪ p.2) := Inf_sup_Inf lemma sUnion_inter_sUnion {s t : set (set α)} : (⋃₀ s) ∩ (⋃₀ t) = (⋃ p ∈ s ×ˢ t, (p : (set α) × (set α )).1 ∩ p.2) := Sup_inf_Sup lemma bUnion_Union (s : ι → set α) (t : α → set β) : (⋃ x ∈ ⋃ i, s i, t x) = ⋃ i (x ∈ s i), t x := by simp [@Union_comm _ ι] lemma bInter_Union (s : ι → set α) (t : α → set β) : (⋂ x ∈ ⋃ i, s i, t x) = ⋂ i (x ∈ s i), t x := by simp [@Inter_comm _ ι] lemma sUnion_Union (s : ι → set (set α)) : ⋃₀ (⋃ i, s i) = ⋃ i, ⋃₀ (s i) := by simp only [sUnion_eq_bUnion, bUnion_Union] theorem sInter_Union (s : ι → set (set α)) : ⋂₀ (⋃ i, s i) = ⋂ i, ⋂₀ s i := by simp only [sInter_eq_bInter, bInter_Union] lemma Union_range_eq_sUnion {α β : Type*} (C : set (set α)) {f : ∀ (s : C), β → s} (hf : ∀ (s : C), surjective (f s)) : (⋃ (y : β), range (λ (s : C), (f s y).val)) = ⋃₀ C := begin ext x, split, { rintro ⟨s, ⟨y, rfl⟩, ⟨s, hs⟩, rfl⟩, refine ⟨_, hs, _⟩, exact (f ⟨s, hs⟩ y).2 }, { rintro ⟨s, hs, hx⟩, cases hf ⟨s, hs⟩ ⟨x, hx⟩ with y hy, refine ⟨_, ⟨y, rfl⟩, ⟨s, hs⟩, _⟩, exact congr_arg subtype.val hy } end lemma Union_range_eq_Union (C : ι → set α) {f : ∀ (x : ι), β → C x} (hf : ∀ (x : ι), surjective (f x)) : (⋃ (y : β), range (λ (x : ι), (f x y).val)) = ⋃ x, C x := begin ext x, rw [mem_Union, mem_Union], split, { rintro ⟨y, i, rfl⟩, exact ⟨i, (f i y).2⟩ }, { rintro ⟨i, hx⟩, cases hf i ⟨x, hx⟩ with y hy, exact ⟨y, i, congr_arg subtype.val hy⟩ } end lemma union_distrib_Inter_left (s : ι → set α) (t : set α) : t ∪ (⋂ i, s i) = (⋂ i, t ∪ s i) := sup_infi_eq _ _ lemma union_distrib_Inter₂_left (s : set α) (t : Π i, κ i → set α) : s ∪ (⋂ i j, t i j) = ⋂ i j, s ∪ t i j := by simp_rw union_distrib_Inter_left lemma union_distrib_Inter_right (s : ι → set α) (t : set α) : (⋂ i, s i) ∪ t = (⋂ i, s i ∪ t) := infi_sup_eq _ _ lemma union_distrib_Inter₂_right (s : Π i, κ i → set α) (t : set α) : (⋂ i j, s i j) ∪ t = ⋂ i j, s i j ∪ t := by simp_rw union_distrib_Inter_right section function /-! ### `maps_to` -/ lemma maps_to_sUnion {S : set (set α)} {t : set β} {f : α → β} (H : ∀ s ∈ S, maps_to f s t) : maps_to f (⋃₀ S) t := λ x ⟨s, hs, hx⟩, H s hs hx lemma maps_to_Union {s : ι → set α} {t : set β} {f : α → β} (H : ∀ i, maps_to f (s i) t) : maps_to f (⋃ i, s i) t := maps_to_sUnion $ forall_range_iff.2 H lemma maps_to_Union₂ {s : Π i, κ i → set α} {t : set β} {f : α → β} (H : ∀ i j, maps_to f (s i j) t) : maps_to f (⋃ i j, s i j) t := maps_to_Union $ λ i, maps_to_Union (H i) lemma maps_to_Union_Union {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, maps_to f (s i) (t i)) : maps_to f (⋃ i, s i) (⋃ i, t i) := maps_to_Union $ λ i, (H i).mono (subset.refl _) (subset_Union t i) lemma maps_to_Union₂_Union₂ {s : Π i, κ i → set α} {t : Π i, κ i → set β} {f : α → β} (H : ∀ i j, maps_to f (s i j) (t i j)) : maps_to f (⋃ i j, s i j) (⋃ i j, t i j) := maps_to_Union_Union $ λ i, maps_to_Union_Union (H i) lemma maps_to_sInter {s : set α} {T : set (set β)} {f : α → β} (H : ∀ t ∈ T, maps_to f s t) : maps_to f s (⋂₀ T) := λ x hx t ht, H t ht hx lemma maps_to_Inter {s : set α} {t : ι → set β} {f : α → β} (H : ∀ i, maps_to f s (t i)) : maps_to f s (⋂ i, t i) := λ x hx, mem_Inter.2 $ λ i, H i hx lemma maps_to_Inter₂ {s : set α} {t : Π i, κ i → set β} {f : α → β} (H : ∀ i j, maps_to f s (t i j)) : maps_to f s (⋂ i j, t i j) := maps_to_Inter $ λ i, maps_to_Inter (H i) lemma maps_to_Inter_Inter {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, maps_to f (s i) (t i)) : maps_to f (⋂ i, s i) (⋂ i, t i) := maps_to_Inter $ λ i, (H i).mono (Inter_subset s i) (subset.refl _) lemma maps_to_Inter₂_Inter₂ {s : Π i, κ i → set α} {t : Π i, κ i → set β} {f : α → β} (H : ∀ i j, maps_to f (s i j) (t i j)) : maps_to f (⋂ i j, s i j) (⋂ i j, t i j) := maps_to_Inter_Inter $ λ i, maps_to_Inter_Inter (H i) lemma image_Inter_subset (s : ι → set α) (f : α → β) : f '' (⋂ i, s i) ⊆ ⋂ i, f '' (s i) := (maps_to_Inter_Inter $ λ i, maps_to_image f (s i)).image_subset lemma image_Inter₂_subset (s : Π i, κ i → set α) (f : α → β) : f '' (⋂ i j, s i j) ⊆ ⋂ i j, f '' s i j := (maps_to_Inter₂_Inter₂ $ λ i hi, maps_to_image f (s i hi)).image_subset lemma image_sInter_subset (S : set (set α)) (f : α → β) : f '' (⋂₀ S) ⊆ ⋂ s ∈ S, f '' s := by { rw sInter_eq_bInter, apply image_Inter₂_subset } /-! ### `inj_on` -/ lemma inj_on.image_inter {f : α → β} {s t u : set α} (hf : inj_on f u) (hs : s ⊆ u) (ht : t ⊆ u) : f '' (s ∩ t) = f '' s ∩ f '' t := begin apply subset.antisymm (image_inter_subset _ _ _), rintros x ⟨⟨y, ys, hy⟩, ⟨z, zt, hz⟩⟩, have : y = z, { apply hf (hs ys) (ht zt), rwa ← hz at hy }, rw ← this at zt, exact ⟨y, ⟨ys, zt⟩, hy⟩, end lemma inj_on.image_Inter_eq [nonempty ι] {s : ι → set α} {f : α → β} (h : inj_on f (⋃ i, s i)) : f '' (⋂ i, s i) = ⋂ i, f '' (s i) := begin inhabit ι, refine subset.antisymm (image_Inter_subset s f) (λ y hy, _), simp only [mem_Inter, mem_image_iff_bex] at hy, choose x hx hy using hy, refine ⟨x default, mem_Inter.2 $ λ i, _, hy _⟩, suffices : x default = x i, { rw this, apply hx }, replace hx : ∀ i, x i ∈ ⋃ j, s j := λ i, (subset_Union _ _) (hx i), apply h (hx _) (hx _), simp only [hy] end lemma inj_on.image_bInter_eq {p : ι → Prop} {s : Π i (hi : p i), set α} (hp : ∃ i, p i) {f : α → β} (h : inj_on f (⋃ i hi, s i hi)) : f '' (⋂ i hi, s i hi) = ⋂ i hi, f '' (s i hi) := begin simp only [Inter, infi_subtype'], haveI : nonempty {i // p i} := nonempty_subtype.2 hp, apply inj_on.image_Inter_eq, simpa only [Union, supr_subtype'] using h end lemma inj_on_Union_of_directed {s : ι → set α} (hs : directed (⊆) s) {f : α → β} (hf : ∀ i, inj_on f (s i)) : inj_on f (⋃ i, s i) := begin intros x hx y hy hxy, rcases mem_Union.1 hx with ⟨i, hx⟩, rcases mem_Union.1 hy with ⟨j, hy⟩, rcases hs i j with ⟨k, hi, hj⟩, exact hf k (hi hx) (hj hy) hxy end /-! ### `surj_on` -/ lemma surj_on_sUnion {s : set α} {T : set (set β)} {f : α → β} (H : ∀ t ∈ T, surj_on f s t) : surj_on f s (⋃₀ T) := λ x ⟨t, ht, hx⟩, H t ht hx lemma surj_on_Union {s : set α} {t : ι → set β} {f : α → β} (H : ∀ i, surj_on f s (t i)) : surj_on f s (⋃ i, t i) := surj_on_sUnion $ forall_range_iff.2 H lemma surj_on_Union_Union {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, surj_on f (s i) (t i)) : surj_on f (⋃ i, s i) (⋃ i, t i) := surj_on_Union $ λ i, (H i).mono (subset_Union _ _) (subset.refl _) lemma surj_on_Union₂ {s : set α} {t : Π i, κ i → set β} {f : α → β} (H : ∀ i j, surj_on f s (t i j)) : surj_on f s (⋃ i j, t i j) := surj_on_Union $ λ i, surj_on_Union (H i) lemma surj_on_Union₂_Union₂ {s : Π i, κ i → set α} {t : Π i, κ i → set β} {f : α → β} (H : ∀ i j, surj_on f (s i j) (t i j)) : surj_on f (⋃ i j, s i j) (⋃ i j, t i j) := surj_on_Union_Union $ λ i, surj_on_Union_Union (H i) lemma surj_on_Inter [hi : nonempty ι] {s : ι → set α} {t : set β} {f : α → β} (H : ∀ i, surj_on f (s i) t) (Hinj : inj_on f (⋃ i, s i)) : surj_on f (⋂ i, s i) t := begin intros y hy, rw [Hinj.image_Inter_eq, mem_Inter], exact λ i, H i hy end lemma surj_on_Inter_Inter [hi : nonempty ι] {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, surj_on f (s i) (t i)) (Hinj : inj_on f (⋃ i, s i)) : surj_on f (⋂ i, s i) (⋂ i, t i) := surj_on_Inter (λ i, (H i).mono (subset.refl _) (Inter_subset _ _)) Hinj /-! ### `bij_on` -/ lemma bij_on_Union {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, bij_on f (s i) (t i)) (Hinj : inj_on f (⋃ i, s i)) : bij_on f (⋃ i, s i) (⋃ i, t i) := ⟨maps_to_Union_Union $ λ i, (H i).maps_to, Hinj, surj_on_Union_Union $ λ i, (H i).surj_on⟩ lemma bij_on_Inter [hi :nonempty ι] {s : ι → set α} {t : ι → set β} {f : α → β} (H : ∀ i, bij_on f (s i) (t i)) (Hinj : inj_on f (⋃ i, s i)) : bij_on f (⋂ i, s i) (⋂ i, t i) := ⟨maps_to_Inter_Inter $ λ i, (H i).maps_to, hi.elim $ λ i, (H i).inj_on.mono (Inter_subset _ _), surj_on_Inter_Inter (λ i, (H i).surj_on) Hinj⟩ lemma bij_on_Union_of_directed {s : ι → set α} (hs : directed (⊆) s) {t : ι → set β} {f : α → β} (H : ∀ i, bij_on f (s i) (t i)) : bij_on f (⋃ i, s i) (⋃ i, t i) := bij_on_Union H $ inj_on_Union_of_directed hs (λ i, (H i).inj_on) lemma bij_on_Inter_of_directed [nonempty ι] {s : ι → set α} (hs : directed (⊆) s) {t : ι → set β} {f : α → β} (H : ∀ i, bij_on f (s i) (t i)) : bij_on f (⋂ i, s i) (⋂ i, t i) := bij_on_Inter H $ inj_on_Union_of_directed hs (λ i, (H i).inj_on) end function /-! ### `image`, `preimage` -/ section image lemma image_Union {f : α → β} {s : ι → set α} : f '' (⋃ i, s i) = (⋃ i, f '' s i) := begin ext1 x, simp [image, ← exists_and_distrib_right, @exists_swap α] end lemma image_Union₂ (f : α → β) (s : Π i, κ i → set α) : f '' (⋃ i j, s i j) = ⋃ i j, f '' s i j := by simp_rw image_Union lemma univ_subtype {p : α → Prop} : (univ : set (subtype p)) = (⋃ x (h : p x), {⟨x, h⟩}) := set.ext $ λ ⟨x, h⟩, by simp [h] lemma range_eq_Union {ι} (f : ι → α) : range f = (⋃ i, {f i}) := set.ext $ λ a, by simp [@eq_comm α a] lemma image_eq_Union (f : α → β) (s : set α) : f '' s = (⋃ i ∈ s, {f i}) := set.ext $ λ b, by simp [@eq_comm β b] lemma bUnion_range {f : ι → α} {g : α → set β} : (⋃ x ∈ range f, g x) = (⋃ y, g (f y)) := supr_range @[simp] lemma Union_Union_eq' {f : ι → α} {g : α → set β} : (⋃ x y (h : f y = x), g x) = ⋃ y, g (f y) := by simpa using bUnion_range lemma bInter_range {f : ι → α} {g : α → set β} : (⋂ x ∈ range f, g x) = (⋂ y, g (f y)) := infi_range @[simp] lemma Inter_Inter_eq' {f : ι → α} {g : α → set β} : (⋂ x y (h : f y = x), g x) = ⋂ y, g (f y) := by simpa using bInter_range variables {s : set γ} {f : γ → α} {g : α → set β} lemma bUnion_image : (⋃ x ∈ f '' s, g x) = (⋃ y ∈ s, g (f y)) := supr_image lemma bInter_image : (⋂ x ∈ f '' s, g x) = (⋂ y ∈ s, g (f y)) := infi_image end image section preimage theorem monotone_preimage {f : α → β} : monotone (preimage f) := λ a b h, preimage_mono h @[simp] lemma preimage_Union {f : α → β} {s : ι → set β} : f ⁻¹' (⋃ i, s i) = (⋃ i, f ⁻¹' s i) := set.ext $ by simp [preimage] lemma preimage_Union₂ {f : α → β} {s : Π i, κ i → set β} : f ⁻¹' (⋃ i j, s i j) = ⋃ i j, f ⁻¹' s i j := by simp_rw preimage_Union @[simp] theorem preimage_sUnion {f : α → β} {s : set (set β)} : f ⁻¹' (⋃₀ s) = (⋃ t ∈ s, f ⁻¹' t) := by rw [sUnion_eq_bUnion, preimage_Union₂] lemma preimage_Inter {f : α → β} {s : ι → set β} : f ⁻¹' (⋂ i, s i) = (⋂ i, f ⁻¹' s i) := by ext; simp lemma preimage_Inter₂ {f : α → β} {s : Π i, κ i → set β} : f ⁻¹' (⋂ i j, s i j) = ⋂ i j, f ⁻¹' s i j := by simp_rw preimage_Inter @[simp] lemma preimage_sInter {f : α → β} {s : set (set β)} : f ⁻¹' (⋂₀ s) = ⋂ t ∈ s, f ⁻¹' t := by rw [sInter_eq_bInter, preimage_Inter₂] @[simp] lemma bUnion_preimage_singleton (f : α → β) (s : set β) : (⋃ y ∈ s, f ⁻¹' {y}) = f ⁻¹' s := by rw [← preimage_Union₂, bUnion_of_singleton] lemma bUnion_range_preimage_singleton (f : α → β) : (⋃ y ∈ range f, f ⁻¹' {y}) = univ := by rw [bUnion_preimage_singleton, preimage_range] end preimage section prod theorem monotone_prod [preorder α] {f : α → set β} {g : α → set γ} (hf : monotone f) (hg : monotone g) : monotone (λ x, f x ×ˢ g x) := λ a b h, prod_mono (hf h) (hg h) alias monotone_prod ← monotone.set_prod lemma prod_Union {s : set α} {t : ι → set β} : s ×ˢ (⋃ i, t i) = ⋃ i, s ×ˢ (t i) := by { ext, simp } lemma prod_Union₂ {s : set α} {t : Π i, κ i → set β} : s ×ˢ (⋃ i j, t i j) = ⋃ i j, s ×ˢ t i j := by simp_rw [prod_Union] lemma prod_sUnion {s : set α} {C : set (set β)} : s ×ˢ (⋃₀ C) = ⋃₀ ((λ t, s ×ˢ t) '' C) := by simp_rw [sUnion_eq_bUnion, bUnion_image, prod_Union₂] lemma Union_prod_const {s : ι → set α} {t : set β} : (⋃ i, s i) ×ˢ t = ⋃ i, s i ×ˢ t := by { ext, simp } lemma Union₂_prod_const {s : Π i, κ i → set α} {t : set β} : (⋃ i j, s i j) ×ˢ t = ⋃ i j, s i j ×ˢ t := by simp_rw [Union_prod_const] lemma sUnion_prod_const {C : set (set α)} {t : set β} : (⋃₀ C) ×ˢ t = ⋃₀ ((λ s : set α, s ×ˢ t) '' C) := by simp only [sUnion_eq_bUnion, Union₂_prod_const, bUnion_image] lemma Union_prod {ι ι' α β} (s : ι → set α) (t : ι' → set β) : (⋃ (x : ι × ι'), s x.1 ×ˢ t x.2) = (⋃ (i : ι), s i) ×ˢ (⋃ (i : ι'), t i) := by { ext, simp } lemma Union_prod_of_monotone [semilattice_sup α] {s : α → set β} {t : α → set γ} (hs : monotone s) (ht : monotone t) : (⋃ x, s x ×ˢ t x) = (⋃ x, s x) ×ˢ (⋃ x, t x) := begin ext ⟨z, w⟩, simp only [mem_prod, mem_Union, exists_imp_distrib, and_imp, iff_def], split, { intros x hz hw, exact ⟨⟨x, hz⟩, x, hw⟩ }, { intros x hz x' hw, exact ⟨x ⊔ x', hs le_sup_left hz, ht le_sup_right hw⟩ } end end prod section image2 variables (f : α → β → γ) {s : set α} {t : set β} lemma Union_image_left : (⋃ a ∈ s, f a '' t) = image2 f s t := by { ext y, split; simp only [mem_Union]; rintro ⟨a, ha, x, hx, ax⟩; exact ⟨a, x, ha, hx, ax⟩ } lemma Union_image_right : (⋃ b ∈ t, (λ a, f a b) '' s) = image2 f s t := by { ext y, split; simp only [mem_Union]; rintro ⟨a, b, c, d, e⟩, exact ⟨c, a, d, b, e⟩, exact ⟨b, d, a, c, e⟩ } lemma image2_Union_left (s : ι → set α) (t : set β) : image2 f (⋃ i, s i) t = ⋃ i, image2 f (s i) t := by simp only [← image_prod, Union_prod_const, image_Union] lemma image2_Union_right (s : set α) (t : ι → set β) : image2 f s (⋃ i, t i) = ⋃ i, image2 f s (t i) := by simp only [← image_prod, prod_Union, image_Union] lemma image2_Union₂_left (s : Π i, κ i → set α) (t : set β) : image2 f (⋃ i j, s i j) t = ⋃ i j, image2 f (s i j) t := by simp_rw image2_Union_left lemma image2_Union₂_right (s : set α) (t : Π i, κ i → set β) : image2 f s (⋃ i j, t i j) = ⋃ i j, image2 f s (t i j) := by simp_rw image2_Union_right lemma image2_Inter_subset_left (s : ι → set α) (t : set β) : image2 f (⋂ i, s i) t ⊆ ⋂ i, image2 f (s i) t := by { simp_rw [image2_subset_iff, mem_Inter], exact λ x hx y hy i, mem_image2_of_mem (hx _) hy } lemma image2_Inter_subset_right (s : set α) (t : ι → set β) : image2 f s (⋂ i, t i) ⊆ ⋂ i, image2 f s (t i) := by { simp_rw [image2_subset_iff, mem_Inter], exact λ x hx y hy i, mem_image2_of_mem hx (hy _) } lemma image2_Inter₂_subset_left (s : Π i, κ i → set α) (t : set β) : image2 f (⋂ i j, s i j) t ⊆ ⋂ i j, image2 f (s i j) t := by { simp_rw [image2_subset_iff, mem_Inter], exact λ x hx y hy i j, mem_image2_of_mem (hx _ _) hy } lemma image2_Inter₂_subset_right (s : set α) (t : Π i, κ i → set β) : image2 f s (⋂ i j, t i j) ⊆ ⋂ i j, image2 f s (t i j) := by { simp_rw [image2_subset_iff, mem_Inter], exact λ x hx y hy i j, mem_image2_of_mem hx (hy _ _) } /-- The `set.image2` version of `set.image_eq_Union` -/ lemma image2_eq_Union (s : set α) (t : set β) : image2 f s t = ⋃ (i ∈ s) (j ∈ t), {f i j} := by simp_rw [←image_eq_Union, Union_image_left] end image2 section seq /-- Given a set `s` of functions `α → β` and `t : set α`, `seq s t` is the union of `f '' t` over all `f ∈ s`. -/ def seq (s : set (α → β)) (t : set α) : set β := {b | ∃ f ∈ s, ∃ a ∈ t, (f : α → β) a = b} lemma seq_def {s : set (α → β)} {t : set α} : seq s t = ⋃ f ∈ s, f '' t := set.ext $ by simp [seq] @[simp] lemma mem_seq_iff {s : set (α → β)} {t : set α} {b : β} : b ∈ seq s t ↔ ∃ (f ∈ s) (a ∈ t), (f : α → β) a = b := iff.rfl lemma seq_subset {s : set (α → β)} {t : set α} {u : set β} : seq s t ⊆ u ↔ (∀ f ∈ s, ∀ a ∈ t, (f : α → β) a ∈ u) := iff.intro (λ h f hf a ha, h ⟨f, hf, a, ha, rfl⟩) (λ h b ⟨f, hf, a, ha, eq⟩, eq ▸ h f hf a ha) lemma seq_mono {s₀ s₁ : set (α → β)} {t₀ t₁ : set α} (hs : s₀ ⊆ s₁) (ht : t₀ ⊆ t₁) : seq s₀ t₀ ⊆ seq s₁ t₁ := λ b ⟨f, hf, a, ha, eq⟩, ⟨f, hs hf, a, ht ha, eq⟩ lemma singleton_seq {f : α → β} {t : set α} : set.seq {f} t = f '' t := set.ext $ by simp lemma seq_singleton {s : set (α → β)} {a : α} : set.seq s {a} = (λ f : α → β, f a) '' s := set.ext $ by simp lemma seq_seq {s : set (β → γ)} {t : set (α → β)} {u : set α} : seq s (seq t u) = seq (seq ((∘) '' s) t) u := begin refine set.ext (λ c, iff.intro _ _), { rintro ⟨f, hfs, b, ⟨g, hg, a, hau, rfl⟩, rfl⟩, exact ⟨f ∘ g, ⟨(∘) f, mem_image_of_mem _ hfs, g, hg, rfl⟩, a, hau, rfl⟩ }, { rintro ⟨fg, ⟨fc, ⟨f, hfs, rfl⟩, g, hgt, rfl⟩, a, ha, rfl⟩, exact ⟨f, hfs, g a, ⟨g, hgt, a, ha, rfl⟩, rfl⟩ } end lemma image_seq {f : β → γ} {s : set (α → β)} {t : set α} : f '' seq s t = seq ((∘) f '' s) t := by rw [← singleton_seq, ← singleton_seq, seq_seq, image_singleton] lemma prod_eq_seq {s : set α} {t : set β} : s ×ˢ t = (prod.mk '' s).seq t := begin ext ⟨a, b⟩, split, { rintro ⟨ha, hb⟩, exact ⟨prod.mk a, ⟨a, ha, rfl⟩, b, hb, rfl⟩ }, { rintro ⟨f, ⟨x, hx, rfl⟩, y, hy, eq⟩, rw ← eq, exact ⟨hx, hy⟩ } end lemma prod_image_seq_comm (s : set α) (t : set β) : (prod.mk '' s).seq t = seq ((λ b a, (a, b)) '' t) s := by rw [← prod_eq_seq, ← image_swap_prod, prod_eq_seq, image_seq, ← image_comp, prod.swap] lemma image2_eq_seq (f : α → β → γ) (s : set α) (t : set β) : image2 f s t = seq (f '' s) t := by { ext, simp } end seq section pi variables {π : α → Type*} lemma pi_def (i : set α) (s : Π a, set (π a)) : pi i s = (⋂ a ∈ i, eval a ⁻¹' s a) := by { ext, simp } lemma univ_pi_eq_Inter (t : Π i, set (π i)) : pi univ t = ⋂ i, eval i ⁻¹' t i := by simp only [pi_def, Inter_true, mem_univ] lemma pi_diff_pi_subset (i : set α) (s t : Π a, set (π a)) : pi i s \ pi i t ⊆ ⋃ a ∈ i, (eval a ⁻¹' (s a \ t a)) := begin refine diff_subset_comm.2 (λ x hx a ha, _), simp only [mem_diff, mem_pi, mem_Union, not_exists, mem_preimage, not_and, not_not, eval_apply] at hx, exact hx.2 _ ha (hx.1 _ ha) end lemma Union_univ_pi (t : Π i, ι → set (π i)) : (⋃ (x : α → ι), pi univ (λ i, t i (x i))) = pi univ (λ i, ⋃ (j : ι), t i j) := by { ext, simp [classical.skolem] } end pi end set namespace function namespace surjective lemma Union_comp {f : ι → ι₂} (hf : surjective f) (g : ι₂ → set α) : (⋃ x, g (f x)) = ⋃ y, g y := hf.supr_comp g lemma Inter_comp {f : ι → ι₂} (hf : surjective f) (g : ι₂ → set α) : (⋂ x, g (f x)) = ⋂ y, g y := hf.infi_comp g end surjective end function /-! ### Disjoint sets We define some lemmas in the `disjoint` namespace to be able to use projection notation. -/ section disjoint variables {s t u : set α} namespace disjoint theorem union_left (hs : disjoint s u) (ht : disjoint t u) : disjoint (s ∪ t) u := hs.sup_left ht theorem union_right (ht : disjoint s t) (hu : disjoint s u) : disjoint s (t ∪ u) := ht.sup_right hu lemma inter_left (u : set α) (h : disjoint s t) : disjoint (s ∩ u) t := inf_left _ h lemma inter_left' (u : set α) (h : disjoint s t) : disjoint (u ∩ s) t := inf_left' _ h lemma inter_right (u : set α) (h : disjoint s t) : disjoint s (t ∩ u) := inf_right _ h lemma inter_right' (u : set α) (h : disjoint s t) : disjoint s (u ∩ t) := inf_right' _ h lemma subset_left_of_subset_union (h : s ⊆ t ∪ u) (hac : disjoint s u) : s ⊆ t := hac.left_le_of_le_sup_right h lemma subset_right_of_subset_union (h : s ⊆ t ∪ u) (hab : disjoint s t) : s ⊆ u := hab.left_le_of_le_sup_left h lemma preimage {α β} (f : α → β) {s t : set β} (h : disjoint s t) : disjoint (f ⁻¹' s) (f ⁻¹' t) := λ x hx, h hx end disjoint namespace set protected theorem disjoint_iff : disjoint s t ↔ s ∩ t ⊆ ∅ := iff.rfl theorem disjoint_iff_inter_eq_empty : disjoint s t ↔ s ∩ t = ∅ := disjoint_iff lemma not_disjoint_iff : ¬disjoint s t ↔ ∃ x, x ∈ s ∧ x ∈ t := not_forall.trans $ exists_congr $ λ x, not_not lemma not_disjoint_iff_nonempty_inter : ¬disjoint s t ↔ (s ∩ t).nonempty := by simp [set.not_disjoint_iff, set.nonempty_def] alias not_disjoint_iff_nonempty_inter ↔ _ set.nonempty.not_disjoint lemma disjoint_or_nonempty_inter (s t : set α) : disjoint s t ∨ (s ∩ t).nonempty := (em _).imp_right not_disjoint_iff_nonempty_inter.mp lemma disjoint_left : disjoint s t ↔ ∀ {a}, a ∈ s → a ∉ t := show (∀ x, ¬(x ∈ s ∩ t)) ↔ _, from ⟨λ h a, not_and.1 $ h a, λ h a, not_and.2 $ h a⟩ theorem disjoint_right : disjoint s t ↔ ∀ {a}, a ∈ t → a ∉ s := by rw [disjoint.comm, disjoint_left] lemma disjoint_iff_forall_ne : disjoint s t ↔ ∀ (x ∈ s) (y ∈ t), x ≠ y := by simp only [ne.def, disjoint_left, @imp_not_comm _ (_ = _), forall_eq'] lemma _root_.disjoint.ne_of_mem (h : disjoint s t) {x y} (hx : x ∈ s) (hy : y ∈ t) : x ≠ y := disjoint_iff_forall_ne.mp h x hx y hy theorem disjoint_of_subset_left (h : s ⊆ u) (d : disjoint u t) : disjoint s t := d.mono_left h theorem disjoint_of_subset_right (h : t ⊆ u) (d : disjoint s u) : disjoint s t := d.mono_right h theorem disjoint_of_subset {s t u v : set α} (h1 : s ⊆ u) (h2 : t ⊆ v) (d : disjoint u v) : disjoint s t := d.mono h1 h2 @[simp] theorem disjoint_union_left : disjoint (s ∪ t) u ↔ disjoint s u ∧ disjoint t u := disjoint_sup_left @[simp] theorem disjoint_union_right : disjoint s (t ∪ u) ↔ disjoint s t ∧ disjoint s u := disjoint_sup_right @[simp] theorem disjoint_Union_left {ι : Sort*} {s : ι → set α} : disjoint (⋃ i, s i) t ↔ ∀ i, disjoint (s i) t := supr_disjoint_iff @[simp] theorem disjoint_Union_right {ι : Sort*} {s : ι → set α} : disjoint t (⋃ i, s i) ↔ ∀ i, disjoint t (s i) := disjoint_supr_iff theorem disjoint_diff {a b : set α} : disjoint a (b \ a) := disjoint_iff.2 (inter_diff_self _ _) @[simp] theorem disjoint_empty (s : set α) : disjoint s ∅ := disjoint_bot_right @[simp] theorem empty_disjoint (s : set α) : disjoint ∅ s := disjoint_bot_left @[simp] lemma univ_disjoint {s : set α} : disjoint univ s ↔ s = ∅ := top_disjoint @[simp] lemma disjoint_univ {s : set α} : disjoint s univ ↔ s = ∅ := disjoint_top @[simp] theorem disjoint_singleton_left {a : α} {s : set α} : disjoint {a} s ↔ a ∉ s := by simp [set.disjoint_iff, subset_def]; exact iff.rfl @[simp] theorem disjoint_singleton_right {a : α} {s : set α} : disjoint s {a} ↔ a ∉ s := by rw [disjoint.comm]; exact disjoint_singleton_left @[simp] lemma disjoint_singleton {a b : α} : disjoint ({a} : set α) {b} ↔ a ≠ b := by rw [disjoint_singleton_left, mem_singleton_iff] theorem disjoint_image_image {f : β → α} {g : γ → α} {s : set β} {t : set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : disjoint (f '' s) (g '' t) := by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq lemma disjoint_image_of_injective {f : α → β} (hf : injective f) {s t : set α} (hd : disjoint s t) : disjoint (f '' s) (f '' t) := disjoint_image_image $ λ x hx y hy, hf.ne $ λ H, set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ lemma disjoint_preimage {s t : set β} (hd : disjoint s t) (f : α → β) : disjoint (f ⁻¹' s) (f ⁻¹' t) := λ x hx, hd hx lemma preimage_eq_empty {f : α → β} {s : set β} (h : disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f lemma preimage_eq_empty_iff {f : α → β} {s : set β} : disjoint s (range f) ↔ f ⁻¹' s = ∅ := ⟨preimage_eq_empty, λ h, begin simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_eq, not_and, mem_range, mem_preimage] at h ⊢, assume y hy x hx, rw ← hx at hy, exact h x hy, end ⟩ lemma disjoint_iff_subset_compl_right : disjoint s t ↔ s ⊆ tᶜ := disjoint_left lemma disjoint_iff_subset_compl_left : disjoint s t ↔ t ⊆ sᶜ := disjoint_right lemma _root_.disjoint.image {s t u : set α} {f : α → β} (h : disjoint s t) (hf : inj_on f u) (hs : s ⊆ u) (ht : t ⊆ u) : disjoint (f '' s) (f '' t) := begin rw disjoint_iff_inter_eq_empty at h ⊢, rw [← hf.image_inter hs ht, h, image_empty], end end set end disjoint /-! ### Intervals -/ namespace set variables [complete_lattice α] lemma Ici_supr (f : ι → α) : Ici (⨆ i, f i) = ⋂ i, Ici (f i) := ext $ λ _, by simp only [mem_Ici, supr_le_iff, mem_Inter] lemma Iic_infi (f : ι → α) : Iic (⨅ i, f i) = ⋂ i, Iic (f i) := ext $ λ _, by simp only [mem_Iic, le_infi_iff, mem_Inter] lemma Ici_supr₂ (f : Π i, κ i → α) : Ici (⨆ i j, f i j) = ⋂ i j, Ici (f i j) := by simp_rw Ici_supr lemma Iic_infi₂ (f : Π i, κ i → α) : Iic (⨅ i j, f i j) = ⋂ i j, Iic (f i j) := by simp_rw Iic_infi lemma Ici_Sup (s : set α) : Ici (Sup s) = ⋂ a ∈ s, Ici a := by rw [Sup_eq_supr, Ici_supr₂] lemma Iic_Inf (s : set α) : Iic (Inf s) = ⋂ a ∈ s, Iic a := by rw [Inf_eq_infi, Iic_infi₂] end set namespace set variables (t : α → set β) lemma subset_diff {s t u : set α} : s ⊆ t \ u ↔ s ⊆ t ∧ disjoint s u := ⟨λ h, ⟨λ x hxs, (h hxs).1, λ x ⟨hxs, hxu⟩, (h hxs).2 hxu⟩, λ ⟨h1, h2⟩ x hxs, ⟨h1 hxs, λ hxu, h2 ⟨hxs, hxu⟩⟩⟩ lemma bUnion_diff_bUnion_subset (s₁ s₂ : set α) : (⋃ x ∈ s₁, t x) \ (⋃ x ∈ s₂, t x) ⊆ (⋃ x ∈ s₁ \ s₂, t x) := begin simp only [diff_subset_iff, ← bUnion_union], apply bUnion_subset_bUnion_left, rw union_diff_self, apply subset_union_right end /-- If `t` is an indexed family of sets, then there is a natural map from `Σ i, t i` to `⋃ i, t i` sending `⟨i, x⟩` to `x`. -/ def sigma_to_Union (x : Σ i, t i) : (⋃ i, t i) := ⟨x.2, mem_Union.2 ⟨x.1, x.2.2⟩⟩ lemma sigma_to_Union_surjective : surjective (sigma_to_Union t) | ⟨b, hb⟩ := have ∃ a, b ∈ t a, by simpa using hb, let ⟨a, hb⟩ := this in ⟨⟨a, b, hb⟩, rfl⟩ lemma sigma_to_Union_injective (h : ∀ i j, i ≠ j → disjoint (t i) (t j)) : injective (sigma_to_Union t) | ⟨a₁, b₁, h₁⟩ ⟨a₂, b₂, h₂⟩ eq := have b_eq : b₁ = b₂, from congr_arg subtype.val eq, have a_eq : a₁ = a₂, from classical.by_contradiction $ λ ne, have b₁ ∈ t a₁ ∩ t a₂, from ⟨h₁, b_eq.symm ▸ h₂⟩, h _ _ ne this, sigma.eq a_eq $ subtype.eq $ by subst b_eq; subst a_eq lemma sigma_to_Union_bijective (h : ∀ i j, i ≠ j → disjoint (t i) (t j)) : bijective (sigma_to_Union t) := ⟨sigma_to_Union_injective t h, sigma_to_Union_surjective t⟩ /-- Equivalence between a disjoint union and a dependent sum. -/ noncomputable def Union_eq_sigma_of_disjoint {t : α → set β} (h : ∀ i j, i ≠ j → disjoint (t i) (t j)) : (⋃ i, t i) ≃ (Σ i, t i) := (equiv.of_bijective _ $ sigma_to_Union_bijective t h).symm end set open set variables [complete_lattice β] lemma supr_Union (s : ι → set α) (f : α → β) : (⨆ a ∈ (⋃ i, s i), f a) = ⨆ i (a ∈ s i), f a := by { rw supr_comm, simp_rw [mem_Union, supr_exists] } lemma infi_Union (s : ι → set α) (f : α → β) : (⨅ a ∈ (⋃ i, s i), f a) = ⨅ i (a ∈ s i), f a := by { rw infi_comm, simp_rw [mem_Union, infi_exists] }
7dd3f15a3f242788be6d2edcacad7fdb7949ebe3
7b9ff28673cd3dd7dd3dcfe2ab8449f9244fe05a
/src/seul/exercise.lean
8f1317921e6261de011145dd8de22a5a0eea2da0
[]
no_license
jesse-michael-han/hanoi-lean-2019
ea2f0e04f81093373c48447065765a964ee82262
a5a9f368e394d563bfcc13e3773863924505b1ce
refs/heads/master
1,591,320,223,247
1,561,022,886,000
1,561,022,886,000
192,264,820
1
1
null
null
null
null
UTF-8
Lean
false
false
3,743
lean
open expr tactic classical variables {p q r s : Prop} variables {a b c d e : Prop} section local attribute [instance] classical.prop_decidable theorem not_or_of_imp (h : a → b) : ¬ a ∨ b := begin by_cases H : a, from or.inr (h ‹_›), from or.inl ‹_› end theorem imp_iff_not_or : (a → b) ↔ (¬ a ∨ b) := sorry theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a) := sorry theorem not_not : ¬¬a ↔ a := sorry theorem not_or_distrib : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b := sorry theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b) := sorry theorem not_and_distrib : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := sorry end meta def normalize : tactic unit := `[ try { simp only [ not_or_distrib, not_and_distrib, not_not, imp_iff_not_or, not_true_iff, not_false_iff, iff_def ] at *} ] /- Given a list of expr of hypotheses, find an expr of a conjunctive hypothesis in the list and return it. -/ meta def find_conj : list expr → tactic expr := sorry /- Given a list of expr of hypotheses, find an expr of a disjunctive hypothesis in the list and return it. -/ meta def find_disj : list expr → tactic expr := sorry /- Find and split a conjunction. -/ meta def split_conj : tactic unit := sorry /- Split all conjunctions using split_conj. -/ meta def split_conjs : tactic unit := sorry /- Find and split a disjunction. -/ meta def split_disj : tactic unit := sorry /- Given a goal of the form Γ ⊢ φ, reduce it to the goal Γ, ¬φ ⊢ ⊥ -/ meta def go_by_contradiction : tactic unit := sorry /- The main proof search loop. First, split all conjunctions. If the result has complementary literals, discharge the goal. If not, find a disjunction, split it, and discharge the new subgoals by entering the proof search loop again. -/ meta def tab_aux : tactic unit := sorry /- Normalize goal and enter proof search loop. -/ meta def tab : tactic unit := sorry #exit example : a ∧ b → b ∧ a := by tab example : a ∧ (a → b) → b := by tab -- commutativity of ∧ and ∨ example : p ∧ q ↔ q ∧ p := by tab example : p ∨ q ↔ q ∨ p := by tab -- associativity of ∧ and ∨ example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by tab example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := by tab -- distributivity example : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := by tab example : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := by tab -- other properties example : (p → (q → r)) ↔ (p ∧ q → r) := by tab example : ((p ∨ q) → r) ↔ (p → r) ∧ (q → r) := by tab example : ¬(p ∨ q) ↔ ¬p ∧ ¬q := by tab example : ¬p ∨ ¬q → ¬(p ∧ q) := by tab example : ¬(p ∧ ¬p) := by tab example : p ∧ ¬q → ¬(p → q) := by tab example : ¬p → (p → q) := by tab example : (¬p ∨ q) → (p → q) := by tab example : p ∨ false ↔ p := by tab example : p ∧ false ↔ false := by tab example : ¬(p ↔ ¬p) := by tab example : (p → q) → (¬q → ¬p) := by tab example : (p → r ∨ s) → ((p → r) ∨ (p → s)) := by tab example : ¬(p ∧ q) → ¬p ∨ ¬q := by tab example : ¬(p → q) → p ∧ ¬q := by tab example : (p → q) → (¬p ∨ q) := by tab example : (¬q → ¬p) → (p → q) := by tab example : p ∨ ¬p := by tab example : (((p → q) → p) → p) := by tab example (h₁ : a ∧ b) (h₂ : b ∧ ¬ c) : a ∨ c := by tab example (h₁ : a ∧ b) (h₂ : b ∧ ¬ c) : a ∧ ¬ c := by tab example : ((a → b) → a) → a := by tab example : (a → b) ∧ (b → c) → a → c := by tab example (α : Type) (x y z w : α) : x = y ∧ (x = y → z = w) → z = w := by tab example : ¬ (a ↔ ¬ a) := by tab
900309928e3c80a2be6d9ca921a39c9b8a44ed3f
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/algebra/lie/character.lean
170178ca0b8fe800561c245c92cc3ef8af4a9c53
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
2,271
lean
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import algebra.lie.abelian import algebra.lie.solvable import linear_algebra.dual /-! # Characters of Lie algebras A character of a Lie algebra `L` over a commutative ring `R` is a morphism of Lie algebras `L → R`, where `R` is regarded as a Lie algebra over itself via the ring commutator. For an Abelian Lie algebra (e.g., a Cartan subalgebra of a semisimple Lie algebra) a character is just a linear form. ## Main definitions * `lie_algebra.lie_character` * `lie_algebra.lie_character_equiv_linear_dual` ## Tags lie algebra, lie character -/ universes u v w w₁ namespace lie_algebra variables (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] /-- A character of a Lie algebra is a morphism to the scalars. -/ abbreviation lie_character := L →ₗ⁅R⁆ R variables {R L} @[simp] lemma lie_character_apply_lie (χ : lie_character R L) (x y : L) : χ ⁅x, y⁆ = 0 := by rw [lie_hom.map_lie, lie_ring.of_associative_ring_bracket, mul_comm, sub_self] lemma lie_character_apply_of_mem_derived (χ : lie_character R L) {x : L} (h : x ∈ derived_series R L 1) : χ x = 0 := begin rw [derived_series_def, derived_series_of_ideal_succ, derived_series_of_ideal_zero, ← lie_submodule.mem_coe_submodule, lie_submodule.lie_ideal_oper_eq_linear_span] at h, apply submodule.span_induction h, { rintros y ⟨⟨z, hz⟩, ⟨⟨w, hw⟩, rfl⟩⟩, apply lie_character_apply_lie, }, { exact χ.map_zero, }, { intros y z hy hz, rw [lie_hom.map_add, hy, hz, add_zero], }, { intros t y hy, rw [lie_hom.map_smul, hy, smul_zero], }, end /-- For an Abelian Lie algebra, characters are just linear forms. -/ @[simps] def lie_character_equiv_linear_dual [is_lie_abelian L] : lie_character R L ≃ module.dual R L := { to_fun := λ χ, (χ : L →ₗ[R] R), inv_fun := λ ψ, { map_lie' := λ x y, by rw [lie_module.is_trivial.trivial, lie_ring.of_associative_ring_bracket, mul_comm, sub_self, linear_map.to_fun_eq_coe, linear_map.map_zero], .. ψ, }, left_inv := λ χ, by { ext, refl, }, right_inv := λ ψ, by { ext, refl, }, } end lie_algebra
9da5c79a6f6421bd3457a97861d8f3d4bcfb59b3
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/data/set/basic.lean
f5165b7c34ab87e387cf8971c53fd06d33bc6a93
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
98,828
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import order.boolean_algebra /-! # Basic properties of sets Sets in Lean are homogeneous; all their elements have the same type. Sets whose elements have type `X` are thus defined as `set X := X → Prop`. Note that this function need not be decidable. The definition is in the core library. This file provides some basic definitions related to sets and functions not present in the core library, as well as extra lemmas for functions in the core library (empty set, univ, union, intersection, insert, singleton, set-theoretic difference, complement, and powerset). Note that a set is a term, not a type. There is a coercion from `set α` to `Type*` sending `s` to the corresponding subtype `↥s`. See also the file `set_theory/zfc.lean`, which contains an encoding of ZFC set theory in Lean. ## Main definitions Notation used here: - `f : α → β` is a function, - `s : set α` and `s₁ s₂ : set α` are subsets of `α` - `t : set β` is a subset of `β`. Definitions in the file: * `nonempty s : Prop` : the predicate `s ≠ ∅`. Note that this is the preferred way to express the fact that `s` has an element (see the Implementation Notes). * `preimage f t : set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `subsingleton s : Prop` : the predicate saying that `s` has at most one element. * `range f : set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) * `inclusion s₁ s₂ : ↥s₁ → ↥s₂` : the map `↥s₁ → ↥s₂` induced by an inclusion `s₁ ⊆ s₂`. ## Notation * `f ⁻¹' t` for `preimage f t` * `f '' s` for `image f s` * `sᶜ` for the complement of `s` ## Implementation notes * `s.nonempty` is to be preferred to `s ≠ ∅` or `∃ x, x ∈ s`. It has the advantage that the `s.nonempty` dot notation can be used. * For `s : set α`, do not use `subtype s`. Instead use `↥s` or `(s : Type*)` or `s`. ## Tags set, sets, subset, subsets, image, preimage, pre-image, range, union, intersection, insert, singleton, complement, powerset -/ /-! ### Set coercion to a type -/ open function universes u v w x run_cmd do e ← tactic.get_env, tactic.set_env $ e.mk_protected `set.compl namespace set variable {α : Type*} instance : has_le (set α) := ⟨(⊆)⟩ instance : has_lt (set α) := ⟨λ s t, s ≤ t ∧ ¬t ≤ s⟩ -- `⊂` is not defined until further down instance {α : Type*} : boolean_algebra (set α) := { sup := (∪), le := (≤), lt := (<), inf := (∩), bot := ∅, compl := set.compl, top := univ, sdiff := (\), .. (infer_instance : boolean_algebra (α → Prop)) } @[simp] lemma top_eq_univ : (⊤ : set α) = univ := rfl @[simp] lemma bot_eq_empty : (⊥ : set α) = ∅ := rfl @[simp] lemma sup_eq_union : ((⊔) : set α → set α → set α) = (∪) := rfl @[simp] lemma inf_eq_inter : ((⊓) : set α → set α → set α) = (∩) := rfl @[simp] lemma le_eq_subset : ((≤) : set α → set α → Prop) = (⊆) := rfl /-! `set.lt_eq_ssubset` is defined further down -/ @[simp] lemma compl_eq_compl : set.compl = (has_compl.compl : set α → set α) := rfl /-- Coercion from a set to the corresponding subtype. -/ instance {α : Type u} : has_coe_to_sort (set α) (Type u) := ⟨λ s, {x // x ∈ s}⟩ instance pi_set_coe.can_lift (ι : Type u) (α : Π i : ι, Type v) [ne : Π i, nonempty (α i)] (s : set ι) : can_lift (Π i : s, α i) (Π i, α i) := { coe := λ f i, f i, .. pi_subtype.can_lift ι α s } instance pi_set_coe.can_lift' (ι : Type u) (α : Type v) [ne : nonempty α] (s : set ι) : can_lift (s → α) (ι → α) := pi_set_coe.can_lift ι (λ _, α) s instance set_coe.can_lift (s : set α) : can_lift α s := { coe := coe, cond := λ a, a ∈ s, prf := λ a ha, ⟨⟨a, ha⟩, rfl⟩ } end set section set_coe variables {α : Type u} theorem set.set_coe_eq_subtype (s : set α) : coe_sort.{(u+1) (u+2)} s = {x // x ∈ s} := rfl @[simp] theorem set_coe.forall {s : set α} {p : s → Prop} : (∀ x : s, p x) ↔ (∀ x (h : x ∈ s), p ⟨x, h⟩) := subtype.forall @[simp] theorem set_coe.exists {s : set α} {p : s → Prop} : (∃ x : s, p x) ↔ (∃ x (h : x ∈ s), p ⟨x, h⟩) := subtype.exists theorem set_coe.exists' {s : set α} {p : Π x, x ∈ s → Prop} : (∃ x (h : x ∈ s), p x h) ↔ (∃ x : s, p x x.2) := (@set_coe.exists _ _ $ λ x, p x.1 x.2).symm theorem set_coe.forall' {s : set α} {p : Π x, x ∈ s → Prop} : (∀ x (h : x ∈ s), p x h) ↔ (∀ x : s, p x x.2) := (@set_coe.forall _ _ $ λ x, p x.1 x.2).symm @[simp] theorem set_coe_cast : ∀ {s t : set α} (H' : s = t) (H : @eq (Type u) s t) (x : s), cast H x = ⟨x.1, H' ▸ x.2⟩ | s _ rfl _ ⟨x, h⟩ := rfl theorem set_coe.ext {s : set α} {a b : s} : (↑a : α) = ↑b → a = b := subtype.eq theorem set_coe.ext_iff {s : set α} {a b : s} : (↑a : α) = ↑b ↔ a = b := iff.intro set_coe.ext (assume h, h ▸ rfl) end set_coe /-- See also `subtype.prop` -/ lemma subtype.mem {α : Type*} {s : set α} (p : s) : (p : α) ∈ s := p.prop /-- Duplicate of `eq.subset'`, which currently has elaboration problems. -/ lemma eq.subset {α} {s t : set α} : s = t → s ⊆ t := by { rintro rfl x hx, exact hx } namespace set variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {a : α} {s t : set α} instance : inhabited (set α) := ⟨∅⟩ @[ext] theorem ext {a b : set α} (h : ∀ x, x ∈ a ↔ x ∈ b) : a = b := funext (assume x, propext (h x)) theorem ext_iff {s t : set α} : s = t ↔ ∀ x, x ∈ s ↔ x ∈ t := ⟨λ h x, by rw h, ext⟩ @[trans] theorem mem_of_mem_of_subset {x : α} {s t : set α} (hx : x ∈ s) (h : s ⊆ t) : x ∈ t := h hx /-! ### Lemmas about `mem` and `set_of` -/ @[simp] theorem mem_set_of_eq {a : α} {p : α → Prop} : a ∈ {a | p a} = p a := rfl theorem nmem_set_of_eq {a : α} {P : α → Prop} : a ∉ {a : α | P a} = ¬ P a := rfl @[simp] theorem set_of_mem_eq {s : set α} : {x | x ∈ s} = s := rfl theorem set_of_set {s : set α} : set_of s = s := rfl lemma set_of_app_iff {p : α → Prop} {x : α} : { x | p x } x ↔ p x := iff.rfl theorem mem_def {a : α} {s : set α} : a ∈ s ↔ s a := iff.rfl lemma set_of_bijective : bijective (set_of : (α → Prop) → set α) := bijective_id @[simp] theorem set_of_subset_set_of {p q : α → Prop} : {a | p a} ⊆ {a | q a} ↔ (∀a, p a → q a) := iff.rfl @[simp] lemma sep_set_of {p q : α → Prop} : {a ∈ {a | p a } | q a} = {a | p a ∧ q a} := rfl lemma set_of_and {p q : α → Prop} : {a | p a ∧ q a} = {a | p a} ∩ {a | q a} := rfl lemma set_of_or {p q : α → Prop} : {a | p a ∨ q a} = {a | p a} ∪ {a | q a} := rfl /-! ### Subset and strict subset relations -/ instance : has_ssubset (set α) := ⟨(<)⟩ instance : is_refl (set α) (⊆) := has_le.le.is_refl instance : is_trans (set α) (⊆) := has_le.le.is_trans instance : is_antisymm (set α) (⊆) := has_le.le.is_antisymm instance : is_irrefl (set α) (⊂) := has_lt.lt.is_irrefl instance : is_trans (set α) (⊂) := has_lt.lt.is_trans instance : is_asymm (set α) (⊂) := has_lt.lt.is_asymm instance : is_nonstrict_strict_order (set α) (⊆) (⊂) := ⟨λ _ _, iff.rfl⟩ -- TODO(Jeremy): write a tactic to unfold specific instances of generic notation? lemma subset_def : (s ⊆ t) = ∀ x, x ∈ s → x ∈ t := rfl lemma ssubset_def : s ⊂ t = (s ⊆ t ∧ ¬ t ⊆ s) := rfl @[refl] theorem subset.refl (a : set α) : a ⊆ a := assume x, id theorem subset.rfl {s : set α} : s ⊆ s := subset.refl s @[trans] theorem subset.trans {a b c : set α} (ab : a ⊆ b) (bc : b ⊆ c) : a ⊆ c := assume x h, bc (ab h) @[trans] theorem mem_of_eq_of_mem {x y : α} {s : set α} (hx : x = y) (h : y ∈ s) : x ∈ s := hx.symm ▸ h theorem subset.antisymm {a b : set α} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := set.ext $ λ x, ⟨@h₁ _, @h₂ _⟩ theorem subset.antisymm_iff {a b : set α} : a = b ↔ a ⊆ b ∧ b ⊆ a := ⟨λ e, ⟨e.subset, e.symm.subset⟩, λ ⟨h₁, h₂⟩, subset.antisymm h₁ h₂⟩ -- an alternative name theorem eq_of_subset_of_subset {a b : set α} : a ⊆ b → b ⊆ a → a = b := subset.antisymm theorem mem_of_subset_of_mem {s₁ s₂ : set α} {a : α} (h : s₁ ⊆ s₂) : a ∈ s₁ → a ∈ s₂ := @h _ theorem not_mem_subset (h : s ⊆ t) : a ∉ t → a ∉ s := mt $ mem_of_subset_of_mem h theorem not_subset : (¬ s ⊆ t) ↔ ∃a ∈ s, a ∉ t := by simp only [subset_def, not_forall] theorem nontrivial_mono {α : Type*} {s t : set α} (h₁ : s ⊆ t) (h₂ : nontrivial s) : nontrivial t := begin rw nontrivial_iff at h₂ ⊢, obtain ⟨⟨x, hx⟩, ⟨y, hy⟩, hxy⟩ := h₂, exact ⟨⟨x, h₁ hx⟩, ⟨y, h₁ hy⟩, by simpa using hxy⟩, end /-! ### Definition of strict subsets `s ⊂ t` and basic properties. -/ @[simp] lemma lt_eq_ssubset : ((<) : set α → set α → Prop) = (⊂) := rfl protected theorem eq_or_ssubset_of_subset (h : s ⊆ t) : s = t ∨ s ⊂ t := eq_or_lt_of_le h lemma exists_of_ssubset {s t : set α} (h : s ⊂ t) : (∃x∈t, x ∉ s) := not_subset.1 h.2 protected lemma ssubset_iff_subset_ne {s t : set α} : s ⊂ t ↔ s ⊆ t ∧ s ≠ t := @lt_iff_le_and_ne (set α) _ s t lemma ssubset_iff_of_subset {s t : set α} (h : s ⊆ t) : s ⊂ t ↔ ∃ x ∈ t, x ∉ s := ⟨exists_of_ssubset, λ ⟨x, hxt, hxs⟩, ⟨h, λ h, hxs $ h hxt⟩⟩ protected lemma ssubset_of_ssubset_of_subset {s₁ s₂ s₃ : set α} (hs₁s₂ : s₁ ⊂ s₂) (hs₂s₃ : s₂ ⊆ s₃) : s₁ ⊂ s₃ := ⟨subset.trans hs₁s₂.1 hs₂s₃, λ hs₃s₁, hs₁s₂.2 (subset.trans hs₂s₃ hs₃s₁)⟩ protected lemma ssubset_of_subset_of_ssubset {s₁ s₂ s₃ : set α} (hs₁s₂ : s₁ ⊆ s₂) (hs₂s₃ : s₂ ⊂ s₃) : s₁ ⊂ s₃ := ⟨subset.trans hs₁s₂ hs₂s₃.1, λ hs₃s₁, hs₂s₃.2 (subset.trans hs₃s₁ hs₁s₂)⟩ theorem not_mem_empty (x : α) : ¬ (x ∈ (∅ : set α)) := id @[simp] theorem not_not_mem : ¬ (a ∉ s) ↔ a ∈ s := not_not /-! ### Non-empty sets -/ /-- The property `s.nonempty` expresses the fact that the set `s` is not empty. It should be used in theorem assumptions instead of `∃ x, x ∈ s` or `s ≠ ∅` as it gives access to a nice API thanks to the dot notation. -/ protected def nonempty (s : set α) : Prop := ∃ x, x ∈ s @[simp] lemma nonempty_coe_sort (s : set α) : nonempty ↥s ↔ s.nonempty := nonempty_subtype lemma nonempty_def : s.nonempty ↔ ∃ x, x ∈ s := iff.rfl lemma nonempty_of_mem {x} (h : x ∈ s) : s.nonempty := ⟨x, h⟩ theorem nonempty.not_subset_empty : s.nonempty → ¬(s ⊆ ∅) | ⟨x, hx⟩ hs := hs hx theorem nonempty.ne_empty : ∀ {s : set α}, s.nonempty → s ≠ ∅ | _ ⟨x, hx⟩ rfl := hx @[simp] theorem not_nonempty_empty : ¬(∅ : set α).nonempty := λ h, h.ne_empty rfl /-- Extract a witness from `s.nonempty`. This function might be used instead of case analysis on the argument. Note that it makes a proof depend on the `classical.choice` axiom. -/ protected noncomputable def nonempty.some (h : s.nonempty) : α := classical.some h protected lemma nonempty.some_mem (h : s.nonempty) : h.some ∈ s := classical.some_spec h lemma nonempty.mono (ht : s ⊆ t) (hs : s.nonempty) : t.nonempty := hs.imp ht lemma nonempty_of_not_subset (h : ¬s ⊆ t) : (s \ t).nonempty := let ⟨x, xs, xt⟩ := not_subset.1 h in ⟨x, xs, xt⟩ lemma nonempty_of_ssubset (ht : s ⊂ t) : (t \ s).nonempty := nonempty_of_not_subset ht.2 lemma nonempty.of_diff (h : (s \ t).nonempty) : s.nonempty := h.imp $ λ _, and.left lemma nonempty_of_ssubset' (ht : s ⊂ t) : t.nonempty := (nonempty_of_ssubset ht).of_diff lemma nonempty.inl (hs : s.nonempty) : (s ∪ t).nonempty := hs.imp $ λ _, or.inl lemma nonempty.inr (ht : t.nonempty) : (s ∪ t).nonempty := ht.imp $ λ _, or.inr @[simp] lemma union_nonempty : (s ∪ t).nonempty ↔ s.nonempty ∨ t.nonempty := exists_or_distrib lemma nonempty.left (h : (s ∩ t).nonempty) : s.nonempty := h.imp $ λ _, and.left lemma nonempty.right (h : (s ∩ t).nonempty) : t.nonempty := h.imp $ λ _, and.right lemma nonempty_inter_iff_exists_right : (s ∩ t).nonempty ↔ ∃ x : t, ↑x ∈ s := ⟨λ ⟨x, xs, xt⟩, ⟨⟨x, xt⟩, xs⟩, λ ⟨⟨x, xt⟩, xs⟩, ⟨x, xs, xt⟩⟩ lemma nonempty_inter_iff_exists_left : (s ∩ t).nonempty ↔ ∃ x : s, ↑x ∈ t := ⟨λ ⟨x, xs, xt⟩, ⟨⟨x, xs⟩, xt⟩, λ ⟨⟨x, xt⟩, xs⟩, ⟨x, xt, xs⟩⟩ lemma nonempty_iff_univ_nonempty : nonempty α ↔ (univ : set α).nonempty := ⟨λ ⟨x⟩, ⟨x, trivial⟩, λ ⟨x, _⟩, ⟨x⟩⟩ @[simp] lemma univ_nonempty : ∀ [h : nonempty α], (univ : set α).nonempty | ⟨x⟩ := ⟨x, trivial⟩ lemma nonempty.to_subtype (h : s.nonempty) : nonempty s := nonempty_subtype.2 h instance [nonempty α] : nonempty (set.univ : set α) := set.univ_nonempty.to_subtype @[simp] lemma nonempty_insert (a : α) (s : set α) : (insert a s).nonempty := ⟨a, or.inl rfl⟩ lemma nonempty_of_nonempty_subtype [nonempty s] : s.nonempty := nonempty_subtype.mp ‹_› /-! ### Lemmas about the empty set -/ theorem empty_def : (∅ : set α) = {x | false} := rfl @[simp] theorem mem_empty_eq (x : α) : x ∈ (∅ : set α) = false := rfl @[simp] theorem set_of_false : {a : α | false} = ∅ := rfl @[simp] theorem empty_subset (s : set α) : ∅ ⊆ s. theorem subset_empty_iff {s : set α} : s ⊆ ∅ ↔ s = ∅ := (subset.antisymm_iff.trans $ and_iff_left (empty_subset _)).symm theorem eq_empty_iff_forall_not_mem {s : set α} : s = ∅ ↔ ∀ x, x ∉ s := subset_empty_iff.symm theorem eq_empty_of_subset_empty {s : set α} : s ⊆ ∅ → s = ∅ := subset_empty_iff.1 theorem eq_empty_of_is_empty [is_empty α] (s : set α) : s = ∅ := eq_empty_of_subset_empty $ λ x hx, is_empty_elim x /-- There is exactly one set of a type that is empty. -/ -- TODO[gh-6025]: make this an instance once safe to do so def unique_empty [is_empty α] : unique (set α) := { default := ∅, uniq := eq_empty_of_is_empty } lemma not_nonempty_iff_eq_empty {s : set α} : ¬s.nonempty ↔ s = ∅ := by simp only [set.nonempty, eq_empty_iff_forall_not_mem, not_exists] lemma empty_not_nonempty : ¬(∅ : set α).nonempty := λ h, h.ne_empty rfl theorem ne_empty_iff_nonempty : s ≠ ∅ ↔ s.nonempty := not_iff_comm.1 not_nonempty_iff_eq_empty lemma eq_empty_or_nonempty (s : set α) : s = ∅ ∨ s.nonempty := or_iff_not_imp_left.2 ne_empty_iff_nonempty.1 theorem subset_eq_empty {s t : set α} (h : t ⊆ s) (e : s = ∅) : t = ∅ := subset_empty_iff.1 $ e ▸ h theorem ball_empty_iff {p : α → Prop} : (∀ x ∈ (∅ : set α), p x) ↔ true := iff_true_intro $ λ x, false.elim instance (α : Type u) : is_empty.{u+1} (∅ : set α) := ⟨λ x, x.2⟩ @[simp] lemma empty_ssubset : ∅ ⊂ s ↔ s.nonempty := (@bot_lt_iff_ne_bot (set α) _ _ _).trans ne_empty_iff_nonempty /-! ### Universal set. In Lean `@univ α` (or `univ : set α`) is the set that contains all elements of type `α`. Mathematically it is the same as `α` but it has a different type. -/ @[simp] theorem set_of_true : {x : α | true} = univ := rfl @[simp] theorem mem_univ (x : α) : x ∈ @univ α := trivial @[simp] lemma univ_eq_empty_iff : (univ : set α) = ∅ ↔ is_empty α := eq_empty_iff_forall_not_mem.trans ⟨λ H, ⟨λ x, H x trivial⟩, λ H x _, @is_empty.false α H x⟩ theorem empty_ne_univ [nonempty α] : (∅ : set α) ≠ univ := λ e, not_is_empty_of_nonempty α $ univ_eq_empty_iff.1 e.symm @[simp] theorem subset_univ (s : set α) : s ⊆ univ := λ x H, trivial theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ := (subset.antisymm_iff.trans $ and_iff_right (subset_univ _)).symm theorem eq_univ_of_univ_subset {s : set α} : univ ⊆ s → s = univ := univ_subset_iff.1 theorem eq_univ_iff_forall {s : set α} : s = univ ↔ ∀ x, x ∈ s := univ_subset_iff.symm.trans $ forall_congr $ λ x, imp_iff_right ⟨⟩ theorem eq_univ_of_forall {s : set α} : (∀ x, x ∈ s) → s = univ := eq_univ_iff_forall.2 lemma eq_univ_of_subset {s t : set α} (h : s ⊆ t) (hs : s = univ) : t = univ := eq_univ_of_univ_subset $ hs ▸ h lemma exists_mem_of_nonempty (α) : ∀ [nonempty α], ∃x:α, x ∈ (univ : set α) | ⟨x⟩ := ⟨x, trivial⟩ lemma ne_univ_iff_exists_not_mem {α : Type*} (s : set α) : s ≠ univ ↔ ∃ a, a ∉ s := by rw [←not_forall, ←eq_univ_iff_forall] lemma not_subset_iff_exists_mem_not_mem {α : Type*} {s t : set α} : ¬ s ⊆ t ↔ ∃ x, x ∈ s ∧ x ∉ t := by simp [subset_def] lemma univ_unique [unique α] : @set.univ α = {default} := set.ext $ λ x, iff_of_true trivial $ subsingleton.elim x default /-! ### Lemmas about union -/ theorem union_def {s₁ s₂ : set α} : s₁ ∪ s₂ = {a | a ∈ s₁ ∨ a ∈ s₂} := rfl theorem mem_union_left {x : α} {a : set α} (b : set α) : x ∈ a → x ∈ a ∪ b := or.inl theorem mem_union_right {x : α} {b : set α} (a : set α) : x ∈ b → x ∈ a ∪ b := or.inr theorem mem_or_mem_of_mem_union {x : α} {a b : set α} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H theorem mem_union.elim {x : α} {a b : set α} {P : Prop} (H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P := or.elim H₁ H₂ H₃ theorem mem_union (x : α) (a b : set α) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := iff.rfl @[simp] theorem mem_union_eq (x : α) (a b : set α) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl @[simp] theorem union_self (a : set α) : a ∪ a = a := ext $ λ x, or_self _ @[simp] theorem union_empty (a : set α) : a ∪ ∅ = a := ext $ λ x, or_false _ @[simp] theorem empty_union (a : set α) : ∅ ∪ a = a := ext $ λ x, false_or _ theorem union_comm (a b : set α) : a ∪ b = b ∪ a := ext $ λ x, or.comm theorem union_assoc (a b c : set α) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := ext $ λ x, or.assoc instance union_is_assoc : is_associative (set α) (∪) := ⟨union_assoc⟩ instance union_is_comm : is_commutative (set α) (∪) := ⟨union_comm⟩ theorem union_left_comm (s₁ s₂ s₃ : set α) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := ext $ λ x, or.left_comm theorem union_right_comm (s₁ s₂ s₃ : set α) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := ext $ λ x, or.right_comm @[simp] theorem union_eq_left_iff_subset {s t : set α} : s ∪ t = s ↔ t ⊆ s := sup_eq_left @[simp] theorem union_eq_right_iff_subset {s t : set α} : s ∪ t = t ↔ s ⊆ t := sup_eq_right theorem union_eq_self_of_subset_left {s t : set α} (h : s ⊆ t) : s ∪ t = t := union_eq_right_iff_subset.mpr h theorem union_eq_self_of_subset_right {s t : set α} (h : t ⊆ s) : s ∪ t = s := union_eq_left_iff_subset.mpr h @[simp] theorem subset_union_left (s t : set α) : s ⊆ s ∪ t := λ x, or.inl @[simp] theorem subset_union_right (s t : set α) : t ⊆ s ∪ t := λ x, or.inr theorem union_subset {s t r : set α} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := λ x, or.rec (@sr _) (@tr _) @[simp] theorem union_subset_iff {s t u : set α} : s ∪ t ⊆ u ↔ s ⊆ u ∧ t ⊆ u := (forall_congr (by exact λ x, or_imp_distrib)).trans forall_and_distrib theorem union_subset_union {s₁ s₂ t₁ t₂ : set α} (h₁ : s₁ ⊆ s₂) (h₂ : t₁ ⊆ t₂) : s₁ ∪ t₁ ⊆ s₂ ∪ t₂ := λ x, or.imp (@h₁ _) (@h₂ _) theorem union_subset_union_left {s₁ s₂ : set α} (t) (h : s₁ ⊆ s₂) : s₁ ∪ t ⊆ s₂ ∪ t := union_subset_union h subset.rfl theorem union_subset_union_right (s) {t₁ t₂ : set α} (h : t₁ ⊆ t₂) : s ∪ t₁ ⊆ s ∪ t₂ := union_subset_union subset.rfl h lemma subset_union_of_subset_left {s t : set α} (h : s ⊆ t) (u : set α) : s ⊆ t ∪ u := subset.trans h (subset_union_left t u) lemma subset_union_of_subset_right {s u : set α} (h : s ⊆ u) (t : set α) : s ⊆ t ∪ u := subset.trans h (subset_union_right t u) @[simp] theorem union_empty_iff {s t : set α} : s ∪ t = ∅ ↔ s = ∅ ∧ t = ∅ := by simp only [← subset_empty_iff]; exact union_subset_iff @[simp] lemma union_univ {s : set α} : s ∪ univ = univ := sup_top_eq @[simp] lemma univ_union {s : set α} : univ ∪ s = univ := top_sup_eq /-! ### Lemmas about intersection -/ theorem inter_def {s₁ s₂ : set α} : s₁ ∩ s₂ = {a | a ∈ s₁ ∧ a ∈ s₂} := rfl theorem mem_inter_iff (x : α) (a b : set α) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := iff.rfl @[simp] theorem mem_inter_eq (x : α) (a b : set α) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter {x : α} {a b : set α} (ha : x ∈ a) (hb : x ∈ b) : x ∈ a ∩ b := ⟨ha, hb⟩ theorem mem_of_mem_inter_left {x : α} {a b : set α} (h : x ∈ a ∩ b) : x ∈ a := h.left theorem mem_of_mem_inter_right {x : α} {a b : set α} (h : x ∈ a ∩ b) : x ∈ b := h.right @[simp] theorem inter_self (a : set α) : a ∩ a = a := ext $ λ x, and_self _ @[simp] theorem inter_empty (a : set α) : a ∩ ∅ = ∅ := ext $ λ x, and_false _ @[simp] theorem empty_inter (a : set α) : ∅ ∩ a = ∅ := ext $ λ x, false_and _ theorem inter_comm (a b : set α) : a ∩ b = b ∩ a := ext $ λ x, and.comm theorem inter_assoc (a b c : set α) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := ext $ λ x, and.assoc instance inter_is_assoc : is_associative (set α) (∩) := ⟨inter_assoc⟩ instance inter_is_comm : is_commutative (set α) (∩) := ⟨inter_comm⟩ theorem inter_left_comm (s₁ s₂ s₃ : set α) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := ext $ λ x, and.left_comm theorem inter_right_comm (s₁ s₂ s₃ : set α) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := ext $ λ x, and.right_comm @[simp] theorem inter_subset_left (s t : set α) : s ∩ t ⊆ s := λ x, and.left @[simp] theorem inter_subset_right (s t : set α) : s ∩ t ⊆ t := λ x, and.right theorem subset_inter {s t r : set α} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := λ x h, ⟨rs h, rt h⟩ @[simp] theorem subset_inter_iff {s t r : set α} : r ⊆ s ∩ t ↔ r ⊆ s ∧ r ⊆ t := (forall_congr (by exact λ x, imp_and_distrib)).trans forall_and_distrib @[simp] theorem inter_eq_left_iff_subset {s t : set α} : s ∩ t = s ↔ s ⊆ t := inf_eq_left @[simp] theorem inter_eq_right_iff_subset {s t : set α} : s ∩ t = t ↔ t ⊆ s := inf_eq_right theorem inter_eq_self_of_subset_left {s t : set α} : s ⊆ t → s ∩ t = s := inter_eq_left_iff_subset.mpr theorem inter_eq_self_of_subset_right {s t : set α} : t ⊆ s → s ∩ t = t := inter_eq_right_iff_subset.mpr @[simp] theorem inter_univ (a : set α) : a ∩ univ = a := inf_top_eq @[simp] theorem univ_inter (a : set α) : univ ∩ a = a := top_inf_eq theorem inter_subset_inter {s₁ s₂ t₁ t₂ : set α} (h₁ : s₁ ⊆ t₁) (h₂ : s₂ ⊆ t₂) : s₁ ∩ s₂ ⊆ t₁ ∩ t₂ := λ x, and.imp (@h₁ _) (@h₂ _) theorem inter_subset_inter_left {s t : set α} (u : set α) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u := inter_subset_inter H subset.rfl theorem inter_subset_inter_right {s t : set α} (u : set α) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t := inter_subset_inter subset.rfl H theorem union_inter_cancel_left {s t : set α} : (s ∪ t) ∩ s = s := inter_eq_self_of_subset_right $ subset_union_left _ _ theorem union_inter_cancel_right {s t : set α} : (s ∪ t) ∩ t = t := inter_eq_self_of_subset_right $ subset_union_right _ _ /-! ### Distributivity laws -/ theorem inter_distrib_left (s t u : set α) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := inf_sup_left theorem inter_union_distrib_left {s t u : set α} : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := inf_sup_left theorem inter_distrib_right (s t u : set α) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := inf_sup_right theorem union_inter_distrib_right {s t u : set α} : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := inf_sup_right theorem union_distrib_left (s t u : set α) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := sup_inf_left theorem union_inter_distrib_left {s t u : set α} : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := sup_inf_left theorem union_distrib_right (s t u : set α) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := sup_inf_right theorem inter_union_distrib_right {s t u : set α} : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := sup_inf_right /-! ### Lemmas about `insert` `insert α s` is the set `{α} ∪ s`. -/ theorem insert_def (x : α) (s : set α) : insert x s = { y | y = x ∨ y ∈ s } := rfl @[simp] theorem subset_insert (x : α) (s : set α) : s ⊆ insert x s := λ y, or.inr theorem mem_insert (x : α) (s : set α) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : α} {s : set α} (y : α) : x ∈ s → x ∈ insert y s := or.inr theorem eq_or_mem_of_mem_insert {x a : α} {s : set α} : x ∈ insert a s → x = a ∨ x ∈ s := id theorem mem_of_mem_insert_of_ne {x a : α} {s : set α} : x ∈ insert a s → x ≠ a → x ∈ s := or.resolve_left @[simp] theorem mem_insert_iff {x a : α} {s : set α} : x ∈ insert a s ↔ x = a ∨ x ∈ s := iff.rfl @[simp] theorem insert_eq_of_mem {a : α} {s : set α} (h : a ∈ s) : insert a s = s := ext $ λ x, or_iff_right_of_imp $ λ e, e.symm ▸ h lemma ne_insert_of_not_mem {s : set α} (t : set α) {a : α} : a ∉ s → s ≠ insert a t := mt $ λ e, e.symm ▸ mem_insert _ _ theorem insert_subset : insert a s ⊆ t ↔ (a ∈ t ∧ s ⊆ t) := by simp only [subset_def, or_imp_distrib, forall_and_distrib, forall_eq, mem_insert_iff] theorem insert_subset_insert (h : s ⊆ t) : insert a s ⊆ insert a t := λ x, or.imp_right (@h _) theorem insert_subset_insert_iff (ha : a ∉ s) : insert a s ⊆ insert a t ↔ s ⊆ t := begin refine ⟨λ h x hx, _, insert_subset_insert⟩, rcases h (subset_insert _ _ hx) with (rfl|hxt), exacts [(ha hx).elim, hxt] end theorem ssubset_iff_insert {s t : set α} : s ⊂ t ↔ ∃ a ∉ s, insert a s ⊆ t := begin simp only [insert_subset, exists_and_distrib_right, ssubset_def, not_subset], simp only [exists_prop, and_comm] end theorem ssubset_insert {s : set α} {a : α} (h : a ∉ s) : s ⊂ insert a s := ssubset_iff_insert.2 ⟨a, h, subset.rfl⟩ theorem insert_comm (a b : α) (s : set α) : insert a (insert b s) = insert b (insert a s) := ext $ λ x, or.left_comm theorem insert_union : insert a s ∪ t = insert a (s ∪ t) := ext $ λ x, or.assoc @[simp] theorem union_insert : s ∪ insert a t = insert a (s ∪ t) := ext $ λ x, or.left_comm theorem insert_nonempty (a : α) (s : set α) : (insert a s).nonempty := ⟨a, mem_insert a s⟩ instance (a : α) (s : set α) : nonempty (insert a s : set α) := (insert_nonempty a s).to_subtype lemma insert_inter (x : α) (s t : set α) : insert x (s ∩ t) = insert x s ∩ insert x t := ext $ λ y, or_and_distrib_left -- useful in proofs by induction theorem forall_of_forall_insert {P : α → Prop} {a : α} {s : set α} (H : ∀ x, x ∈ insert a s → P x) (x) (h : x ∈ s) : P x := H _ (or.inr h) theorem forall_insert_of_forall {P : α → Prop} {a : α} {s : set α} (H : ∀ x, x ∈ s → P x) (ha : P a) (x) (h : x ∈ insert a s) : P x := h.elim (λ e, e.symm ▸ ha) (H _) theorem bex_insert_iff {P : α → Prop} {a : α} {s : set α} : (∃ x ∈ insert a s, P x) ↔ P a ∨ (∃ x ∈ s, P x) := bex_or_left_distrib.trans $ or_congr_left bex_eq_left theorem ball_insert_iff {P : α → Prop} {a : α} {s : set α} : (∀ x ∈ insert a s, P x) ↔ P a ∧ (∀x ∈ s, P x) := ball_or_left_distrib.trans $ and_congr_left' forall_eq /-! ### Lemmas about singletons -/ theorem singleton_def (a : α) : ({a} : set α) = insert a ∅ := (insert_emptyc_eq _).symm @[simp] theorem mem_singleton_iff {a b : α} : a ∈ ({b} : set α) ↔ a = b := iff.rfl @[simp] lemma set_of_eq_eq_singleton {a : α} : {n | n = a} = {a} := rfl @[simp] lemma set_of_eq_eq_singleton' {a : α} : {x | a = x} = {a} := ext $ λ x, eq_comm -- TODO: again, annotation needed @[simp] theorem mem_singleton (a : α) : a ∈ ({a} : set α) := @rfl _ _ theorem eq_of_mem_singleton {x y : α} (h : x ∈ ({y} : set α)) : x = y := h @[simp] theorem singleton_eq_singleton_iff {x y : α} : {x} = ({y} : set α) ↔ x = y := ext_iff.trans eq_iff_eq_cancel_left lemma singleton_injective : injective (singleton : α → set α) := λ _ _, singleton_eq_singleton_iff.mp theorem mem_singleton_of_eq {x y : α} (H : x = y) : x ∈ ({y} : set α) := H theorem insert_eq (x : α) (s : set α) : insert x s = ({x} : set α) ∪ s := rfl @[simp] theorem pair_eq_singleton (a : α) : ({a, a} : set α) = {a} := union_self _ theorem pair_comm (a b : α) : ({a, b} : set α) = {b, a} := union_comm _ _ @[simp] theorem singleton_nonempty (a : α) : ({a} : set α).nonempty := ⟨a, rfl⟩ @[simp] theorem singleton_subset_iff {a : α} {s : set α} : {a} ⊆ s ↔ a ∈ s := forall_eq theorem set_compr_eq_eq_singleton {a : α} : {b | b = a} = {a} := rfl @[simp] theorem singleton_union : {a} ∪ s = insert a s := rfl @[simp] theorem union_singleton : s ∪ {a} = insert a s := union_comm _ _ @[simp] theorem singleton_inter_nonempty : ({a} ∩ s).nonempty ↔ a ∈ s := by simp only [set.nonempty, mem_inter_eq, mem_singleton_iff, exists_eq_left] @[simp] theorem inter_singleton_nonempty : (s ∩ {a}).nonempty ↔ a ∈ s := by rw [inter_comm, singleton_inter_nonempty] @[simp] theorem singleton_inter_eq_empty : {a} ∩ s = ∅ ↔ a ∉ s := not_nonempty_iff_eq_empty.symm.trans singleton_inter_nonempty.not @[simp] theorem inter_singleton_eq_empty : s ∩ {a} = ∅ ↔ a ∉ s := by rw [inter_comm, singleton_inter_eq_empty] lemma nmem_singleton_empty {s : set α} : s ∉ ({∅} : set (set α)) ↔ s.nonempty := ne_empty_iff_nonempty instance unique_singleton (a : α) : unique ↥({a} : set α) := ⟨⟨⟨a, mem_singleton a⟩⟩, λ ⟨x, h⟩, subtype.eq h⟩ lemma eq_singleton_iff_unique_mem : s = {a} ↔ a ∈ s ∧ ∀ x ∈ s, x = a := subset.antisymm_iff.trans $ and.comm.trans $ and_congr_left' singleton_subset_iff lemma eq_singleton_iff_nonempty_unique_mem : s = {a} ↔ s.nonempty ∧ ∀ x ∈ s, x = a := eq_singleton_iff_unique_mem.trans $ and_congr_left $ λ H, ⟨λ h', ⟨_, h'⟩, λ ⟨x, h⟩, H x h ▸ h⟩ lemma exists_eq_singleton_iff_nonempty_unique_mem : (∃ a : α, s = {a}) ↔ (s.nonempty ∧ ∀ a b ∈ s, a = b) := begin refine ⟨_, λ h, _⟩, { rintros ⟨a, rfl⟩, refine ⟨set.singleton_nonempty a, λ b hb c hc, hb.trans hc.symm⟩ }, { obtain ⟨a, ha⟩ := h.1, refine ⟨a, set.eq_singleton_iff_unique_mem.mpr ⟨ha, λ b hb, (h.2 b hb a ha)⟩⟩ }, end -- while `simp` is capable of proving this, it is not capable of turning the LHS into the RHS. @[simp] lemma default_coe_singleton (x : α) : (default : ({x} : set α)) = ⟨x, rfl⟩ := rfl /-! ### Lemmas about sets defined as `{x ∈ s | p x}`. -/ theorem mem_sep {s : set α} {p : α → Prop} {x : α} (xs : x ∈ s) (px : p x) : x ∈ {x ∈ s | p x} := ⟨xs, px⟩ @[simp] theorem sep_mem_eq {s t : set α} : {x ∈ s | x ∈ t} = s ∩ t := rfl @[simp] theorem mem_sep_eq {s : set α} {p : α → Prop} {x : α} : x ∈ {x ∈ s | p x} = (x ∈ s ∧ p x) := rfl theorem mem_sep_iff {s : set α} {p : α → Prop} {x : α} : x ∈ {x ∈ s | p x} ↔ x ∈ s ∧ p x := iff.rfl theorem eq_sep_of_subset {s t : set α} (h : s ⊆ t) : s = {x ∈ t | x ∈ s} := (inter_eq_self_of_subset_right h).symm @[simp] theorem sep_subset (s : set α) (p : α → Prop) : {x ∈ s | p x} ⊆ s := λ x, and.left @[simp] lemma sep_empty (p : α → Prop) : {x ∈ (∅ : set α) | p x} = ∅ := by { ext, exact false_and _ } theorem forall_not_of_sep_empty {s : set α} {p : α → Prop} (H : {x ∈ s | p x} = ∅) (x) : x ∈ s → ¬ p x := not_and.1 (eq_empty_iff_forall_not_mem.1 H x : _) @[simp] lemma sep_univ {α} {p : α → Prop} : {a ∈ (univ : set α) | p a} = {a | p a} := univ_inter _ @[simp] lemma sep_true : {a ∈ s | true} = s := by { ext, simp } @[simp] lemma sep_false : {a ∈ s | false} = ∅ := by { ext, simp } lemma sep_inter_sep {p q : α → Prop} : {x ∈ s | p x} ∩ {x ∈ s | q x} = {x ∈ s | p x ∧ q x} := begin ext, simp_rw [mem_inter_iff, mem_sep_iff], rw [and_and_and_comm, and_self], end @[simp] lemma subset_singleton_iff {α : Type*} {s : set α} {x : α} : s ⊆ {x} ↔ ∀ y ∈ s, y = x := iff.rfl lemma subset_singleton_iff_eq {s : set α} {x : α} : s ⊆ {x} ↔ s = ∅ ∨ s = {x} := begin obtain (rfl | hs) := s.eq_empty_or_nonempty, use ⟨λ _, or.inl rfl, λ _, empty_subset _⟩, simp [eq_singleton_iff_nonempty_unique_mem, hs, ne_empty_iff_nonempty.2 hs], end lemma ssubset_singleton_iff {s : set α} {x : α} : s ⊂ {x} ↔ s = ∅ := begin rw [ssubset_iff_subset_ne, subset_singleton_iff_eq, or_and_distrib_right, and_not_self, or_false, and_iff_left_iff_imp], rintro rfl, refine ne_comm.1 (ne_empty_iff_nonempty.2 (singleton_nonempty _)), end lemma eq_empty_of_ssubset_singleton {s : set α} {x : α} (hs : s ⊂ {x}) : s = ∅ := ssubset_singleton_iff.1 hs /-! ### Lemmas about complement -/ theorem mem_compl {s : set α} {x : α} (h : x ∉ s) : x ∈ sᶜ := h lemma compl_set_of {α} (p : α → Prop) : {a | p a}ᶜ = { a | ¬ p a } := rfl theorem not_mem_of_mem_compl {s : set α} {x : α} (h : x ∈ sᶜ) : x ∉ s := h @[simp] theorem mem_compl_eq (s : set α) (x : α) : x ∈ sᶜ = (x ∉ s) := rfl theorem mem_compl_iff (s : set α) (x : α) : x ∈ sᶜ ↔ x ∉ s := iff.rfl @[simp] theorem inter_compl_self (s : set α) : s ∩ sᶜ = ∅ := inf_compl_eq_bot @[simp] theorem compl_inter_self (s : set α) : sᶜ ∩ s = ∅ := compl_inf_eq_bot @[simp] theorem compl_empty : (∅ : set α)ᶜ = univ := compl_bot @[simp] theorem compl_union (s t : set α) : (s ∪ t)ᶜ = sᶜ ∩ tᶜ := compl_sup theorem compl_inter (s t : set α) : (s ∩ t)ᶜ = sᶜ ∪ tᶜ := compl_inf @[simp] theorem compl_univ : (univ : set α)ᶜ = ∅ := compl_top @[simp] lemma compl_empty_iff {s : set α} : sᶜ = ∅ ↔ s = univ := compl_eq_bot @[simp] lemma compl_univ_iff {s : set α} : sᶜ = univ ↔ s = ∅ := compl_eq_top lemma nonempty_compl {s : set α} : sᶜ.nonempty ↔ s ≠ univ := ne_empty_iff_nonempty.symm.trans compl_empty_iff.not lemma mem_compl_singleton_iff {a x : α} : x ∈ ({a} : set α)ᶜ ↔ x ≠ a := mem_singleton_iff.not lemma compl_singleton_eq (a : α) : ({a} : set α)ᶜ = {x | x ≠ a} := ext $ λ x, mem_compl_singleton_iff @[simp] lemma compl_ne_eq_singleton (a : α) : ({x | x ≠ a} : set α)ᶜ = {a} := by { ext, simp, } theorem union_eq_compl_compl_inter_compl (s t : set α) : s ∪ t = (sᶜ ∩ tᶜ)ᶜ := ext $ λ x, or_iff_not_and_not theorem inter_eq_compl_compl_union_compl (s t : set α) : s ∩ t = (sᶜ ∪ tᶜ)ᶜ := ext $ λ x, and_iff_not_or_not @[simp] theorem union_compl_self (s : set α) : s ∪ sᶜ = univ := eq_univ_iff_forall.2 $ λ x, em _ @[simp] theorem compl_union_self (s : set α) : sᶜ ∪ s = univ := by rw [union_comm, union_compl_self] theorem compl_comp_compl : compl ∘ compl = @id (set α) := funext compl_compl theorem compl_subset_comm {s t : set α} : sᶜ ⊆ t ↔ tᶜ ⊆ s := @compl_le_iff_compl_le _ s t _ @[simp] lemma compl_subset_compl {s t : set α} : sᶜ ⊆ tᶜ ↔ t ⊆ s := @compl_le_compl_iff_le _ t s _ theorem subset_union_compl_iff_inter_subset {s t u : set α} : s ⊆ t ∪ uᶜ ↔ s ∩ u ⊆ t := (@is_compl_compl _ u _).le_sup_right_iff_inf_left_le theorem compl_subset_iff_union {s t : set α} : sᶜ ⊆ t ↔ s ∪ t = univ := iff.symm $ eq_univ_iff_forall.trans $ forall_congr $ λ a, or_iff_not_imp_left theorem subset_compl_comm {s t : set α} : s ⊆ tᶜ ↔ t ⊆ sᶜ := forall_congr $ λ a, imp_not_comm theorem subset_compl_iff_disjoint {s t : set α} : s ⊆ tᶜ ↔ s ∩ t = ∅ := iff.trans (forall_congr $ λ a, and_imp.symm) subset_empty_iff lemma subset_compl_singleton_iff {a : α} {s : set α} : s ⊆ {a}ᶜ ↔ a ∉ s := subset_compl_comm.trans singleton_subset_iff theorem inter_subset (a b c : set α) : a ∩ b ⊆ c ↔ a ⊆ bᶜ ∪ c := forall_congr $ λ x, and_imp.trans $ imp_congr_right $ λ _, imp_iff_not_or lemma inter_compl_nonempty_iff {s t : set α} : (s ∩ tᶜ).nonempty ↔ ¬ s ⊆ t := (not_subset.trans $ exists_congr $ by exact λ x, by simp [mem_compl]).symm /-! ### Lemmas about set difference -/ theorem diff_eq (s t : set α) : s \ t = s ∩ tᶜ := rfl @[simp] theorem mem_diff {s t : set α} (x : α) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := iff.rfl theorem mem_diff_of_mem {s t : set α} {x : α} (h1 : x ∈ s) (h2 : x ∉ t) : x ∈ s \ t := ⟨h1, h2⟩ theorem mem_of_mem_diff {s t : set α} {x : α} (h : x ∈ s \ t) : x ∈ s := h.left theorem not_mem_of_mem_diff {s t : set α} {x : α} (h : x ∈ s \ t) : x ∉ t := h.right theorem diff_eq_compl_inter {s t : set α} : s \ t = tᶜ ∩ s := by rw [diff_eq, inter_comm] theorem nonempty_diff {s t : set α} : (s \ t).nonempty ↔ ¬ (s ⊆ t) := inter_compl_nonempty_iff theorem diff_subset (s t : set α) : s \ t ⊆ s := show s \ t ≤ s, from sdiff_le theorem union_diff_cancel' {s t u : set α} (h₁ : s ⊆ t) (h₂ : t ⊆ u) : t ∪ (u \ s) = u := sup_sdiff_cancel' h₁ h₂ theorem union_diff_cancel {s t : set α} (h : s ⊆ t) : s ∪ (t \ s) = t := sup_sdiff_cancel_right h theorem union_diff_cancel_left {s t : set α} (h : s ∩ t ⊆ ∅) : (s ∪ t) \ s = t := disjoint.sup_sdiff_cancel_left h theorem union_diff_cancel_right {s t : set α} (h : s ∩ t ⊆ ∅) : (s ∪ t) \ t = s := disjoint.sup_sdiff_cancel_right h @[simp] theorem union_diff_left {s t : set α} : (s ∪ t) \ s = t \ s := sup_sdiff_left_self @[simp] theorem union_diff_right {s t : set α} : (s ∪ t) \ t = s \ t := sup_sdiff_right_self theorem union_diff_distrib {s t u : set α} : (s ∪ t) \ u = s \ u ∪ t \ u := sup_sdiff theorem inter_diff_assoc (a b c : set α) : (a ∩ b) \ c = a ∩ (b \ c) := inf_sdiff_assoc @[simp] theorem inter_diff_self (a b : set α) : a ∩ (b \ a) = ∅ := inf_sdiff_self_right @[simp] theorem inter_union_diff (s t : set α) : (s ∩ t) ∪ (s \ t) = s := sup_inf_sdiff s t @[simp] lemma diff_union_inter (s t : set α) : (s \ t) ∪ (s ∩ t) = s := by { rw union_comm, exact sup_inf_sdiff _ _ } @[simp] theorem inter_union_compl (s t : set α) : (s ∩ t) ∪ (s ∩ tᶜ) = s := inter_union_diff _ _ theorem diff_subset_diff {s₁ s₂ t₁ t₂ : set α} : s₁ ⊆ s₂ → t₂ ⊆ t₁ → s₁ \ t₁ ⊆ s₂ \ t₂ := show s₁ ≤ s₂ → t₂ ≤ t₁ → s₁ \ t₁ ≤ s₂ \ t₂, from sdiff_le_sdiff theorem diff_subset_diff_left {s₁ s₂ t : set α} (h : s₁ ⊆ s₂) : s₁ \ t ⊆ s₂ \ t := sdiff_le_sdiff_right ‹s₁ ≤ s₂› theorem diff_subset_diff_right {s t u : set α} (h : t ⊆ u) : s \ u ⊆ s \ t := sdiff_le_sdiff_left ‹t ≤ u› theorem compl_eq_univ_diff (s : set α) : sᶜ = univ \ s := top_sdiff.symm @[simp] lemma empty_diff (s : set α) : (∅ \ s : set α) = ∅ := bot_sdiff theorem diff_eq_empty {s t : set α} : s \ t = ∅ ↔ s ⊆ t := sdiff_eq_bot_iff @[simp] theorem diff_empty {s : set α} : s \ ∅ = s := sdiff_bot @[simp] lemma diff_univ (s : set α) : s \ univ = ∅ := diff_eq_empty.2 (subset_univ s) theorem diff_diff {u : set α} : s \ t \ u = s \ (t ∪ u) := sdiff_sdiff_left -- the following statement contains parentheses to help the reader lemma diff_diff_comm {s t u : set α} : (s \ t) \ u = (s \ u) \ t := sdiff_sdiff_comm lemma diff_subset_iff {s t u : set α} : s \ t ⊆ u ↔ s ⊆ t ∪ u := show s \ t ≤ u ↔ s ≤ t ∪ u, from sdiff_le_iff lemma subset_diff_union (s t : set α) : s ⊆ (s \ t) ∪ t := show s ≤ (s \ t) ∪ t, from le_sdiff_sup lemma diff_union_of_subset {s t : set α} (h : t ⊆ s) : (s \ t) ∪ t = s := subset.antisymm (union_subset (diff_subset _ _) h) (subset_diff_union _ _) @[simp] lemma diff_singleton_subset_iff {x : α} {s t : set α} : s \ {x} ⊆ t ↔ s ⊆ insert x t := by { rw [←union_singleton, union_comm], apply diff_subset_iff } lemma subset_diff_singleton {x : α} {s t : set α} (h : s ⊆ t) (hx : x ∉ s) : s ⊆ t \ {x} := subset_inter h $ subset_compl_comm.1 $ singleton_subset_iff.2 hx lemma subset_insert_diff_singleton (x : α) (s : set α) : s ⊆ insert x (s \ {x}) := by rw [←diff_singleton_subset_iff] lemma diff_subset_comm {s t u : set α} : s \ t ⊆ u ↔ s \ u ⊆ t := show s \ t ≤ u ↔ s \ u ≤ t, from sdiff_le_comm lemma diff_inter {s t u : set α} : s \ (t ∩ u) = (s \ t) ∪ (s \ u) := sdiff_inf lemma diff_inter_diff {s t u : set α} : s \ t ∩ (s \ u) = s \ (t ∪ u) := sdiff_sup.symm lemma diff_compl : s \ tᶜ = s ∩ t := sdiff_compl lemma diff_diff_right {s t u : set α} : s \ (t \ u) = (s \ t) ∪ (s ∩ u) := sdiff_sdiff_right' @[simp] theorem insert_diff_of_mem (s) (h : a ∈ t) : insert a s \ t = s \ t := by { ext, split; simp [or_imp_distrib, h] {contextual := tt} } theorem insert_diff_of_not_mem (s) (h : a ∉ t) : insert a s \ t = insert a (s \ t) := begin classical, ext x, by_cases h' : x ∈ t, { have : x ≠ a, { assume H, rw H at h', exact h h' }, simp [h, h', this] }, { simp [h, h'] } end lemma insert_diff_self_of_not_mem {a : α} {s : set α} (h : a ∉ s) : insert a s \ {a} = s := by { ext, simp [and_iff_left_of_imp (λ hx : x ∈ s, show x ≠ a, from λ hxa, h $ hxa ▸ hx)] } lemma insert_inter_of_mem {s₁ s₂ : set α} {a : α} (h : a ∈ s₂) : insert a s₁ ∩ s₂ = insert a (s₁ ∩ s₂) := by simp [set.insert_inter, h] lemma insert_inter_of_not_mem {s₁ s₂ : set α} {a : α} (h : a ∉ s₂) : insert a s₁ ∩ s₂ = s₁ ∩ s₂ := begin ext x, simp only [mem_inter_iff, mem_insert_iff, mem_inter_eq, and.congr_left_iff, or_iff_right_iff_imp], cc, end @[simp] theorem union_diff_self {s t : set α} : s ∪ (t \ s) = s ∪ t := sup_sdiff_self_right @[simp] theorem diff_union_self {s t : set α} : (s \ t) ∪ t = s ∪ t := sup_sdiff_self_left @[simp] theorem diff_inter_self {a b : set α} : (b \ a) ∩ a = ∅ := inf_sdiff_self_left @[simp] theorem diff_inter_self_eq_diff {s t : set α} : s \ (t ∩ s) = s \ t := sdiff_inf_self_right @[simp] theorem diff_self_inter {s t : set α} : s \ (s ∩ t) = s \ t := sdiff_inf_self_left @[simp] theorem diff_eq_self {s t : set α} : s \ t = s ↔ t ∩ s ⊆ ∅ := show s \ t = s ↔ t ⊓ s ≤ ⊥, from sdiff_eq_self_iff_disjoint @[simp] theorem diff_singleton_eq_self {a : α} {s : set α} (h : a ∉ s) : s \ {a} = s := diff_eq_self.2 $ by simp [singleton_inter_eq_empty.2 h] @[simp] theorem insert_diff_singleton {a : α} {s : set α} : insert a (s \ {a}) = insert a s := by simp [insert_eq, union_diff_self, -union_singleton, -singleton_union] @[simp] lemma diff_self {s : set α} : s \ s = ∅ := sdiff_self lemma diff_diff_cancel_left {s t : set α} (h : s ⊆ t) : t \ (t \ s) = s := sdiff_sdiff_eq_self h lemma mem_diff_singleton {x y : α} {s : set α} : x ∈ s \ {y} ↔ (x ∈ s ∧ x ≠ y) := iff.rfl lemma mem_diff_singleton_empty {s : set α} {t : set (set α)} : s ∈ t \ {∅} ↔ (s ∈ t ∧ s.nonempty) := mem_diff_singleton.trans $ iff.rfl.and ne_empty_iff_nonempty lemma union_eq_diff_union_diff_union_inter (s t : set α) : s ∪ t = (s \ t) ∪ (t \ s) ∪ (s ∩ t) := sup_eq_sdiff_sup_sdiff_sup_inf /-! ### Powerset -/ theorem mem_powerset {x s : set α} (h : x ⊆ s) : x ∈ powerset s := h theorem subset_of_mem_powerset {x s : set α} (h : x ∈ powerset s) : x ⊆ s := h @[simp] theorem mem_powerset_iff (x s : set α) : x ∈ powerset s ↔ x ⊆ s := iff.rfl theorem powerset_inter (s t : set α) : 𝒫 (s ∩ t) = 𝒫 s ∩ 𝒫 t := ext $ λ u, subset_inter_iff @[simp] theorem powerset_mono : 𝒫 s ⊆ 𝒫 t ↔ s ⊆ t := ⟨λ h, h (subset.refl s), λ h u hu, subset.trans hu h⟩ theorem monotone_powerset : monotone (powerset : set α → set (set α)) := λ s t, powerset_mono.2 @[simp] theorem powerset_nonempty : (𝒫 s).nonempty := ⟨∅, empty_subset s⟩ @[simp] theorem powerset_empty : 𝒫 (∅ : set α) = {∅} := ext $ λ s, subset_empty_iff @[simp] theorem powerset_univ : 𝒫 (univ : set α) = univ := eq_univ_of_forall subset_univ /-! ### If-then-else for sets -/ /-- `ite` for sets: `set.ite t s s' ∩ t = s ∩ t`, `set.ite t s s' ∩ tᶜ = s' ∩ tᶜ`. Defined as `s ∩ t ∪ s' \ t`. -/ protected def ite (t s s' : set α) : set α := s ∩ t ∪ s' \ t @[simp] lemma ite_inter_self (t s s' : set α) : t.ite s s' ∩ t = s ∩ t := by rw [set.ite, union_inter_distrib_right, diff_inter_self, inter_assoc, inter_self, union_empty] @[simp] lemma ite_compl (t s s' : set α) : tᶜ.ite s s' = t.ite s' s := by rw [set.ite, set.ite, diff_compl, union_comm, diff_eq] @[simp] lemma ite_inter_compl_self (t s s' : set α) : t.ite s s' ∩ tᶜ = s' ∩ tᶜ := by rw [← ite_compl, ite_inter_self] @[simp] lemma ite_diff_self (t s s' : set α) : t.ite s s' \ t = s' \ t := ite_inter_compl_self t s s' @[simp] lemma ite_same (t s : set α) : t.ite s s = s := inter_union_diff _ _ @[simp] lemma ite_left (s t : set α) : s.ite s t = s ∪ t := by simp [set.ite] @[simp] lemma ite_right (s t : set α) : s.ite t s = t ∩ s := by simp [set.ite] @[simp] lemma ite_empty (s s' : set α) : set.ite ∅ s s' = s' := by simp [set.ite] @[simp] lemma ite_univ (s s' : set α) : set.ite univ s s' = s := by simp [set.ite] @[simp] lemma ite_empty_left (t s : set α) : t.ite ∅ s = s \ t := by simp [set.ite] @[simp] lemma ite_empty_right (t s : set α) : t.ite s ∅ = s ∩ t := by simp [set.ite] lemma ite_mono (t : set α) {s₁ s₁' s₂ s₂' : set α} (h : s₁ ⊆ s₂) (h' : s₁' ⊆ s₂') : t.ite s₁ s₁' ⊆ t.ite s₂ s₂' := union_subset_union (inter_subset_inter_left _ h) (inter_subset_inter_left _ h') lemma ite_subset_union (t s s' : set α) : t.ite s s' ⊆ s ∪ s' := union_subset_union (inter_subset_left _ _) (diff_subset _ _) lemma inter_subset_ite (t s s' : set α) : s ∩ s' ⊆ t.ite s s' := ite_same t (s ∩ s') ▸ ite_mono _ (inter_subset_left _ _) (inter_subset_right _ _) lemma ite_inter_inter (t s₁ s₂ s₁' s₂' : set α) : t.ite (s₁ ∩ s₂) (s₁' ∩ s₂') = t.ite s₁ s₁' ∩ t.ite s₂ s₂' := by { ext x, simp only [set.ite, set.mem_inter_eq, set.mem_diff, set.mem_union_eq], itauto } lemma ite_inter (t s₁ s₂ s : set α) : t.ite (s₁ ∩ s) (s₂ ∩ s) = t.ite s₁ s₂ ∩ s := by rw [ite_inter_inter, ite_same] lemma ite_inter_of_inter_eq (t : set α) {s₁ s₂ s : set α} (h : s₁ ∩ s = s₂ ∩ s) : t.ite s₁ s₂ ∩ s = s₁ ∩ s := by rw [← ite_inter, ← h, ite_same] lemma subset_ite {t s s' u : set α} : u ⊆ t.ite s s' ↔ u ∩ t ⊆ s ∧ u \ t ⊆ s' := begin simp only [subset_def, ← forall_and_distrib], refine forall_congr (λ x, _), by_cases hx : x ∈ t; simp [*, set.ite] end /-! ### Inverse image -/ /-- The preimage of `s : set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : set β) : set α := {x | f x ∈ s} infix ` ⁻¹' `:80 := preimage section preimage variables {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl @[simp] theorem mem_preimage {s : set β} {a : α} : (a ∈ f ⁻¹' s) ↔ (f a ∈ s) := iff.rfl lemma preimage_congr {f g : α → β} {s : set β} (h : ∀ (x : α), f x = g x) : f ⁻¹' s = g ⁻¹' s := by { congr' with x, apply_assumption } theorem preimage_mono {s t : set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := assume x hx, h hx @[simp] theorem preimage_univ : f ⁻¹' univ = univ := rfl theorem subset_preimage_univ {s : set α} : s ⊆ f ⁻¹' univ := subset_univ _ @[simp] theorem preimage_inter {s t : set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl @[simp] theorem preimage_union {s t : set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl @[simp] theorem preimage_compl {s : set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl @[simp] theorem preimage_diff (f : α → β) (s t : set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : set β) : f ⁻¹' (s.ite t₁ t₂) = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl @[simp] theorem preimage_set_of_eq {p : α → Prop} {f : β → α} : f ⁻¹' {a | p a} = {a | p (f a)} := rfl @[simp] theorem preimage_id {s : set α} : id ⁻¹' s = s := rfl @[simp] theorem preimage_id' {s : set α} : (λ x, x) ⁻¹' s = s := rfl @[simp] theorem preimage_const_of_mem {b : β} {s : set β} (h : b ∈ s) : (λ (x : α), b) ⁻¹' s = univ := eq_univ_of_forall $ λ x, h @[simp] theorem preimage_const_of_not_mem {b : β} {s : set β} (h : b ∉ s) : (λ (x : α), b) ⁻¹' s = ∅ := eq_empty_of_subset_empty $ λ x hx, h hx theorem preimage_const (b : β) (s : set β) [decidable (b ∈ s)] : (λ (x : α), b) ⁻¹' s = if b ∈ s then univ else ∅ := by { split_ifs with hb hb, exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] } theorem preimage_comp {s : set γ} : (g ∘ f) ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl lemma preimage_preimage {g : β → γ} {f : α → β} {s : set γ} : f ⁻¹' (g ⁻¹' s) = (λ x, g (f x)) ⁻¹' s := preimage_comp.symm theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : set (subtype p)} {t : set α} : s = subtype.val ⁻¹' t ↔ (∀x (h : p x), (⟨x, h⟩ : subtype p) ∈ s ↔ x ∈ t) := ⟨assume s_eq x h, by { rw [s_eq], simp }, assume h, ext $ λ ⟨x, hx⟩, by simp [h]⟩ lemma nonempty_of_nonempty_preimage {s : set β} {f : α → β} (hf : (f ⁻¹' s).nonempty) : s.nonempty := let ⟨x, hx⟩ := hf in ⟨f x, hx⟩ end preimage /-! ### Image of a set under a function -/ section image infix ` '' `:80 := image theorem mem_image_iff_bex {f : α → β} {s : set α} {y : β} : y ∈ f '' s ↔ ∃ x (_ : x ∈ s), f x = y := bex_def.symm theorem mem_image_eq (f : α → β) (s : set α) (y: β) : y ∈ f '' s = ∃ x, x ∈ s ∧ f x = y := rfl @[simp] theorem mem_image (f : α → β) (s : set α) (y : β) : y ∈ f '' s ↔ ∃ x, x ∈ s ∧ f x = y := iff.rfl lemma image_eta (f : α → β) : f '' s = (λ x, f x) '' s := rfl theorem mem_image_of_mem (f : α → β) {x : α} {a : set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ theorem _root_.function.injective.mem_set_image {f : α → β} (hf : injective f) {s : set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨λ ⟨b, hb, eq⟩, (hf eq) ▸ hb, mem_image_of_mem f⟩ theorem ball_image_iff {f : α → β} {s : set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ (∀ x ∈ s, p (f x)) := by simp theorem ball_image_of_ball {f : α → β} {s : set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h theorem bex_image_iff {f : α → β} {s : set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ (∃ x ∈ s, p (f x)) := by simp theorem mem_image_elim {f : α → β} {s : set α} {C : β → Prop} (h : ∀ (x : α), x ∈ s → C (f x)) : ∀{y : β}, y ∈ f '' s → C y | ._ ⟨a, a_in, rfl⟩ := h a a_in theorem mem_image_elim_on {f : α → β} {s : set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ (x : α), x ∈ s → C (f x)) : C y := mem_image_elim h h_y @[congr] lemma image_congr {f g : α → β} {s : set α} (h : ∀a∈s, f a = g a) : f '' s = g '' s := by safe [ext_iff, iff_def] /-- A common special case of `image_congr` -/ lemma image_congr' {f g : α → β} {s : set α} (h : ∀ (x : α), f x = g x) : f '' s = g '' s := image_congr (λx _, h x) theorem image_comp (f : β → γ) (g : α → β) (a : set α) : (f ∘ g) '' a = f '' (g '' a) := subset.antisymm (ball_image_of_ball $ assume a ha, mem_image_of_mem _ $ mem_image_of_mem _ ha) (ball_image_of_ball $ ball_image_of_ball $ assume a ha, mem_image_of_mem _ ha) /-- A variant of `image_comp`, useful for rewriting -/ lemma image_image (g : β → γ) (f : α → β) (s : set α) : g '' (f '' s) = (λ x, g (f x)) '' s := (image_comp g f s).symm /-- Image is monotone with respect to `⊆`. See `set.monotone_image` for the statement in terms of `≤`. -/ theorem image_subset {a b : set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by { simp only [subset_def, mem_image_eq], exact λ x, λ ⟨w, h1, h2⟩, ⟨w, h h1, h2⟩ } theorem image_union (f : α → β) (s t : set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext $ λ x, ⟨by rintro ⟨a, h|h, rfl⟩; [left, right]; exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩); refine ⟨_, _, rfl⟩; [left, right]; exact h⟩ @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by { ext, simp } lemma image_inter_subset (f : α → β) (s t : set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ $ inter_subset_left _ _) (image_subset _ $ inter_subset_right _ _) theorem image_inter_on {f : α → β} {s t : set α} (h : ∀x∈t, ∀y∈s, f x = f y → x = y) : f '' s ∩ f '' t = f '' (s ∩ t) := subset.antisymm (assume b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩, have a₂ = a₁, from h _ ha₂ _ ha₁ (by simp *), ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩) (image_inter_subset _ _ _) theorem image_inter {f : α → β} {s t : set α} (H : injective f) : f '' s ∩ f '' t = f '' (s ∩ t) := image_inter_on (assume x _ y _ h, H h) theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : surjective f) : f '' univ = univ := eq_univ_of_forall $ by { simpa [image] } @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by { ext, simp [image, eq_comm] } @[simp] theorem nonempty.image_const {s : set α} (hs : s.nonempty) (a : β) : (λ _, a) '' s = {a} := ext $ λ x, ⟨λ ⟨y, _, h⟩, h ▸ mem_singleton _, λ h, (eq_of_mem_singleton h).symm ▸ hs.imp (λ y hy, ⟨hy, rfl⟩)⟩ @[simp] lemma image_eq_empty {α β} {f : α → β} {s : set α} : f '' s = ∅ ↔ s = ∅ := by { simp only [eq_empty_iff_forall_not_mem], exact ⟨λ H a ha, H _ ⟨_, ha, rfl⟩, λ H b ⟨_, ha, _⟩, H _ ha⟩ } -- TODO(Jeremy): there is an issue with - t unfolding to compl t theorem mem_compl_image (t : set α) (S : set (set α)) : t ∈ compl '' S ↔ tᶜ ∈ S := begin suffices : ∀ x, xᶜ = t ↔ tᶜ = x, { simp [this] }, intro x, split; { intro e, subst e, simp } end /-- A variant of `image_id` -/ @[simp] lemma image_id' (s : set α) : (λx, x) '' s = s := by { ext, simp } theorem image_id (s : set α) : id '' s = s := by simp theorem compl_compl_image (S : set (set α)) : compl '' (compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] theorem image_insert_eq {f : α → β} {a : α} {s : set α} : f '' (insert a s) = insert (f a) (f '' s) := by { ext, simp [and_or_distrib_left, exists_or_distrib, eq_comm, or_comm, and_comm] } theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : left_inverse g f) (s : set α) : f '' s ⊆ g ⁻¹' s := λ b ⟨a, h, e⟩, e ▸ ((I a).symm ▸ h : g (f a) ∈ s) theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : left_inverse g f) (s : set β) : f ⁻¹' s ⊆ g '' s := λ b h, ⟨f b, h, I b⟩ theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : left_inverse g f) (h₂ : right_inverse g f) : image f = preimage g := funext $ λ s, subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : set α} (h₁ : left_inverse g f) (h₂ : right_inverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw image_eq_preimage_of_inverse h₁ h₂; refl theorem image_compl_subset {f : α → β} {s : set α} (H : injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := subset_compl_iff_disjoint.2 $ by simp [image_inter H] theorem subset_image_compl {f : α → β} {s : set α} (H : surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 $ by { rw ← image_union, simp [image_univ_of_surjective H] } theorem image_compl_eq {f : α → β} {s : set α} (H : bijective f) : f '' sᶜ = (f '' s)ᶜ := subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) theorem subset_image_diff (f : α → β) (s t : set α) : f '' s \ f '' t ⊆ f '' (s \ t) := begin rw [diff_subset_iff, ← image_union, union_diff_self], exact image_subset f (subset_union_right t s) end theorem image_diff {f : α → β} (hf : injective f) (s t : set α) : f '' (s \ t) = f '' s \ f '' t := subset.antisymm (subset.trans (image_inter_subset _ _ _) $ inter_subset_inter_right _ $ image_compl_subset hf) (subset_image_diff f s t) lemma nonempty.image (f : α → β) {s : set α} : s.nonempty → (f '' s).nonempty | ⟨x, hx⟩ := ⟨f x, mem_image_of_mem f hx⟩ lemma nonempty.of_image {f : α → β} {s : set α} : (f '' s).nonempty → s.nonempty | ⟨y, x, hx, _⟩ := ⟨x, hx⟩ @[simp] lemma nonempty_image_iff {f : α → β} {s : set α} : (f '' s).nonempty ↔ s.nonempty := ⟨nonempty.of_image, λ h, h.image f⟩ lemma nonempty.preimage {s : set β} (hs : s.nonempty) {f : α → β} (hf : surjective f) : (f ⁻¹' s).nonempty := let ⟨y, hy⟩ := hs, ⟨x, hx⟩ := hf y in ⟨x, mem_preimage.2 $ hx.symm ▸ hy⟩ instance (f : α → β) (s : set α) [nonempty s] : nonempty (f '' s) := (set.nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : set α} {t : set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff theorem image_preimage_subset (f : α → β) (s : set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 subset.rfl theorem subset_preimage_image (f : α → β) (s : set α) : s ⊆ f ⁻¹' (f '' s) := λ x, mem_image_of_mem f theorem preimage_image_eq {f : α → β} (s : set α) (h : injective f) : f ⁻¹' (f '' s) = s := subset.antisymm (λ x ⟨y, hy, e⟩, h e ▸ hy) (subset_preimage_image f s) theorem image_preimage_eq {f : α → β} (s : set β) (h : surjective f) : f '' (f ⁻¹' s) = s := subset.antisymm (image_preimage_subset f s) (λ x hx, let ⟨y, e⟩ := h x in ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩) lemma preimage_eq_preimage {f : β → α} (hf : surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := iff.intro (assume eq, by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq]) (assume eq, eq ▸ rfl) lemma image_inter_preimage (f : α → β) (s : set α) (t : set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := begin apply subset.antisymm, { calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ (f '' (f⁻¹' t)) : image_inter_subset _ _ _ ... ⊆ f '' s ∩ t : inter_subset_inter_right _ (image_preimage_subset f t) }, { rintros _ ⟨⟨x, h', rfl⟩, h⟩, exact ⟨x, ⟨h', h⟩, rfl⟩ } end lemma image_preimage_inter (f : α → β) (s : set α) (t : set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] @[simp] lemma image_inter_nonempty_iff {f : α → β} {s : set α} {t : set β} : (f '' s ∩ t).nonempty ↔ (s ∩ f ⁻¹' t).nonempty := by rw [←image_inter_preimage, nonempty_image_iff] lemma image_diff_preimage {f : α → β} {s : set α} {t : set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] theorem compl_image : image (compl : set α → set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl theorem compl_image_set_of {p : set α → Prop} : compl '' {s | p s} = {s | p sᶜ} := congr_fun compl_image p theorem inter_preimage_subset (s : set α) (t : set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := λ x h, ⟨mem_image_of_mem _ h.left, h.right⟩ theorem union_preimage_subset (s : set α) (t : set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := λ x h, or.elim h (λ l, or.inl $ mem_image_of_mem _ l) (λ r, or.inr r) theorem subset_image_union (f : α → β) (s : set α) (t : set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) lemma preimage_subset_iff {A : set α} {B : set β} {f : α → β} : f⁻¹' B ⊆ A ↔ (∀ a : α, f a ∈ B → a ∈ A) := iff.rfl lemma image_eq_image {f : α → β} (hf : injective f) : f '' s = f '' t ↔ s = t := iff.symm $ iff.intro (assume eq, eq ▸ rfl) $ assume eq, by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] lemma image_subset_image_iff {f : α → β} (hf : injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := begin refine (iff.symm $ iff.intro (image_subset f) $ assume h, _), rw [← preimage_image_eq s hf, ← preimage_image_eq t hf], exact preimage_mono h end lemma prod_quotient_preimage_eq_image [s : setoid α] (g : quotient s → β) {h : α → β} (Hh : h = g ∘ quotient.mk) (r : set (β × β)) : {x : quotient s × quotient s | (g x.1, g x.2) ∈ r} = (λ a : α × α, (⟦a.1⟧, ⟦a.2⟧)) '' ((λ a : α × α, (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ set.ext (λ ⟨a₁, a₂⟩, ⟨quotient.induction_on₂ a₁ a₂ (λ a₁ a₂ h, ⟨(a₁, a₂), h, rfl⟩), λ ⟨⟨b₁, b₂⟩, h₁, h₂⟩, show (g a₁, g a₂) ∈ r, from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := prod.ext_iff.1 h₂, h₃.1 ▸ h₃.2 ▸ h₁⟩) lemma exists_image_iff (f : α → β) (x : set α) (P : β → Prop) : (∃ (a : f '' x), P a) ↔ ∃ (a : x), P (f a) := ⟨λ ⟨a, h⟩, ⟨⟨_, a.prop.some_spec.1⟩, a.prop.some_spec.2.symm ▸ h⟩, λ ⟨a, h⟩, ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ /-- Restriction of `f` to `s` factors through `s.image_factorization f : s → f '' s`. -/ def image_factorization (f : α → β) (s : set α) : s → f '' s := λ p, ⟨f p.1, mem_image_of_mem f p.2⟩ lemma image_factorization_eq {f : α → β} {s : set α} : subtype.val ∘ image_factorization f s = f ∘ subtype.val := funext $ λ p, rfl lemma surjective_onto_image {f : α → β} {s : set α} : surjective (image_factorization f s) := λ ⟨_, ⟨a, ha, rfl⟩⟩, ⟨⟨a, ha⟩, rfl⟩ end image /-! ### Subsingleton -/ /-- A set `s` is a `subsingleton`, if it has at most one element. -/ protected def subsingleton (s : set α) : Prop := ∀ ⦃x⦄ (hx : x ∈ s) ⦃y⦄ (hy : y ∈ s), x = y lemma subsingleton.mono (ht : t.subsingleton) (hst : s ⊆ t) : s.subsingleton := λ x hx y hy, ht (hst hx) (hst hy) lemma subsingleton.image (hs : s.subsingleton) (f : α → β) : (f '' s).subsingleton := λ _ ⟨x, hx, Hx⟩ _ ⟨y, hy, Hy⟩, Hx ▸ Hy ▸ congr_arg f (hs hx hy) lemma subsingleton.eq_singleton_of_mem (hs : s.subsingleton) {x:α} (hx : x ∈ s) : s = {x} := ext $ λ y, ⟨λ hy, (hs hx hy) ▸ mem_singleton _, λ hy, (eq_of_mem_singleton hy).symm ▸ hx⟩ @[simp] lemma subsingleton_empty : (∅ : set α).subsingleton := λ x, false.elim @[simp] lemma subsingleton_singleton {a} : ({a} : set α).subsingleton := λ x hx y hy, (eq_of_mem_singleton hx).symm ▸ (eq_of_mem_singleton hy).symm ▸ rfl lemma subsingleton_of_forall_eq (a : α) (h : ∀ b ∈ s, b = a) : s.subsingleton := λ b hb c hc, (h _ hb).trans (h _ hc).symm lemma subsingleton_iff_singleton {x} (hx : x ∈ s) : s.subsingleton ↔ s = {x} := ⟨λ h, h.eq_singleton_of_mem hx, λ h,h.symm ▸ subsingleton_singleton⟩ lemma subsingleton.eq_empty_or_singleton (hs : s.subsingleton) : s = ∅ ∨ ∃ x, s = {x} := s.eq_empty_or_nonempty.elim or.inl (λ ⟨x, hx⟩, or.inr ⟨x, hs.eq_singleton_of_mem hx⟩) lemma subsingleton.induction_on {p : set α → Prop} (hs : s.subsingleton) (he : p ∅) (h₁ : ∀ x, p {x}) : p s := by { rcases hs.eq_empty_or_singleton with rfl|⟨x, rfl⟩, exacts [he, h₁ _] } lemma subsingleton_univ [subsingleton α] : (univ : set α).subsingleton := λ x hx y hy, subsingleton.elim x y lemma subsingleton_of_univ_subsingleton (h : (univ : set α).subsingleton) : subsingleton α := ⟨λ a b, h (mem_univ a) (mem_univ b)⟩ @[simp] lemma subsingleton_univ_iff : (univ : set α).subsingleton ↔ subsingleton α := ⟨subsingleton_of_univ_subsingleton, λ h, @subsingleton_univ _ h⟩ lemma subsingleton_of_subsingleton [subsingleton α] {s : set α} : set.subsingleton s := subsingleton.mono subsingleton_univ (subset_univ s) lemma subsingleton_is_top (α : Type*) [partial_order α] : set.subsingleton {x : α | is_top x} := λ x hx y hy, hx.is_max.eq_of_le (hy x) lemma subsingleton_is_bot (α : Type*) [partial_order α] : set.subsingleton {x : α | is_bot x} := λ x hx y hy, hx.is_min.eq_of_ge (hy x) /-- `s`, coerced to a type, is a subsingleton type if and only if `s` is a subsingleton set. -/ @[simp, norm_cast] lemma subsingleton_coe (s : set α) : subsingleton s ↔ s.subsingleton := begin split, { refine λ h, (λ a ha b hb, _), exact set_coe.ext_iff.2 (@subsingleton.elim s h ⟨a, ha⟩ ⟨b, hb⟩) }, { exact λ h, subsingleton.intro (λ a b, set_coe.ext (h a.property b.property)) } end /-- The `coe_sort` of a set `s` in a subsingleton type is a subsingleton. For the corresponding result for `subtype`, see `subtype.subsingleton`. -/ instance subsingleton_coe_of_subsingleton [subsingleton α] {s : set α} : subsingleton s := by { rw [s.subsingleton_coe], exact subsingleton_of_subsingleton } /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem subsingleton.preimage {s : set β} (hs : s.subsingleton) {f : α → β} (hf : function.injective f) : (f ⁻¹' s).subsingleton := λ a ha b hb, hf $ hs ha hb /-- `s` is a subsingleton, if its image of an injective function is. -/ theorem subsingleton_of_image {α β : Type*} {f : α → β} (hf : function.injective f) (s : set α) (hs : (f '' s).subsingleton) : s.subsingleton := (hs.preimage hf).mono $ subset_preimage_image _ _ theorem univ_eq_true_false : univ = ({true, false} : set Prop) := eq.symm $ eq_univ_of_forall $ classical.cases (by simp) (by simp) /-! ### Lemmas about range of a function. -/ section range variables {f : ι → α} open function /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : set α := {x | ∃y, f y = x} @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := iff.rfl @[simp] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ (∀ i, p (f i)) := by simp theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨λ H i, H _, λ H ⟨y, i, hi⟩, by { subst hi, apply H }⟩ theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ (∃ i, p (f i)) := by simp lemma exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff lemma exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨λ ⟨⟨a, i, hi⟩, ha⟩, by { subst a, exact ⟨i, ha⟩}, λ ⟨i, hi⟩, ⟨_, hi⟩⟩ theorem range_iff_surjective : range f = univ ↔ surjective f := eq_univ_iff_forall alias range_iff_surjective ↔ _ function.surjective.range_eq @[simp] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id @[simp] theorem range_id' : range (λ (x : α), x) = univ := range_id @[simp] theorem _root_.prod.range_fst [nonempty β] : range (prod.fst : α × β → α) = univ := prod.fst_surjective.range_eq @[simp] theorem _root_.prod.range_snd [nonempty α] : range (prod.snd : α × β → β) = univ := prod.snd_surjective.range_eq @[simp] theorem range_eval {ι : Type*} {α : ι → Sort*} [Π i, nonempty (α i)] (i : ι) : range (eval i : (Π i, α i) → α i) = univ := (surjective_eval i).range_eq theorem is_compl_range_inl_range_inr : is_compl (range $ @sum.inl α β) (range sum.inr) := ⟨by { rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, _⟩⟩, cc }, by { rintro (x|y) -; [left, right]; exact mem_range_self _ }⟩ @[simp] theorem range_inl_union_range_inr : range (sum.inl : α → α ⊕ β) ∪ range sum.inr = univ := is_compl_range_inl_range_inr.sup_eq_top @[simp] theorem range_inl_inter_range_inr : range (sum.inl : α → α ⊕ β) ∩ range sum.inr = ∅ := is_compl_range_inl_range_inr.inf_eq_bot @[simp] theorem range_inr_union_range_inl : range (sum.inr : β → α ⊕ β) ∪ range sum.inl = univ := is_compl_range_inl_range_inr.symm.sup_eq_top @[simp] theorem range_inr_inter_range_inl : range (sum.inr : β → α ⊕ β) ∩ range sum.inl = ∅ := is_compl_range_inl_range_inr.symm.inf_eq_bot @[simp] theorem preimage_inl_range_inr : sum.inl ⁻¹' range (sum.inr : β → α ⊕ β) = ∅ := by { ext, simp } @[simp] theorem preimage_inr_range_inl : sum.inr ⁻¹' range (sum.inl : α → α ⊕ β) = ∅ := by { ext, simp } @[simp] theorem range_quot_mk (r : α → α → Prop) : range (quot.mk r) = univ := (surjective_quot_mk r).range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by { ext, simp [image, range] } theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw ← image_univ; exact image_subset _ (subset_univ _) theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h lemma nonempty.preimage' {s : set β} (hs : s.nonempty) {f : α → β} (hf : s ⊆ set.range f) : (f ⁻¹' s).nonempty := let ⟨y, hy⟩ := hs, ⟨x, hx⟩ := hf hy in ⟨x, set.mem_preimage.2 $ hx.symm ▸ hy⟩ theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := subset.antisymm (forall_range_iff.mpr $ assume i, mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr $ forall_range_iff.mpr mem_range_self) theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff theorem range_eq_iff (f : α → β) (s : set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by { rw ←range_subset_iff, exact le_antisymm_iff } lemma range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw range_comp; apply image_subset_range lemma range_nonempty_iff_nonempty : (range f).nonempty ↔ nonempty ι := ⟨λ ⟨y, x, hxy⟩, ⟨x⟩, λ ⟨x⟩, ⟨f x, mem_range_self x⟩⟩ lemma range_nonempty [h : nonempty ι] (f : ι → α) : (range f).nonempty := range_nonempty_iff_nonempty.2 h @[simp] lemma range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ is_empty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] lemma range_eq_empty [is_empty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› instance [nonempty ι] (f : ι → α) : nonempty (range f) := (range_nonempty f).to_subtype @[simp] lemma image_union_image_compl_eq_range (f : α → β) : (f '' s) ∪ (f '' sᶜ) = range f := by rw [← image_union, ← image_univ, ← union_compl_self] theorem image_preimage_eq_inter_range {f : α → β} {t : set β} : f '' (f ⁻¹' t) = t ∩ range f := ext $ assume x, ⟨assume ⟨x, hx, heq⟩, heq ▸ ⟨hx, mem_range_self _⟩, assume ⟨hx, ⟨y, h_eq⟩⟩, h_eq ▸ mem_image_of_mem f $ show y ∈ f ⁻¹' t, by simp [preimage, h_eq, hx]⟩ lemma image_preimage_eq_of_subset {f : α → β} {s : set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] instance set.can_lift [can_lift α β] : can_lift (set α) (set β) := { coe := λ s, can_lift.coe '' s, cond := λ s, ∀ x ∈ s, can_lift.cond β x, prf := λ s hs, ⟨can_lift.coe ⁻¹' s, image_preimage_eq_of_subset $ λ x hx, can_lift.prf _ (hs x hx)⟩ } lemma image_preimage_eq_iff {f : α → β} {s : set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by { intro h, rw [← h], apply image_subset_range }, image_preimage_eq_of_subset⟩ lemma preimage_subset_preimage_iff {s t : set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := begin split, { intros h x hx, rcases hs hx with ⟨y, rfl⟩, exact h hx }, intros h x, apply h end lemma preimage_eq_preimage' {s t : set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := begin split, { intro h, apply subset.antisymm, rw [←preimage_subset_preimage_iff hs, h], rw [←preimage_subset_preimage_iff ht, h] }, rintro rfl, refl end @[simp] theorem preimage_inter_range {f : α → β} {s : set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := set.ext $ λ x, and_iff_left ⟨x, rfl⟩ @[simp] theorem preimage_range_inter {f : α → β} {s : set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] theorem preimage_image_preimage {f : α → β} {s : set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] @[simp] theorem quot_mk_range_eq [setoid α] : range (λx : α, ⟦x⟧) = univ := range_iff_surjective.2 quot.exists_rep lemma range_const_subset {c : α} : range (λx:ι, c) ⊆ {c} := range_subset_iff.2 $ λ x, rfl @[simp] lemma range_const : ∀ [nonempty ι] {c : α}, range (λx:ι, c) = {c} | ⟨x⟩ c := subset.antisymm range_const_subset $ assume y hy, (mem_singleton_iff.1 hy).symm ▸ mem_range_self x lemma image_swap_eq_preimage_swap : image (@prod.swap α β) = preimage prod.swap := image_eq_preimage_of_inverse prod.swap_left_inverse prod.swap_right_inverse theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).nonempty ↔ y ∈ range f := iff.rfl theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not lemma range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] lemma image_compl_preimage {f : α → β} {s : set β} : f '' ((f ⁻¹' s)ᶜ) = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] @[simp] theorem range_sigma_mk {β : α → Type*} (a : α) : range (sigma.mk a : β a → Σ a, β a) = sigma.fst ⁻¹' {a} := begin apply subset.antisymm, { rintros _ ⟨b, rfl⟩, simp }, { rintros ⟨x, y⟩ (rfl|_), exact mem_range_self y } end /-- Any map `f : ι → β` factors through a map `range_factorization f : ι → range f`. -/ def range_factorization (f : ι → β) : ι → range f := λ i, ⟨f i, mem_range_self i⟩ lemma range_factorization_eq {f : ι → β} : subtype.val ∘ range_factorization f = f := funext $ λ i, rfl @[simp] lemma range_factorization_coe (f : ι → β) (a : ι) : (range_factorization f a : β) = f a := rfl @[simp] lemma coe_comp_range_factorization (f : ι → β) : coe ∘ range_factorization f = f := rfl lemma surjective_onto_range : surjective (range_factorization f) := λ ⟨_, ⟨i, rfl⟩⟩, ⟨i, rfl⟩ lemma image_eq_range (f : α → β) (s : set α) : f '' s = range (λ(x : s), f x) := by { ext, split, rintro ⟨x, h1, h2⟩, exact ⟨⟨x, h1⟩, h2⟩, rintro ⟨⟨x, h1⟩, h2⟩, exact ⟨x, h1, h2⟩ } @[simp] lemma sum.elim_range {α β γ : Type*} (f : α → γ) (g : β → γ) : range (sum.elim f g) = range f ∪ range g := by simp [set.ext_iff, mem_range] lemma range_ite_subset' {p : Prop} [decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := begin by_cases h : p, {rw if_pos h, exact subset_union_left _ _}, {rw if_neg h, exact subset_union_right _ _} end lemma range_ite_subset {p : α → Prop} [decidable_pred p] {f g : α → β} : range (λ x, if p x then f x else g x) ⊆ range f ∪ range g := begin rw range_subset_iff, intro x, by_cases h : p x, simp [if_pos h, mem_union, mem_range_self], simp [if_neg h, mem_union, mem_range_self] end @[simp] lemma preimage_range (f : α → β) : f ⁻¹' (range f) = univ := eq_univ_of_forall mem_range_self /-- The range of a function from a `unique` type contains just the function applied to its single value. -/ lemma range_unique [h : unique ι] : range f = {f default} := begin ext x, rw mem_range, split, { rintros ⟨i, hi⟩, rw h.uniq i at hi, exact hi ▸ mem_singleton _ }, { exact λ h, ⟨default, h.symm⟩ } end lemma range_diff_image_subset (f : α → β) (s : set α) : range f \ f '' s ⊆ f '' sᶜ := λ y ⟨⟨x, h₁⟩, h₂⟩, ⟨x, λ h, h₂ ⟨x, h, h₁⟩, h₁⟩ lemma range_diff_image {f : α → β} (H : injective f) (s : set α) : range f \ f '' s = f '' sᶜ := subset.antisymm (range_diff_image_subset f s) $ λ y ⟨x, hx, hy⟩, hy ▸ ⟨mem_range_self _, λ ⟨x', hx', eq⟩, hx $ H eq ▸ hx'⟩ /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def range_splitting (f : α → β) : range f → α := λ x, x.2.some -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. lemma apply_range_splitting (f : α → β) (x : range f) : f (range_splitting f x) = x := x.2.some_spec attribute [irreducible] range_splitting @[simp] lemma comp_range_splitting (f : α → β) : f ∘ range_splitting f = coe := by { ext, simp only [function.comp_app], apply apply_range_splitting, } -- When `f` is injective, see also `equiv.of_injective`. lemma left_inverse_range_splitting (f : α → β) : left_inverse (range_factorization f) (range_splitting f) := λ x, by { ext, simp only [range_factorization_coe], apply apply_range_splitting, } lemma range_splitting_injective (f : α → β) : injective (range_splitting f) := (left_inverse_range_splitting f).injective lemma right_inverse_range_splitting {f : α → β} (h : injective f) : right_inverse (range_factorization f) (range_splitting f) := (left_inverse_range_splitting f).right_inverse_of_injective $ λ x y hxy, h $ subtype.ext_iff.1 hxy lemma preimage_range_splitting {f : α → β} (hf : injective f) : preimage (range_splitting f) = image (range_factorization f) := (image_eq_preimage_of_inverse (right_inverse_range_splitting hf) (left_inverse_range_splitting f)).symm lemma is_compl_range_some_none (α : Type*) : is_compl (range (some : α → option α)) {none} := ⟨λ x ⟨⟨a, ha⟩, (hn : x = none)⟩, option.some_ne_none _ (ha.trans hn), λ x hx, option.cases_on x (or.inr rfl) (λ x, or.inl $ mem_range_self _)⟩ @[simp] lemma compl_range_some (α : Type*) : (range (some : α → option α))ᶜ = {none} := (is_compl_range_some_none α).compl_eq @[simp] lemma range_some_inter_none (α : Type*) : range (some : α → option α) ∩ {none} = ∅ := (is_compl_range_some_none α).inf_eq_bot @[simp] lemma range_some_union_none (α : Type*) : range (some : α → option α) ∪ {none} = univ := (is_compl_range_some_none α).sup_eq_top end range end set open set namespace function variables {ι : Sort*} {α : Type*} {β : Type*} {f : α → β} lemma surjective.preimage_injective (hf : surjective f) : injective (preimage f) := assume s t, (preimage_eq_preimage hf).1 lemma injective.preimage_image (hf : injective f) (s : set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf lemma injective.preimage_surjective (hf : injective f) : surjective (preimage f) := by { intro s, use f '' s, rw hf.preimage_image } lemma injective.subsingleton_image_iff (hf : injective f) {s : set α} : (f '' s).subsingleton ↔ s.subsingleton := ⟨subsingleton_of_image hf s, λ h, h.image f⟩ lemma surjective.image_preimage (hf : surjective f) (s : set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf lemma surjective.image_surjective (hf : surjective f) : surjective (image f) := by { intro s, use f ⁻¹' s, rw hf.image_preimage } lemma surjective.nonempty_preimage (hf : surjective f) {s : set β} : (f ⁻¹' s).nonempty ↔ s.nonempty := by rw [← nonempty_image_iff, hf.image_preimage] lemma injective.image_injective (hf : injective f) : injective (image f) := by { intros s t h, rw [←preimage_image_eq s hf, ←preimage_image_eq t hf, h] } lemma surjective.preimage_subset_preimage_iff {s t : set β} (hf : surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by { apply preimage_subset_preimage_iff, rw [hf.range_eq], apply subset_univ } lemma surjective.range_comp {ι' : Sort*} {f : ι → ι'} (hf : surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext $ λ y, (@surjective.exists _ _ _ hf (λ x, g x = y)).symm lemma injective.nonempty_apply_iff {f : set α → set β} (hf : injective f) (h2 : f ∅ = ∅) {s : set α} : (f s).nonempty ↔ s.nonempty := by rw [← ne_empty_iff_nonempty, ← h2, ← ne_empty_iff_nonempty, hf.ne_iff] lemma injective.mem_range_iff_exists_unique (hf : injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨λ ⟨a, h⟩, ⟨a, h, λ a' ha, hf (ha.trans h.symm)⟩, exists_unique.exists⟩ lemma injective.exists_unique_of_mem_range (hf : injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb theorem injective.compl_image_eq (hf : injective f) (s : set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := begin ext y, rcases em (y ∈ range f) with ⟨x, rfl⟩|hx, { simp [hf.eq_iff] }, { rw [mem_range, not_exists] at hx, simp [hx] } end lemma left_inverse.image_image {g : β → α} (h : left_inverse g f) (s : set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] lemma left_inverse.preimage_preimage {g : β → α} (h : left_inverse g f) (s : set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] end function open function lemma option.injective_iff {α β} {f : option α → β} : injective f ↔ injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := begin simp only [mem_range, not_exists, (∘)], refine ⟨λ hf, ⟨hf.comp (option.some_injective _), λ x, hf.ne $ option.some_ne_none _⟩, _⟩, rintro ⟨h_some, h_none⟩ (_|a) (_|b) hab, exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] end /-! ### Image and preimage on subtypes -/ namespace subtype variable {α : Type*} lemma coe_image {p : α → Prop} {s : set (subtype p)} : coe '' s = {x | ∃h : p x, (⟨x, h⟩ : subtype p) ∈ s} := set.ext $ assume a, ⟨assume ⟨⟨a', ha'⟩, in_s, h_eq⟩, h_eq ▸ ⟨ha', in_s⟩, assume ⟨ha, in_s⟩, ⟨⟨a, ha⟩, in_s, rfl⟩⟩ @[simp] lemma coe_image_of_subset {s t : set α} (h : t ⊆ s) : coe '' {x : ↥s | ↑x ∈ t} = t := begin ext x, rw set.mem_image, exact ⟨λ ⟨x', hx', hx⟩, hx ▸ hx', λ hx, ⟨⟨x, h hx⟩, hx, rfl⟩⟩, end lemma range_coe {s : set α} : range (coe : s → α) = s := by { rw ← set.image_univ, simp [-set.image_univ, coe_image] } /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ lemma range_val {s : set α} : range (subtype.val : s → α) = s := range_coe /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : set α` the function `coe : s → α`, then the inferred implicit arguments of `coe` are `coe α (λ x, x ∈ s)`. -/ @[simp] lemma range_coe_subtype {p : α → Prop} : range (coe : subtype p → α) = {x | p x} := range_coe @[simp] lemma coe_preimage_self (s : set α) : (coe : s → α) ⁻¹' s = univ := by rw [← preimage_range (coe : s → α), range_coe] lemma range_val_subtype {p : α → Prop} : range (subtype.val : subtype p → α) = {x | p x} := range_coe theorem coe_image_subset (s : set α) (t : set s) : coe '' t ⊆ s := λ x ⟨y, yt, yvaleq⟩, by rw ←yvaleq; exact y.property theorem coe_image_univ (s : set α) : (coe : s → α) '' set.univ = s := image_univ.trans range_coe @[simp] theorem image_preimage_coe (s t : set α) : (coe : s → α) '' (coe ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans $ congr_arg _ range_coe theorem image_preimage_val (s t : set α) : (subtype.val : s → α) '' (subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t theorem preimage_coe_eq_preimage_coe_iff {s t u : set α} : ((coe : s → α) ⁻¹' t = coe ⁻¹' u) ↔ t ∩ s = u ∩ s := begin rw [←image_preimage_coe, ←image_preimage_coe], split, { intro h, rw h }, intro h, exact coe_injective.image_injective h end theorem preimage_val_eq_preimage_val_iff (s t u : set α) : ((subtype.val : s → α) ⁻¹' t = subtype.val ⁻¹' u) ↔ (t ∩ s = u ∩ s) := preimage_coe_eq_preimage_coe_iff lemma exists_set_subtype {t : set α} (p : set α → Prop) : (∃(s : set t), p (coe '' s)) ↔ ∃(s : set α), s ⊆ t ∧ p s := begin split, { rintro ⟨s, hs⟩, refine ⟨coe '' s, _, hs⟩, convert image_subset_range _ _, rw [range_coe] }, rintro ⟨s, hs₁, hs₂⟩, refine ⟨coe ⁻¹' s, _⟩, rw [image_preimage_eq_of_subset], exact hs₂, rw [range_coe], exact hs₁ end lemma preimage_coe_nonempty {s t : set α} : ((coe : s → α) ⁻¹' t).nonempty ↔ (s ∩ t).nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] lemma preimage_coe_eq_empty {s t : set α} : (coe : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp only [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] @[simp] lemma preimage_coe_compl (s : set α) : (coe : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) @[simp] lemma preimage_coe_compl' (s : set α) : (coe : sᶜ → α) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) end subtype namespace set /-! ### Lemmas about `inclusion`, the injection of subtypes induced by `⊆` -/ section inclusion variable {α : Type*} /-- `inclusion` is the "identity" function between two subsets `s` and `t`, where `s ⊆ t` -/ def inclusion {s t : set α} (h : s ⊆ t) : s → t := λ x : s, (⟨x, h x.2⟩ : t) @[simp] lemma inclusion_self {s : set α} (x : s) : inclusion subset.rfl x = x := by { cases x, refl } @[simp] lemma inclusion_right {s t : set α} (h : s ⊆ t) (x : t) (m : (x : α) ∈ s) : inclusion h ⟨x, m⟩ = x := by { cases x, refl } @[simp] lemma inclusion_inclusion {s t u : set α} (hst : s ⊆ t) (htu : t ⊆ u) (x : s) : inclusion htu (inclusion hst x) = inclusion (set.subset.trans hst htu) x := by { cases x, refl } @[simp] lemma coe_inclusion {s t : set α} (h : s ⊆ t) (x : s) : (inclusion h x : α) = (x : α) := rfl lemma inclusion_injective {s t : set α} (h : s ⊆ t) : function.injective (inclusion h) | ⟨_, _⟩ ⟨_, _⟩ := subtype.ext_iff_val.2 ∘ subtype.ext_iff_val.1 @[simp] lemma range_inclusion {s t : set α} (h : s ⊆ t) : range (inclusion h) = {x : t | (x:α) ∈ s} := by { ext ⟨x, hx⟩, simp [inclusion] } lemma eq_of_inclusion_surjective {s t : set α} {h : s ⊆ t} (h_surj : function.surjective (inclusion h)) : s = t := begin rw [← range_iff_surjective, range_inclusion, eq_univ_iff_forall] at h_surj, exact set.subset.antisymm h (λ x hx, h_surj ⟨x, hx⟩) end end inclusion /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section image_preimage variables {α : Type u} {β : Type v} {f : α → β} @[simp] lemma preimage_injective : injective (preimage f) ↔ surjective f := begin refine ⟨λ h y, _, surjective.preimage_injective⟩, obtain ⟨x, hx⟩ : (f ⁻¹' {y}).nonempty, { rw [h.nonempty_apply_iff preimage_empty], apply singleton_nonempty }, exact ⟨x, hx⟩ end @[simp] lemma preimage_surjective : surjective (preimage f) ↔ injective f := begin refine ⟨λ h x x' hx, _, injective.preimage_surjective⟩, cases h {x} with s hs, have := mem_singleton x, rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this end @[simp] lemma image_surjective : surjective (image f) ↔ surjective f := begin refine ⟨λ h y, _, surjective.image_surjective⟩, cases h {y} with s hs, have := mem_singleton y, rw [← hs] at this, rcases this with ⟨x, h1x, h2x⟩, exact ⟨x, h2x⟩ end @[simp] lemma image_injective : injective (image f) ↔ injective f := begin refine ⟨λ h x x' hx, _, injective.image_injective⟩, rw [← singleton_eq_singleton_iff], apply h, rw [image_singleton, image_singleton, hx] end lemma preimage_eq_iff_eq_image {f : α → β} (hf : bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] lemma eq_preimage_iff_image_eq {f : α → β} (hf : bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] end image_preimage /-! ### Lemmas about images of binary and ternary functions -/ section n_ary_image variables {α β γ δ ε : Type*} {f f' : α → β → γ} {g g' : α → β → γ → δ} variables {s s' : set α} {t t' : set β} {u u' : set γ} {a a' : α} {b b' : β} {c c' : γ} {d d' : δ} /-- The image of a binary function `f : α → β → γ` as a function `set α → set β → set γ`. Mathematically this should be thought of as the image of the corresponding function `α × β → γ`. -/ def image2 (f : α → β → γ) (s : set α) (t : set β) : set γ := {c | ∃ a b, a ∈ s ∧ b ∈ t ∧ f a b = c } lemma mem_image2_eq : c ∈ image2 f s t = ∃ a b, a ∈ s ∧ b ∈ t ∧ f a b = c := rfl @[simp] lemma mem_image2 : c ∈ image2 f s t ↔ ∃ a b, a ∈ s ∧ b ∈ t ∧ f a b = c := iff.rfl lemma mem_image2_of_mem (h1 : a ∈ s) (h2 : b ∈ t) : f a b ∈ image2 f s t := ⟨a, b, h1, h2, rfl⟩ lemma mem_image2_iff (hf : injective2 f) : f a b ∈ image2 f s t ↔ a ∈ s ∧ b ∈ t := ⟨ by { rintro ⟨a', b', ha', hb', h⟩, rcases hf h with ⟨rfl, rfl⟩, exact ⟨ha', hb'⟩ }, λ ⟨ha, hb⟩, mem_image2_of_mem ha hb⟩ /-- image2 is monotone with respect to `⊆`. -/ lemma image2_subset (hs : s ⊆ s') (ht : t ⊆ t') : image2 f s t ⊆ image2 f s' t' := by { rintro _ ⟨a, b, ha, hb, rfl⟩, exact mem_image2_of_mem (hs ha) (ht hb) } lemma image2_subset_left (ht : t ⊆ t') : image2 f s t ⊆ image2 f s t' := image2_subset subset.rfl ht lemma image2_subset_right (hs : s ⊆ s') : image2 f s t ⊆ image2 f s' t := image2_subset hs subset.rfl lemma forall_image2_iff {p : γ → Prop} : (∀ z ∈ image2 f s t, p z) ↔ ∀ (x ∈ s) (y ∈ t), p (f x y) := ⟨λ h x hx y hy, h _ ⟨x, y, hx, hy, rfl⟩, λ h z ⟨x, y, hx, hy, hz⟩, hz ▸ h x hx y hy⟩ @[simp] lemma image2_subset_iff {u : set γ} : image2 f s t ⊆ u ↔ ∀ (x ∈ s) (y ∈ t), f x y ∈ u := forall_image2_iff lemma image2_union_left : image2 f (s ∪ s') t = image2 f s t ∪ image2 f s' t := begin ext c, split, { rintros ⟨a, b, h1a|h2a, hb, rfl⟩;[left, right]; exact ⟨_, _, ‹_›, ‹_›, rfl⟩ }, { rintro (⟨_, _, _, _, rfl⟩|⟨_, _, _, _, rfl⟩); refine ⟨_, _, _, ‹_›, rfl⟩; simp [mem_union, *] } end lemma image2_union_right : image2 f s (t ∪ t') = image2 f s t ∪ image2 f s t' := begin ext c, split, { rintros ⟨a, b, ha, h1b|h2b, rfl⟩;[left, right]; exact ⟨_, _, ‹_›, ‹_›, rfl⟩ }, { rintro (⟨_, _, _, _, rfl⟩|⟨_, _, _, _, rfl⟩); refine ⟨_, _, ‹_›, _, rfl⟩; simp [mem_union, *] } end @[simp] lemma image2_empty_left : image2 f ∅ t = ∅ := ext $ by simp @[simp] lemma image2_empty_right : image2 f s ∅ = ∅ := ext $ by simp lemma image2_inter_subset_left : image2 f (s ∩ s') t ⊆ image2 f s t ∩ image2 f s' t := by { rintro _ ⟨a, b, ⟨h1a, h2a⟩, hb, rfl⟩, split; exact ⟨_, _, ‹_›, ‹_›, rfl⟩ } lemma image2_inter_subset_right : image2 f s (t ∩ t') ⊆ image2 f s t ∩ image2 f s t' := by { rintro _ ⟨a, b, ha, ⟨h1b, h2b⟩, rfl⟩, split; exact ⟨_, _, ‹_›, ‹_›, rfl⟩ } @[simp] lemma image2_singleton_left : image2 f {a} t = f a '' t := ext $ λ x, by simp @[simp] lemma image2_singleton_right : image2 f s {b} = (λ a, f a b) '' s := ext $ λ x, by simp lemma image2_singleton : image2 f {a} {b} = {f a b} := by simp @[congr] lemma image2_congr (h : ∀ (a ∈ s) (b ∈ t), f a b = f' a b) : image2 f s t = image2 f' s t := by { ext, split; rintro ⟨a, b, ha, hb, rfl⟩; refine ⟨a, b, ha, hb, by rw h a ha b hb⟩ } /-- A common special case of `image2_congr` -/ lemma image2_congr' (h : ∀ a b, f a b = f' a b) : image2 f s t = image2 f' s t := image2_congr (λ a _ b _, h a b) /-- The image of a ternary function `f : α → β → γ → δ` as a function `set α → set β → set γ → set δ`. Mathematically this should be thought of as the image of the corresponding function `α × β × γ → δ`. -/ def image3 (g : α → β → γ → δ) (s : set α) (t : set β) (u : set γ) : set δ := {d | ∃ a b c, a ∈ s ∧ b ∈ t ∧ c ∈ u ∧ g a b c = d } @[simp] lemma mem_image3 : d ∈ image3 g s t u ↔ ∃ a b c, a ∈ s ∧ b ∈ t ∧ c ∈ u ∧ g a b c = d := iff.rfl @[congr] lemma image3_congr (h : ∀ (a ∈ s) (b ∈ t) (c ∈ u), g a b c = g' a b c) : image3 g s t u = image3 g' s t u := by { ext x, split; rintro ⟨a, b, c, ha, hb, hc, rfl⟩; exact ⟨a, b, c, ha, hb, hc, by rw h a ha b hb c hc⟩ } /-- A common special case of `image3_congr` -/ lemma image3_congr' (h : ∀ a b c, g a b c = g' a b c) : image3 g s t u = image3 g' s t u := image3_congr (λ a _ b _ c _, h a b c) lemma image2_image2_left (f : δ → γ → ε) (g : α → β → δ) : image2 f (image2 g s t) u = image3 (λ a b c, f (g a b) c) s t u := begin ext, split, { rintro ⟨_, c, ⟨a, b, ha, hb, rfl⟩, hc, rfl⟩, refine ⟨a, b, c, ha, hb, hc, rfl⟩ }, { rintro ⟨a, b, c, ha, hb, hc, rfl⟩, refine ⟨_, c, ⟨a, b, ha, hb, rfl⟩, hc, rfl⟩ } end lemma image2_image2_right (f : α → δ → ε) (g : β → γ → δ) : image2 f s (image2 g t u) = image3 (λ a b c, f a (g b c)) s t u := begin ext, split, { rintro ⟨a, _, ha, ⟨b, c, hb, hc, rfl⟩, rfl⟩, refine ⟨a, b, c, ha, hb, hc, rfl⟩ }, { rintro ⟨a, b, c, ha, hb, hc, rfl⟩, refine ⟨a, _, ha, ⟨b, c, hb, hc, rfl⟩, rfl⟩ } end lemma image2_assoc {ε'} {f : δ → γ → ε} {g : α → β → δ} {f' : α → ε' → ε} {g' : β → γ → ε'} (h_assoc : ∀ a b c, f (g a b) c = f' a (g' b c)) : image2 f (image2 g s t) u = image2 f' s (image2 g' t u) := by simp only [image2_image2_left, image2_image2_right, h_assoc] lemma image_image2 (f : α → β → γ) (g : γ → δ) : g '' image2 f s t = image2 (λ a b, g (f a b)) s t := begin ext, split, { rintro ⟨_, ⟨a, b, ha, hb, rfl⟩, rfl⟩, refine ⟨a, b, ha, hb, rfl⟩ }, { rintro ⟨a, b, ha, hb, rfl⟩, refine ⟨_, ⟨a, b, ha, hb, rfl⟩, rfl⟩ } end lemma image2_image_left (f : γ → β → δ) (g : α → γ) : image2 f (g '' s) t = image2 (λ a b, f (g a) b) s t := begin ext, split, { rintro ⟨_, b, ⟨a, ha, rfl⟩, hb, rfl⟩, refine ⟨a, b, ha, hb, rfl⟩ }, { rintro ⟨a, b, ha, hb, rfl⟩, refine ⟨_, b, ⟨a, ha, rfl⟩, hb, rfl⟩ } end lemma image2_image_right (f : α → γ → δ) (g : β → γ) : image2 f s (g '' t) = image2 (λ a b, f a (g b)) s t := begin ext, split, { rintro ⟨a, _, ha, ⟨b, hb, rfl⟩, rfl⟩, refine ⟨a, b, ha, hb, rfl⟩ }, { rintro ⟨a, b, ha, hb, rfl⟩, refine ⟨a, _, ha, ⟨b, hb, rfl⟩, rfl⟩ } end lemma image2_swap (f : α → β → γ) (s : set α) (t : set β) : image2 f s t = image2 (λ a b, f b a) t s := by { ext, split; rintro ⟨a, b, ha, hb, rfl⟩; refine ⟨b, a, hb, ha, rfl⟩ } @[simp] lemma image2_left (h : t.nonempty) : image2 (λ x y, x) s t = s := by simp [nonempty_def.mp h, ext_iff] @[simp] lemma image2_right (h : s.nonempty) : image2 (λ x y, y) s t = t := by simp [nonempty_def.mp h, ext_iff] lemma nonempty.image2 (hs : s.nonempty) (ht : t.nonempty) : (image2 f s t).nonempty := by { cases hs with a ha, cases ht with b hb, exact ⟨f a b, ⟨a, b, ha, hb, rfl⟩⟩ } end n_ary_image end set namespace subsingleton variables {α : Type*} [subsingleton α] lemma eq_univ_of_nonempty {s : set α} : s.nonempty → s = univ := λ ⟨x, hx⟩, eq_univ_of_forall $ λ y, subsingleton.elim x y ▸ hx @[elab_as_eliminator] lemma set_cases {p : set α → Prop} (h0 : p ∅) (h1 : p univ) (s) : p s := s.eq_empty_or_nonempty.elim (λ h, h.symm ▸ h0) $ λ h, (eq_univ_of_nonempty h).symm ▸ h1 lemma mem_iff_nonempty {α : Type*} [subsingleton α] {s : set α} {x : α} : x ∈ s ↔ s.nonempty := ⟨λ hx, ⟨x, hx⟩, λ ⟨y, hy⟩, subsingleton.elim y x ▸ hy⟩ end subsingleton /-! ### Decidability instances for sets -/ namespace set variables {α : Type u} (s t : set α) (a : α) instance decidable_sdiff [decidable (a ∈ s)] [decidable (a ∈ t)] : decidable (a ∈ s \ t) := (by apply_instance : decidable (a ∈ s ∧ a ∉ t)) instance decidable_inter [decidable (a ∈ s)] [decidable (a ∈ t)] : decidable (a ∈ s ∩ t) := (by apply_instance : decidable (a ∈ s ∧ a ∈ t)) instance decidable_union [decidable (a ∈ s)] [decidable (a ∈ t)] : decidable (a ∈ s ∪ t) := (by apply_instance : decidable (a ∈ s ∨ a ∈ t)) instance decidable_compl [decidable (a ∈ s)] : decidable (a ∈ sᶜ) := (by apply_instance : decidable (a ∉ s)) instance decidable_emptyset : decidable_pred (∈ (∅ : set α)) := λ _, decidable.is_false (by simp) instance decidable_univ : decidable_pred (∈ (set.univ : set α)) := λ _, decidable.is_true (by simp) instance decidable_set_of (p : α → Prop) [decidable (p a)] : decidable (a ∈ {a | p a}) := by assumption end set
8a2914ecbd16f0591467ded577b04bb27595241a
c777c32c8e484e195053731103c5e52af26a25d1
/src/geometry/euclidean/angle/unoriented/affine.lean
8b4036ae625b1c380439d1783b8324be49c7877f
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
23,481
lean
/- Copyright (c) 2020 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers, Manuel Candales -/ import analysis.convex.between import geometry.euclidean.angle.unoriented.basic /-! # Angles between points This file defines unoriented angles in Euclidean affine spaces. ## Main definitions * `euclidean_geometry.angle`, with notation `∠`, is the undirected angle determined by three points. -/ noncomputable theory open_locale big_operators open_locale real open_locale real_inner_product_space namespace euclidean_geometry open inner_product_geometry variables {V : Type*} {P : Type*} [normed_add_comm_group V] [inner_product_space ℝ V] [metric_space P] [normed_add_torsor V P] include V /-- The undirected angle at `p2` between the line segments to `p1` and `p3`. If either of those points equals `p2`, this is π/2. Use `open_locale euclidean_geometry` to access the `∠ p1 p2 p3` notation. -/ def angle (p1 p2 p3 : P) : ℝ := angle (p1 -ᵥ p2 : V) (p3 -ᵥ p2) localized "notation (name := angle) `∠` := euclidean_geometry.angle" in euclidean_geometry lemma continuous_at_angle {x : P × P × P} (hx12 : x.1 ≠ x.2.1) (hx32 : x.2.2 ≠ x.2.1) : continuous_at (λ y : P × P × P, ∠ y.1 y.2.1 y.2.2) x := begin let f : P × P × P → V × V := λ y, (y.1 -ᵥ y.2.1, y.2.2 -ᵥ y.2.1), have hf1 : (f x).1 ≠ 0, by simp [hx12], have hf2 : (f x).2 ≠ 0, by simp [hx32], exact (inner_product_geometry.continuous_at_angle hf1 hf2).comp ((continuous_fst.vsub continuous_snd.fst).prod_mk (continuous_snd.snd.vsub continuous_snd.fst)).continuous_at end @[simp] lemma _root_.affine_isometry.angle_map {V₂ P₂ : Type*} [normed_add_comm_group V₂] [inner_product_space ℝ V₂] [metric_space P₂] [normed_add_torsor V₂ P₂] (f : P →ᵃⁱ[ℝ] P₂) (p₁ p₂ p₃ : P) : ∠ (f p₁) (f p₂) (f p₃) = ∠ p₁ p₂ p₃ := by simp_rw [angle, ←affine_isometry.map_vsub, linear_isometry.angle_map] @[simp, norm_cast] lemma _root_.affine_subspace.angle_coe {s : affine_subspace ℝ P} (p₁ p₂ p₃ : s) : by haveI : nonempty s := ⟨p₁⟩; exact ∠ (p₁ : P) (p₂ : P) (p₃ : P) = ∠ p₁ p₂ p₃ := by haveI : nonempty s := ⟨p₁⟩; exact s.subtypeₐᵢ.angle_map p₁ p₂ p₃ /-- Angles are translation invariant -/ @[simp] lemma angle_const_vadd (v : V) (p₁ p₂ p₃ : P) : ∠ (v +ᵥ p₁) (v +ᵥ p₂) (v +ᵥ p₃) = ∠ p₁ p₂ p₃ := (affine_isometry_equiv.const_vadd ℝ P v).to_affine_isometry.angle_map _ _ _ /-- Angles are translation invariant -/ @[simp] lemma angle_vadd_const (v₁ v₂ v₃ : V) (p : P) : ∠ (v₁ +ᵥ p) (v₂ +ᵥ p) (v₃ +ᵥ p) = ∠ v₁ v₂ v₃ := (affine_isometry_equiv.vadd_const ℝ p).to_affine_isometry.angle_map _ _ _ /-- Angles are translation invariant -/ @[simp] lemma angle_const_vsub (p p₁ p₂ p₃ : P) : ∠ (p -ᵥ p₁) (p -ᵥ p₂) (p -ᵥ p₃) = ∠ p₁ p₂ p₃ := (affine_isometry_equiv.const_vsub ℝ p).to_affine_isometry.angle_map _ _ _ /-- Angles are translation invariant -/ @[simp] lemma angle_vsub_const (p₁ p₂ p₃ p : P) : ∠ (p₁ -ᵥ p) (p₂ -ᵥ p) (p₃ -ᵥ p) = ∠ p₁ p₂ p₃ := (affine_isometry_equiv.vadd_const ℝ p).symm.to_affine_isometry.angle_map _ _ _ /-- Angles in a vector space are translation invariant -/ @[simp] lemma angle_add_const (v₁ v₂ v₃ : V) (v : V) : ∠ (v₁ + v) (v₂ + v) (v₃ + v) = ∠ v₁ v₂ v₃ := angle_vadd_const _ _ _ _ /-- Angles in a vector space are translation invariant -/ @[simp] lemma angle_const_add (v : V) (v₁ v₂ v₃ : V) : ∠ (v + v₁) (v + v₂) (v + v₃) = ∠ v₁ v₂ v₃ := angle_const_vadd _ _ _ _ /-- Angles in a vector space are translation invariant -/ @[simp] lemma angle_sub_const (v₁ v₂ v₃ : V) (v : V) : ∠ (v₁ - v) (v₂ - v) (v₃ - v) = ∠ v₁ v₂ v₃ := by simpa only [vsub_eq_sub] using angle_vsub_const v₁ v₂ v₃ v /-- Angles in a vector space are invariant to inversion -/ @[simp] lemma angle_const_sub (v : V) (v₁ v₂ v₃ : V) : ∠ (v - v₁) (v - v₂) (v - v₃) = ∠ v₁ v₂ v₃ := by simpa only [vsub_eq_sub] using angle_const_vsub _ _ _ _ /-- Angles in a vector space are invariant to inversion -/ @[simp] lemma angle_neg (v₁ v₂ v₃ : V) : ∠ (-v₁) (-v₂) (-v₃) = ∠ v₁ v₂ v₃ := by simpa only [zero_sub] using angle_const_sub 0 v₁ v₂ v₃ /-- The angle at a point does not depend on the order of the other two points. -/ lemma angle_comm (p1 p2 p3 : P) : ∠ p1 p2 p3 = ∠ p3 p2 p1 := angle_comm _ _ /-- The angle at a point is nonnegative. -/ lemma angle_nonneg (p1 p2 p3 : P) : 0 ≤ ∠ p1 p2 p3 := angle_nonneg _ _ /-- The angle at a point is at most π. -/ lemma angle_le_pi (p1 p2 p3 : P) : ∠ p1 p2 p3 ≤ π := angle_le_pi _ _ /-- The angle ∠AAB at a point. -/ lemma angle_eq_left (p1 p2 : P) : ∠ p1 p1 p2 = π / 2 := begin unfold angle, rw vsub_self, exact angle_zero_left _ end /-- The angle ∠ABB at a point. -/ lemma angle_eq_right (p1 p2 : P) : ∠ p1 p2 p2 = π / 2 := by rw [angle_comm, angle_eq_left] /-- The angle ∠ABA at a point. -/ lemma angle_eq_of_ne {p1 p2 : P} (h : p1 ≠ p2) : ∠ p1 p2 p1 = 0 := angle_self (λ he, h (vsub_eq_zero_iff_eq.1 he)) /-- If the angle ∠ABC at a point is π, the angle ∠BAC is 0. -/ lemma angle_eq_zero_of_angle_eq_pi_left {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = π) : ∠ p2 p1 p3 = 0 := begin unfold angle at h, rw angle_eq_pi_iff at h, rcases h with ⟨hp1p2, ⟨r, ⟨hr, hpr⟩⟩⟩, unfold angle, rw angle_eq_zero_iff, rw [←neg_vsub_eq_vsub_rev, neg_ne_zero] at hp1p2, use [hp1p2, -r + 1, add_pos (neg_pos_of_neg hr) zero_lt_one], rw [add_smul, ←neg_vsub_eq_vsub_rev p1 p2, smul_neg], simp [←hpr] end /-- If the angle ∠ABC at a point is π, the angle ∠BCA is 0. -/ lemma angle_eq_zero_of_angle_eq_pi_right {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = π) : ∠ p2 p3 p1 = 0 := begin rw angle_comm at h, exact angle_eq_zero_of_angle_eq_pi_left h end /-- If ∠BCD = π, then ∠ABC = ∠ABD. -/ lemma angle_eq_angle_of_angle_eq_pi (p1 : P) {p2 p3 p4 : P} (h : ∠ p2 p3 p4 = π) : ∠ p1 p2 p3 = ∠ p1 p2 p4 := begin unfold angle at *, rcases angle_eq_pi_iff.1 h with ⟨hp2p3, ⟨r, ⟨hr, hpr⟩⟩⟩, rw [eq_comm], convert angle_smul_right_of_pos (p1 -ᵥ p2) (p3 -ᵥ p2) (add_pos (neg_pos_of_neg hr) zero_lt_one), rw [add_smul, ← neg_vsub_eq_vsub_rev p2 p3, smul_neg, neg_smul, ← hpr], simp end /-- If ∠BCD = π, then ∠ACB + ∠ACD = π. -/ lemma angle_add_angle_eq_pi_of_angle_eq_pi (p1 : P) {p2 p3 p4 : P} (h : ∠ p2 p3 p4 = π) : ∠ p1 p3 p2 + ∠ p1 p3 p4 = π := begin unfold angle at h, rw [angle_comm p1 p3 p2, angle_comm p1 p3 p4], unfold angle, exact angle_add_angle_eq_pi_of_angle_eq_pi _ h end /-- Vertical Angles Theorem: angles opposite each other, formed by two intersecting straight lines, are equal. -/ lemma angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi {p1 p2 p3 p4 p5 : P} (hapc : ∠ p1 p5 p3 = π) (hbpd : ∠ p2 p5 p4 = π) : ∠ p1 p5 p2 = ∠ p3 p5 p4 := by linarith [angle_add_angle_eq_pi_of_angle_eq_pi p1 hbpd, angle_comm p4 p5 p1, angle_add_angle_eq_pi_of_angle_eq_pi p4 hapc, angle_comm p4 p5 p3] /-- If ∠ABC = π then dist A B ≠ 0. -/ lemma left_dist_ne_zero_of_angle_eq_pi {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = π) : dist p1 p2 ≠ 0 := begin by_contra heq, rw [dist_eq_zero] at heq, rw [heq, angle_eq_left] at h, exact real.pi_ne_zero (by linarith), end /-- If ∠ABC = π then dist C B ≠ 0. -/ lemma right_dist_ne_zero_of_angle_eq_pi {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = π) : dist p3 p2 ≠ 0 := left_dist_ne_zero_of_angle_eq_pi $ (angle_comm _ _ _).trans h /-- If ∠ABC = π, then (dist A C) = (dist A B) + (dist B C). -/ lemma dist_eq_add_dist_of_angle_eq_pi {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = π) : dist p1 p3 = dist p1 p2 + dist p3 p2 := begin rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← vsub_sub_vsub_cancel_right], exact norm_sub_eq_add_norm_of_angle_eq_pi h, end /-- If A ≠ B and C ≠ B then ∠ABC = π if and only if (dist A C) = (dist A B) + (dist B C). -/ lemma dist_eq_add_dist_iff_angle_eq_pi {p1 p2 p3 : P} (hp1p2 : p1 ≠ p2) (hp3p2 : p3 ≠ p2) : dist p1 p3 = dist p1 p2 + dist p3 p2 ↔ ∠ p1 p2 p3 = π := begin rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← vsub_sub_vsub_cancel_right], exact norm_sub_eq_add_norm_iff_angle_eq_pi ((λ he, hp1p2 (vsub_eq_zero_iff_eq.1 he))) (λ he, hp3p2 (vsub_eq_zero_iff_eq.1 he)), end /-- If ∠ABC = 0, then (dist A C) = abs ((dist A B) - (dist B C)). -/ lemma dist_eq_abs_sub_dist_of_angle_eq_zero {p1 p2 p3 : P} (h : ∠ p1 p2 p3 = 0) : (dist p1 p3) = |(dist p1 p2) - (dist p3 p2)| := begin rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← vsub_sub_vsub_cancel_right], exact norm_sub_eq_abs_sub_norm_of_angle_eq_zero h, end /-- If A ≠ B and C ≠ B then ∠ABC = 0 if and only if (dist A C) = abs ((dist A B) - (dist B C)). -/ lemma dist_eq_abs_sub_dist_iff_angle_eq_zero {p1 p2 p3 : P} (hp1p2 : p1 ≠ p2) (hp3p2 : p3 ≠ p2) : (dist p1 p3) = |(dist p1 p2) - (dist p3 p2)| ↔ ∠ p1 p2 p3 = 0 := begin rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← vsub_sub_vsub_cancel_right], exact norm_sub_eq_abs_sub_norm_iff_angle_eq_zero ((λ he, hp1p2 (vsub_eq_zero_iff_eq.1 he))) (λ he, hp3p2 (vsub_eq_zero_iff_eq.1 he)), end /-- If M is the midpoint of the segment AB, then ∠AMB = π. -/ lemma angle_midpoint_eq_pi (p1 p2 : P) (hp1p2 : p1 ≠ p2) : ∠ p1 (midpoint ℝ p1 p2) p2 = π := have p2 -ᵥ midpoint ℝ p1 p2 = -(p1 -ᵥ midpoint ℝ p1 p2), by { rw neg_vsub_eq_vsub_rev, simp }, by simp [angle, this, hp1p2, -zero_lt_one] /-- If M is the midpoint of the segment AB and C is the same distance from A as it is from B then ∠CMA = π / 2. -/ lemma angle_left_midpoint_eq_pi_div_two_of_dist_eq {p1 p2 p3 : P} (h : dist p3 p1 = dist p3 p2) : ∠ p3 (midpoint ℝ p1 p2) p1 = π / 2 := begin let m : P := midpoint ℝ p1 p2, have h1 : p3 -ᵥ p1 = (p3 -ᵥ m) - (p1 -ᵥ m) := (vsub_sub_vsub_cancel_right p3 p1 m).symm, have h2 : p3 -ᵥ p2 = (p3 -ᵥ m) + (p1 -ᵥ m), { rw [left_vsub_midpoint, ← midpoint_vsub_right, vsub_add_vsub_cancel] }, rw [dist_eq_norm_vsub V p3 p1, dist_eq_norm_vsub V p3 p2, h1, h2] at h, exact (norm_add_eq_norm_sub_iff_angle_eq_pi_div_two (p3 -ᵥ m) (p1 -ᵥ m)).mp h.symm, end /-- If M is the midpoint of the segment AB and C is the same distance from A as it is from B then ∠CMB = π / 2. -/ lemma angle_right_midpoint_eq_pi_div_two_of_dist_eq {p1 p2 p3 : P} (h : dist p3 p1 = dist p3 p2) : ∠ p3 (midpoint ℝ p1 p2) p2 = π / 2 := by rw [midpoint_comm p1 p2, angle_left_midpoint_eq_pi_div_two_of_dist_eq h.symm] /-- If the second of three points is strictly between the other two, the angle at that point is π. -/ lemma _root_.sbtw.angle₁₂₃_eq_pi {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₁ p₂ p₃ = π := begin rw [angle, angle_eq_pi_iff], rcases h with ⟨⟨r, ⟨hr0, hr1⟩, hp₂⟩, hp₂p₁, hp₂p₃⟩, refine ⟨vsub_ne_zero.2 hp₂p₁.symm, -(1 - r) / r, _⟩, have hr0' : r ≠ 0, { rintro rfl, rw ←hp₂ at hp₂p₁, simpa using hp₂p₁ }, have hr1' : r ≠ 1, { rintro rfl, rw ←hp₂ at hp₂p₃, simpa using hp₂p₃ }, replace hr0 := hr0.lt_of_ne hr0'.symm, replace hr1 := hr1.lt_of_ne hr1', refine ⟨div_neg_of_neg_of_pos (left.neg_neg_iff.2 (sub_pos.2 hr1)) hr0, _⟩, rw [←hp₂, affine_map.line_map_apply, vsub_vadd_eq_vsub_sub, vsub_vadd_eq_vsub_sub, vsub_self, zero_sub, smul_neg, smul_smul, div_mul_cancel _ hr0', neg_smul, neg_neg, sub_eq_iff_eq_add, ←add_smul, sub_add_cancel, one_smul] end /-- If the second of three points is strictly between the other two, the angle at that point (reversed) is π. -/ lemma _root_.sbtw.angle₃₂₁_eq_pi {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₃ p₂ p₁ = π := by rw [←h.angle₁₂₃_eq_pi, angle_comm] /-- The angle between three points is π if and only if the second point is strictly between the other two. -/ lemma angle_eq_pi_iff_sbtw {p₁ p₂ p₃ : P} : ∠ p₁ p₂ p₃ = π ↔ sbtw ℝ p₁ p₂ p₃ := begin refine ⟨_, λ h, h.angle₁₂₃_eq_pi⟩, rw [angle, angle_eq_pi_iff], rintro ⟨hp₁p₂, r, hr, hp₃p₂⟩, refine ⟨⟨1 / (1 - r), ⟨div_nonneg zero_le_one (sub_nonneg.2 (hr.le.trans zero_le_one)), (div_le_one (sub_pos.2 (hr.trans zero_lt_one))).2 ((le_sub_self_iff 1).2 hr.le)⟩, _⟩, (vsub_ne_zero.1 hp₁p₂).symm, _⟩, { rw ←eq_vadd_iff_vsub_eq at hp₃p₂, rw [affine_map.line_map_apply, hp₃p₂, vadd_vsub_assoc, ←neg_vsub_eq_vsub_rev p₂ p₁, smul_neg, ←neg_smul, smul_add, smul_smul, ←add_smul, eq_comm, eq_vadd_iff_vsub_eq], convert (one_smul ℝ (p₂ -ᵥ p₁)).symm, field_simp [(sub_pos.2 (hr.trans zero_lt_one)).ne.symm], abel }, { rw [ne_comm, ←@vsub_ne_zero V, hp₃p₂, smul_ne_zero_iff], exact ⟨hr.ne, hp₁p₂⟩ } end /-- If the second of three points is weakly between the other two, and not equal to the first, the angle at the first point is zero. -/ lemma _root_.wbtw.angle₂₁₃_eq_zero_of_ne {p₁ p₂ p₃ : P} (h : wbtw ℝ p₁ p₂ p₃) (hp₂p₁ : p₂ ≠ p₁) : ∠ p₂ p₁ p₃ = 0 := begin rw [angle, angle_eq_zero_iff], rcases h with ⟨r, ⟨hr0, hr1⟩, rfl⟩, have hr0' : r ≠ 0, { rintro rfl, simpa using hp₂p₁ }, replace hr0 := hr0.lt_of_ne hr0'.symm, refine ⟨vsub_ne_zero.2 hp₂p₁, r⁻¹, inv_pos.2 hr0, _⟩, rw [affine_map.line_map_apply, vadd_vsub_assoc, vsub_self, add_zero, smul_smul, inv_mul_cancel hr0', one_smul] end /-- If the second of three points is strictly between the other two, the angle at the first point is zero. -/ lemma _root_.sbtw.angle₂₁₃_eq_zero {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₂ p₁ p₃ = 0 := h.wbtw.angle₂₁₃_eq_zero_of_ne h.ne_left /-- If the second of three points is weakly between the other two, and not equal to the first, the angle at the first point (reversed) is zero. -/ lemma _root_.wbtw.angle₃₁₂_eq_zero_of_ne {p₁ p₂ p₃ : P} (h : wbtw ℝ p₁ p₂ p₃) (hp₂p₁ : p₂ ≠ p₁) : ∠ p₃ p₁ p₂ = 0 := by rw [←h.angle₂₁₃_eq_zero_of_ne hp₂p₁, angle_comm] /-- If the second of three points is strictly between the other two, the angle at the first point (reversed) is zero. -/ lemma _root_.sbtw.angle₃₁₂_eq_zero {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₃ p₁ p₂ = 0 := h.wbtw.angle₃₁₂_eq_zero_of_ne h.ne_left /-- If the second of three points is weakly between the other two, and not equal to the third, the angle at the third point is zero. -/ lemma _root_.wbtw.angle₂₃₁_eq_zero_of_ne {p₁ p₂ p₃ : P} (h : wbtw ℝ p₁ p₂ p₃) (hp₂p₃ : p₂ ≠ p₃) : ∠ p₂ p₃ p₁ = 0 := h.symm.angle₂₁₃_eq_zero_of_ne hp₂p₃ /-- If the second of three points is strictly between the other two, the angle at the third point is zero. -/ lemma _root_.sbtw.angle₂₃₁_eq_zero {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₂ p₃ p₁ = 0 := h.wbtw.angle₂₃₁_eq_zero_of_ne h.ne_right /-- If the second of three points is weakly between the other two, and not equal to the third, the angle at the third point (reversed) is zero. -/ lemma _root_.wbtw.angle₁₃₂_eq_zero_of_ne {p₁ p₂ p₃ : P} (h : wbtw ℝ p₁ p₂ p₃) (hp₂p₃ : p₂ ≠ p₃) : ∠ p₁ p₃ p₂ = 0 := h.symm.angle₃₁₂_eq_zero_of_ne hp₂p₃ /-- If the second of three points is strictly between the other two, the angle at the third point (reversed) is zero. -/ lemma _root_.sbtw.angle₁₃₂_eq_zero {p₁ p₂ p₃ : P} (h : sbtw ℝ p₁ p₂ p₃) : ∠ p₁ p₃ p₂ = 0 := h.wbtw.angle₁₃₂_eq_zero_of_ne h.ne_right /-- The angle between three points is zero if and only if one of the first and third points is weakly between the other two, and not equal to the second. -/ lemma angle_eq_zero_iff_ne_and_wbtw {p₁ p₂ p₃ : P} : ∠ p₁ p₂ p₃ = 0 ↔ (p₁ ≠ p₂ ∧ wbtw ℝ p₂ p₁ p₃) ∨ (p₃ ≠ p₂ ∧ wbtw ℝ p₂ p₃ p₁) := begin split, { rw [angle, angle_eq_zero_iff], rintro ⟨hp₁p₂, r, hr0, hp₃p₂⟩, rcases le_or_lt 1 r with hr1 | hr1, { refine or.inl ⟨vsub_ne_zero.1 hp₁p₂, r⁻¹, ⟨(inv_pos.2 hr0).le, inv_le_one hr1⟩, _⟩, rw [affine_map.line_map_apply, hp₃p₂, smul_smul, inv_mul_cancel hr0.ne.symm, one_smul, vsub_vadd] }, { refine or.inr ⟨_, r, ⟨hr0.le, hr1.le⟩, _⟩, { rw [←@vsub_ne_zero V, hp₃p₂, smul_ne_zero_iff], exact ⟨hr0.ne.symm, hp₁p₂⟩ }, { rw [affine_map.line_map_apply, ←hp₃p₂, vsub_vadd] } } }, { rintro (⟨hp₁p₂, h⟩ | ⟨hp₃p₂, h⟩), { exact h.angle₂₁₃_eq_zero_of_ne hp₁p₂ }, { exact h.angle₃₁₂_eq_zero_of_ne hp₃p₂ } } end /-- The angle between three points is zero if and only if one of the first and third points is strictly between the other two, or those two points are equal but not equal to the second. -/ lemma angle_eq_zero_iff_eq_and_ne_or_sbtw {p₁ p₂ p₃ : P} : ∠ p₁ p₂ p₃ = 0 ↔ (p₁ = p₃ ∧ p₁ ≠ p₂) ∨ sbtw ℝ p₂ p₁ p₃ ∨ sbtw ℝ p₂ p₃ p₁ := begin rw angle_eq_zero_iff_ne_and_wbtw, by_cases hp₁p₂ : p₁ = p₂, { simp [hp₁p₂] }, by_cases hp₁p₃ : p₁ = p₃, { simp [hp₁p₃] }, by_cases hp₃p₂ : p₃ = p₂, { simp [hp₃p₂] }, simp [hp₁p₂, hp₁p₃, ne.symm hp₁p₃, sbtw, hp₃p₂] end /-- Three points are collinear if and only if the first or third point equals the second or the angle between them is 0 or π. -/ lemma collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi {p₁ p₂ p₃ : P} : collinear ℝ ({p₁, p₂, p₃} : set P) ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π := begin refine ⟨λ h, _, λ h, _⟩, { replace h := h.wbtw_or_wbtw_or_wbtw, by_cases h₁₂ : p₁ = p₂, { exact or.inl h₁₂ }, by_cases h₃₂ : p₃ = p₂, { exact or.inr (or.inl h₃₂) }, rw [or_iff_right h₁₂, or_iff_right h₃₂], rcases h with h | h | h, { exact or.inr (angle_eq_pi_iff_sbtw.2 ⟨h, ne.symm h₁₂, ne.symm h₃₂⟩) }, { exact or.inl (h.angle₃₁₂_eq_zero_of_ne h₃₂) }, { exact or.inl (h.angle₂₃₁_eq_zero_of_ne h₁₂) } }, { rcases h with rfl | rfl | h | h, { simpa using collinear_pair ℝ p₁ p₃ }, { simpa using collinear_pair ℝ p₁ p₃ }, { rw angle_eq_zero_iff_ne_and_wbtw at h, rcases h with ⟨-, h⟩ | ⟨-, h⟩, { rw set.insert_comm, exact h.collinear }, { rw [set.insert_comm, set.pair_comm], exact h.collinear } }, { rw angle_eq_pi_iff_sbtw at h, exact h.wbtw.collinear } } end /-- If the angle between three points is 0, they are collinear. -/ lemma collinear_of_angle_eq_zero {p₁ p₂ p₃ : P} (h : ∠ p₁ p₂ p₃ = 0) : collinear ℝ ({p₁, p₂, p₃} : set P) := collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi.2 $ or.inr $ or.inr $ or.inl h /-- If the angle between three points is π, they are collinear. -/ lemma collinear_of_angle_eq_pi {p₁ p₂ p₃ : P} (h : ∠ p₁ p₂ p₃ = π) : collinear ℝ ({p₁, p₂, p₃} : set P) := collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi.2 $ or.inr $ or.inr $ or.inr h /-- If three points are not collinear, the angle between them is nonzero. -/ lemma angle_ne_zero_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : ∠ p₁ p₂ p₃ ≠ 0 := mt collinear_of_angle_eq_zero h /-- If three points are not collinear, the angle between them is not π. -/ lemma angle_ne_pi_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : ∠ p₁ p₂ p₃ ≠ π := mt collinear_of_angle_eq_pi h /-- If three points are not collinear, the angle between them is positive. -/ lemma angle_pos_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : 0 < ∠ p₁ p₂ p₃ := (angle_nonneg _ _ _).lt_of_ne (angle_ne_zero_of_not_collinear h).symm /-- If three points are not collinear, the angle between them is less than π. -/ lemma angle_lt_pi_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : ∠ p₁ p₂ p₃ < π := (angle_le_pi _ _ _).lt_of_ne $ angle_ne_pi_of_not_collinear h /-- The cosine of the angle between three points is 1 if and only if the angle is 0. -/ lemma cos_eq_one_iff_angle_eq_zero {p₁ p₂ p₃ : P} : real.cos (∠ p₁ p₂ p₃) = 1 ↔ ∠ p₁ p₂ p₃ = 0 := cos_eq_one_iff_angle_eq_zero /-- The cosine of the angle between three points is 0 if and only if the angle is π / 2. -/ lemma cos_eq_zero_iff_angle_eq_pi_div_two {p₁ p₂ p₃ : P} : real.cos (∠ p₁ p₂ p₃) = 0 ↔ ∠ p₁ p₂ p₃ = π / 2 := cos_eq_zero_iff_angle_eq_pi_div_two /-- The cosine of the angle between three points is -1 if and only if the angle is π. -/ lemma cos_eq_neg_one_iff_angle_eq_pi {p₁ p₂ p₃ : P} : real.cos (∠ p₁ p₂ p₃) = -1 ↔ ∠ p₁ p₂ p₃ = π := cos_eq_neg_one_iff_angle_eq_pi /-- The sine of the angle between three points is 0 if and only if the angle is 0 or π. -/ lemma sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi {p₁ p₂ p₃ : P} : real.sin (∠ p₁ p₂ p₃) = 0 ↔ ∠ p₁ p₂ p₃ = 0 ∨ ∠ p₁ p₂ p₃ = π := sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi /-- The sine of the angle between three points is 1 if and only if the angle is π / 2. -/ lemma sin_eq_one_iff_angle_eq_pi_div_two {p₁ p₂ p₃ : P} : real.sin (∠ p₁ p₂ p₃) = 1 ↔ ∠ p₁ p₂ p₃ = π / 2 := sin_eq_one_iff_angle_eq_pi_div_two /-- Three points are collinear if and only if the first or third point equals the second or the sine of the angle between three points is zero. -/ lemma collinear_iff_eq_or_eq_or_sin_eq_zero {p₁ p₂ p₃ : P} : collinear ℝ ({p₁, p₂, p₃} : set P) ↔ p₁ = p₂ ∨ p₃ = p₂ ∨ real.sin (∠ p₁ p₂ p₃) = 0 := by rw [sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, collinear_iff_eq_or_eq_or_angle_eq_zero_or_angle_eq_pi] /-- If three points are not collinear, the sine of the angle between them is positive. -/ lemma sin_pos_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : 0 < real.sin (∠ p₁ p₂ p₃) := real.sin_pos_of_pos_of_lt_pi (angle_pos_of_not_collinear h) (angle_lt_pi_of_not_collinear h) /-- If three points are not collinear, the sine of the angle between them is nonzero. -/ lemma sin_ne_zero_of_not_collinear {p₁ p₂ p₃ : P} (h : ¬collinear ℝ ({p₁, p₂, p₃} : set P)) : real.sin (∠ p₁ p₂ p₃) ≠ 0 := ne_of_gt (sin_pos_of_not_collinear h) /-- If the sine of the angle between three points is 0, they are collinear. -/ lemma collinear_of_sin_eq_zero {p₁ p₂ p₃ : P} (h : real.sin (∠ p₁ p₂ p₃) = 0) : collinear ℝ ({p₁, p₂, p₃} : set P) := imp_of_not_imp_not _ _ sin_ne_zero_of_not_collinear h end euclidean_geometry
0828a4b87fe5c4c3c0e270ae55a85a940296a34b
5749d8999a76f3a8fddceca1f6941981e33aaa96
/src/data/equiv/algebra.lean
ef0dafd5baf37876615ac43a868ecf4af6faa7d4
[ "Apache-2.0" ]
permissive
jdsalchow/mathlib
13ab43ef0d0515a17e550b16d09bd14b76125276
497e692b946d93906900bb33a51fd243e7649406
refs/heads/master
1,585,819,143,348
1,580,072,892,000
1,580,072,892,000
154,287,128
0
0
Apache-2.0
1,540,281,610,000
1,540,281,609,000
null
UTF-8
Lean
false
false
22,325
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Callum Sutton -/ import data.equiv.basic algebra.field /-! # equivs in the algebraic hierarchy In the first part there are theorems of the following form: if `α` has a group structure and `α ≃ β` then `β` has a group structure, and similarly for monoids, semigroups, rings, integral domains, fields and so on. In the second part there are extensions of `equiv` called `add_equiv`, `mul_equiv`, and `ring_equiv`, which are datatypes representing isomorphisms of add_monoids/add_groups, monoids/groups and rings. We also introduce the corresponding groups of automorphisms `add_aut`, `mul_aut`, and `ring_aut`. ## Notations The extended equivs all have coercions to functions, and the coercions are the canonical notation when treating the isomorphisms as maps. ## Implementation notes The fields for `mul_equiv`, `add_equiv`, and `ring_equiv` now avoid the unbundled `is_mul_hom` and `is_add_hom`, as these are deprecated. Definition of multiplication in the groups of automorphisms agrees with function composition, multiplication in `equiv.perm`, and multiplication in `category_theory.End`, not with `category_theory.comp`. ## Tags equiv, mul_equiv, add_equiv, ring_equiv, mul_aut, add_aut, ring_aut -/ universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} namespace equiv section group variables [group α] @[to_additive] protected def mul_left (a : α) : α ≃ α := { to_fun := λx, a * x, inv_fun := λx, a⁻¹ * x, left_inv := assume x, show a⁻¹ * (a * x) = x, from inv_mul_cancel_left a x, right_inv := assume x, show a * (a⁻¹ * x) = x, from mul_inv_cancel_left a x } @[to_additive] protected def mul_right (a : α) : α ≃ α := { to_fun := λx, x * a, inv_fun := λx, x * a⁻¹, left_inv := assume x, show (x * a) * a⁻¹ = x, from mul_inv_cancel_right x a, right_inv := assume x, show (x * a⁻¹) * a = x, from inv_mul_cancel_right x a } @[to_additive] protected def inv (α) [group α] : α ≃ α := { to_fun := λa, a⁻¹, inv_fun := λa, a⁻¹, left_inv := assume a, inv_inv a, right_inv := assume a, inv_inv a } end group section field variables (α) [field α] def units_equiv_ne_zero : units α ≃ {a : α | a ≠ 0} := ⟨λ a, ⟨a.1, units.ne_zero _⟩, λ a, units.mk0 _ a.2, λ ⟨_, _, _, _⟩, units.ext rfl, λ ⟨_, _⟩, rfl⟩ variable {α} @[simp] lemma coe_units_equiv_ne_zero (a : units α) : ((units_equiv_ne_zero α a) : α) = a := rfl end field section instances variables (e : α ≃ β) protected def has_zero [has_zero β] : has_zero α := ⟨e.symm 0⟩ lemma zero_def [has_zero β] : @has_zero.zero _ (equiv.has_zero e) = e.symm 0 := rfl protected def has_one [has_one β] : has_one α := ⟨e.symm 1⟩ lemma one_def [has_one β] : @has_one.one _ (equiv.has_one e) = e.symm 1 := rfl protected def has_mul [has_mul β] : has_mul α := ⟨λ x y, e.symm (e x * e y)⟩ lemma mul_def [has_mul β] (x y : α) : @has_mul.mul _ (equiv.has_mul e) x y = e.symm (e x * e y) := rfl protected def has_add [has_add β] : has_add α := ⟨λ x y, e.symm (e x + e y)⟩ lemma add_def [has_add β] (x y : α) : @has_add.add _ (equiv.has_add e) x y = e.symm (e x + e y) := rfl protected def has_inv [has_inv β] : has_inv α := ⟨λ x, e.symm (e x)⁻¹⟩ lemma inv_def [has_inv β] (x : α) : @has_inv.inv _ (equiv.has_inv e) x = e.symm (e x)⁻¹ := rfl protected def has_neg [has_neg β] : has_neg α := ⟨λ x, e.symm (-e x)⟩ lemma neg_def [has_neg β] (x : α) : @has_neg.neg _ (equiv.has_neg e) x = e.symm (-e x) := rfl protected def semigroup [semigroup β] : semigroup α := { mul_assoc := by simp [mul_def, mul_assoc], ..equiv.has_mul e } protected def comm_semigroup [comm_semigroup β] : comm_semigroup α := { mul_comm := by simp [mul_def, mul_comm], ..equiv.semigroup e } protected def monoid [monoid β] : monoid α := { one_mul := by simp [mul_def, one_def], mul_one := by simp [mul_def, one_def], ..equiv.semigroup e, ..equiv.has_one e } protected def comm_monoid [comm_monoid β] : comm_monoid α := { ..equiv.comm_semigroup e, ..equiv.monoid e } protected def group [group β] : group α := { mul_left_inv := by simp [mul_def, inv_def, one_def], ..equiv.monoid e, ..equiv.has_inv e } protected def comm_group [comm_group β] : comm_group α := { ..equiv.group e, ..equiv.comm_semigroup e } protected def add_semigroup [add_semigroup β] : add_semigroup α := @additive.add_semigroup _ (@equiv.semigroup _ _ e multiplicative.semigroup) protected def add_comm_semigroup [add_comm_semigroup β] : add_comm_semigroup α := @additive.add_comm_semigroup _ (@equiv.comm_semigroup _ _ e multiplicative.comm_semigroup) protected def add_monoid [add_monoid β] : add_monoid α := @additive.add_monoid _ (@equiv.monoid _ _ e multiplicative.monoid) protected def add_comm_monoid [add_comm_monoid β] : add_comm_monoid α := @additive.add_comm_monoid _ (@equiv.comm_monoid _ _ e multiplicative.comm_monoid) protected def add_group [add_group β] : add_group α := @additive.add_group _ (@equiv.group _ _ e multiplicative.group) protected def add_comm_group [add_comm_group β] : add_comm_group α := @additive.add_comm_group _ (@equiv.comm_group _ _ e multiplicative.comm_group) protected def semiring [semiring β] : semiring α := { right_distrib := by simp [mul_def, add_def, add_mul], left_distrib := by simp [mul_def, add_def, mul_add], zero_mul := by simp [mul_def, zero_def], mul_zero := by simp [mul_def, zero_def], ..equiv.has_zero e, ..equiv.has_mul e, ..equiv.has_add e, ..equiv.monoid e, ..equiv.add_comm_monoid e } protected def comm_semiring [comm_semiring β] : comm_semiring α := { ..equiv.semiring e, ..equiv.comm_monoid e } protected def ring [ring β] : ring α := { ..equiv.semiring e, ..equiv.add_comm_group e } protected def comm_ring [comm_ring β] : comm_ring α := { ..equiv.comm_monoid e, ..equiv.ring e } protected def zero_ne_one_class [zero_ne_one_class β] : zero_ne_one_class α := { zero_ne_one := by simp [zero_def, one_def], ..equiv.has_zero e, ..equiv.has_one e } protected def nonzero_comm_ring [nonzero_comm_ring β] : nonzero_comm_ring α := { ..equiv.zero_ne_one_class e, ..equiv.comm_ring e } protected def domain [domain β] : domain α := { eq_zero_or_eq_zero_of_mul_eq_zero := by simp [mul_def, zero_def, equiv.eq_symm_apply], ..equiv.has_zero e, ..equiv.zero_ne_one_class e, ..equiv.has_mul e, ..equiv.ring e } protected def integral_domain [integral_domain β] : integral_domain α := { ..equiv.domain e, ..equiv.nonzero_comm_ring e } protected def division_ring [division_ring β] : division_ring α := { inv_mul_cancel := λ _, by simp [mul_def, inv_def, zero_def, one_def, (equiv.symm_apply_eq _).symm]; exact inv_mul_cancel, mul_inv_cancel := λ _, by simp [mul_def, inv_def, zero_def, one_def, (equiv.symm_apply_eq _).symm]; exact mul_inv_cancel, ..equiv.has_zero e, ..equiv.has_one e, ..equiv.domain e, ..equiv.has_inv e } protected def field [field β] : field α := { ..equiv.integral_domain e, ..equiv.division_ring e } protected def discrete_field [discrete_field β] : discrete_field α := { has_decidable_eq := equiv.decidable_eq e, inv_zero := by simp [mul_def, inv_def, zero_def], ..equiv.has_mul e, ..equiv.has_inv e, ..equiv.has_zero e, ..equiv.field e } end instances end equiv set_option old_structure_cmd true /-- add_equiv α β is the type of an equiv α ≃ β which preserves addition. -/ structure add_equiv (α β : Type*) [has_add α] [has_add β] extends α ≃ β := (map_add' : ∀ x y : α, to_fun (x + y) = to_fun x + to_fun y) /-- `mul_equiv α β` is the type of an equiv `α ≃ β` which preserves multiplication. -/ @[to_additive "`add_equiv α β` is the type of an equiv `α ≃ β` which preserves addition."] structure mul_equiv (α β : Type*) [has_mul α] [has_mul β] extends α ≃ β := (map_mul' : ∀ x y : α, to_fun (x * y) = to_fun x * to_fun y) infix ` ≃* `:25 := mul_equiv infix ` ≃+ `:25 := add_equiv namespace mul_equiv @[to_additive] instance {α β} [has_mul α] [has_mul β] : has_coe_to_fun (α ≃* β) := ⟨_, mul_equiv.to_fun⟩ variables [has_mul α] [has_mul β] [has_mul γ] /-- A multiplicative isomorphism preserves multiplication (canonical form). -/ @[to_additive] lemma map_mul (f : α ≃* β) : ∀ x y : α, f (x * y) = f x * f y := f.map_mul' /-- A multiplicative isomorphism preserves multiplication (deprecated). -/ @[to_additive] instance (h : α ≃* β) : is_mul_hom h := ⟨h.map_mul⟩ /-- Makes a multiplicative isomorphism from a bijection which preserves multiplication. -/ @[to_additive] def mk' (f : α ≃ β) (h : ∀ x y, f (x * y) = f x * f y) : α ≃* β := ⟨f.1, f.2, f.3, f.4, h⟩ /-- The identity map is a multiplicative isomorphism. -/ @[refl, to_additive] def refl (α : Type*) [has_mul α] : α ≃* α := { map_mul' := λ _ _,rfl, ..equiv.refl _} /-- The inverse of an isomorphism is an isomorphism. -/ @[symm, to_additive] def symm (h : α ≃* β) : β ≃* α := { map_mul' := λ n₁ n₂, function.injective_of_left_inverse h.left_inv begin show h.to_equiv (h.to_equiv.symm (n₁ * n₂)) = h ((h.to_equiv.symm n₁) * (h.to_equiv.symm n₂)), rw h.map_mul, show _ = h.to_equiv (_) * h.to_equiv (_), rw [h.to_equiv.apply_symm_apply, h.to_equiv.apply_symm_apply, h.to_equiv.apply_symm_apply], end, ..h.to_equiv.symm} @[simp, to_additive] theorem to_equiv_symm (f : α ≃* β) : f.symm.to_equiv = f.to_equiv.symm := rfl /-- Transitivity of multiplication-preserving isomorphisms -/ @[trans, to_additive] def trans (h1 : α ≃* β) (h2 : β ≃* γ) : (α ≃* γ) := { map_mul' := λ x y, show h2 (h1 (x * y)) = h2 (h1 x) * h2 (h1 y), by rw [h1.map_mul, h2.map_mul], ..h1.to_equiv.trans h2.to_equiv } /-- e.right_inv in canonical form -/ @[simp, to_additive] lemma apply_symm_apply (e : α ≃* β) : ∀ (y : β), e (e.symm y) = y := e.to_equiv.apply_symm_apply /-- e.left_inv in canonical form -/ @[simp, to_additive] lemma symm_apply_apply (e : α ≃* β) : ∀ (x : α), e.symm (e x) = x := equiv.symm_apply_apply (e.to_equiv) /-- a multiplicative equiv of monoids sends 1 to 1 (and is hence a monoid isomorphism) -/ @[simp, to_additive] lemma map_one {α β} [monoid α] [monoid β] (h : α ≃* β) : h 1 = 1 := by rw [←mul_one (h 1), ←h.apply_symm_apply 1, ←h.map_mul, one_mul] @[simp, to_additive] lemma map_eq_one_iff {α β} [monoid α] [monoid β] (h : α ≃* β) {x : α} : h x = 1 ↔ x = 1 := h.map_one ▸ h.to_equiv.apply_eq_iff_eq x 1 @[to_additive] lemma map_ne_one_iff {α β} [monoid α] [monoid β] (h : α ≃* β) {x : α} : h x ≠ 1 ↔ x ≠ 1 := ⟨mt h.map_eq_one_iff.2, mt h.map_eq_one_iff.1⟩ /-- Extract the forward direction of a multiplicative equivalence as a multiplication preserving function. -/ @[to_additive to_add_monoid_hom] def to_monoid_hom {α β} [monoid α] [monoid β] (h : α ≃* β) : (α →* β) := { to_fun := h, map_mul' := h.map_mul, map_one' := h.map_one } @[simp, to_additive] lemma to_monoid_hom_apply_symm_to_monoid_hom_apply {α β} [monoid α] [monoid β] (e : α ≃* β) : ∀ (y : β), e.to_monoid_hom (e.symm.to_monoid_hom y) = y := e.to_equiv.apply_symm_apply @[simp, to_additive] lemma symm_to_monoid_hom_apply_to_monoid_hom_apply {α β} [monoid α] [monoid β] (e : α ≃* β) : ∀ (x : α), e.symm.to_monoid_hom (e.to_monoid_hom x) = x := equiv.symm_apply_apply (e.to_equiv) /-- A multiplicative equivalence of groups preserves inversion. -/ @[to_additive] lemma map_inv {α β} [group α] [group β] (h : α ≃* β) (x : α) : h x⁻¹ = (h x)⁻¹ := h.to_monoid_hom.map_inv x /-- A multiplicative bijection between two monoids is a monoid hom (deprecated -- use to_monoid_hom). -/ @[to_additive is_add_monoid_hom] instance is_monoid_hom {α β} [monoid α] [monoid β] (h : α ≃* β) : is_monoid_hom h := ⟨h.map_one⟩ /-- A multiplicative bijection between two groups is a group hom (deprecated -- use to_monoid_hom). -/ @[to_additive is_add_group_hom] instance is_group_hom {α β} [group α] [group β] (h : α ≃* β) : is_group_hom h := { map_mul := h.map_mul } /-- Two multiplicative isomorphisms agree if they are defined by the same underlying function. -/ @[ext, to_additive "Two additive isomorphisms agree if they are defined by the same underlying function."] lemma ext {α β : Type*} [has_mul α] [has_mul β] {f g : mul_equiv α β} (h : ∀ x, f x = g x) : f = g := begin have h₁ := equiv.ext f.to_equiv g.to_equiv h, cases f, cases g, congr, { exact (funext h) }, { exact congr_arg equiv.inv_fun h₁ } end attribute [ext] add_equiv.ext end mul_equiv /-- An additive equivalence of additive groups preserves subtraction. -/ lemma add_equiv.map_sub {α β} [add_group α] [add_group β] (h : α ≃+ β) (x y : α) : h (x - y) = h x - h y := h.to_add_monoid_hom.map_sub x y /-- The group of multiplicative automorphisms. -/ @[to_additive "The group of additive automorphisms."] def mul_aut (α : Type u) [has_mul α] := α ≃* α namespace mul_aut variables (α) [has_mul α] /-- The group operation on multiplicative automorphisms is defined by `λ g h, mul_equiv.trans h g`. This means that multiplication agrees with composition, `(g*h)(x) = g (h x)`. -/ instance : group (mul_aut α) := by refine_struct { mul := λ g h, mul_equiv.trans h g, one := mul_equiv.refl α, inv := mul_equiv.symm }; intros; ext; try { refl }; apply equiv.left_inv /-- Monoid hom from the group of multiplicative automorphisms to the group of permutations. -/ def to_perm : mul_aut α →* equiv.perm α := by refine_struct { to_fun := mul_equiv.to_equiv }; intros; refl end mul_aut namespace add_aut variables (α) [has_add α] /-- The group operation on additive automorphisms is defined by `λ g h, mul_equiv.trans h g`. This means that multiplication agrees with composition, `(g*h)(x) = g (h x)`. -/ instance group : group (add_aut α) := by refine_struct { mul := λ g h, add_equiv.trans h g, one := add_equiv.refl α, inv := add_equiv.symm }; intros; ext; try { refl }; apply equiv.left_inv /-- Monoid hom from the group of multiplicative automorphisms to the group of permutations. -/ def to_perm : add_aut α →* equiv.perm α := by refine_struct { to_fun := add_equiv.to_equiv }; intros; refl end add_aut /-- A group is isomorphic to its group of units. -/ def to_units (α) [group α] : α ≃* units α := { to_fun := λ x, ⟨x, x⁻¹, mul_inv_self _, inv_mul_self _⟩, inv_fun := coe, left_inv := λ x, rfl, right_inv := λ u, units.ext rfl, map_mul' := λ x y, units.ext rfl } namespace units variables [monoid α] [monoid β] [monoid γ] (f : α → β) (g : β → γ) [is_monoid_hom f] [is_monoid_hom g] def map_equiv (h : α ≃* β) : units α ≃* units β := { inv_fun := map h.symm.to_monoid_hom, left_inv := λ u, ext $ h.left_inv u, right_inv := λ u, ext $ h.right_inv u, .. map h.to_monoid_hom } end units /- (semi)ring equivalence. -/ structure ring_equiv (α β : Type*) [has_mul α] [has_add α] [has_mul β] [has_add β] extends α ≃ β, α ≃* β, α ≃+ β infix ` ≃+* `:25 := ring_equiv namespace ring_equiv section basic variables [has_mul α] [has_add α] [has_mul β] [has_add β] [has_mul γ] [has_add γ] instance : has_coe_to_fun (α ≃+* β) := ⟨_, ring_equiv.to_fun⟩ instance has_coe_to_mul_equiv : has_coe (α ≃+* β) (α ≃* β) := ⟨ring_equiv.to_mul_equiv⟩ instance has_coe_to_add_equiv : has_coe (α ≃+* β) (α ≃+ β) := ⟨ring_equiv.to_add_equiv⟩ @[squash_cast] lemma coe_mul_equiv (f : α ≃+* β) (a : α) : (f : α ≃* β) a = f a := rfl @[squash_cast] lemma coe_add_equiv (f : α ≃+* β) (a : α) : (f : α ≃+ β) a = f a := rfl variable (α) /-- The identity map is a ring isomorphism. -/ @[refl] protected def refl : α ≃+* α := { .. mul_equiv.refl α, .. add_equiv.refl α } variables {α} /-- The inverse of a ring isomorphism is a ring isomorphis. -/ @[symm] protected def symm (e : α ≃+* β) : β ≃+* α := { .. e.to_mul_equiv.symm, .. e.to_add_equiv.symm } /-- Transitivity of `ring_equiv`. -/ @[trans] protected def trans (e₁ : α ≃+* β) (e₂ : β ≃+* γ) : α ≃+* γ := { .. (e₁.to_mul_equiv.trans e₂.to_mul_equiv), .. (e₁.to_add_equiv.trans e₂.to_add_equiv) } @[simp] lemma apply_symm_apply (e : α ≃+* β) : ∀ x, e (e.symm x) = x := e.to_equiv.apply_symm_apply @[simp] lemma symm_apply_apply (e : α ≃+* β) : ∀ x, e.symm (e x) = x := e.to_equiv.symm_apply_apply lemma image_eq_preimage (e : α ≃+* β) (s : set α) : e '' s = e.symm ⁻¹' s := e.to_equiv.image_eq_preimage s end basic section variables [semiring α] [semiring β] (f : α ≃+* β) (x y : α) /-- A ring isomorphism preserves multiplication. -/ @[simp] lemma map_mul : f (x * y) = f x * f y := f.map_mul' x y /-- A ring isomorphism sends one to one. -/ @[simp] lemma map_one : f 1 = 1 := (f : α ≃* β).map_one /-- A ring isomorphism preserves addition. -/ @[simp] lemma map_add : f (x + y) = f x + f y := f.map_add' x y /-- A ring isomorphism sends zero to zero. -/ @[simp] lemma map_zero : f 0 = 0 := (f : α ≃+ β).map_zero variable {x} @[simp] lemma map_eq_one_iff : f x = 1 ↔ x = 1 := (f : α ≃* β).map_eq_one_iff @[simp] lemma map_eq_zero_iff : f x = 0 ↔ x = 0 := (f : α ≃+ β).map_eq_zero_iff lemma map_ne_one_iff : f x ≠ 1 ↔ x ≠ 1 := (f : α ≃* β).map_ne_one_iff lemma map_ne_zero_iff : f x ≠ 0 ↔ x ≠ 0 := (f : α ≃+ β).map_ne_zero_iff end section variables [ring α] [ring β] (f : α ≃+* β) (x y : α) @[simp] lemma map_neg : f (-x) = -f x := (f : α ≃+ β).map_neg x @[simp] lemma map_sub : f (x - y) = f x - f y := (f : α ≃+ β).map_sub x y @[simp] lemma map_neg_one : f (-1) = -1 := f.map_one ▸ f.map_neg 1 end section semiring_hom variables [semiring α] [semiring β] /-- Reinterpret a ring equivalence as a ring homomorphism. -/ def to_ring_hom (e : α ≃+* β) : α →+* β := { .. e.to_mul_equiv.to_monoid_hom, .. e.to_add_equiv.to_add_monoid_hom } /-- Reinterpret a ring equivalence as a monoid homomorphism. -/ abbreviation to_monoid_hom (e : α ≃+* β) : α →* β := e.to_ring_hom.to_monoid_hom /-- Reinterpret a ring equivalence as an `add_monoid` homomorphism. -/ abbreviation to_add_monoid_hom (e : α ≃+* β) : α →+ β := e.to_ring_hom.to_add_monoid_hom /-- Interpret an equivalence `f : α ≃ β` as a ring equivalence `α ≃+* β`. -/ def of (e : α ≃ β) [is_semiring_hom e] : α ≃+* β := { .. e, .. monoid_hom.of e, .. add_monoid_hom.of e } instance (e : α ≃+* β) : is_semiring_hom e := e.to_ring_hom.is_semiring_hom @[simp] lemma to_ring_hom_apply_symm_to_ring_hom_apply {α β} [semiring α] [semiring β] (e : α ≃+* β) : ∀ (y : β), e.to_ring_hom (e.symm.to_ring_hom y) = y := e.to_equiv.apply_symm_apply @[simp] lemma symm_to_ring_hom_apply_to_ring_hom_apply {α β} [semiring α] [semiring β] (e : α ≃+* β) : ∀ (x : α), e.symm.to_ring_hom (e.to_ring_hom x) = x := equiv.symm_apply_apply (e.to_equiv) end semiring_hom end ring_equiv namespace mul_equiv /-- Gives an `is_semiring_hom` instance from a `mul_equiv` of semirings that preserves addition. -/ protected lemma to_semiring_hom {R : Type*} {S : Type*} [semiring R] [semiring S] (h : R ≃* S) (H : ∀ x y : R, h (x + y) = h x + h y) : is_semiring_hom h := ⟨add_equiv.map_zero $ add_equiv.mk' h.to_equiv H, h.map_one, H, h.5⟩ /-- Gives a `ring_equiv` from a `mul_equiv` preserving addition.-/ def to_ring_equiv {R : Type*} {S : Type*} [has_add R] [has_add S] [has_mul R] [has_mul S] (h : R ≃* S) (H : ∀ x y : R, h (x + y) = h x + h y) : R ≃+* S := {..h.to_equiv, ..h, ..add_equiv.mk' h.to_equiv H } end mul_equiv namespace add_equiv /-- Gives an `is_semiring_hom` instance from a `mul_equiv` of semirings that preserves addition. -/ protected lemma to_semiring_hom {R : Type*} {S : Type*} [semiring R] [semiring S] (h : R ≃+ S) (H : ∀ x y : R, h (x * y) = h x * h y) : is_semiring_hom h := ⟨h.map_zero, mul_equiv.map_one $ mul_equiv.mk' h.to_equiv H, h.5, H⟩ end add_equiv namespace ring_equiv section ring_hom variables [ring α] [ring β] /-- Interpret an equivalence `f : α ≃ β` as a ring equivalence `α ≃+* β`. -/ def of' (e : α ≃ β) [is_ring_hom e] : α ≃+* β := { .. e, .. monoid_hom.of e, .. add_monoid_hom.of e } instance (e : α ≃+* β) : is_ring_hom e := e.to_ring_hom.is_ring_hom end ring_hom /-- Two ring isomorphisms agree if they are defined by the same underlying function. -/ @[ext] lemma ext {R S : Type*} [has_mul R] [has_add R] [has_mul S] [has_add S] {f g : R ≃+* S} (h : ∀ x, f x = g x) : f = g := begin have h₁ := equiv.ext f.to_equiv g.to_equiv h, cases f, cases g, congr, { exact (funext h) }, { exact congr_arg equiv.inv_fun h₁ } end end ring_equiv /-- The group of ring automorphisms. -/ def ring_aut (R : Type u) [has_mul R] [has_add R] := ring_equiv R R namespace ring_aut variables (R : Type u) [has_mul R] [has_add R] /-- The group operation on automorphisms of a ring is defined by λ g h, ring_equiv.trans h g. This means that multiplication agrees with composition, (g*h)(x) = g (h x) . -/ instance : group (ring_aut R) := by refine_struct { mul := λ g h, ring_equiv.trans h g, one := ring_equiv.refl R, inv := ring_equiv.symm }; intros; ext; try { refl }; apply equiv.left_inv /-- Monoid homomorphism from ring automorphisms to additive automorphisms. -/ def to_add_aut : ring_aut R →* add_aut R := by refine_struct { to_fun := ring_equiv.to_add_equiv }; intros; refl /-- Monoid homomorphism from ring automorphisms to multiplicative automorphisms. -/ def to_mul_aut : ring_aut R →* mul_aut R := by refine_struct { to_fun := ring_equiv.to_mul_equiv }; intros; refl /-- Monoid homomorphism from ring automorphisms to permutations. -/ def to_perm : ring_aut R →* equiv.perm R := by refine_struct { to_fun := ring_equiv.to_equiv }; intros; refl end ring_aut
dde105ada211930ddbfc3ecf3d5c48d6378be12e
9028d228ac200bbefe3a711342514dd4e4458bff
/src/data/nat/associated.lean
86e4ffee2f56f9aa8810c010a5a35721f09f56e4
[ "Apache-2.0" ]
permissive
mcncm/mathlib
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
fde3d78cadeec5ef827b16ae55664ef115e66f57
refs/heads/master
1,672,743,316,277
1,602,618,514,000
1,602,618,514,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,816
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.nat.prime import algebra.associated import tactic.omega /-# # Primes and irreducibles in `ℕ` This file connects the ideas presented in `algebra.associated` with the natural numbers. ## Main results * `nat.prime_iff`: `nat.prime` coincides with the general definition of `prime` * `nat.irreducible_iff_prime`: a non-unit natural number is only divisible by `1` iff it is prime ## Tags prime, irreducible, natural numbers, -/ theorem nat.prime_iff {p : ℕ} : p.prime ↔ prime p := begin split; intro h, { refine ⟨h.ne_zero, ⟨_, λ a b, _⟩⟩, { rw nat.is_unit_iff, apply h.ne_one }, { apply h.dvd_mul.1 } }, { refine ⟨_, λ m hm, _⟩, { cases p, { exfalso, apply h.ne_zero rfl }, cases p, { exfalso, apply h.ne_one rfl }, omega }, { cases hm with n hn, cases h.2.2 m n (hn ▸ dvd_refl _) with hpm hpn, { right, apply nat.dvd_antisymm (dvd.intro _ hn.symm) hpm }, { left, cases n, { exfalso, rw [hn, mul_zero] at h, apply h.ne_zero rfl }, apply nat.eq_of_mul_eq_mul_right (nat.succ_pos _), rw [← hn, one_mul], apply nat.dvd_antisymm hpn (dvd.intro m _), rw [mul_comm, hn], }, } } end theorem nat.irreducible_iff_prime {p : ℕ} : irreducible p ↔ prime p := begin refine ⟨λ h, _, irreducible_of_prime⟩, rw ← nat.prime_iff, refine ⟨_, λ m hm, _⟩, { cases p, { exfalso, apply h.ne_zero rfl }, cases p, { exfalso, apply h.1 is_unit_one, }, omega }, { cases hm with n hn, cases h.2 m n hn with um un, { left, rw nat.is_unit_iff.1 um, }, { right, rw [hn, nat.is_unit_iff.1 un, mul_one], } } end
8bb80454c3bab07ddf1045a5e66e65ed825f780d
f618aea02cb4104ad34ecf3b9713065cc0d06103
/src/linear_algebra/determinant.lean
389f94c01756cdf288e793bca74c925347915623
[ "Apache-2.0" ]
permissive
joehendrix/mathlib
84b6603f6be88a7e4d62f5b1b0cbb523bb82b9a5
c15eab34ad754f9ecd738525cb8b5a870e834ddc
refs/heads/master
1,589,606,591,630
1,555,946,393,000
1,555,946,393,000
182,813,854
0
0
null
1,555,946,309,000
1,555,946,308,000
null
UTF-8
Lean
false
false
5,621
lean
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes -/ import data.matrix import group_theory.subgroup group_theory.perm.sign local attribute [instance, priority 0] nat.cast_coe local attribute [instance, priority 0] int.cast_coe universes u v open equiv equiv.perm finset function namespace matrix variables {n : Type u} [fintype n] [decidable_eq n] {R : Type v} [comm_ring R] local notation `ε` σ:max := ((sign σ : ℤ ) : R) definition det (M : matrix n n R) : R := univ.sum (λ (σ : perm n), ε σ * univ.prod (λ i, M (σ i) i)) @[simp] lemma det_diagonal {d : n → R} : det (diagonal d) = univ.prod d := begin refine (finset.sum_eq_single 1 _ _).trans _, { intros σ h1 h2, cases not_forall.1 (mt (equiv.ext _ _) h2) with x h3, convert ring.mul_zero _, apply finset.prod_eq_zero, { change x ∈ _, simp }, exact if_neg h3 }, { simp }, { simp } end @[simp] lemma det_zero (h : nonempty n) : det (0 : matrix n n R) = 0 := by rw [← diagonal_zero, det_diagonal, finset.prod_const, ← fintype.card, zero_pow (fintype.card_pos_iff.2 h)] @[simp] lemma det_one : det (1 : matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] lemma det_mul_aux {M N : matrix n n R} {p : n → n} (H : ¬bijective p) : univ.sum (λ σ : perm n, (ε σ) * (univ.prod (λ x, M (σ x) (p x) * N (p x) x))) = 0 := let ⟨i, hi⟩ := classical.not_forall.1 (mt fintype.injective_iff_bijective.1 H) in let ⟨j, hij'⟩ := classical.not_forall.1 hi in have hij : p i = p j ∧ i ≠ j, from not_imp.1 hij', sum_involution (λ σ _, σ * swap i j) (λ σ _, have ∀ a, p (swap i j a) = p a := λ a, by simp only [swap_apply_def]; split_ifs; cc, have univ.prod (λ x, M (σ x) (p x)) = univ.prod (λ x, M ((σ * swap i j) x) (p x)), from prod_bij (λ a _, swap i j a) (λ _ _, mem_univ _) (by simp [this]) (λ _ _ _ _ h, (swap i j).injective h) (λ b _, ⟨swap i j b, mem_univ _, by simp⟩), by simp [sign_mul, this, sign_swap hij.2, prod_mul_distrib]) (λ σ _ _ h, hij.2 (σ.injective $ by conv {to_lhs, rw ← h}; simp)) (λ _ _, mem_univ _) (λ _ _, equiv.ext _ _ $ by simp) @[simp] lemma det_mul (M N : matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = univ.sum (λ σ : perm n, (univ.pi (λ a, univ)).sum (λ (p : Π (a : n), a ∈ univ → n), ε σ * univ.attach.prod (λ i, M (σ i.1) (p i.1 (mem_univ _)) * N (p i.1 (mem_univ _)) i.1))) : by simp only [det, mul_val', prod_sum, mul_sum] ... = univ.sum (λ σ : perm n, univ.sum (λ p : n → n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : sum_congr rfl (λ σ _, sum_bij (λ f h i, f i (mem_univ _)) (λ _ _, mem_univ _) (by simp) (by simp [funext_iff]) (λ b _, ⟨λ i hi, b i, by simp⟩)) ... = univ.sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : finset.sum_comm ... = ((@univ (n → n) _).filter bijective ∪ univ.filter (λ p : n → n, ¬bijective p)).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : finset.sum_congr (finset.ext.2 (by simp; tauto)) (λ _ _, rfl) ... = ((@univ (n → n) _).filter bijective).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) + (univ.filter (λ p : n → n, ¬bijective p)).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : finset.sum_union (by simp [finset.ext]; tauto) ... = ((@univ (n → n) _).filter bijective).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) + (univ.filter (λ p : n → n, ¬bijective p)).sum (λ p, 0) : (add_left_inj _).2 (finset.sum_congr rfl $ λ p h, det_mul_aux (mem_filter.1 h).2) ... = ((@univ (n → n) _).filter bijective).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : by simp ... = (@univ (perm n) _).sum (λ τ, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (τ i) * N (τ i) i))) : sum_bij (λ p h, equiv.of_bijective (mem_filter.1 h).2) (λ _ _, mem_univ _) (λ _ _, rfl) (λ _ _ _ _ h, by injection h) (λ b _, ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, eq_of_to_fun_eq rfl⟩) ... = univ.sum (λ σ : perm n, univ.sum (λ τ : perm n, (univ.prod (λ i, N (σ i) i) * ε τ) * univ.prod (λ j, M (τ j) (σ j)))) : by simp [mul_sum, det, mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] ... = univ.sum (λ σ : perm n, univ.sum (λ τ : perm n, (univ.prod (λ i, N (σ i) i) * (ε σ * ε τ)) * univ.prod (λ i, M (τ i) i))) : sum_congr rfl (λ σ _, sum_bij (λ τ _, τ * σ⁻¹) (λ _ _, mem_univ _) (λ τ _, have univ.prod (λ j, M (τ j) (σ j)) = univ.prod (λ j, M ((τ * σ⁻¹) j) j), by rw prod_univ_perm σ⁻¹; simp [mul_apply], have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε ((τ * σ⁻¹) * σ) : by rw [mul_comm, sign_mul (τ * σ⁻¹)]; simp [sign_mul] ... = ε τ : by simp, by rw h; simp [this, mul_comm, mul_assoc, mul_left_comm]) (λ _ _ _ _, (mul_right_inj _).1) (λ τ _, ⟨τ * σ, by simp⟩)) ... = det M * det N : by simp [det, mul_assoc, mul_sum, mul_comm, mul_left_comm] instance : is_monoid_hom (det : matrix n n R → R) := { map_one := det_one, map_mul := det_mul } end matrix
1c1ae44a84307e64b2ebf86b841ca8855c1167d1
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/number_theory/class_number/admissible_card_pow_degree.lean
0566fcc9534bb0688e42ee213f55b893aac5d501
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
13,825
lean
/- Copyright (c) 2021 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import number_theory.class_number.admissible_absolute_value import analysis.special_functions.pow import ring_theory.ideal.local_ring import data.polynomial.degree.card_pow_degree /-! # Admissible absolute values on polynomials This file defines an admissible absolute value `polynomial.card_pow_degree_is_admissible` which we use to show the class number of the ring of integers of a function field is finite. ## Main results * `polynomial.card_pow_degree_is_admissible` shows `card_pow_degree`, mapping `p : polynomial 𝔽_q` to `q ^ degree p`, is admissible -/ namespace polynomial open_locale polynomial open absolute_value real variables {Fq : Type*} [fintype Fq] /-- If `A` is a family of enough low-degree polynomials over a finite semiring, there is a pair of equal elements in `A`. -/ lemma exists_eq_polynomial [semiring Fq] {d : ℕ} {m : ℕ} (hm : fintype.card Fq ^ d ≤ m) (b : Fq[X]) (hb : nat_degree b ≤ d) (A : fin m.succ → Fq[X]) (hA : ∀ i, degree (A i) < degree b) : ∃ i₀ i₁, i₀ ≠ i₁ ∧ A i₁ = A i₀ := begin -- Since there are > q^d elements of A, and only q^d choices for the highest `d` coefficients, -- there must be two elements of A with the same coefficients at -- `0`, ... `degree b - 1` ≤ `d - 1`. -- In other words, the following map is not injective: set f : fin m.succ → (fin d → Fq) := λ i j, (A i).coeff j, have : fintype.card (fin d → Fq) < fintype.card (fin m.succ), { simpa using lt_of_le_of_lt hm (nat.lt_succ_self m) }, -- Therefore, the differences have all coefficients higher than `deg b - d` equal. obtain ⟨i₀, i₁, i_ne, i_eq⟩ := fintype.exists_ne_map_eq_of_card_lt f this, use [i₀, i₁, i_ne], ext j, -- The coefficients higher than `deg b` are the same because they are equal to 0. by_cases hbj : degree b ≤ j, { rw [coeff_eq_zero_of_degree_lt (lt_of_lt_of_le (hA _) hbj), coeff_eq_zero_of_degree_lt (lt_of_lt_of_le (hA _) hbj)] }, -- So we only need to look for the coefficients between `0` and `deg b`. rw not_le at hbj, apply congr_fun i_eq.symm ⟨j, _⟩, exact lt_of_lt_of_le (coe_lt_degree.mp hbj) hb end /-- If `A` is a family of enough low-degree polynomials over a finite ring, there is a pair of elements in `A` (with different indices but not necessarily distinct), such that their difference has small degree. -/ lemma exists_approx_polynomial_aux [ring Fq] {d : ℕ} {m : ℕ} (hm : fintype.card Fq ^ d ≤ m) (b : Fq[X]) (A : fin m.succ → Fq[X]) (hA : ∀ i, degree (A i) < degree b) : ∃ i₀ i₁, i₀ ≠ i₁ ∧ degree (A i₁ - A i₀) < ↑(nat_degree b - d) := begin have hb : b ≠ 0, { rintro rfl, specialize hA 0, rw degree_zero at hA, exact not_lt_of_le bot_le hA }, -- Since there are > q^d elements of A, and only q^d choices for the highest `d` coefficients, -- there must be two elements of A with the same coefficients at -- `degree b - 1`, ... `degree b - d`. -- In other words, the following map is not injective: set f : fin m.succ → (fin d → Fq) := λ i j, (A i).coeff (nat_degree b - j.succ), have : fintype.card (fin d → Fq) < fintype.card (fin m.succ), { simpa using lt_of_le_of_lt hm (nat.lt_succ_self m) }, -- Therefore, the differences have all coefficients higher than `deg b - d` equal. obtain ⟨i₀, i₁, i_ne, i_eq⟩ := fintype.exists_ne_map_eq_of_card_lt f this, use [i₀, i₁, i_ne], refine (degree_lt_iff_coeff_zero _ _).mpr (λ j hj, _), -- The coefficients higher than `deg b` are the same because they are equal to 0. by_cases hbj : degree b ≤ j, { refine coeff_eq_zero_of_degree_lt (lt_of_lt_of_le _ hbj), exact lt_of_le_of_lt (degree_sub_le _ _) (max_lt (hA _) (hA _)) }, -- So we only need to look for the coefficients between `deg b - d` and `deg b`. rw [coeff_sub, sub_eq_zero], rw [not_le, degree_eq_nat_degree hb, with_bot.coe_lt_coe] at hbj, have hj : nat_degree b - j.succ < d, { by_cases hd : nat_degree b < d, { exact lt_of_le_of_lt tsub_le_self hd }, { rw not_lt at hd, have := lt_of_le_of_lt hj (nat.lt_succ_self j), rwa [tsub_lt_iff_tsub_lt hd hbj] at this } }, have : j = b.nat_degree - (nat_degree b - j.succ).succ, { rw [← nat.succ_sub hbj, nat.succ_sub_succ, tsub_tsub_cancel_of_le hbj.le] }, convert congr_fun i_eq.symm ⟨nat_degree b - j.succ, hj⟩ end variables [field Fq] /-- If `A` is a family of enough low-degree polynomials over a finite field, there is a pair of elements in `A` (with different indices but not necessarily distinct), such that the difference of their remainders is close together. -/ lemma exists_approx_polynomial {b : Fq[X]} (hb : b ≠ 0) {ε : ℝ} (hε : 0 < ε) (A : fin (fintype.card Fq ^ ⌈- log ε / log (fintype.card Fq)⌉₊).succ → Fq[X]) : ∃ i₀ i₁, i₀ ≠ i₁ ∧ (card_pow_degree (A i₁ % b - A i₀ % b) : ℝ) < card_pow_degree b • ε := begin have hbε : 0 < card_pow_degree b • ε, { rw [algebra.smul_def, eq_int_cast], exact mul_pos (int.cast_pos.mpr (absolute_value.pos _ hb)) hε }, have one_lt_q : 1 < fintype.card Fq := fintype.one_lt_card, have one_lt_q' : (1 : ℝ) < fintype.card Fq, { assumption_mod_cast }, have q_pos : 0 < fintype.card Fq, { linarith }, have q_pos' : (0 : ℝ) < fintype.card Fq, { assumption_mod_cast }, -- If `b` is already small enough, then the remainders are equal and we are done. by_cases le_b : b.nat_degree ≤ ⌈- log ε / log (fintype.card Fq)⌉₊, { obtain ⟨i₀, i₁, i_ne, mod_eq⟩ := exists_eq_polynomial le_rfl b le_b (λ i, A i % b) (λ i, euclidean_domain.mod_lt (A i) hb), refine ⟨i₀, i₁, i_ne, _⟩, simp only at mod_eq, rwa [mod_eq, sub_self, absolute_value.map_zero, int.cast_zero] }, -- Otherwise, it suffices to choose two elements whose difference is of small enough degree. rw not_le at le_b, obtain ⟨i₀, i₁, i_ne, deg_lt⟩ := exists_approx_polynomial_aux le_rfl b (λ i, A i % b) (λ i, euclidean_domain.mod_lt (A i) hb), simp only at deg_lt, use [i₀, i₁, i_ne], -- Again, if the remainders are equal we are done. by_cases h : A i₁ % b = A i₀ % b, { rwa [h, sub_self, absolute_value.map_zero, int.cast_zero] }, have h' : A i₁ % b - A i₀ % b ≠ 0 := mt sub_eq_zero.mp h, -- If the remainders are not equal, we'll show their difference is of small degree. -- In particular, we'll show the degree is less than the following: suffices : (nat_degree (A i₁ % b - A i₀ % b) : ℝ) < b.nat_degree + log ε / log (fintype.card Fq), { rwa [← real.log_lt_log_iff (int.cast_pos.mpr (card_pow_degree.pos h')) hbε, card_pow_degree_nonzero _ h', card_pow_degree_nonzero _ hb, algebra.smul_def, eq_int_cast, int.cast_pow, int.cast_coe_nat, int.cast_pow, int.cast_coe_nat, log_mul (pow_ne_zero _ q_pos'.ne') hε.ne', ← rpow_nat_cast, ← rpow_nat_cast, log_rpow q_pos', log_rpow q_pos', ← lt_div_iff (log_pos one_lt_q'), add_div, mul_div_cancel _ (log_pos one_lt_q').ne'] }, -- And that result follows from manipulating the result from `exists_approx_polynomial_aux` -- to turn the `-⌈-stuff⌉₊` into `+ stuff`. refine lt_of_lt_of_le (nat.cast_lt.mpr (with_bot.coe_lt_coe.mp _)) _, swap, { convert deg_lt, rw degree_eq_nat_degree h' }, rw [← sub_neg_eq_add, neg_div], refine le_trans _ (sub_le_sub_left (nat.le_ceil _) (b.nat_degree : ℝ)), rw ← neg_div, exact le_of_eq (nat.cast_sub le_b.le) end /-- If `x` is close to `y` and `y` is close to `z`, then `x` and `z` are at least as close. -/ lemma card_pow_degree_anti_archimedean {x y z : Fq[X]} {a : ℤ} (hxy : card_pow_degree (x - y) < a) (hyz : card_pow_degree (y - z) < a) : card_pow_degree (x - z) < a := begin have ha : 0 < a := lt_of_le_of_lt (absolute_value.nonneg _ _) hxy, by_cases hxy' : x = y, { rwa hxy' }, by_cases hyz' : y = z, { rwa ← hyz' }, by_cases hxz' : x = z, { rwa [hxz', sub_self, absolute_value.map_zero] }, rw [← ne.def, ← sub_ne_zero] at hxy' hyz' hxz', refine lt_of_le_of_lt _ (max_lt hxy hyz), rw [card_pow_degree_nonzero _ hxz', card_pow_degree_nonzero _ hxy', card_pow_degree_nonzero _ hyz'], have : (1 : ℤ) ≤ fintype.card Fq, { exact_mod_cast (@fintype.one_lt_card Fq _ _).le }, simp only [int.cast_pow, int.cast_coe_nat, le_max_iff], refine or.imp (pow_le_pow this) (pow_le_pow this) _, rw [nat_degree_le_iff_degree_le, nat_degree_le_iff_degree_le, ← le_max_iff, ← degree_eq_nat_degree hxy', ← degree_eq_nat_degree hyz'], convert degree_add_le (x - y) (y - z) using 2, exact (sub_add_sub_cancel _ _ _).symm end /-- A slightly stronger version of `exists_partition` on which we perform induction on `n`: for all `ε > 0`, we can partition the remainders of any family of polynomials `A` into equivalence classes, where the equivalence(!) relation is "closer than `ε`". -/ lemma exists_partition_polynomial_aux (n : ℕ) {ε : ℝ} (hε : 0 < ε) {b : Fq[X]} (hb : b ≠ 0) (A : fin n → Fq[X]) : ∃ (t : fin n → fin (fintype.card Fq ^ ⌈- log ε / log (fintype.card Fq)⌉₊)), ∀ (i₀ i₁ : fin n), t i₀ = t i₁ ↔ (card_pow_degree (A i₁ % b - A i₀ % b) : ℝ) < card_pow_degree b • ε := begin have hbε : 0 < card_pow_degree b • ε, { rw [algebra.smul_def, eq_int_cast], exact mul_pos (int.cast_pos.mpr (absolute_value.pos _ hb)) hε }, -- We go by induction on the size `A`. induction n with n ih, { refine ⟨fin_zero_elim, fin_zero_elim⟩ }, -- Show `anti_archimedean` also holds for real distances. have anti_archim' : ∀ {i j k} {ε : ℝ}, (card_pow_degree (A i % b - A j % b) : ℝ) < ε → (card_pow_degree (A j % b - A k % b) : ℝ) < ε → (card_pow_degree (A i % b - A k % b) : ℝ) < ε, { intros i j k ε, simp_rw [← int.lt_ceil], exact card_pow_degree_anti_archimedean }, obtain ⟨t', ht'⟩ := ih (fin.tail A), -- We got rid of `A 0`, so determine the index `j` of the partition we'll re-add it to. rsuffices ⟨j, hj⟩ : ∃ j, ∀ i, t' i = j ↔ (card_pow_degree (A 0 % b - A i.succ % b) : ℝ) < card_pow_degree b • ε, { refine ⟨fin.cons j t', λ i₀ i₁, _⟩, refine fin.cases _ (λ i₀, _) i₀; refine fin.cases _ (λ i₁, _) i₁, { simpa using hbε }, { rw [fin.cons_succ, fin.cons_zero, eq_comm, absolute_value.map_sub], exact hj i₁ }, { rw [fin.cons_succ, fin.cons_zero], exact hj i₀ }, { rw [fin.cons_succ, fin.cons_succ], exact ht' i₀ i₁ } }, -- `exists_approx_polynomial` guarantees that we can insert `A 0` into some partition `j`, -- but not that `j` is uniquely defined (which is needed to keep the induction going). obtain ⟨j, hj⟩ : ∃ j, ∀ (i : fin n), t' i = j → (card_pow_degree (A 0 % b - A i.succ % b) : ℝ) < card_pow_degree b • ε, { by_contra this, push_neg at this, obtain ⟨j₀, j₁, j_ne, approx⟩ := exists_approx_polynomial hb hε (fin.cons (A 0) (λ j, A (fin.succ (classical.some (this j))))), revert j_ne approx, refine fin.cases _ (λ j₀, _) j₀; refine fin.cases (λ j_ne approx, _) (λ j₁ j_ne approx, _) j₁, { exact absurd rfl j_ne }, { rw [fin.cons_succ, fin.cons_zero, ← not_le, absolute_value.map_sub] at approx, have := (classical.some_spec (this j₁)).2, contradiction }, { rw [fin.cons_succ, fin.cons_zero, ← not_le] at approx, have := (classical.some_spec (this j₀)).2, contradiction }, { rw [fin.cons_succ, fin.cons_succ] at approx, rw [ne.def, fin.succ_inj] at j_ne, have : j₀ = j₁ := (classical.some_spec (this j₀)).1.symm.trans (((ht' (classical.some (this j₀)) (classical.some (this j₁))).mpr approx).trans (classical.some_spec (this j₁)).1), contradiction } }, -- However, if one of those partitions `j` is inhabited by some `i`, then this `j` works. by_cases exists_nonempty_j : ∃ j, (∃ i, t' i = j) ∧ ∀ i, t' i = j → (card_pow_degree (A 0 % b - A i.succ % b) : ℝ) < card_pow_degree b • ε, { obtain ⟨j, ⟨i, hi⟩, hj⟩ := exists_nonempty_j, refine ⟨j, λ i', ⟨hj i', λ hi', trans ((ht' _ _).mpr _) hi⟩⟩, apply anti_archim' _ hi', rw absolute_value.map_sub, exact hj _ hi }, -- And otherwise, we can just take any `j`, since those are empty. refine ⟨j, λ i, ⟨hj i, λ hi, _⟩⟩, have := exists_nonempty_j ⟨t' i, ⟨i, rfl⟩, λ i' hi', anti_archim' hi ((ht' _ _).mp hi')⟩, contradiction end /-- For all `ε > 0`, we can partition the remainders of any family of polynomials `A` into classes, where all remainders in a class are close together. -/ lemma exists_partition_polynomial (n : ℕ) {ε : ℝ} (hε : 0 < ε) {b : Fq[X]} (hb : b ≠ 0) (A : fin n → Fq[X]) : ∃ (t : fin n → fin (fintype.card Fq ^ ⌈- log ε / log (fintype.card Fq)⌉₊)), ∀ (i₀ i₁ : fin n), t i₀ = t i₁ → (card_pow_degree (A i₁ % b - A i₀ % b) : ℝ) < card_pow_degree b • ε := begin obtain ⟨t, ht⟩ := exists_partition_polynomial_aux n hε hb A, exact ⟨t, λ i₀ i₁ hi, (ht i₀ i₁).mp hi⟩ end /-- `λ p, fintype.card Fq ^ degree p` is an admissible absolute value. We set `q ^ degree 0 = 0`. -/ noncomputable def card_pow_degree_is_admissible : is_admissible (card_pow_degree : absolute_value Fq[X] ℤ) := { card := λ ε, fintype.card Fq ^ ⌈- log ε / log (fintype.card Fq)⌉₊, exists_partition' := λ n ε hε b hb, exists_partition_polynomial n hε hb, .. @card_pow_degree_is_euclidean Fq _ _ } end polynomial
307cf9a3e55c88d81a18e476f6a39aa920293350
3aad12fe82645d2d3173fbedc2e5c2ba945a4d75
/src/data/serial/json.lean
48d85eeeee2f36494e2bda7f11b57290767dae1e
[]
no_license
seanpm2001/LeanProver-Community_MathLIB-Nursery
4f88d539cb18d73a94af983092896b851e6640b5
0479b31fa5b4d39f41e89b8584c9f5bf5271e8ec
refs/heads/master
1,688,730,786,645
1,572,070,026,000
1,572,070,026,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
12,434
lean
import data.serial.string import tactic.linarith import category.monad_trans import data.list.nursery import system.io universes u namespace json inductive value | object : unit → list (string × value) → value | number : ℤ → value | array : unit → list value → value | bool : bool → value | string : string → value | nil : value -- with object : Type -- | fields : list (string × value) → object open value (hiding object bool string) @[reducible] def object := list (string × value) def is_atom : value → bool | (number n) := tt | (value.bool b) := tt | (value.string s) := tt | value.nil := tt | _ := ff def encode_line : value → string | (number n) := to_string n | (value.bool n) := to_string n | (value.string n) := to_string n | nil := "nil" | (value.object _ _) := "<object>" | (value.array _ _) := "<array>" namespace syntax @[derive decidable_eq] inductive token | open_curly | close_curly | open_square | close_square | colon | comma | nil | bool (b : bool) | number (n : ℤ) | string (s : string) abbreviation put_m' := medium.put_m'.{u} token abbreviation put_m := medium.put_m'.{u} token punit abbreviation get_m := medium.get_m.{u} token export medium (hiding put_m put_m' get_m) namespace put_m' export medium.put_m' end put_m' namespace get_m export medium.get_m end get_m export token (hiding number string bool) mutual def encode_val, encode_obj, encode_array with encode_val : value → put_m | (value.string s) := write_word $ token.string s | (value.number n) := write_word $ token.number n | (value.bool b) := write_word $ token.bool b | (value.nil) := write_word $ token.nil | (value.object _ []) := write_word open_curly >> write_word close_curly | (value.object _ ((fn,v)::vs)) := do write_word open_curly, write_word (token.string fn), write_word colon, encode_obj v vs, write_word close_curly | (value.array _ obj) := write_word open_square >> encode_array obj >> write_word close_square with encode_obj : value → list (string × value) → put_m | v [] := encode_val v | v ((fn,v') :: vs) := do encode_val v, write_word comma, write_word (token.string fn), write_word colon, encode_obj v' vs with encode_array : list value → put_m | [] := pure () | (v :: vs) := do encode_val v, when (¬ vs = []) $ do write_word comma, encode_array vs inductive partial_val | array (ar : list value) | object (obj : list (string × value)) (field : string) def parser_state := list partial_val open ulift def push : list partial_val → value → get_m ( value ⊕ parser_state ) | [] v := pure (sum.inl v) | (partial_val.array ar :: vs) v := do t ← read_word, if down t = comma then pure (sum.inr (partial_val.array (v :: ar) :: vs)) else if down t = close_square then push vs (value.array () (list.reverse $ v :: ar)) else failure | (partial_val.object ar fn :: vs) v := do t ← read_word, if down t = comma then do ⟨token.string fn'⟩ ← read_word | failure, ⟨colon⟩ ← read_word | failure, pure (sum.inr (partial_val.object ((fn,v) :: ar) fn' :: vs)) else if down t = close_curly then push vs (value.object () (list.reverse $ (fn,v) :: ar)) else failure def parser_step : parser_state → token → get_m ( value ⊕ parser_state ) | vs nil := push vs value.nil | vs open_curly := do t ← read_word, match down t with | (token.string fn) := expect_word colon >> pure (sum.inr (partial_val.object [] fn :: vs)) | close_curly := push vs (value.object () []) | _ := failure end | vs open_square := pure (sum.inr (partial_val.array [] :: vs)) | vs (token.bool b) := push vs (value.bool b) | vs (token.number n) := push vs (value.number n) | vs (token.string str) := push vs (value.string str) | vs close_square := match vs with | (partial_val.array vs' :: vs) := push vs $ value.array () vs'.reverse | _ := failure end | _ _ := failure def decode_val : get_m value := get_m.loop parser_step pure [] def encoding_correctness_val (m : ℕ) := (∀ (v : value) (vs : list partial_val) (x : punit → put_m), sizeof v ≤ m → get_m.loop parser_step pure vs -<< (encode_val v >>= x) = (push vs v >>= get_m.loop.rest parser_step pure) -<< x punit.star) def encoding_correctness_obj (m : ℕ) := (∀ (fn : string) (v : value) (obj obj' : object) (vs : list partial_val) (x : punit → put_m), sizeof obj' ≤ m → sizeof v < m → get_m.loop parser_step pure (partial_val.object obj fn :: vs) -<< (encode_obj v obj' >>= λ _, write_word close_curly >>= x) = (push vs (value.object punit.star (obj.reverse ++ (fn,v) :: obj')) >>= get_m.loop.rest parser_step pure) -<< x punit.star) def encoding_correctness_array (m : ℕ) := (∀ (v v' : list value) (vs : list partial_val) (x : punit → put_m), sizeof v' ≤ m → get_m.loop parser_step pure (partial_val.array v :: vs) -<< (encode_array v' >>= λ (x_1 : punit), write_word close_square >>= x) = (push vs (value.array punit.star (v.reverse ++ v')) >>= get_m.loop.rest parser_step pure) -<< x punit.star) section correctness variables n : ℕ variables ih_val : ∀ (x : ℕ), x < n → encoding_correctness_val x variables ih_obj : ∀ (x : ℕ), x < n → encoding_correctness_obj x variables ih_ar : ∀ (x : ℕ), x < n → encoding_correctness_array x include ih_val ih_obj ih_ar lemma encode_val_ind_step : encoding_correctness_val n := begin dsimp [encoding_correctness_val], introv h, { cases v with v fs _ v fs; casesm* unit; try { simp [encode_val,parser_step] }, { rcases fs with _ | ⟨ ⟨ fn,v ⟩, vs ⟩, { simp [encode_val,parser_step] with functor_norm }, { simp [encode_val,parser_step,expect_word] with functor_norm, apply ih_obj (1 + sizeof v + sizeof vs), apply lt_of_lt_of_le _ h, well_founded_tactics.default_dec_tac, apply le_of_lt, well_founded_tactics.default_dec_tac, well_founded_tactics.default_dec_tac }, }, { simp [encode_val,parser_step] with functor_norm, rw ih_ar; try { refl }, apply lt_of_lt_of_le _ h, simp [sizeof,has_sizeof.sizeof,value.sizeof,punit.sizeof,list.sizeof] } }, end lemma encode_obj_ind_step : encoding_correctness_obj n := begin dsimp [encoding_correctness_obj], introv h h', { rcases obj' with _ | ⟨ ⟨ fn', v' ⟩, obj' ⟩, { simp [encode_obj], rw ih_val; try { assumption <|> refl }, simp [push] with functor_norm, }, { simp [encode_obj] with functor_norm, rw ih_val (sizeof v), simp [push] with functor_norm, rw ih_obj (1 + sizeof v' + sizeof obj'), congr' 4, simp, apply lt_of_lt_of_le _ h, all_goals { try { well_founded_tactics.default_dec_tac } }, apply le_of_lt, well_founded_tactics.default_dec_tac, refl } }, end lemma encode_array_ind_step : encoding_correctness_array n := begin dsimp [encoding_correctness_array], introv h, { cases v' with v' vs'; simp [encode_array,parser_step] with functor_norm, rw ih_val (sizeof v' ), by_cases h' : (vs' = []), { subst vs', simp [when,list.empty,push] with functor_norm }, { simp [when,*,push] with functor_norm, rw ih_ar (sizeof vs'), simp, apply lt_of_lt_of_le _ h, well_founded_tactics.default_dec_tac, refl }, apply lt_of_lt_of_le _ h, well_founded_tactics.default_dec_tac, refl }, end end correctness lemma encoding_correctness' (m : ℕ) : encoding_correctness_val m ∧ encoding_correctness_obj m ∧ encoding_correctness_array m := begin induction m using nat.strong_induction_on with n ih, simp [imp_and_distrib,forall_and_distrib,push] at ih, rcases ih with ⟨ ih_val, ih_obj, ih_ar ⟩, repeat { split }, apply encode_val_ind_step; assumption, apply encode_obj_ind_step; assumption, apply encode_array_ind_step; assumption, end lemma encoding_correctness (v : value) : decode_val -<< encode_val v = some v := begin have := (encoding_correctness' (sizeof v)).1 v [] pure _, simp with functor_norm at this, simp [decode_val,this,push], refl, refl end def value.repr : token → string | (token.number n) := to_string n | (token.string s) := "\"" ++ s ++ "\"" | (token.bool b) := to_string b | nil := "nil" | open_curly := "'{'" | close_curly := "'}'" | open_square := "'['" | close_square := "']'" | colon := "':'" | comma := "','" instance : has_repr token := ⟨ value.repr ⟩ #eval (encode_val (value.object () [ ("a",value.number 3), ("boo",value.array () [ value.number 3, value.array () [ value.number 3, value.number 7, value.string "ho" ] , value.string "abc" ]) ])).eval end syntax end json -- namespace yaml -- open string.medium json -- @[reducible] def writer := reader_t ℕ put_m' -- def newline : writer unit := -- ⟨ λ n, emit $ "\n" ++ (list.repeat ' ' n).as_string ⟩ -- def bump {α} (tac : writer α) : writer α := -- ⟨ λ n, tac.run (n+2) ⟩ -- mutual def encode_aux, encode_obj, encode_array -- with encode_aux : value → writer unit -- | (value.string v) := monad_lift $ emit $ "\"" ++ v ++ "\"" -- | (value.bool v) := monad_lift $ emit $ to_string v -- | (value.number v) := monad_lift $ emit $ to_string v -- | value.nil := monad_lift $ emit "nil" -- | (value.object _ o) := encode_obj o -- | (value.array _ ar) := encode_array ar -- with encode_obj : list (string × value) → writer unit -- | [] := monad_lift $ emit "[]" -- | ((f,v) :: vs) := -- do monad_lift $ emit (f ++ ": "), -- bump $ do { -- when (¬ is_atom v) newline, -- encode_aux v }, -- when (¬ vs.empty) $ do -- newline, -- encode_obj vs -- with encode_array : list value → writer unit -- | [] := monad_lift $ emit "[]" -- | (v :: vs) := -- do monad_lift $ emit "- ", -- bump $ encode_aux v, -- when (¬ vs.empty) $ do -- newline, -- encode_array vs -- def encode (v : value) : put_m := -- (encode_aux v).run 0 -- def select_aux {α} (f : char → list (bool × reader α)) (c : char) : reader α := -- (prod.snd <$> list.find (λ x, prod.fst x = tt) (f c)).get_or_else failure -- def select {α} (f : char → list (bool × reader α)) : reader α := -- peek >>= select_aux f -- def try_char (p : char → Prop) [decidable_pred p] : reader (option char) := -- do c ← read_char, -- if p c then pure c -- else unread c >> pure none -- def many_loop (p : char → Prop) [decidable_pred p] : list char → char → get_m ((list char × option char) ⊕ list char) -- | s c := -- if p c then pure (sum.inr $ c :: s) -- else pure (sum.inl (s.reverse,some c)) -- def many (p : char → Prop) [decidable_pred p] : reader (list char) := -- ⟨ λ n, ⟨ λ s : option char, -- do s' ← match s with -- | none := pure $ sum.inr [] -- | (some s) := many_loop p [] s -- end, -- match s' with -- | (sum.inl x) := pure x -- | (sum.inr x) := get_m.loop (many_loop p) pure x -- end ⟩ ⟩ -- def parse_nat : reader ℕ := -- do c ← read_char, -- guard c.is_digit, -- cs ← many char.is_digit, -- pure $ list.foldl (λ x (c : char), 10 * x + c.val - '0'.val) 0 (c :: cs) -- def parse_int : reader ℤ := -- do x ← try_char (= '-'), -- n ← parse_nat, -- pure $ if x.is_some then - ↑n -- else n -- def parse_value : reader value := -- value.number <$> parse_int <* expect_char '\n' -- -- def read_write (i n : ℕ) : -- -- parse_value.run i -<< encode (value.number n) = some (value.number n) := -- -- begin -- -- rw [encode,encode_aux,emit], -- -- induction n using nat.strong_induction_on, -- -- simp [to_string,has_to_string.to_string], -- -- unfold_coes, simp [int.repr], -- -- -- induction h : (string.to_list (to_string ↑n)) generalizing n; -- -- -- rw [mmap'], -- -- -- { admit }, -- -- -- { simp [monad_lift_and_then writer,parse_value,parse_int] with functor_norm, } -- -- end -- #eval do io.put_str_ln "", -- io.put_str_ln $ to_string $ encode (value.object () -- [ ("a",value.number 3), -- ("boo",value.array () [ value.number 3, -- value.array () [ value.number 3, value.number 7, value.string "ho" ] , -- value.string "abc" ]) ]) -- end yaml
e4a034a441bb441963cf92e0af9c4d86a7ecd089
f20db13587f4dd28a4b1fbd31953afd491691fa0
/library/init/meta/interactive.lean
d6128a019822fb9548ad4bc90521a837283432cc
[ "Apache-2.0" ]
permissive
AHartNtkn/lean
9a971edfc6857c63edcbf96bea6841b9a84cf916
0d83a74b26541421fc1aa33044c35b03759710ed
refs/heads/master
1,620,592,591,236
1,516,749,881,000
1,516,749,881,000
118,697,288
1
0
null
1,516,759,470,000
1,516,759,470,000
null
UTF-8
Lean
false
false
67,413
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.tactic init.meta.rewrite_tactic init.meta.simp_tactic import init.meta.smt.congruence_closure init.category.combinators import init.meta.interactive_base init.meta.derive init.meta.match_tactic import init.meta.congr_tactic open lean open lean.parser local postfix `?`:9001 := optional local postfix *:9001 := many namespace tactic /- allows metavars -/ meta def i_to_expr (q : pexpr) : tactic expr := to_expr q tt /- allow metavars and no subgoals -/ meta def i_to_expr_no_subgoals (q : pexpr) : tactic expr := to_expr q tt ff /- doesn't allows metavars -/ meta def i_to_expr_strict (q : pexpr) : tactic expr := to_expr q ff /- Auxiliary version of i_to_expr for apply-like tactics. This is a workaround for comment https://github.com/leanprover/lean/issues/1342#issuecomment-307912291 at issue #1342. In interactive mode, given a tactic apply f we want the apply tactic to create all metavariables. The following definition will return `@f` for `f`. That is, it will **not** create metavariables for implicit arguments. Before we added `i_to_expr_for_apply`, the tactic apply le_antisymm would first elaborate `le_antisymm`, and create @le_antisymm ?m_1 ?m_2 ?m_3 ?m_4 The type class resolution problem ?m_2 : weak_order ?m_1 by the elaborator since ?m_1 is not assigned yet, and the problem is discarded. Then, we would invoke `apply_core`, which would create two new metavariables for the explicit arguments, and try to unify the resulting type with the current target. After the unification, the metavariables ?m_1, ?m_3 and ?m_4 are assigned, but we lost the information about the pending type class resolution problem. With `i_to_expr_for_apply`, `le_antisymm` is elaborate into `@le_antisymm`, the apply_core tactic creates all metavariables, and solves the ones that can be solved by type class resolution. Another possible fix: we modify the elaborator to return pending type class resolution problems, and store them in the tactic_state. -/ meta def i_to_expr_for_apply (q : pexpr) : tactic expr := let aux (n : name) : tactic expr := do p ← resolve_name n, match p with | (expr.const c []) := do r ← mk_const c, save_type_info r q, return r | _ := i_to_expr p end in match q with | (expr.const c []) := aux c | (expr.local_const c _ _ _) := aux c | _ := i_to_expr q end namespace interactive open interactive interactive.types expr /-- itactic: parse a nested "interactive" tactic. That is, parse `{` tactic `}` -/ meta def itactic : Type := tactic unit meta def propagate_tags (tac : tactic unit) : tactic unit := do tag ← get_main_tag, if tag = [] then tac else focus1 $ do tac, gs ← get_goals, when (bnot gs.empty) $ do new_tag ← get_main_tag, when new_tag.empty $ with_enable_tags (set_main_tag tag) meta def concat_tags (tac : tactic (list (name × expr))) : tactic unit := mcond tags_enabled (do in_tag ← get_main_tag, r ← tac, /- remove assigned metavars -/ r ← r.mfilter $ λ ⟨n, m⟩, bnot <$> is_assigned m, match r with | [(_, m)] := set_tag m in_tag /- if there is only new subgoal, we just propagate `in_tag` -/ | _ := r.mmap' (λ ⟨n, m⟩, set_tag m (n::in_tag)) end) (tac >> skip) /-- If the current goal is a Pi/forall `∀ x : t, u` (resp. `let x := t in u`) then `intro` puts `x : t` (resp. `x := t`) in the local context. The new subgoal target is `u`. If the goal is an arrow `t → u`, then it puts `h : t` in the local context and the new goal target is `u`. If the goal is neither a Pi/forall nor begins with a let binder, the tactic `intro` applies the tactic `whnf` until an introduction can be applied or the goal is not head reducible. In the latter case, the tactic fails. -/ meta def intro : parse ident_? → tactic unit | none := propagate_tags (intro1 >> skip) | (some h) := propagate_tags (tactic.intro h >> skip) /-- Similar to `intro` tactic. The tactic `intros` will keep introducing new hypotheses until the goal target is not a Pi/forall or let binder. The variant `intros h₁ ... hₙ` introduces `n` new hypotheses using the given identifiers to name them. -/ meta def intros : parse ident_* → tactic unit | [] := propagate_tags (tactic.intros >> skip) | hs := propagate_tags (intro_lst hs >> skip) /-- The tactic `introv` allows the user to automatically introduce the variables of a theorem and explicitly name the hypotheses involved. The given names are used to name non-dependent hypotheses. Examples: ``` example : ∀ a b : nat, a = b → b = a := begin introv h, exact h.symm end ``` The state after `introv h` is ``` a b : ℕ, h : a = b ⊢ b = a ``` ``` example : ∀ a b : nat, a = b → ∀ c, b = c → a = c := begin introv h₁ h₂, exact h₁.trans h₂ end ``` The state after `introv h₁ h₂` is ``` a b : ℕ, h₁ : a = b, c : ℕ, h₂ : b = c ⊢ a = c ``` -/ meta def introv (ns : parse ident_*) : tactic unit := propagate_tags (tactic.introv ns >> return ()) /-- The tactic `rename h₁ h₂` renames hypothesis `h₁` to `h₂` in the current local context. -/ meta def rename (h₁ h₂ : parse ident) : tactic unit := propagate_tags (tactic.rename h₁ h₂) /-- The `apply` tactic tries to match the current goal against the conclusion of the type of term. The argument term should be a term well-formed in the local context of the main goal. If it succeeds, then the tactic returns as many subgoals as the number of premises that have not been fixed by type inference or type class resolution. Non-dependent premises are added before dependent ones. The `apply` tactic uses higher-order pattern matching, type class resolution, and first-order unification with dependent types. -/ meta def apply (q : parse texpr) : tactic unit := concat_tags (do h ← i_to_expr_for_apply q, tactic.apply h) /-- Similar to the `apply` tactic, but does not reorder goals. -/ meta def fapply (q : parse texpr) : tactic unit := concat_tags (i_to_expr_for_apply q >>= tactic.fapply) /-- Similar to the `apply` tactic, but only creates subgoals for non-dependent premises that have not been fixed by type inference or type class resolution. -/ meta def eapply (q : parse texpr) : tactic unit := concat_tags (i_to_expr_for_apply q >>= tactic.eapply) /-- Similar to the `apply` tactic, but allows the user to provide a `apply_cfg` configuration object. -/ meta def apply_with (q : parse parser.pexpr) (cfg : apply_cfg) : tactic unit := concat_tags (do e ← i_to_expr_for_apply q, tactic.apply e cfg) /-- Similar to the `apply` tactic, but uses matching instead of unification. `apply_match t` is equivalent to `apply_with t {unify := ff}` -/ meta def mapply (q : parse texpr) : tactic unit := concat_tags (do e ← i_to_expr_for_apply q, tactic.apply e {unify := ff}) /-- This tactic tries to close the main goal `... ⊢ t` by generating a term of type `t` using type class resolution. -/ meta def apply_instance : tactic unit := tactic.apply_instance /-- This tactic behaves like `exact`, but with a big difference: the user can put underscores `_` in the expression as placeholders for holes that need to be filled, and `refine` will generate as many subgoals as there are holes. Note that some holes may be implicit. The type of each hole must either be synthesized by the system or declared by an explicit type ascription like `(_ : nat → Prop)`. -/ meta def refine (q : parse texpr) : tactic unit := tactic.refine q /-- This tactic looks in the local context for a hypothesis whose type is equal to the goal target. If it finds one, it uses it to prove the goal, and otherwise it fails. -/ meta def assumption : tactic unit := tactic.assumption /-- Try to apply `assumption` to all goals. -/ meta def assumption' : tactic unit := tactic.any_goals tactic.assumption private meta def change_core (e : expr) : option expr → tactic unit | none := tactic.change e | (some h) := do num_reverted : ℕ ← revert h, expr.pi n bi d b ← target, tactic.change $ expr.pi n bi e b, intron num_reverted /-- `change u` replaces the target `t` of the main goal to `u` provided that `t` is well formed with respect to the local context of the main goal and `t` and `u` are definitionally equal. `change u at h` will change a local hypothesis to `u`. `change t with u at h1 h2 ...` will replace `t` with `u` in all the supplied hypotheses (or `*`), or in the goal if no `at` clause is specified, provided that `t` and `u` are definitionally equal. -/ meta def change (q : parse texpr) : parse (tk "with" *> texpr)? → parse location → tactic unit | none (loc.ns [none]) := do e ← i_to_expr q, change_core e none | none (loc.ns [some h]) := do eq ← i_to_expr q, eh ← get_local h, change_core eq (some eh) | none _ := fail "change-at does not support multiple locations" | (some w) l := do u ← mk_meta_univ, ty ← mk_meta_var (sort u), eq ← i_to_expr ``(%%q : %%ty), ew ← i_to_expr ``(%%w : %%ty), let repl := λe : expr, e.replace (λ a n, if a = eq then some ew else none), l.try_apply (λh, do e ← infer_type h, change_core (repl e) (some h)) (do g ← target, change_core (repl g) none) /-- This tactic provides an exact proof term to solve the main goal. If `t` is the goal and `p` is a term of type `u` then `exact p` succeeds if and only if `t` and `u` can be unified. -/ meta def exact (q : parse texpr) : tactic unit := do tgt : expr ← target, i_to_expr_strict ``(%%q : %%tgt) >>= tactic.exact /-- Like `exact`, but takes a list of terms and checks that all goals are discharged after the tactic. -/ meta def exacts : parse pexpr_list_or_texpr → tactic unit | [] := done | (t :: ts) := exact t >> exacts ts /-- A synonym for `exact` that allows writing `have/suffices/show ..., from ...` in tactic mode. -/ meta def «from» := exact /-- `revert h₁ ... hₙ` applies to any goal with hypotheses `h₁` ... `hₙ`. It moves the hypotheses and their dependencies to the target of the goal. This tactic is the inverse of `intro`. -/ meta def revert (ids : parse ident*) : tactic unit := propagate_tags (do hs ← mmap tactic.get_local ids, revert_lst hs, skip) private meta def resolve_name' (n : name) : tactic expr := do { p ← resolve_name n, match p with | expr.const n _ := mk_const n -- create metavars for universe levels | _ := i_to_expr p end } /- Version of to_expr that tries to bypass the elaborator if `p` is just a constant or local constant. This is not an optimization, by skipping the elaborator we make sure that no unwanted resolution is used. Example: the elaborator will force any unassigned ?A that must have be an instance of (has_one ?A) to nat. Remark: another benefit is that auxiliary temporary metavariables do not appear in error messages. -/ meta def to_expr' (p : pexpr) : tactic expr := match p with | (const c []) := do new_e ← resolve_name' c, save_type_info new_e p, return new_e | (local_const c _ _ _) := do new_e ← resolve_name' c, save_type_info new_e p, return new_e | _ := i_to_expr p end @[derive has_reflect] meta structure rw_rule := (pos : pos) (symm : bool) (rule : pexpr) meta def get_rule_eqn_lemmas (r : rw_rule) : tactic (list name) := let aux (n : name) : tactic (list name) := do { p ← resolve_name n, -- unpack local refs let e := p.erase_annotations.get_app_fn.erase_annotations, match e with | const n _ := get_eqn_lemmas_for tt n | _ := return [] end } <|> return [] in match r.rule with | const n _ := aux n | local_const n _ _ _ := aux n | _ := return [] end private meta def rw_goal (cfg : rewrite_cfg) (rs : list rw_rule) : tactic unit := rs.mmap' $ λ r, do save_info r.pos, eq_lemmas ← get_rule_eqn_lemmas r, orelse' (do e ← to_expr' r.rule, rewrite_target e {symm := r.symm, ..cfg}) (eq_lemmas.mfirst $ λ n, do e ← mk_const n, rewrite_target e {symm := r.symm, ..cfg}) (eq_lemmas.empty) private meta def uses_hyp (e : expr) (h : expr) : bool := e.fold ff $ λ t _ r, r || to_bool (t = h) private meta def rw_hyp (cfg : rewrite_cfg) : list rw_rule → expr → tactic unit | [] hyp := skip | (r::rs) hyp := do save_info r.pos, eq_lemmas ← get_rule_eqn_lemmas r, orelse' (do e ← to_expr' r.rule, when (not (uses_hyp e hyp)) $ rewrite_hyp e hyp {symm := r.symm, ..cfg} >>= rw_hyp rs) (eq_lemmas.mfirst $ λ n, do e ← mk_const n, rewrite_hyp e hyp {symm := r.symm, ..cfg} >>= rw_hyp rs) (eq_lemmas.empty) meta def rw_rule_p (ep : parser pexpr) : parser rw_rule := rw_rule.mk <$> cur_pos <*> (option.is_some <$> (with_desc "←" (tk "←" <|> tk "<-"))?) <*> ep @[derive has_reflect] meta structure rw_rules_t := (rules : list rw_rule) (end_pos : option pos) -- accepts the same content as `pexpr_list_or_texpr`, but with correct goal info pos annotations meta def rw_rules : parser rw_rules_t := (tk "[" *> rw_rules_t.mk <$> sep_by (skip_info (tk ",")) (set_goal_info_pos $ rw_rule_p (parser.pexpr 0)) <*> (some <$> cur_pos <* set_goal_info_pos (tk "]"))) <|> rw_rules_t.mk <$> (list.ret <$> rw_rule_p texpr) <*> return none private meta def rw_core (rs : parse rw_rules) (loca : parse location) (cfg : rewrite_cfg) : tactic unit := match loca with | loc.wildcard := loca.try_apply (rw_hyp cfg rs.rules) (rw_goal cfg rs.rules) | _ := loca.apply (rw_hyp cfg rs.rules) (rw_goal cfg rs.rules) end >> try (reflexivity reducible) >> (returnopt rs.end_pos >>= save_info <|> skip) /-- `rewrite e` applies identity `e` as a rewrite rule to the target of the main goal. If `e` is preceded by left arrow (`←` or `<-`), the rewrite is applied in the reverse direction. If `e` is a defined constant, then the equational lemmas associated with `e` are used. This provides a convenient way to unfold `e`. `rewrite [e₁, ..., eₙ]` applies the given rules sequentially. `rewrite e at l` rewrites `e` at location(s) `l`, where `l` is either `*` or a list of hypotheses in the local context. In the latter case, a turnstile `⊢` or `|-` can also be used, to signify the target of the goal. -/ meta def rewrite (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit := propagate_tags (rw_core q l cfg) /-- An abbreviation for `rewrite`. -/ meta def rw (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit := propagate_tags (rw_core q l cfg) /-- `rewrite` followed by `assumption`. -/ meta def rwa (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit := rewrite q l cfg >> try assumption /-- A variant of `rewrite` that uses the unifier more aggressively, unfolding semireducible definitions. -/ meta def erewrite (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {md := semireducible}) : tactic unit := propagate_tags (rw_core q l cfg) /-- An abbreviation for `erewrite`. -/ meta def erw (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {md := semireducible}) : tactic unit := propagate_tags (rw_core q l cfg) precedence `generalizing` : 0 private meta def collect_hyps_uids : tactic name_set := do ctx ← local_context, return $ ctx.foldl (λ r h, r.insert h.local_uniq_name) mk_name_set private meta def revert_new_hyps (input_hyp_uids : name_set) : tactic unit := do ctx ← local_context, let to_revert := ctx.foldr (λ h r, if input_hyp_uids.contains h.local_uniq_name then r else h::r) [], tag ← get_main_tag, m ← revert_lst to_revert, set_main_tag (mk_num_name `_case m :: tag) /-- Apply `t` to main goal, and revert any new hypothesis in the generated goals, and tag generated goals when using supported tactics such as: `induction`, `apply`, `cases`, `constructor`, ... This tactic is useful for writing robust proof scripts that are not sensitive to the name generation strategy used by `t`. ``` example (n : ℕ) : n = n := begin with_cases { induction n }, case nat.zero { reflexivity }, case nat.succ : n' ih { reflexivity } end ``` TODO(Leo): improve docstring -/ meta def with_cases (t : itactic) : tactic unit := with_enable_tags $ focus1 $ do input_hyp_uids ← collect_hyps_uids, t, all_goals (revert_new_hyps input_hyp_uids) private meta def get_type_name (e : expr) : tactic name := do e_type ← infer_type e >>= whnf, (const I ls) ← return $ get_app_fn e_type, return I private meta def generalize_arg_p_aux : pexpr → parser (pexpr × name) | (app (app (macro _ [const `eq _ ]) h) (local_const x _ _ _)) := pure (h, x) | _ := fail "parse error" private meta def generalize_arg_p : parser (pexpr × name) := with_desc "expr = id" $ parser.pexpr 0 >>= generalize_arg_p_aux /-- `generalize : e = x` replaces all occurrences of `e` in the target with a new hypothesis `x` of the same type. `generalize h : e = x` in addition registers the hypothesis `h : e = x`. -/ meta def generalize (h : parse ident?) (_ : parse $ tk ":") (p : parse generalize_arg_p) : tactic unit := propagate_tags $ do let (p, x) := p, e ← i_to_expr p, some h ← pure h | tactic.generalize e x >> intro1 >> skip, tgt ← target, -- if generalizing fails, fall back to not replacing anything tgt' ← do { ⟨tgt', _⟩ ← solve_aux tgt (tactic.generalize e x >> target), to_expr ``(Π x, %%e = x → %%(tgt'.binding_body.lift_vars 0 1)) } <|> to_expr ``(Π x, %%e = x → %%tgt), t ← assert h tgt', swap, exact ``(%%t %%e rfl), intro x, intro h meta def cases_arg_p : parser (option name × pexpr) := with_desc "(id :)? expr" $ do t ← texpr, match t with | (local_const x _ _ _) := (tk ":" *> do t ← texpr, pure (some x, t)) <|> pure (none, t) | _ := pure (none, t) end /-- Given the initial tag `in_tag` and the cases names produced by `induction` or `cases` tactic, update the tag of the new subgoals. -/ private meta def set_cases_tags (in_tag : tag) (rs : list name) : tactic unit := do te ← tags_enabled, gs ← get_goals, match gs with | [g] := when te (set_tag g in_tag) -- if only one goal was produced, we should not make the tag longer | _ := do let tgs : list (name × expr) := rs.map₂ (λ n g, (n, g)) gs, if te then tgs.mmap' (λ ⟨n, g⟩, set_tag g (n::in_tag)) /- If `induction/cases` is not in a `with_cases` block, we still set tags using `_case_simple` to make sure we can use the `case` notation. ``` induction h, case c { ... } ``` -/ else tgs.mmap' (λ ⟨n, g⟩, with_enable_tags (set_tag g (`_case_simple::n::[]))) end private meta def set_induction_tags (in_tag : tag) (rs : list (name × list expr × list (name × expr))) : tactic unit := set_cases_tags in_tag (rs.map (λ e, e.1)) /-- Assuming `x` is a variable in the local context with an inductive type, `induction x` applies induction on `x` to the main goal, producing one goal for each constructor of the inductive type, in which the target is replaced by a general instance of that constructor and an inductive hypothesis is added for each recursive argument to the constructor. If the type of an element in the local context depends on `x`, that element is reverted and reintroduced afterward, so that the inductive hypothesis incorporates that hypothesis as well. For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `induction n` produces one goal with hypothesis `h : P 0` and target `Q 0`, and one goal with hypotheses `h : P (nat.succ a)` and `ih₁ : P a → Q a` and target `Q (nat.succ a)`. Here the names `a` and `ih₁` ire chosen automatically. `induction e`, where `e` is an expression instead of a variable, generalizes `e` in the goal, and then performs induction on the resulting variable. `induction e with y₁ ... yₙ`, where `e` is a variable or an expression, specifies that the sequence of names `y₁ ... yₙ` should be used for the arguments to the constructors and inductive hypotheses, including implicit arguments. If the list does not include enough names for all of the arguments, additional names are generated automatically. If too many names are given, the extra ones are ignored. Underscores can be used in the list, in which case the corresponding names are generated automatically. Note that for long sequences of names, the `case` tactic provides a more convenient naming mechanism. `induction e using r` allows the user to specify the principle of induction that should be used. Here `r` should be a theorem whose result type must be of the form `C t`, where `C` is a bound variable and `t` is a (possibly empty) sequence of bound variables `induction e generalizing z₁ ... zₙ`, where `z₁ ... zₙ` are variables in the local context, generalizes over `z₁ ... zₙ` before applying the induction but then introduces them in each goal. In other words, the net effect is that each inductive hypothesis is generalized. `induction h : t` will introduce an equality of the form `h : t = C x y`, asserting that the input term is equal to the current constructor case, to the context. -/ meta def induction (hp : parse cases_arg_p) (rec_name : parse using_ident) (ids : parse with_ident_list) (revert : parse $ (tk "generalizing" *> ident*)?) : tactic unit := do in_tag ← get_main_tag, focus1 $ do { -- process `h : t` case e ← match hp with | (some h, p) := do x ← mk_fresh_name, generalize h () (p, x), get_local x | (none, p) := i_to_expr p end, -- generalize major premise e ← if e.is_local_constant then pure e else tactic.generalize e >> intro1, -- generalize major premise args (e, newvars, locals) ← do { none ← pure rec_name | pure (e, [], []), t ← infer_type e, t ← whnf_ginductive t, const n _ ← pure t.get_app_fn | pure (e, [], []), env ← get_env, tt ← pure $ env.is_inductive n | pure (e, [], []), let (locals, nonlocals) := (t.get_app_args.drop $ env.inductive_num_params n).partition (λ arg : expr, arg.is_local_constant), _ :: _ ← pure nonlocals | pure (e, [], []), n ← tactic.revert e, newvars ← nonlocals.mmap $ λ arg, do { n ← revert_kdeps arg, tactic.generalize arg, h ← intro1, intron n, -- now try to clear hypotheses that may have been abstracted away let locals := arg.fold [] (λ e _ acc, if e.is_local_constant then e::acc else acc), locals.mmap' (try ∘ clear), pure h }, intron (n-1), e ← intro1, pure (e, newvars, locals) }, -- revert `generalizing` params n ← mmap tactic.get_local (revert.get_or_else []) >>= revert_lst, rs ← tactic.induction e ids rec_name, all_goals $ do { intron n, clear_lst (newvars.map local_pp_name), (e::locals).mmap' (try ∘ clear) }, set_induction_tags in_tag rs } private meta def is_case_simple_tag : tag → bool | (`_case_simple :: _) := tt | _ := ff private meta def is_case_tag : tag → option nat | (name.mk_numeral n `_case :: _) := some n.val | _ := none private meta def tag_match (t : tag) (pre : list name) : bool := pre.is_prefix_of t.reverse && ((is_case_tag t).is_some || is_case_simple_tag t) private meta def collect_tagged_goals (pre : list name) : tactic (list expr) := do gs ← get_goals, gs.mfoldr (λ g r, do t ← get_tag g, if tag_match t pre then return (g::r) else return r) [] private meta def find_tagged_goal_aux (pre : list name) : tactic expr := do gs ← collect_tagged_goals pre, match gs with | [] := fail ("invalid `case`, there is no goal tagged with prefix " ++ to_string pre) | [g] := return g | gs := do tags : list (list name) ← gs.mmap get_tag, fail ("invalid `case`, there is more than one goal tagged with prefix " ++ to_string pre ++ ", matching tags: " ++ to_string tags) end private meta def find_tagged_goal (pre : list name) : tactic expr := match pre with | [] := do g::gs ← get_goals, return g | _ := find_tagged_goal_aux pre <|> -- try to resolve constructor names, and try again do env ← get_env, pre ← pre.mmap (λ id, (do r_id ← resolve_constant id, if (env.inductive_type_of r_id).is_none then return id else return r_id) <|> return id), find_tagged_goal_aux pre end private meta def find_case (goals : list expr) (ty : name) (idx : nat) (num_indices : nat) : option expr → expr → option (expr × expr) | case e := if e.has_meta_var then match e with | (mvar _ _ _) := do case ← case, guard $ e ∈ goals, pure (case, e) | (app _ _) := let idx := match e.get_app_fn with | const (name.mk_string rec ty') _ := guard (ty' = ty) >> match mk_simple_name rec with | `drec := some idx | `rec := some idx -- indices + major premise | `dcases_on := some (idx + num_indices + 1) | `cases_on := some (idx + num_indices + 1) | _ := none end | _ := none end in match idx with | none := list.foldl (<|>) (find_case case e.get_app_fn) $ e.get_app_args.map (find_case case) | some idx := let args := e.get_app_args in do arg ← args.nth idx, args.enum.foldl (λ acc ⟨i, arg⟩, match acc with | some _ := acc | _ := if i ≠ idx then find_case none arg else none end) -- start recursion with likely case (find_case (some arg) arg) end | (lam _ _ _ e) := find_case case e | (macro n args) := list.foldl (<|>) none $ args.map (find_case case) | _ := none end else none private meta def rename_lams : expr → list name → tactic unit | (lam n _ _ e) (n'::ns) := (rename n n' >> rename_lams e ns) <|> rename_lams e (n'::ns) | _ _ := skip /-- Focuses on the `induction`/`cases`/`with_cases` subgoal corresponding to the given tag prefix, optionally renaming introduced locals. ``` example (n : ℕ) : n = n := begin induction n, case nat.zero { reflexivity }, case nat.succ : a ih { reflexivity } end ``` -/ meta def case (pre : parse ident_*) (ids : parse $ (tk ":" *> ident_*)?) (tac : itactic) : tactic unit := do g ← find_tagged_goal pre, tag ← get_tag g, let ids := ids.get_or_else [], match is_case_tag tag with | some n := do let m := ids.length, gs ← get_goals, set_goals $ g :: gs.filter (≠ g), intro_lst ids, when (m < n) $ intron (n - m), solve1 tac | none := match is_case_simple_tag tag with | tt := /- Use the old `case` implementation -/ do r ← result, env ← get_env, [ctor_id] ← return pre, ctor ← resolve_constant ctor_id <|> fail ("'" ++ to_string ctor_id ++ "' is not a constructor"), ty ← (env.inductive_type_of ctor).to_monad <|> fail ("'" ++ to_string ctor ++ "' is not a constructor"), let ctors := env.constructors_of ty, let idx := env.inductive_num_params ty + /- motive -/ 1 + list.index_of ctor ctors, /- Remark: we now use `find_case` just to locate the `lambda` used in `rename_lams`. The goal is now located using tags. -/ (case, _) ← (find_case [g] ty idx (env.inductive_num_indices ty) none r ).to_monad <|> fail "could not find open goal of given case", gs ← get_goals, set_goals $ g :: gs.filter (≠ g), rename_lams case ids, solve1 tac | ff := failed end end /-- Assuming `x` is a variable in the local context with an inductive type, `destruct x` splits the main goal, producing one goal for each constructor of the inductive type, in which `x` is assumed to be a general instance of that constructor. In contrast to `cases`, the local context is unchanged, i.e. no elements are reverted or introduced. For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `destruct n` produces one goal with target `n = 0 → Q n`, and one goal with target `∀ (a : ℕ), (λ (w : ℕ), n = w → Q n) (nat.succ a)`. Here the name `a` is chosen automatically. -/ meta def destruct (p : parse texpr) : tactic unit := i_to_expr p >>= tactic.destruct meta def cases_core (e : expr) (ids : list name := []) : tactic unit := do in_tag ← get_main_tag, focus1 $ do rs ← tactic.cases e ids, set_cases_tags in_tag rs /-- Assuming `x` is a variable in the local context with an inductive type, `cases x` splits the main goal, producing one goal for each constructor of the inductive type, in which the target is replaced by a general instance of that constructor. If the type of an element in the local context depends on `x`, that element is reverted and reintroduced afterward, so that the case split affects that hypothesis as well. For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `cases n` produces one goal with hypothesis `h : P 0` and target `Q 0`, and one goal with hypothesis `h : P (nat.succ a)` and target `Q (nat.succ a)`. Here the name `a` is chosen automatically. `cases e`, where `e` is an expression instead of a variable, generalizes `e` in the goal, and then cases on the resulting variable. `cases e with y₁ ... yₙ`, where `e` is a variable or an expression, specifies that the sequence of names `y₁ ... yₙ` should be used for the arguments to the constructors, including implicit arguments. If the list does not include enough names for all of the arguments, additional names are generated automatically. If too many names are given, the extra ones are ignored. Underscores can be used in the list, in which case the corresponding names are generated automatically. `cases h : e`, where `e` is a variable or an expression, performs cases on `e` as above, but also adds a hypothesis `h : e = ...` to each hypothesis, where `...` is the constructor instance for that particular case. -/ meta def cases : parse cases_arg_p → parse with_ident_list → tactic unit | (none, p) ids := do e ← i_to_expr p, cases_core e ids | (some h, p) ids := do x ← mk_fresh_name, generalize h () (p, x), hx ← get_local x, cases_core hx ids private meta def find_matching_hyp (ps : list pattern) : tactic expr := any_hyp $ λ h, do type ← infer_type h, ps.mfirst $ λ p, do match_pattern p type, return h /-- `cases_matching p` applies the `cases` tactic to a hypothesis `h : type` if `type` matches the pattern `p`. `cases_matching [p_1, ..., p_n]` applies the `cases` tactic to a hypothesis `h : type` if `type` matches one of the given patterns. `cases_matching* p` more efficient and compact version of `focus1 { repeat { cases_matching p } }`. It is more efficient because the pattern is compiled once. Example: The following tactic destructs all conjunctions and disjunctions in the current goal. ``` cases_matching* [_ ∨ _, _ ∧ _] ``` -/ meta def cases_matching (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit := do ps ← ps.mmap pexpr_to_pattern, if rec.is_none then find_matching_hyp ps >>= cases_core else tactic.focus1 $ tactic.repeat $ find_matching_hyp ps >>= cases_core /-- Shorthand for `cases_matching` -/ meta def casesm (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit := cases_matching rec ps private meta def try_cases_for_types (type_names : list name) (at_most_one : bool) : tactic unit := any_hyp $ λ h, do I ← expr.get_app_fn <$> (infer_type h >>= head_beta), guard I.is_constant, guard (I.const_name ∈ type_names), tactic.focus1 (cases_core h >> if at_most_one then do n ← num_goals, guard (n <= 1) else skip) /-- `cases_type I` applies the `cases` tactic to a hypothesis `h : (I ...)` `cases_type I_1 ... I_n` applies the `cases` tactic to a hypothesis `h : (I_1 ...)` or ... or `h : (I_n ...)` `cases_type* I` is shorthand for `focus1 { repeat { cases_type I } }` `cases_type! I` only applies `cases` if the number of resulting subgoals is <= 1. Example: The following tactic destructs all conjunctions and disjunctions in the current goal. ``` cases_type* or and ``` -/ meta def cases_type (one : parse $ (tk "!")?) (rec : parse $ (tk "*")?) (type_names : parse ident*) : tactic unit := do type_names ← type_names.mmap resolve_constant, if rec.is_none then try_cases_for_types type_names (bnot one.is_none) else tactic.focus1 $ tactic.repeat $ try_cases_for_types type_names (bnot one.is_none) /-- Tries to solve the current goal using a canonical proof of `true`, or the `reflexivity` tactic, or the `contradiction` tactic. -/ meta def trivial : tactic unit := tactic.triv <|> tactic.reflexivity <|> tactic.contradiction <|> fail "trivial tactic failed" /-- Closes the main goal using `sorry`. -/ meta def admit : tactic unit := tactic.admit /-- Closes the main goal using `sorry`. -/ meta def «sorry» : tactic unit := tactic.admit /-- The contradiction tactic attempts to find in the current local context a hypothesis that is equivalent to an empty inductive type (e.g. `false`), a hypothesis of the form `c_1 ... = c_2 ...` where `c_1` and `c_2` are distinct constructors, or two contradictory hypotheses. -/ meta def contradiction : tactic unit := tactic.contradiction /-- `iterate { t }` repeatedly applies tactic `t` until `t` fails. `iterate { t }` always succeeds. `iterate n { t }` applies `t` `n` times. -/ meta def iterate (n : parse small_nat?) (t : itactic) : tactic unit := match n with | none := tactic.iterate t | some n := iterate_exactly n t end /-- `repeat { t }` applies `t` to each goal. If the application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The recursion stops in a subgoal when the tactic has failed to make progress. The tactic `repeat { t }` never fails. -/ meta def repeat : itactic → tactic unit := tactic.repeat /-- `try { t }` tries to apply tactic `t`, but succeeds whether or not `t` succeeds. -/ meta def try : itactic → tactic unit := tactic.try /-- A do-nothing tactic that always succeeds. -/ meta def skip : tactic unit := tactic.skip /-- `solve1 { t }` applies the tactic `t` to the main goal and fails if it is not solved. -/ meta def solve1 : itactic → tactic unit := tactic.solve1 /-- `abstract id { t }` tries to use tactic `t` to solve the main goal. If it succeeds, it abstracts the goal as an independent definition or theorem with name `id`. If `id` is omitted, a name is generated automatically. -/ meta def abstract (id : parse ident?) (tac : itactic) : tactic unit := tactic.abstract tac id /-- `all_goals { t }` applies the tactic `t` to every goal, and succeeds if each application succeeds. -/ meta def all_goals : itactic → tactic unit := tactic.all_goals /-- `any_goals { t }` applies the tactic `t` to every goal, and succeeds if at least one application succeeds. -/ meta def any_goals : itactic → tactic unit := tactic.any_goals /-- `focus { t }` temporarily hides all goals other than the first, applies `t`, and then restores the other goals. It fails if there are no goals. -/ meta def focus (tac : itactic) : tactic unit := tactic.focus1 tac private meta def assume_core (n : name) (ty : pexpr) := do t ← target, when (not $ t.is_pi ∨ t.is_let) whnf_target, t ← target, when (not $ t.is_pi ∨ t.is_let) $ fail "assume tactic failed, Pi/let expression expected", ty ← i_to_expr ty, unify ty t.binding_domain, intro_core n >> skip /-- Assuming the target of the goal is a Pi or a let, `assume h : t` unifies the type of the binder with `t` and introduces it with name `h`, just like `intro h`. If `h` is absent, the tactic uses the name `this`. If `t` is omitted, it will be inferred. `assume (h₁ : t₁) ... (hₙ : tₙ)` introduces multiple hypotheses. Any of the types may be omitted, but the names must be present. -/ meta def «assume» : parse (sum.inl <$> (tk ":" *> texpr) <|> sum.inr <$> parse_binders tac_rbp) → tactic unit | (sum.inl ty) := assume_core `this ty | (sum.inr binders) := binders.mmap' $ λ b, assume_core b.local_pp_name b.local_type /-- `have h : t := p` adds the hypothesis `h : t` to the current goal if `p` a term of type `t`. If `t` is omitted, it will be inferred. `have h : t` adds the hypothesis `h : t` to the current goal and opens a new subgoal with target `t`. The new subgoal becomes the main goal. If `t` is omitted, it will be replaced by a fresh metavariable. If `h` is omitted, the name `this` is used. -/ meta def «have» (h : parse ident?) (q₁ : parse (tk ":" *> texpr)?) (q₂ : parse $ (tk ":=" *> texpr)?) : tactic unit := let h := h.get_or_else `this in match q₁, q₂ with | some e, some p := do t ← i_to_expr e, v ← i_to_expr ``(%%p : %%t), tactic.assertv h t v | none, some p := do p ← i_to_expr p, tactic.note h none p | some e, none := i_to_expr e >>= tactic.assert h | none, none := do u ← mk_meta_univ, e ← mk_meta_var (sort u), tactic.assert h e end >> skip /-- `let h : t := p` adds the hypothesis `h : t := p` to the current goal if `p` a term of type `t`. If `t` is omitted, it will be inferred. `let h : t` adds the hypothesis `h : t := ?M` to the current goal and opens a new subgoal `?M : t`. The new subgoal becomes the main goal. If `t` is omitted, it will be replaced by a fresh metavariable. If `h` is omitted, the name `this` is used. -/ meta def «let» (h : parse ident?) (q₁ : parse (tk ":" *> texpr)?) (q₂ : parse $ (tk ":=" *> texpr)?) : tactic unit := let h := h.get_or_else `this in match q₁, q₂ with | some e, some p := do t ← i_to_expr e, v ← i_to_expr ``(%%p : %%t), tactic.definev h t v | none, some p := do p ← i_to_expr p, tactic.pose h none p | some e, none := i_to_expr e >>= tactic.define h | none, none := do u ← mk_meta_univ, e ← mk_meta_var (sort u), tactic.define h e end >> skip /-- `suffices h : t` is the same as `have h : t, tactic.swap`. In other words, it adds the hypothesis `h : t` to the current goal and opens a new subgoal with target `t`. -/ meta def «suffices» (h : parse ident?) (t : parse (tk ":" *> texpr)?) : tactic unit := «have» h t none >> tactic.swap /-- This tactic displays the current state in the tracing buffer. -/ meta def trace_state : tactic unit := tactic.trace_state /-- `trace a` displays `a` in the tracing buffer. -/ meta def trace {α : Type} [has_to_tactic_format α] (a : α) : tactic unit := tactic.trace a /-- `existsi e` will instantiate an existential quantifier in the target with `e` and leave the instantiated body as the new target. More generally, it applies to any inductive type with one constructor and at least two arguments, applying the constructor with `e` as the first argument and leaving the remaining arguments as goals. `existsi [e₁, ..., eₙ]` iteratively does the same for each expression in the list. -/ meta def existsi : parse pexpr_list_or_texpr → tactic unit | [] := return () | (p::ps) := i_to_expr p >>= tactic.existsi >> existsi ps /-- This tactic applies to a goal such that its conclusion is an inductive type (say `I`). It tries to apply each constructor of `I` until it succeeds. -/ meta def constructor : tactic unit := concat_tags tactic.constructor /-- Similar to `constructor`, but only non-dependent premises are added as new goals. -/ meta def econstructor : tactic unit := concat_tags tactic.econstructor /-- Applies the first constructor when the type of the target is an inductive data type with two constructors. -/ meta def left : tactic unit := concat_tags tactic.left /-- Applies the second constructor when the type of the target is an inductive data type with two constructors. -/ meta def right : tactic unit := concat_tags tactic.right /-- Applies the constructor when the type of the target is an inductive data type with one constructor. -/ meta def split : tactic unit := concat_tags tactic.split private meta def constructor_matching_aux (ps : list pattern) : tactic unit := do t ← target, ps.mfirst (λ p, match_pattern p t), constructor meta def constructor_matching (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit := do ps ← ps.mmap pexpr_to_pattern, if rec.is_none then constructor_matching_aux ps else tactic.focus1 $ tactic.repeat $ constructor_matching_aux ps /-- Replaces the target of the main goal by `false`. -/ meta def exfalso : tactic unit := tactic.exfalso /-- The `injection` tactic is based on the fact that constructors of inductive data types are injections. That means that if `c` is a constructor of an inductive datatype, and if `(c t₁)` and `(c t₂)` are two terms that are equal then `t₁` and `t₂` are equal too. If `q` is a proof of a statement of conclusion `t₁ = t₂`, then injection applies injectivity to derive the equality of all arguments of `t₁` and `t₂` placed in the same positions. For example, from `(a::b) = (c::d)` we derive `a=c` and `b=d`. To use this tactic `t₁` and `t₂` should be constructor applications of the same constructor. Given `h : a::b = c::d`, the tactic `injection h` adds two new hypothesis with types `a = c` and `b = d` to the main goal. The tactic `injection h with h₁ h₂` uses the names `h₁` and `h₂` to name the new hypotheses. -/ meta def injection (q : parse texpr) (hs : parse with_ident_list) : tactic unit := do e ← i_to_expr q, tactic.injection_with e hs, try assumption /-- `injections with h₁ ... hₙ` iteratively applies `injection` to hypotheses using the names `h₁ ... hₙ`. -/ meta def injections (hs : parse with_ident_list) : tactic unit := do tactic.injections_with hs, try assumption end interactive meta structure simp_config_ext extends simp_config := (discharger : tactic unit := failed) section mk_simp_set open expr interactive.types @[derive has_reflect] meta inductive simp_arg_type : Type | all_hyps : simp_arg_type | except : name → simp_arg_type | expr : pexpr → simp_arg_type meta def simp_arg : parser simp_arg_type := (tk "*" *> return simp_arg_type.all_hyps) <|> (tk "-" *> simp_arg_type.except <$> ident) <|> (simp_arg_type.expr <$> texpr) meta def simp_arg_list : parser (list simp_arg_type) := (tk "*" *> return [simp_arg_type.all_hyps]) <|> list_of simp_arg <|> return [] private meta def resolve_exception_ids (all_hyps : bool) : list name → list name → list name → tactic (list name × list name) | [] gex hex := return (gex.reverse, hex.reverse) | (id::ids) gex hex := do p ← resolve_name id, let e := p.erase_annotations.get_app_fn.erase_annotations, match e with | const n _ := resolve_exception_ids ids (n::gex) hex | local_const n _ _ _ := when (not all_hyps) (fail $ sformat! "invalid local exception {id}, '*' was not used") >> resolve_exception_ids ids gex (n::hex) | _ := fail $ sformat! "invalid exception {id}, unknown identifier" end /- Return (hs, gex, hex, all) -/ meta def decode_simp_arg_list (hs : list simp_arg_type) : tactic $ list pexpr × list name × list name × bool := do let (hs, ex, all) := hs.foldl (λ r h, match r, h with | (es, ex, all), simp_arg_type.all_hyps := (es, ex, tt) | (es, ex, all), simp_arg_type.except id := (es, id::ex, all) | (es, ex, all), simp_arg_type.expr e := (e::es, ex, all) end) ([], [], ff), (gex, hex) ← resolve_exception_ids all ex [] [], return (hs.reverse, gex, hex, all) private meta def add_simps : simp_lemmas → list name → tactic simp_lemmas | s [] := return s | s (n::ns) := do s' ← s.add_simp n, add_simps s' ns private meta def report_invalid_simp_lemma {α : Type} (n : name): tactic α := fail format!"invalid simplification lemma '{n}' (use command 'set_option trace.simp_lemmas true' for more details)" private meta def check_no_overload (p : pexpr) : tactic unit := when p.is_choice_macro $ match p with | macro _ ps := fail $ to_fmt "ambiguous overload, possible interpretations" ++ format.join (ps.map (λ p, (to_fmt p).indent 4)) | _ := failed end private meta def simp_lemmas.resolve_and_add (s : simp_lemmas) (u : list name) (n : name) (ref : pexpr) : tactic (simp_lemmas × list name) := do p ← resolve_name n, check_no_overload p, -- unpack local refs let e := p.erase_annotations.get_app_fn.erase_annotations, match e with | const n _ := (do b ← is_valid_simp_lemma_cnst n, guard b, save_const_type_info n ref, s ← s.add_simp n, return (s, u)) <|> (do eqns ← get_eqn_lemmas_for tt n, guard (eqns.length > 0), save_const_type_info n ref, s ← add_simps s eqns, return (s, u)) <|> (do env ← get_env, guard (env.is_projection n).is_some, return (s, n::u)) <|> report_invalid_simp_lemma n | _ := (do e ← i_to_expr_no_subgoals p, b ← is_valid_simp_lemma e, guard b, try (save_type_info e ref), s ← s.add e, return (s, u)) <|> report_invalid_simp_lemma n end private meta def simp_lemmas.add_pexpr (s : simp_lemmas) (u : list name) (p : pexpr) : tactic (simp_lemmas × list name) := match p with | (const c []) := simp_lemmas.resolve_and_add s u c p | (local_const c _ _ _) := simp_lemmas.resolve_and_add s u c p | _ := do new_e ← i_to_expr_no_subgoals p, s ← s.add new_e, return (s, u) end private meta def simp_lemmas.append_pexprs : simp_lemmas → list name → list pexpr → tactic (simp_lemmas × list name) | s u [] := return (s, u) | s u (l::ls) := do (s, u) ← simp_lemmas.add_pexpr s u l, simp_lemmas.append_pexprs s u ls meta def mk_simp_set_core (no_dflt : bool) (attr_names : list name) (hs : list simp_arg_type) (at_star : bool) : tactic (bool × simp_lemmas × list name) := do (hs, gex, hex, all_hyps) ← decode_simp_arg_list hs, when (all_hyps ∧ at_star ∧ not hex.empty) $ fail "A tactic of the form `simp [*, -h] at *` is currently not supported", s ← join_user_simp_lemmas no_dflt attr_names, (s, u) ← simp_lemmas.append_pexprs s [] hs, s ← if not at_star ∧ all_hyps then do ctx ← collect_ctx_simps, let ctx := ctx.filter (λ h, h.local_uniq_name ∉ hex), -- remove local exceptions s.append ctx else return s, -- add equational lemmas, if any gex ← gex.mmap (λ n, list.cons n <$> get_eqn_lemmas_for tt n), return (all_hyps, simp_lemmas.erase s $ gex.join, u) meta def mk_simp_set (no_dflt : bool) (attr_names : list name) (hs : list simp_arg_type) : tactic (simp_lemmas × list name) := prod.snd <$> (mk_simp_set_core no_dflt attr_names hs ff) end mk_simp_set namespace interactive open interactive interactive.types expr meta def simp_core_aux (cfg : simp_config) (discharger : tactic unit) (s : simp_lemmas) (u : list name) (hs : list expr) (tgt : bool) : tactic unit := do to_remove ← hs.mfilter $ λ h, do { h_type ← infer_type h, (do (new_h_type, pr) ← simplify s u h_type cfg `eq discharger, assert h.local_pp_name new_h_type, mk_eq_mp pr h >>= tactic.exact >> return tt) <|> (return ff) }, goal_simplified ← if tgt then (simp_target s u cfg discharger >> return tt) <|> (return ff) else return ff, guard (cfg.fail_if_unchanged = ff ∨ to_remove.length > 0 ∨ goal_simplified) <|> fail "simplify tactic failed to simplify", to_remove.mmap' (λ h, try (clear h)) meta def simp_core (cfg : simp_config) (discharger : tactic unit) (no_dflt : bool) (hs : list simp_arg_type) (attr_names : list name) (locat : loc) : tactic unit := match locat with | loc.wildcard := do (all_hyps, s, u) ← mk_simp_set_core no_dflt attr_names hs tt, if all_hyps then tactic.simp_all s u cfg discharger else do hyps ← non_dep_prop_hyps, simp_core_aux cfg discharger s u hyps tt | _ := do (s, u) ← mk_simp_set no_dflt attr_names hs, ns ← locat.get_locals, simp_core_aux cfg discharger s u ns locat.include_goal end >> try tactic.triv >> try (tactic.reflexivity reducible) /-- The `simp` tactic uses lemmas and hypotheses to simplify the main goal target or non-dependent hypotheses. It has many variants. `simp` simplifies the main goal target using lemmas tagged with the attribute `[simp]`. `simp [h₁ h₂ ... hₙ]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]` and the given `hᵢ`'s, where the `hᵢ`'s are expressions. If an `hᵢ` is a defined constant `f`, then the equational lemmas associated with `f` are used. This provides a convenient way to unfold `f`. `simp [*]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]` and all hypotheses. `simp *` is a shorthand for `simp [*]`. `simp only [h₁ h₂ ... hₙ]` is like `simp [h₁ h₂ ... hₙ]` but does not use `[simp]` lemmas `simp [-id_1, ... -id_n]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]`, but removes the ones named `idᵢ`. `simp at h₁ h₂ ... hₙ` simplifies the non-dependent hypotheses `h₁ : T₁` ... `hₙ : Tₙ`. The tactic fails if the target or another hypothesis depends on one of them. The token `⊢` or `|-` can be added to the list to include the target. `simp at *` simplifies all the hypotheses and the target. `simp * at *` simplifies target and all (non-dependent propositional) hypotheses using the other hypotheses. `simp with attr₁ ... attrₙ` simplifies the main goal target using the lemmas tagged with any of the attributes `[attr₁]`, ..., `[attrₙ]` or `[simp]`. -/ meta def simp (use_iota_eqn : parse $ (tk "!")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (locat : parse location) (cfg : simp_config_ext := {}) : tactic unit := let cfg := if use_iota_eqn.is_none then cfg else {iota_eqn := tt, ..cfg} in propagate_tags (simp_core cfg.to_simp_config cfg.discharger no_dflt hs attr_names locat) /-- Just construct the simp set and trace it. Used for debugging. -/ meta def trace_simp_set (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) : tactic unit := do (s, _) ← mk_simp_set no_dflt attr_names hs, s.pp >>= trace /-- `simp_intros h₁ h₂ ... hₙ` is similar to `intros h₁ h₂ ... hₙ` except that each hypothesis is simplified as it is introduced, and each introduced hypothesis is used to simplify later ones and the final target. As with `simp`, a list of simplification lemmas can be provided. The modifiers `only` and `with` behave as with `simp`. -/ meta def simp_intros (ids : parse ident_*) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) (cfg : simp_intros_config := {}) : tactic unit := do (s, u) ← mk_simp_set no_dflt attr_names hs, when (¬u.empty) (fail (sformat! "simp_intros tactic does not support {u}")), tactic.simp_intros s u ids cfg, try triv >> try (reflexivity reducible) private meta def to_simp_arg_list (es : list pexpr) : list simp_arg_type := es.map simp_arg_type.expr /-- `dsimp` is similar to `simp`, except that it only uses definitional equalities. -/ meta def dsimp (no_dflt : parse only_flag) (es : parse simp_arg_list) (attr_names : parse with_ident_list) (l : parse location) (cfg : dsimp_config := {}) : tactic unit := do (s, u) ← mk_simp_set no_dflt attr_names es, match l with | loc.wildcard := do ls ← local_context, n ← revert_lst ls, dsimp_target s u cfg, intron n | _ := l.apply (λ h, dsimp_hyp h s u cfg) (dsimp_target s u cfg) end /-- This tactic applies to a goal whose target has the form `t ~ u` where `~` is a reflexive relation, that is, a relation which has a reflexivity lemma tagged with the attribute `[refl]`. The tactic checks whether `t` and `u` are definitionally equal and then solves the goal. -/ meta def reflexivity : tactic unit := tactic.reflexivity /-- Shorter name for the tactic `reflexivity`. -/ meta def refl : tactic unit := tactic.reflexivity /-- This tactic applies to a goal whose target has the form `t ~ u` where `~` is a symmetric relation, that is, a relation which has a symmetry lemma tagged with the attribute `[symm]`. It replaces the target with `u ~ t`. -/ meta def symmetry : tactic unit := tactic.symmetry /-- This tactic applies to a goal whose target has the form `t ~ u` where `~` is a transitive relation, that is, a relation which has a transitivity lemma tagged with the attribute `[trans]`. `transitivity s` replaces the goal with the two subgoals `t ~ s` and `s ~ u`. If `s` is omitted, then a metavariable is used instead. -/ meta def transitivity (q : parse texpr?) : tactic unit := tactic.transitivity >> match q with | none := skip | some q := do (r, lhs, rhs) ← target_lhs_rhs, i_to_expr q >>= unify rhs end /-- Proves a goal with target `s = t` when `s` and `t` are equal up to the associativity and commutativity of their binary operations. -/ meta def ac_reflexivity : tactic unit := tactic.ac_refl /-- An abbreviation for `ac_reflexivity`. -/ meta def ac_refl : tactic unit := tactic.ac_refl /-- Tries to prove the main goal using congruence closure. -/ meta def cc : tactic unit := tactic.cc /-- Given hypothesis `h : x = t` or `h : t = x`, where `x` is a local constant, `subst h` substitutes `x` by `t` everywhere in the main goal and then clears `h`. -/ meta def subst (q : parse texpr) : tactic unit := i_to_expr q >>= tactic.subst >> try (tactic.reflexivity reducible) /-- Apply `subst` to all hypotheses of the form `h : x = t` or `h : t = x`. -/ meta def subst_vars : tactic unit := tactic.subst_vars /-- `clear h₁ ... hₙ` tries to clear each hypothesis `hᵢ` from the local context. -/ meta def clear : parse ident* → tactic unit := tactic.clear_lst private meta def to_qualified_name_core : name → list name → tactic name | n [] := fail $ "unknown declaration '" ++ to_string n ++ "'" | n (ns::nss) := do curr ← return $ ns ++ n, env ← get_env, if env.contains curr then return curr else to_qualified_name_core n nss private meta def to_qualified_name (n : name) : tactic name := do env ← get_env, if env.contains n then return n else do ns ← open_namespaces, to_qualified_name_core n ns private meta def to_qualified_names : list name → tactic (list name) | [] := return [] | (c::cs) := do new_c ← to_qualified_name c, new_cs ← to_qualified_names cs, return (new_c::new_cs) /-- Similar to `unfold`, but only uses definitional equalities. -/ meta def dunfold (cs : parse ident*) (l : parse location) (cfg : dunfold_config := {}) : tactic unit := match l with | (loc.wildcard) := do ls ← tactic.local_context, n ← revert_lst ls, new_cs ← to_qualified_names cs, dunfold_target new_cs cfg, intron n | _ := do new_cs ← to_qualified_names cs, l.apply (λ h, dunfold_hyp cs h cfg) (dunfold_target new_cs cfg) end private meta def delta_hyps : list name → list name → tactic unit | cs [] := skip | cs (h::hs) := get_local h >>= delta_hyp cs >> delta_hyps cs hs /-- Similar to `dunfold`, but performs a raw delta reduction, rather than using an equation associated with the defined constants. -/ meta def delta : parse ident* → parse location → tactic unit | cs (loc.wildcard) := do ls ← tactic.local_context, n ← revert_lst ls, new_cs ← to_qualified_names cs, delta_target new_cs, intron n | cs l := do new_cs ← to_qualified_names cs, l.apply (delta_hyp new_cs) (delta_target new_cs) private meta def unfold_projs_hyps (cfg : unfold_proj_config := {}) (hs : list name) : tactic bool := hs.mfoldl (λ r h, do h ← get_local h, (unfold_projs_hyp h cfg >> return tt) <|> return r) ff /-- This tactic unfolds all structure projections. -/ meta def unfold_projs (l : parse location) (cfg : unfold_proj_config := {}) : tactic unit := match l with | loc.wildcard := do ls ← local_context, b₁ ← unfold_projs_hyps cfg (ls.map expr.local_pp_name), b₂ ← (tactic.unfold_projs_target cfg >> return tt) <|> return ff, when (not b₁ ∧ not b₂) (fail "unfold_projs failed to simplify") | _ := l.try_apply (λ h, unfold_projs_hyp h cfg) (tactic.unfold_projs_target cfg) <|> fail "unfold_projs failed to simplify" end end interactive meta def ids_to_simp_arg_list (tac_name : name) (cs : list name) : tactic (list simp_arg_type) := cs.mmap $ λ c, do n ← resolve_name c, hs ← get_eqn_lemmas_for ff n.const_name, env ← get_env, let p := env.is_projection n.const_name, when (hs.empty ∧ p.is_none) (fail (sformat! "{tac_name} tactic failed, {c} does not have equational lemmas nor is a projection")), return $ simp_arg_type.expr (expr.const c []) structure unfold_config extends simp_config := (zeta := ff) (proj := ff) (eta := ff) (canonize_instances := ff) (constructor_eq := ff) namespace interactive open interactive interactive.types expr /-- Given defined constants `e₁ ... eₙ`, `unfold e₁ ... eₙ` iteratively unfolds all occurrences in the target of the main goal, using equational lemmas associated with the definitions. As with `simp`, the `at` modifier can be used to specify locations for the unfolding. -/ meta def unfold (cs : parse ident*) (locat : parse location) (cfg : unfold_config := {}) : tactic unit := do es ← ids_to_simp_arg_list "unfold" cs, let no_dflt := tt, simp_core cfg.to_simp_config failed no_dflt es [] locat /-- Similar to `unfold`, but does not iterate the unfolding. -/ meta def unfold1 (cs : parse ident*) (locat : parse location) (cfg : unfold_config := {single_pass := tt}) : tactic unit := unfold cs locat cfg /-- If the target of the main goal is an `opt_param`, assigns the default value. -/ meta def apply_opt_param : tactic unit := tactic.apply_opt_param /-- If the target of the main goal is an `auto_param`, executes the associated tactic. -/ meta def apply_auto_param : tactic unit := tactic.apply_auto_param /-- Fails if the given tactic succeeds. -/ meta def fail_if_success (tac : itactic) : tactic unit := tactic.fail_if_success tac /-- Succeeds if the given tactic fails. -/ meta def success_if_fail (tac : itactic) : tactic unit := tactic.success_if_fail tac meta def guard_expr_eq (t : expr) (p : parse $ tk ":=" *> texpr) : tactic unit := do e ← to_expr p, guard (alpha_eqv t e) /-- `guard_target t` fails if the target of the main goal is not `t`. We use this tactic for writing tests. -/ meta def guard_target (p : parse texpr) : tactic unit := do t ← target, guard_expr_eq t p /-- `guard_hyp h := t` fails if the hypothesis `h` does not have type `t`. We use this tactic for writing tests. -/ meta def guard_hyp (n : parse ident) (p : parse $ tk ":=" *> texpr) : tactic unit := do h ← get_local n >>= infer_type, guard_expr_eq h p /-- `match_target t` fails if target does not match pattern `t`. -/ meta def match_target (t : parse texpr) (m := reducible) : tactic unit := tactic.match_target t m >> skip /-- `by_cases (h :)? p` splits the main goal into two cases, assuming `h : p` in the first branch, and `h : ¬ p` in the second branch. This tactic requires that `p` is decidable. To ensure that all propositions are decidable via classical reasoning, use `local attribute classical.prop_decidable [instance]`. -/ meta def by_cases : parse cases_arg_p → tactic unit | (n, q) := concat_tags $ do p ← tactic.to_expr_strict q, tactic.by_cases p (n.get_or_else `h), pos_g :: neg_g :: rest ← get_goals, return [(`pos, pos_g), (`neg, neg_g)] /-- Apply function extensionality and introduce new hypotheses. The tactic `funext` will keep applying new the `funext` lemma until the goal target is not reducible to ``` |- ((fun x, ...) = (fun x, ...)) ``` The variant `funext h₁ ... hₙ` applies `funext` `n` times, and uses the given identifiers to name the new hypotheses. -/ meta def funext : parse ident_* → tactic unit | [] := tactic.funext >> skip | hs := funext_lst hs >> skip /-- If the target of the main goal is a proposition `p`, `by_contradiction h` reduces the goal to proving `false` using the additional hypothesis `h : ¬ p`. If `h` is omitted, a name is generated automatically. This tactic requires that `p` is decidable. To ensure that all propositions are decidable via classical reasoning, use `local attribute classical.prop_decidable [instance]`. -/ meta def by_contradiction (n : parse ident?) : tactic unit := tactic.by_contradiction n >> return () /-- An abbreviation for `by_contradiction`. -/ meta def by_contra (n : parse ident?) : tactic unit := by_contradiction n /-- Type check the given expression, and trace its type. -/ meta def type_check (p : parse texpr) : tactic unit := do e ← to_expr p, tactic.type_check e, infer_type e >>= trace /-- Fail if there are unsolved goals. -/ meta def done : tactic unit := tactic.done private meta def show_aux (p : pexpr) : list expr → list expr → tactic unit | [] r := fail "show tactic failed" | (g::gs) r := do do {set_goals [g], g_ty ← target, ty ← i_to_expr p, unify g_ty ty, set_goals (g :: r.reverse ++ gs), tactic.change ty} <|> show_aux gs (g::r) /-- `show t` finds the first goal whose target unifies with `t`. It makes that the main goal, performs the unification, and replaces the target with the unified version of `t`. -/ meta def «show» (q : parse texpr) : tactic unit := do gs ← get_goals, show_aux q gs [] /-- The tactic `specialize h a₁ ... aₙ` works on local hypothesis `h`. The premises of this hypothesis, either universal quantifications or non-dependent implications, are instantiated by concrete terms coming either from arguments `a₁` ... `aₙ`. The tactic adds a new hypothesis with the same name `h := h a₁ ... aₙ` and tries to clear the previous one. -/ meta def specialize (p : parse texpr) : tactic unit := do e ← i_to_expr p, let h := expr.get_app_fn e, if h.is_local_constant then tactic.note h.local_pp_name none e >> try (tactic.clear h) else tactic.fail "specialize requires a term of the form `h x_1 .. x_n` where `h` appears in the local context" meta def congr := tactic.congr meta def rel_congr := tactic.rel_congr end interactive end tactic section add_interactive open tactic /- See add_interactive -/ private meta def add_interactive_aux (new_namespace : name) : list name → command | [] := return () | (n::ns) := do env ← get_env, d_name ← resolve_constant n, (declaration.defn _ ls ty val hints trusted) ← env.get d_name, (name.mk_string h _) ← return d_name, let new_name := `tactic.interactive <.> h, add_decl (declaration.defn new_name ls ty (expr.const d_name (ls.map level.param)) hints trusted), add_interactive_aux ns /-- Copy a list of meta definitions in the current namespace to tactic.interactive. This command is useful when we want to update tactic.interactive without closing the current namespace. -/ meta def add_interactive (ns : list name) (p : name := `tactic.interactive) : command := add_interactive_aux p ns meta def has_dup : tactic bool := do ctx ← local_context, let p : name_set × bool := ctx.foldl (λ ⟨s, r⟩ h, if r then (s, r) else if s.contains h.local_pp_name then (s, tt) else (s.insert h.local_pp_name, ff)) (mk_name_set, ff), return p.2 /-- Renames hypotheses with the same name. -/ meta def dedup : tactic unit := mwhen has_dup $ do ctx ← local_context, n ← revert_lst ctx, intron n end add_interactive namespace tactic /- Helper tactic for `mk_inj_eq -/ protected meta def apply_inj_lemma : tactic unit := do h ← intro `h, some (lhs, rhs) ← expr.is_eq <$> infer_type h, (expr.const C _) ← return lhs.get_app_fn, applyc (name.mk_string "inj" C), assumption /- Auxiliary tactic for proving `I.C.inj_eq` lemmas. These lemmas are automatically generated by the equation compiler. Example: ``` list.cons.inj_eq : forall h1 h2 t1 t2, (h1::t1 = h2::t2) = (h1 = h2 ∧ t1 = t2) := by mk_inj_eq ``` -/ meta def mk_inj_eq : tactic unit := `[ intros, apply propext, apply iff.intro, { tactic.apply_inj_lemma }, { intro _, try { cases_matching* _ ∧ _ }, refl <|> { congr; { assumption <|> subst_vars } } } ] end tactic /- Define inj_eq lemmas for inductive datatypes that were declared before `mk_inj_eq` -/ universes u v lemma sum.inl.inj_eq {α : Type u} (β : Type v) (a₁ a₂ : α) : (@sum.inl α β a₁ = sum.inl a₂) = (a₁ = a₂) := by tactic.mk_inj_eq lemma sum.inr.inj_eq (α : Type u) {β : Type v} (b₁ b₂ : β) : (@sum.inr α β b₁ = sum.inr b₂) = (b₁ = b₂) := by tactic.mk_inj_eq lemma psum.inl.inj_eq {α : Sort u} (β : Sort v) (a₁ a₂ : α) : (@psum.inl α β a₁ = psum.inl a₂) = (a₁ = a₂) := by tactic.mk_inj_eq lemma psum.inr.inj_eq (α : Sort u) {β : Sort v} (b₁ b₂ : β) : (@psum.inr α β b₁ = psum.inr b₂) = (b₁ = b₂) := by tactic.mk_inj_eq lemma sigma.mk.inj_eq {α : Type u} {β : α → Type v} (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) : (sigma.mk a₁ b₁ = sigma.mk a₂ b₂) = (a₁ = a₂ ∧ b₁ == b₂) := by tactic.mk_inj_eq lemma psigma.mk.inj_eq {α : Sort u} {β : α → Sort v} (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) : (psigma.mk a₁ b₁ = psigma.mk a₂ b₂) = (a₁ = a₂ ∧ b₁ == b₂) := by tactic.mk_inj_eq lemma subtype.mk.inj_eq {α : Sort u} {p : α → Prop} (a₁ : α) (h₁ : p a₁) (a₂ : α) (h₂ : p a₂) : (subtype.mk a₁ h₁ = subtype.mk a₂ h₂) = (a₁ = a₂) := by tactic.mk_inj_eq lemma option.some.inj_eq {α : Type u} (a₁ a₂ : α) : (some a₁ = some a₂) = (a₁ = a₂) := by tactic.mk_inj_eq lemma list.cons.inj_eq {α : Type u} (h₁ : α) (t₁ : list α) (h₂ : α) (t₂ : list α) : (list.cons h₁ t₁ = list.cons h₂ t₂) = (h₁ = h₂ ∧ t₁ = t₂) := by tactic.mk_inj_eq lemma nat.succ.inj_eq (n₁ n₂ : nat) : (nat.succ n₁ = nat.succ n₂) = (n₁ = n₂) := by tactic.mk_inj_eq
91fb43bafc1aebedb48c7c1b6ecb4e970d13c98d
dc06cc9775d64d571bf4778459ec6fde1f344116
/src/data/fintype.lean
708c68b7763dd48be7b3fcdcba7bec3b1523ba4a
[ "Apache-2.0" ]
permissive
mgubi/mathlib
8c1ea39035776ad52cf189a7af8cc0eee7dea373
7c09ed5eec8434176fbc493e0115555ccc4c8f99
refs/heads/master
1,642,222,572,514
1,563,782,424,000
1,563,782,424,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
32,035
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro Finite types. -/ import data.finset algebra.big_operators data.array.lemmas logic.unique universes u v variables {α : Type*} {β : Type*} {γ : Type*} /-- `fintype α` means that `α` is finite, i.e. there are only finitely many distinct elements of type `α`. The evidence of this is a finset `elems` (a list up to permutation without duplicates), together with a proof that everything of type `α` is in the list. -/ class fintype (α : Type*) := (elems : finset α) (complete : ∀ x : α, x ∈ elems) namespace finset variable [fintype α] /-- `univ` is the universal finite set of type `finset α` implied from the assumption `fintype α`. -/ def univ : finset α := fintype.elems α @[simp] theorem mem_univ (x : α) : x ∈ (univ : finset α) := fintype.complete x @[simp] theorem mem_univ_val : ∀ x, x ∈ (univ : finset α).1 := mem_univ @[simp] lemma coe_univ : ↑(univ : finset α) = (set.univ : set α) := by ext; simp theorem subset_univ (s : finset α) : s ⊆ univ := λ a _, mem_univ a theorem eq_univ_iff_forall {s : finset α} : s = univ ↔ ∀ x, x ∈ s := by simp [ext] end finset open finset function namespace fintype instance decidable_pi_fintype {α} {β : α → Type*} [fintype α] [∀a, decidable_eq (β a)] : decidable_eq (Πa, β a) := assume f g, decidable_of_iff (∀ a ∈ fintype.elems α, f a = g a) (by simp [function.funext_iff, fintype.complete]) instance decidable_forall_fintype [fintype α] {p : α → Prop} [decidable_pred p] : decidable (∀ a, p a) := decidable_of_iff (∀ a ∈ @univ α _, p a) (by simp) instance decidable_exists_fintype [fintype α] {p : α → Prop} [decidable_pred p] : decidable (∃ a, p a) := decidable_of_iff (∃ a ∈ @univ α _, p a) (by simp) instance decidable_eq_equiv_fintype [fintype α] [decidable_eq β] : decidable_eq (α ≃ β) := λ a b, decidable_of_iff (a.1 = b.1) ⟨λ h, equiv.ext _ _ (congr_fun h), congr_arg _⟩ instance decidable_injective_fintype [fintype α] [decidable_eq α] [decidable_eq β] : decidable_pred (injective : (α → β) → Prop) := λ x, by unfold injective; apply_instance instance decidable_surjective_fintype [fintype α] [decidable_eq α] [fintype β] [decidable_eq β] : decidable_pred (surjective : (α → β) → Prop) := λ x, by unfold surjective; apply_instance instance decidable_bijective_fintype [fintype α] [decidable_eq α] [fintype β] [decidable_eq β] : decidable_pred (bijective : (α → β) → Prop) := λ x, by unfold bijective; apply_instance instance decidable_left_inverse_fintype [fintype α] [decidable_eq α] (f : α → β) (g : β → α) : decidable (function.right_inverse f g) := show decidable (∀ x, g (f x) = x), by apply_instance instance decidable_right_inverse_fintype [fintype β] [decidable_eq β] (f : α → β) (g : β → α) : decidable (function.left_inverse f g) := show decidable (∀ x, f (g x) = x), by apply_instance /-- Construct a proof of `fintype α` from a universal multiset -/ def of_multiset [decidable_eq α] (s : multiset α) (H : ∀ x : α, x ∈ s) : fintype α := ⟨s.to_finset, by simpa using H⟩ /-- Construct a proof of `fintype α` from a universal list -/ def of_list [decidable_eq α] (l : list α) (H : ∀ x : α, x ∈ l) : fintype α := ⟨l.to_finset, by simpa using H⟩ theorem exists_univ_list (α) [fintype α] : ∃ l : list α, l.nodup ∧ ∀ x : α, x ∈ l := let ⟨l, e⟩ := quotient.exists_rep (@univ α _).1 in by have := and.intro univ.2 mem_univ_val; exact ⟨_, by rwa ← e at this⟩ /-- `card α` is the number of elements in `α`, defined when `α` is a fintype. -/ def card (α) [fintype α] : ℕ := (@univ α _).card /-- There is (computably) a bijection between `α` and `fin n` where `n = card α`. Since it is not unique, and depends on which permutation of the universe list is used, the bijection is wrapped in `trunc` to preserve computability. -/ def equiv_fin (α) [fintype α] [decidable_eq α] : trunc (α ≃ fin (card α)) := by unfold card finset.card; exact quot.rec_on_subsingleton (@univ α _).1 (λ l (h : ∀ x:α, x ∈ l) (nd : l.nodup), trunc.mk ⟨λ a, ⟨_, list.index_of_lt_length.2 (h a)⟩, λ i, l.nth_le i.1 i.2, λ a, by simp, λ ⟨i, h⟩, fin.eq_of_veq $ list.nodup_iff_nth_le_inj.1 nd _ _ (list.index_of_lt_length.2 (list.nth_le_mem _ _ _)) h $ by simp⟩) mem_univ_val univ.2 theorem exists_equiv_fin (α) [fintype α] : ∃ n, nonempty (α ≃ fin n) := by haveI := classical.dec_eq α; exact ⟨card α, nonempty_of_trunc (equiv_fin α)⟩ instance (α : Type*) : subsingleton (fintype α) := ⟨λ ⟨s₁, h₁⟩ ⟨s₂, h₂⟩, by congr; simp [finset.ext, h₁, h₂]⟩ protected def subtype {p : α → Prop} (s : finset α) (H : ∀ x : α, x ∈ s ↔ p x) : fintype {x // p x} := ⟨⟨multiset.pmap subtype.mk s.1 (λ x, (H x).1), multiset.nodup_pmap (λ a _ b _, congr_arg subtype.val) s.2⟩, λ ⟨x, px⟩, multiset.mem_pmap.2 ⟨x, (H x).2 px, rfl⟩⟩ theorem subtype_card {p : α → Prop} (s : finset α) (H : ∀ x : α, x ∈ s ↔ p x) : @card {x // p x} (fintype.subtype s H) = s.card := multiset.card_pmap _ _ _ theorem card_of_subtype {p : α → Prop} (s : finset α) (H : ∀ x : α, x ∈ s ↔ p x) [fintype {x // p x}] : card {x // p x} = s.card := by rw ← subtype_card s H; congr /-- If `f : α → β` is a bijection and `α` is a fintype, then `β` is also a fintype. -/ def of_bijective [fintype α] (f : α → β) (H : function.bijective f) : fintype β := ⟨univ.map ⟨f, H.1⟩, λ b, let ⟨a, e⟩ := H.2 b in e ▸ mem_map_of_mem _ (mem_univ _)⟩ /-- If `f : α → β` is a surjection and `α` is a fintype, then `β` is also a fintype. -/ def of_surjective [fintype α] [decidable_eq β] (f : α → β) (H : function.surjective f) : fintype β := ⟨univ.image f, λ b, let ⟨a, e⟩ := H b in e ▸ mem_image_of_mem _ (mem_univ _)⟩ noncomputable def of_injective [fintype β] (f : α → β) (H : function.injective f) : fintype α := by letI := classical.dec; exact if hα : nonempty α then by letI := classical.inhabited_of_nonempty hα; exact of_surjective (inv_fun f) (inv_fun_surjective H) else ⟨∅, λ x, (hα ⟨x⟩).elim⟩ /-- If `f : α ≃ β` and `α` is a fintype, then `β` is also a fintype. -/ def of_equiv (α : Type*) [fintype α] (f : α ≃ β) : fintype β := of_bijective _ f.bijective theorem of_equiv_card [fintype α] (f : α ≃ β) : @card β (of_equiv α f) = card α := multiset.card_map _ _ theorem card_congr {α β} [fintype α] [fintype β] (f : α ≃ β) : card α = card β := by rw ← of_equiv_card f; congr theorem card_eq {α β} [F : fintype α] [G : fintype β] : card α = card β ↔ nonempty (α ≃ β) := ⟨λ e, match F, G, e with ⟨⟨s, nd⟩, h⟩, ⟨⟨s', nd'⟩, h'⟩, e' := begin change multiset.card s = multiset.card s' at e', revert nd nd' h h' e', refine quotient.induction_on₂ s s' (λ l₁ l₂ (nd₁ : l₁.nodup) (nd₂ : l₂.nodup) (h₁ : ∀ x, x ∈ l₁) (h₂ : ∀ x, x ∈ l₂) (e' : l₁.length = l₂.length), _), haveI := classical.dec_eq α, refine ⟨equiv.of_bijective ⟨_, _⟩⟩, { refine λ a, l₂.nth_le (l₁.index_of a) _, rw ← e', exact list.index_of_lt_length.2 (h₁ a) }, { intros a b h, simpa [h₁] using congr_arg l₁.nth (list.nodup_iff_nth_le_inj.1 nd₂ _ _ _ _ h) }, { have := classical.dec_eq β, refine λ b, ⟨l₁.nth_le (l₂.index_of b) _, _⟩, { rw e', exact list.index_of_lt_length.2 (h₂ b) }, { simp [nd₁] } } end end, λ ⟨f⟩, card_congr f⟩ def of_subsingleton (a : α) [subsingleton α] : fintype α := ⟨finset.singleton a, λ b, finset.mem_singleton.2 (subsingleton.elim _ _)⟩ @[simp] theorem fintype.univ_of_subsingleton (a : α) [subsingleton α] : @univ _ (of_subsingleton a) = finset.singleton a := rfl @[simp] theorem fintype.card_of_subsingleton (a : α) [subsingleton α] : @fintype.card _ (of_subsingleton a) = 1 := rfl end fintype lemma finset.card_univ [fintype α] : (finset.univ : finset α).card = fintype.card α := rfl lemma finset.card_univ_diff [fintype α] [decidable_eq α] (s : finset α) : (finset.univ \ s).card = fintype.card α - s.card := finset.card_sdiff (subset_univ s) instance (n : ℕ) : fintype (fin n) := ⟨⟨list.pmap fin.mk (list.range n) (λ a, list.mem_range.1), list.nodup_pmap (λ a _ b _, congr_arg fin.val) (list.nodup_range _)⟩, λ ⟨m, h⟩, list.mem_pmap.2 ⟨m, list.mem_range.2 h, rfl⟩⟩ @[simp] theorem fintype.card_fin (n : ℕ) : fintype.card (fin n) = n := by rw [fin.fintype]; simp [fintype.card, card, univ] @[instance, priority 0] def unique.fintype {α : Type*} [unique α] : fintype α := ⟨finset.singleton (default α), λ x, by rw [unique.eq_default x]; simp⟩ instance : fintype empty := ⟨∅, empty.rec _⟩ @[simp] theorem fintype.univ_empty : @univ empty _ = ∅ := rfl @[simp] theorem fintype.card_empty : fintype.card empty = 0 := rfl instance : fintype pempty := ⟨∅, pempty.rec _⟩ @[simp] theorem fintype.univ_pempty : @univ pempty _ = ∅ := rfl @[simp] theorem fintype.card_pempty : fintype.card pempty = 0 := rfl instance : fintype unit := fintype.of_subsingleton () @[simp] theorem fintype.univ_unit : @univ unit _ = {()} := rfl @[simp] theorem fintype.card_unit : fintype.card unit = 1 := rfl instance : fintype punit := fintype.of_subsingleton punit.star @[simp] theorem fintype.univ_punit : @univ punit _ = {punit.star} := rfl @[simp] theorem fintype.card_punit : fintype.card punit = 1 := rfl instance : fintype bool := ⟨⟨tt::ff::0, by simp⟩, λ x, by cases x; simp⟩ @[simp] theorem fintype.univ_bool : @univ bool _ = {ff, tt} := rfl instance units_int.fintype : fintype (units ℤ) := ⟨{1, -1}, λ x, by cases int.units_eq_one_or x; simp *⟩ instance additive.fintype : Π [fintype α], fintype (additive α) := id instance multiplicative.fintype : Π [fintype α], fintype (multiplicative α) := id @[simp] theorem fintype.card_units_int : fintype.card (units ℤ) = 2 := rfl @[simp] theorem fintype.card_bool : fintype.card bool = 2 := rfl def finset.insert_none (s : finset α) : finset (option α) := ⟨none :: s.1.map some, multiset.nodup_cons.2 ⟨by simp, multiset.nodup_map (λ a b, option.some.inj) s.2⟩⟩ @[simp] theorem finset.mem_insert_none {s : finset α} : ∀ {o : option α}, o ∈ s.insert_none ↔ ∀ a ∈ o, a ∈ s | none := iff_of_true (multiset.mem_cons_self _ _) (λ a h, by cases h) | (some a) := multiset.mem_cons.trans $ by simp; refl theorem finset.some_mem_insert_none {s : finset α} {a : α} : some a ∈ s.insert_none ↔ a ∈ s := by simp instance {α : Type*} [fintype α] : fintype (option α) := ⟨univ.insert_none, λ a, by simp⟩ @[simp] theorem fintype.card_option {α : Type*} [fintype α] : fintype.card (option α) = fintype.card α + 1 := (multiset.card_cons _ _).trans (by rw multiset.card_map; refl) instance {α : Type*} (β : α → Type*) [fintype α] [∀ a, fintype (β a)] : fintype (sigma β) := ⟨univ.sigma (λ _, univ), λ ⟨a, b⟩, by simp⟩ @[simp] theorem fintype.card_sigma {α : Type*} (β : α → Type*) [fintype α] [∀ a, fintype (β a)] : fintype.card (sigma β) = univ.sum (λ a, fintype.card (β a)) := card_sigma _ _ instance (α β : Type*) [fintype α] [fintype β] : fintype (α × β) := ⟨univ.product univ, λ ⟨a, b⟩, by simp⟩ @[simp] theorem fintype.card_prod (α β : Type*) [fintype α] [fintype β] : fintype.card (α × β) = fintype.card α * fintype.card β := card_product _ _ def fintype.fintype_prod_left {α β} [decidable_eq α] [fintype (α × β)] [nonempty β] : fintype α := ⟨(fintype.elems (α × β)).image prod.fst, assume a, let ⟨b⟩ := ‹nonempty β› in by simp; exact ⟨b, fintype.complete _⟩⟩ def fintype.fintype_prod_right {α β} [decidable_eq β] [fintype (α × β)] [nonempty α] : fintype β := ⟨(fintype.elems (α × β)).image prod.snd, assume b, let ⟨a⟩ := ‹nonempty α› in by simp; exact ⟨a, fintype.complete _⟩⟩ instance (α : Type*) [fintype α] : fintype (ulift α) := fintype.of_equiv _ equiv.ulift.symm @[simp] theorem fintype.card_ulift (α : Type*) [fintype α] : fintype.card (ulift α) = fintype.card α := fintype.of_equiv_card _ instance (α : Type u) (β : Type v) [fintype α] [fintype β] : fintype (α ⊕ β) := @fintype.of_equiv _ _ (@sigma.fintype _ (λ b, cond b (ulift α) (ulift.{(max u v) v} β)) _ (λ b, by cases b; apply ulift.fintype)) ((equiv.sum_equiv_sigma_bool _ _).symm.trans (equiv.sum_congr equiv.ulift equiv.ulift)) @[simp] theorem fintype.card_sum (α β : Type*) [fintype α] [fintype β] : fintype.card (α ⊕ β) = fintype.card α + fintype.card β := by rw [sum.fintype, fintype.of_equiv_card]; simp lemma fintype.card_le_of_injective [fintype α] [fintype β] (f : α → β) (hf : function.injective f) : fintype.card α ≤ fintype.card β := by haveI := classical.prop_decidable; exact finset.card_le_card_of_inj_on f (λ _ _, finset.mem_univ _) (λ _ _ _ _ h, hf h) lemma fintype.card_eq_one_iff [fintype α] : fintype.card α = 1 ↔ (∃ x : α, ∀ y, y = x) := by rw [← fintype.card_unit, fintype.card_eq]; exact ⟨λ ⟨a⟩, ⟨a.symm (), λ y, a.injective (subsingleton.elim _ _)⟩, λ ⟨x, hx⟩, ⟨⟨λ _, (), λ _, x, λ _, (hx _).trans (hx _).symm, λ _, subsingleton.elim _ _⟩⟩⟩ lemma fintype.card_eq_zero_iff [fintype α] : fintype.card α = 0 ↔ (α → false) := ⟨λ h a, have e : α ≃ empty := classical.choice (fintype.card_eq.1 (by simp [h])), (e a).elim, λ h, have e : α ≃ empty := ⟨λ a, (h a).elim, λ a, a.elim, λ a, (h a).elim, λ a, a.elim⟩, by simp [fintype.card_congr e]⟩ lemma fintype.card_pos_iff [fintype α] : 0 < fintype.card α ↔ nonempty α := ⟨λ h, classical.by_contradiction (λ h₁, have fintype.card α = 0 := fintype.card_eq_zero_iff.2 (λ a, h₁ ⟨a⟩), lt_irrefl 0 $ by rwa this at h), λ ⟨a⟩, nat.pos_of_ne_zero (mt fintype.card_eq_zero_iff.1 (λ h, h a))⟩ lemma fintype.card_le_one_iff [fintype α] : fintype.card α ≤ 1 ↔ (∀ a b : α, a = b) := let n := fintype.card α in have hn : n = fintype.card α := rfl, match n, hn with | 0 := λ ha, ⟨λ h, λ a, (fintype.card_eq_zero_iff.1 ha.symm a).elim, λ _, ha ▸ nat.le_succ _⟩ | 1 := λ ha, ⟨λ h, λ a b, let ⟨x, hx⟩ := fintype.card_eq_one_iff.1 ha.symm in by rw [hx a, hx b], λ _, ha ▸ le_refl _⟩ | (n+2) := λ ha, ⟨λ h, by rw ← ha at h; exact absurd h dec_trivial, (λ h, fintype.card_unit ▸ fintype.card_le_of_injective (λ _, ()) (λ _ _ _, h _ _))⟩ end lemma fintype.exists_ne_of_card_gt_one [fintype α] (h : fintype.card α > 1) (a : α) : ∃ b : α, b ≠ a := let ⟨b, hb⟩ := classical.not_forall.1 (mt fintype.card_le_one_iff.2 (not_le_of_gt h)) in let ⟨c, hc⟩ := classical.not_forall.1 hb in by haveI := classical.dec_eq α; exact if hba : b = a then ⟨c, by cc⟩ else ⟨b, hba⟩ lemma fintype.injective_iff_surjective [fintype α] {f : α → α} : injective f ↔ surjective f := by haveI := classical.prop_decidable; exact have ∀ {f : α → α}, injective f → surjective f, from λ f hinj x, have h₁ : image f univ = univ := eq_of_subset_of_card_le (subset_univ _) ((card_image_of_injective univ hinj).symm ▸ le_refl _), have h₂ : x ∈ image f univ := h₁.symm ▸ mem_univ _, exists_of_bex (mem_image.1 h₂), ⟨this, λ hsurj, injective_of_has_left_inverse ⟨surj_inv hsurj, left_inverse_of_surjective_of_right_inverse (this (injective_surj_inv _)) (right_inverse_surj_inv _)⟩⟩ lemma fintype.injective_iff_bijective [fintype α] {f : α → α} : injective f ↔ bijective f := by simp [bijective, fintype.injective_iff_surjective] lemma fintype.surjective_iff_bijective [fintype α] {f : α → α} : surjective f ↔ bijective f := by simp [bijective, fintype.injective_iff_surjective] lemma fintype.injective_iff_surjective_of_equiv [fintype α] {f : α → β} (e : α ≃ β) : injective f ↔ surjective f := have injective (e.symm ∘ f) ↔ surjective (e.symm ∘ f), from fintype.injective_iff_surjective, ⟨λ hinj, by simpa [function.comp] using surjective_comp e.surjective (this.1 (injective_comp e.symm.injective hinj)), λ hsurj, by simpa [function.comp] using injective_comp e.injective (this.2 (surjective_comp e.symm.surjective hsurj))⟩ instance list.subtype.fintype [decidable_eq α] (l : list α) : fintype {x // x ∈ l} := fintype.of_list l.attach l.mem_attach instance multiset.subtype.fintype [decidable_eq α] (s : multiset α) : fintype {x // x ∈ s} := fintype.of_multiset s.attach s.mem_attach instance finset.subtype.fintype (s : finset α) : fintype {x // x ∈ s} := ⟨s.attach, s.mem_attach⟩ instance finset_coe.fintype (s : finset α) : fintype (↑s : set α) := finset.subtype.fintype s @[simp] lemma fintype.card_coe (s : finset α) : fintype.card (↑s : set α) = s.card := card_attach instance plift.fintype (p : Prop) [decidable p] : fintype (plift p) := ⟨if h : p then finset.singleton ⟨h⟩ else ∅, λ ⟨h⟩, by simp [h]⟩ instance Prop.fintype : fintype Prop := ⟨⟨true::false::0, by simp [true_ne_false]⟩, classical.cases (by simp) (by simp)⟩ def set_fintype {α} [fintype α] (s : set α) [decidable_pred s] : fintype s := fintype.subtype (univ.filter (∈ s)) (by simp) instance pi.fintype {α : Type*} {β : α → Type*} [fintype α] [decidable_eq α] [∀a, fintype (β a)] : fintype (Πa, β a) := @fintype.of_equiv _ _ ⟨univ.pi $ λa:α, @univ (β a) _, λ f, finset.mem_pi.2 $ λ a ha, mem_univ _⟩ ⟨λ f a, f a (mem_univ _), λ f a _, f a, λ f, rfl, λ f, rfl⟩ @[simp] lemma fintype.card_pi {β : α → Type*} [fintype α] [decidable_eq α] [f : Π a, fintype (β a)] : fintype.card (Π a, β a) = univ.prod (λ a, fintype.card (β a)) := by letI f' : fintype (Πa∈univ, β a) := ⟨(univ.pi $ λa, univ), assume f, finset.mem_pi.2 $ assume a ha, mem_univ _⟩; exact calc fintype.card (Π a, β a) = fintype.card (Π a ∈ univ, β a) : fintype.card_congr ⟨λ f a ha, f a, λ f a, f a (mem_univ a), λ _, rfl, λ _, rfl⟩ ... = univ.prod (λ a, fintype.card (β a)) : finset.card_pi _ _ @[simp] lemma fintype.card_fun [fintype α] [decidable_eq α] [fintype β] : fintype.card (α → β) = fintype.card β ^ fintype.card α := by rw [fintype.card_pi, finset.prod_const, nat.pow_eq_pow]; refl instance d_array.fintype {n : ℕ} {α : fin n → Type*} [∀n, fintype (α n)] : fintype (d_array n α) := fintype.of_equiv _ (equiv.d_array_equiv_fin _).symm instance array.fintype {n : ℕ} {α : Type*} [fintype α] : fintype (array n α) := d_array.fintype instance vector.fintype {α : Type*} [fintype α] {n : ℕ} : fintype (vector α n) := fintype.of_equiv _ (equiv.vector_equiv_fin _ _).symm @[simp] lemma card_vector [fintype α] (n : ℕ) : fintype.card (vector α n) = fintype.card α ^ n := by rw fintype.of_equiv_card; simp instance quotient.fintype [fintype α] (s : setoid α) [decidable_rel ((≈) : α → α → Prop)] : fintype (quotient s) := fintype.of_surjective quotient.mk (λ x, quotient.induction_on x (λ x, ⟨x, rfl⟩)) instance finset.fintype [fintype α] : fintype (finset α) := ⟨univ.powerset, λ x, finset.mem_powerset.2 (finset.subset_univ _)⟩ instance subtype.fintype [fintype α] (p : α → Prop) [decidable_pred p] : fintype {x // p x} := set_fintype _ instance set.fintype [fintype α] [decidable_eq α] : fintype (set α) := pi.fintype instance pfun_fintype (p : Prop) [decidable p] (α : p → Type*) [Π hp, fintype (α hp)] : fintype (Π hp : p, α hp) := if hp : p then fintype.of_equiv (α hp) ⟨λ a _, a, λ f, f hp, λ _, rfl, λ _, rfl⟩ else ⟨singleton (λ h, (hp h).elim), by simp [hp, function.funext_iff]⟩ def quotient.fin_choice_aux {ι : Type*} [decidable_eq ι] {α : ι → Type*} [S : ∀ i, setoid (α i)] : ∀ (l : list ι), (∀ i ∈ l, quotient (S i)) → @quotient (Π i ∈ l, α i) (by apply_instance) | [] f := ⟦λ i, false.elim⟧ | (i::l) f := begin refine quotient.lift_on₂ (f i (list.mem_cons_self _ _)) (quotient.fin_choice_aux l (λ j h, f j (list.mem_cons_of_mem _ h))) _ _, exact λ a l, ⟦λ j h, if e : j = i then by rw e; exact a else l _ (h.resolve_left e)⟧, refine λ a₁ l₁ a₂ l₂ h₁ h₂, quotient.sound (λ j h, _), by_cases e : j = i; simp [e], { subst j, exact h₁ }, { exact h₂ _ _ } end theorem quotient.fin_choice_aux_eq {ι : Type*} [decidable_eq ι] {α : ι → Type*} [S : ∀ i, setoid (α i)] : ∀ (l : list ι) (f : ∀ i ∈ l, α i), quotient.fin_choice_aux l (λ i h, ⟦f i h⟧) = ⟦f⟧ | [] f := quotient.sound (λ i h, h.elim) | (i::l) f := begin simp [quotient.fin_choice_aux, quotient.fin_choice_aux_eq l], refine quotient.sound (λ j h, _), by_cases e : j = i; simp [e], subst j, refl end def quotient.fin_choice {ι : Type*} [fintype ι] [decidable_eq ι] {α : ι → Type*} [S : ∀ i, setoid (α i)] (f : ∀ i, quotient (S i)) : @quotient (Π i, α i) (by apply_instance) := quotient.lift_on (@quotient.rec_on _ _ (λ l : multiset ι, @quotient (Π i ∈ l, α i) (by apply_instance)) finset.univ.1 (λ l, quotient.fin_choice_aux l (λ i _, f i)) (λ a b h, begin have := λ a, quotient.fin_choice_aux_eq a (λ i h, quotient.out (f i)), simp [quotient.out_eq] at this, simp [this], let g := λ a:multiset ι, ⟦λ (i : ι) (h : i ∈ a), quotient.out (f i)⟧, refine eq_of_heq ((eq_rec_heq _ _).trans (_ : g a == g b)), congr' 1, exact quotient.sound h, end)) (λ f, ⟦λ i, f i (finset.mem_univ _)⟧) (λ a b h, quotient.sound $ λ i, h _ _) theorem quotient.fin_choice_eq {ι : Type*} [fintype ι] [decidable_eq ι] {α : ι → Type*} [∀ i, setoid (α i)] (f : ∀ i, α i) : quotient.fin_choice (λ i, ⟦f i⟧) = ⟦f⟧ := begin let q, swap, change quotient.lift_on q _ _ = _, have : q = ⟦λ i h, f i⟧, { dsimp [q], exact quotient.induction_on (@finset.univ ι _).1 (λ l, quotient.fin_choice_aux_eq _ _) }, simp [this], exact setoid.refl _ end @[simp, to_additive finset.sum_attach_univ] lemma finset.prod_attach_univ [fintype α] [comm_monoid β] (f : {a : α // a ∈ @univ α _} → β) : univ.attach.prod (λ x, f x) = univ.prod (λ x, f ⟨x, (mem_univ _)⟩) := prod_bij (λ x _, x.1) (λ _ _, mem_univ _) (λ _ _ , by simp) (by simp) (λ b _, ⟨⟨b, mem_univ _⟩, by simp⟩) section equiv open list equiv equiv.perm variables [decidable_eq α] [decidable_eq β] def perms_of_list : list α → list (perm α) | [] := [1] | (a :: l) := perms_of_list l ++ l.bind (λ b, (perms_of_list l).map (λ f, swap a b * f)) lemma length_perms_of_list : ∀ l : list α, length (perms_of_list l) = l.length.fact | [] := rfl | (a :: l) := by rw [length_cons, nat.fact_succ]; simp [perms_of_list, length_bind, length_perms_of_list, function.comp, nat.succ_mul] lemma mem_perms_of_list_of_mem : ∀ {l : list α} {f : perm α} (h : ∀ x, f x ≠ x → x ∈ l), f ∈ perms_of_list l | [] f h := list.mem_singleton.2 $ equiv.ext _ _$ λ x, by simp [imp_false, *] at * | (a::l) f h := if hfa : f a = a then mem_append_left _ $ mem_perms_of_list_of_mem (λ x hx, mem_of_ne_of_mem (λ h, by rw h at hx; exact hx hfa) (h x hx)) else have hfa' : f (f a) ≠ f a, from mt (λ h, f.injective h) hfa, have ∀ (x : α), (swap a (f a) * f) x ≠ x → x ∈ l, from λ x hx, have hxa : x ≠ a, from λ h, by simpa [h, mul_apply] using hx, have hfxa : f x ≠ f a, from mt (λ h, f.injective h) hxa, list.mem_of_ne_of_mem hxa (h x (λ h, by simp [h, mul_apply, swap_apply_def] at hx; split_ifs at hx; cc)), suffices f ∈ perms_of_list l ∨ ∃ (b : α), b ∈ l ∧ ∃ g : perm α, g ∈ perms_of_list l ∧ swap a b * g = f, by simpa [perms_of_list], (@or_iff_not_imp_left _ _ (classical.prop_decidable _)).2 (λ hfl, ⟨f a, if hffa : f (f a) = a then mem_of_ne_of_mem hfa (h _ (mt (λ h, f.injective h) hfa)) else this _ $ by simp [mul_apply, swap_apply_def]; split_ifs; cc, ⟨swap a (f a) * f, mem_perms_of_list_of_mem this, by rw [← mul_assoc, mul_def (swap a (f a)) (swap a (f a)), swap_swap, ← equiv.perm.one_def, one_mul]⟩⟩) lemma mem_of_mem_perms_of_list : ∀ {l : list α} {f : perm α}, f ∈ perms_of_list l → ∀ {x}, f x ≠ x → x ∈ l | [] f h := have f = 1 := by simpa [perms_of_list] using h, by rw this; simp | (a::l) f h := (mem_append.1 h).elim (λ h x hx, mem_cons_of_mem _ (mem_of_mem_perms_of_list h hx)) (λ h x hx, let ⟨y, hy, hy'⟩ := list.mem_bind.1 h in let ⟨g, hg₁, hg₂⟩ := list.mem_map.1 hy' in if hxa : x = a then by simp [hxa] else if hxy : x = y then mem_cons_of_mem _ $ by rwa hxy else mem_cons_of_mem _ $ mem_of_mem_perms_of_list hg₁ $ by rw [eq_inv_mul_iff_mul_eq.2 hg₂, mul_apply, swap_inv, swap_apply_def]; split_ifs; cc) lemma mem_perms_of_list_iff {l : list α} {f : perm α} : f ∈ perms_of_list l ↔ ∀ {x}, f x ≠ x → x ∈ l := ⟨mem_of_mem_perms_of_list, mem_perms_of_list_of_mem⟩ lemma nodup_perms_of_list : ∀ {l : list α} (hl : l.nodup), (perms_of_list l).nodup | [] hl := by simp [perms_of_list] | (a::l) hl := have hl' : l.nodup, from nodup_of_nodup_cons hl, have hln' : (perms_of_list l).nodup, from nodup_perms_of_list hl', have hmeml : ∀ {f : perm α}, f ∈ perms_of_list l → f a = a, from λ f hf, not_not.1 (mt (mem_of_mem_perms_of_list hf) (nodup_cons.1 hl).1), by rw [perms_of_list, list.nodup_append, list.nodup_bind, pairwise_iff_nth_le]; exact ⟨hln', ⟨λ _ _, nodup_map (λ _ _, (mul_left_inj _).1) hln', λ i j hj hij x hx₁ hx₂, let ⟨f, hf⟩ := list.mem_map.1 hx₁ in let ⟨g, hg⟩ := list.mem_map.1 hx₂ in have hix : x a = nth_le l i (lt_trans hij hj), by rw [← hf.2, mul_apply, hmeml hf.1, swap_apply_left], have hiy : x a = nth_le l j hj, by rw [← hg.2, mul_apply, hmeml hg.1, swap_apply_left], absurd (hf.2.trans (hg.2.symm)) $ λ h, ne_of_lt hij $ nodup_iff_nth_le_inj.1 hl' i j (lt_trans hij hj) hj $ by rw [← hix, hiy]⟩, λ f hf₁ hf₂, let ⟨x, hx, hx'⟩ := list.mem_bind.1 hf₂ in let ⟨g, hg⟩ := list.mem_map.1 hx' in have hgxa : g⁻¹ x = a, from f.injective $ by rw [hmeml hf₁, ← hg.2]; simp, have hxa : x ≠ a, from λ h, (list.nodup_cons.1 hl).1 (h ▸ hx), (list.nodup_cons.1 hl).1 $ hgxa ▸ mem_of_mem_perms_of_list hg.1 (by rwa [apply_inv_self, hgxa])⟩ def perms_of_finset (s : finset α) : finset (perm α) := quotient.hrec_on s.1 (λ l hl, ⟨perms_of_list l, nodup_perms_of_list hl⟩) (λ a b hab, hfunext (congr_arg _ (quotient.sound hab)) (λ ha hb _, heq_of_eq $ finset.ext.2 $ by simp [mem_perms_of_list_iff,mem_of_perm hab])) s.2 lemma mem_perms_of_finset_iff : ∀ {s : finset α} {f : perm α}, f ∈ perms_of_finset s ↔ ∀ {x}, f x ≠ x → x ∈ s := by rintros ⟨⟨l⟩, hs⟩ f; exact mem_perms_of_list_iff lemma card_perms_of_finset : ∀ (s : finset α), (perms_of_finset s).card = s.card.fact := by rintros ⟨⟨l⟩, hs⟩; exact length_perms_of_list l def fintype_perm [fintype α] : fintype (perm α) := ⟨perms_of_finset (@finset.univ α _), by simp [mem_perms_of_finset_iff]⟩ instance [fintype α] [fintype β] : fintype (α ≃ β) := if h : fintype.card β = fintype.card α then trunc.rec_on_subsingleton (fintype.equiv_fin α) (λ eα, trunc.rec_on_subsingleton (fintype.equiv_fin β) (λ eβ, @fintype.of_equiv _ (perm α) fintype_perm (equiv_congr (equiv.refl α) (eα.trans (eq.rec_on h eβ.symm)) : (α ≃ α) ≃ (α ≃ β)))) else ⟨∅, λ x, false.elim (h (fintype.card_eq.2 ⟨x.symm⟩))⟩ lemma fintype.card_perm [fintype α] : fintype.card (perm α) = (fintype.card α).fact := subsingleton.elim (@fintype_perm α _ _) (@equiv.fintype α α _ _ _ _) ▸ card_perms_of_finset _ lemma fintype.card_equiv [fintype α] [fintype β] (e : α ≃ β) : fintype.card (α ≃ β) = (fintype.card α).fact := fintype.card_congr (equiv_congr (equiv.refl α) e) ▸ fintype.card_perm end equiv namespace fintype section choose open fintype open equiv variables [fintype α] [decidable_eq α] (p : α → Prop) [decidable_pred p] def choose_x (hp : ∃! a : α, p a) : {a // p a} := ⟨finset.choose p univ (by simp; exact hp), finset.choose_property _ _ _⟩ def choose (hp : ∃! a, p a) : α := choose_x p hp lemma choose_spec (hp : ∃! a, p a) : p (choose p hp) := (choose_x p hp).property end choose section bijection_inverse open function variables [fintype α] [decidable_eq α] variables [fintype β] [decidable_eq β] variables {f : α → β} /-- ` `bij_inv f` is the unique inverse to a bijection `f`. This acts as a computable alternative to `function.inv_fun`. -/ def bij_inv (f_bij : bijective f) (b : β) : α := fintype.choose (λ a, f a = b) begin rcases f_bij.right b with ⟨a', fa_eq_b⟩, rw ← fa_eq_b, exact ⟨a', ⟨rfl, (λ a h, f_bij.left h)⟩⟩ end lemma left_inverse_bij_inv (f_bij : bijective f) : left_inverse (bij_inv f_bij) f := λ a, f_bij.left (choose_spec (λ a', f a' = f a) _) lemma right_inverse_bij_inv (f_bij : bijective f) : right_inverse (bij_inv f_bij) f := λ b, choose_spec (λ a', f a' = b) _ lemma bijective_bij_inv (f_bij : bijective f) : bijective (bij_inv f_bij) := ⟨injective_of_left_inverse (right_inverse_bij_inv _), surjective_of_has_right_inverse ⟨f, left_inverse_bij_inv _⟩⟩ end bijection_inverse lemma well_founded_of_trans_of_irrefl [fintype α] (r : α → α → Prop) [is_trans α r] [is_irrefl α r] : well_founded r := by classical; exact have ∀ x y, r x y → (univ.filter (λ z, r z x)).card < (univ.filter (λ z, r z y)).card, from λ x y hxy, finset.card_lt_card $ by simp only [finset.lt_iff_ssubset.symm, lt_iff_le_not_le, finset.le_iff_subset, finset.subset_iff, mem_filter, true_and, mem_univ, hxy]; exact ⟨λ z hzx, trans hzx hxy, not_forall_of_exists_not ⟨x, not_imp.2 ⟨hxy, irrefl x⟩⟩⟩, subrelation.wf this (measure_wf _) lemma preorder.well_founded [fintype α] [preorder α] : well_founded ((<) : α → α → Prop) := well_founded_of_trans_of_irrefl _ @[instance, priority 0] lemma linear_order.is_well_order [fintype α] [linear_order α] : is_well_order α (<) := { wf := preorder.well_founded } end fintype class infinite (α : Type*) : Prop := (not_fintype : fintype α → false) @[simp] lemma not_nonempty_fintype {α : Type*} : ¬nonempty (fintype α) ↔ infinite α := ⟨λf, ⟨λ x, f ⟨x⟩⟩, λ⟨f⟩ ⟨x⟩, f x⟩ namespace infinite lemma exists_not_mem_finset [infinite α] (s : finset α) : ∃ x, x ∉ s := classical.not_forall.1 $ λ h, not_fintype ⟨s, h⟩ instance nonempty (α : Type*) [infinite α] : nonempty α := nonempty_of_exists (exists_not_mem_finset (∅ : finset α)) lemma of_injective [infinite β] (f : β → α) (hf : injective f) : infinite α := ⟨λ I, by exactI not_fintype (fintype.of_injective f hf)⟩ lemma of_surjective [infinite β] (f : α → β) (hf : surjective f) : infinite α := ⟨λ I, by classical; exactI not_fintype (fintype.of_surjective f hf)⟩ end infinite instance nat.infinite : infinite ℕ := ⟨λ ⟨s, hs⟩, not_le_of_gt (nat.lt_succ_self (s.sum id)) $ @finset.single_le_sum _ _ _ id _ _ (λ _ _, nat.zero_le _) _ (hs _)⟩ instance int.infinite : infinite ℤ := infinite.of_injective int.of_nat (λ _ _, int.of_nat_inj)
c82f9a9a75467dde75176ee7658cd05db2bc5234
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/data/equiv/mul_add.lean
2dd719e82dd101596fde77cac2880ce2bd19055a
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
24,692
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Callum Sutton, Yury Kudryashov -/ import algebra.group.type_tags import algebra.group_with_zero /-! # Multiplicative and additive equivs In this file we define two extensions of `equiv` called `add_equiv` and `mul_equiv`, which are datatypes representing isomorphisms of `add_monoid`s/`add_group`s and `monoid`s/`group`s. ## Notations * ``infix ` ≃* `:25 := mul_equiv`` * ``infix ` ≃+ `:25 := add_equiv`` The extended equivs all have coercions to functions, and the coercions are the canonical notation when treating the isomorphisms as maps. ## Implementation notes The fields for `mul_equiv`, `add_equiv` now avoid the unbundled `is_mul_hom` and `is_add_hom`, as these are deprecated. ## Tags equiv, mul_equiv, add_equiv -/ variables {A : Type*} {B : Type*} {M : Type*} {N : Type*} {P : Type*} {Q : Type*} {G : Type*} {H : Type*} /-- Makes a multiplicative inverse from a bijection which preserves multiplication. -/ @[to_additive "Makes an additive inverse from a bijection which preserves addition."] def mul_hom.inverse [has_mul M] [has_mul N] (f : mul_hom M N) (g : N → M) (h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : mul_hom N M := { to_fun := g, map_mul' := λ x y, calc g (x * y) = g (f (g x) * f (g y)) : by rw [h₂ x, h₂ y] ... = g (f (g x * g y)) : by rw f.map_mul ... = g x * g y : h₁ _, } /-- The inverse of a bijective `monoid_hom` is a `monoid_hom`. -/ @[to_additive "The inverse of a bijective `add_monoid_hom` is an `add_monoid_hom`.", simps] def monoid_hom.inverse {A B : Type*} [monoid A] [monoid B] (f : A →* B) (g : B → A) (h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : B →* A := { to_fun := g, map_one' := by rw [← f.map_one, h₁], .. (f : mul_hom A B).inverse g h₁ h₂, } set_option old_structure_cmd true /-- add_equiv α β is the type of an equiv α ≃ β which preserves addition. -/ @[ancestor equiv add_hom] structure add_equiv (A B : Type*) [has_add A] [has_add B] extends A ≃ B, add_hom A B /-- The `equiv` underlying an `add_equiv`. -/ add_decl_doc add_equiv.to_equiv /-- The `add_hom` underlying a `add_equiv`. -/ add_decl_doc add_equiv.to_add_hom /-- `mul_equiv α β` is the type of an equiv `α ≃ β` which preserves multiplication. -/ @[ancestor equiv mul_hom, to_additive] structure mul_equiv (M N : Type*) [has_mul M] [has_mul N] extends M ≃ N, mul_hom M N /-- The `equiv` underlying a `mul_equiv`. -/ add_decl_doc mul_equiv.to_equiv /-- The `mul_hom` underlying a `mul_equiv`. -/ add_decl_doc mul_equiv.to_mul_hom infix ` ≃* `:25 := mul_equiv infix ` ≃+ `:25 := add_equiv namespace mul_equiv @[to_additive] instance [has_mul M] [has_mul N] : has_coe_to_fun (M ≃* N) := ⟨_, mul_equiv.to_fun⟩ variables [has_mul M] [has_mul N] [has_mul P] [has_mul Q] @[simp, to_additive] lemma to_fun_eq_coe {f : M ≃* N} : f.to_fun = f := rfl @[simp, to_additive] lemma coe_to_equiv {f : M ≃* N} : ⇑f.to_equiv = f := rfl @[simp, to_additive] lemma coe_to_mul_hom {f : M ≃* N} : ⇑f.to_mul_hom = f := rfl /-- A multiplicative isomorphism preserves multiplication (canonical form). -/ @[simp, to_additive] lemma map_mul (f : M ≃* N) : ∀ x y, f (x * y) = f x * f y := f.map_mul' /-- Makes a multiplicative isomorphism from a bijection which preserves multiplication. -/ @[to_additive "Makes an additive isomorphism from a bijection which preserves addition."] def mk' (f : M ≃ N) (h : ∀ x y, f (x * y) = f x * f y) : M ≃* N := ⟨f.1, f.2, f.3, f.4, h⟩ @[to_additive] protected lemma bijective (e : M ≃* N) : function.bijective e := e.to_equiv.bijective @[to_additive] protected lemma injective (e : M ≃* N) : function.injective e := e.to_equiv.injective @[to_additive] protected lemma surjective (e : M ≃* N) : function.surjective e := e.to_equiv.surjective /-- The identity map is a multiplicative isomorphism. -/ @[refl, to_additive "The identity map is an additive isomorphism."] def refl (M : Type*) [has_mul M] : M ≃* M := { map_mul' := λ _ _, rfl, ..equiv.refl _} @[to_additive] instance : inhabited (M ≃* M) := ⟨refl M⟩ /-- The inverse of an isomorphism is an isomorphism. -/ @[symm, to_additive "The inverse of an isomorphism is an isomorphism."] def symm (h : M ≃* N) : N ≃* M := { map_mul' := (h.to_mul_hom.inverse h.to_equiv.symm h.left_inv h.right_inv).map_mul, .. h.to_equiv.symm} @[simp, to_additive] lemma inv_fun_eq_symm {f : M ≃* N} : f.inv_fun = f.symm := rfl /-- See Note [custom simps projection] -/ -- we don't hyperlink the note in the additive version, since that breaks syntax highlighting -- in the whole file. @[to_additive "See Note custom simps projection"] def simps.symm_apply (e : M ≃* N) : N → M := e.symm initialize_simps_projections add_equiv (to_fun → apply, inv_fun → symm_apply) initialize_simps_projections mul_equiv (to_fun → apply, inv_fun → symm_apply) @[simp, to_additive] theorem to_equiv_symm (f : M ≃* N) : f.symm.to_equiv = f.to_equiv.symm := rfl @[simp, to_additive] theorem coe_mk (f : M → N) (g h₁ h₂ h₃) : ⇑(mul_equiv.mk f g h₁ h₂ h₃) = f := rfl @[simp, to_additive] lemma symm_symm : ∀ (f : M ≃* N), f.symm.symm = f | ⟨f, g, h₁, h₂, h₃⟩ := rfl @[to_additive] lemma symm_bijective : function.bijective (symm : (M ≃* N) → (N ≃* M)) := equiv.bijective ⟨symm, symm, symm_symm, symm_symm⟩ @[simp, to_additive] theorem symm_mk (f : M → N) (g h₁ h₂ h₃) : (mul_equiv.mk f g h₁ h₂ h₃).symm = { to_fun := g, inv_fun := f, ..(mul_equiv.mk f g h₁ h₂ h₃).symm} := rfl /-- Transitivity of multiplication-preserving isomorphisms -/ @[trans, to_additive "Transitivity of addition-preserving isomorphisms"] def trans (h1 : M ≃* N) (h2 : N ≃* P) : (M ≃* P) := { map_mul' := λ x y, show h2 (h1 (x * y)) = h2 (h1 x) * h2 (h1 y), by rw [h1.map_mul, h2.map_mul], ..h1.to_equiv.trans h2.to_equiv } /-- e.right_inv in canonical form -/ @[simp, to_additive] lemma apply_symm_apply (e : M ≃* N) : ∀ y, e (e.symm y) = y := e.to_equiv.apply_symm_apply /-- e.left_inv in canonical form -/ @[simp, to_additive] lemma symm_apply_apply (e : M ≃* N) : ∀ x, e.symm (e x) = x := e.to_equiv.symm_apply_apply @[simp, to_additive] theorem symm_comp_self (e : M ≃* N) : e.symm ∘ e = id := funext e.symm_apply_apply @[simp, to_additive] theorem self_comp_symm (e : M ≃* N) : e ∘ e.symm = id := funext e.apply_symm_apply @[simp, to_additive] theorem coe_refl : ⇑(refl M) = id := rfl @[to_additive] theorem refl_apply (m : M) : refl M m = m := rfl @[simp, to_additive] theorem coe_trans (e₁ : M ≃* N) (e₂ : N ≃* P) : ⇑(e₁.trans e₂) = e₂ ∘ e₁ := rfl @[to_additive] theorem trans_apply (e₁ : M ≃* N) (e₂ : N ≃* P) (m : M) : e₁.trans e₂ m = e₂ (e₁ m) := rfl @[simp, to_additive] theorem symm_trans_apply (e₁ : M ≃* N) (e₂ : N ≃* P) (p : P) : (e₁.trans e₂).symm p = e₁.symm (e₂.symm p) := rfl @[simp, to_additive] theorem apply_eq_iff_eq (e : M ≃* N) {x y : M} : e x = e y ↔ x = y := e.injective.eq_iff @[to_additive] lemma apply_eq_iff_symm_apply (e : M ≃* N) {x : M} {y : N} : e x = y ↔ x = e.symm y := e.to_equiv.apply_eq_iff_eq_symm_apply @[to_additive] lemma symm_apply_eq (e : M ≃* N) {x y} : e.symm x = y ↔ x = e y := e.to_equiv.symm_apply_eq @[to_additive] lemma eq_symm_apply (e : M ≃* N) {x y} : y = e.symm x ↔ e y = x := e.to_equiv.eq_symm_apply /-- Two multiplicative isomorphisms agree if they are defined by the same underlying function. -/ @[ext, to_additive "Two additive isomorphisms agree if they are defined by the same underlying function."] lemma ext {f g : mul_equiv M N} (h : ∀ x, f x = g x) : f = g := begin have h₁ : f.to_equiv = g.to_equiv := equiv.ext h, cases f, cases g, congr, { exact (funext h) }, { exact congr_arg equiv.inv_fun h₁ } end attribute [ext] add_equiv.ext @[to_additive] lemma ext_iff {f g : mul_equiv M N} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, ext⟩ @[simp, to_additive] lemma mk_coe (e : M ≃* N) (e' h₁ h₂ h₃) : (⟨e, e', h₁, h₂, h₃⟩ : M ≃* N) = e := ext $ λ _, rfl @[simp, to_additive] lemma mk_coe' (e : M ≃* N) (f h₁ h₂ h₃) : (mul_equiv.mk f ⇑e h₁ h₂ h₃ : N ≃* M) = e.symm := symm_bijective.injective $ ext $ λ x, rfl @[to_additive] protected lemma congr_arg {f : mul_equiv M N} : Π {x x' : M}, x = x' → f x = f x' | _ _ rfl := rfl @[to_additive] protected lemma congr_fun {f g : mul_equiv M N} (h : f = g) (x : M) : f x = g x := h ▸ rfl /-- The `mul_equiv` between two monoids with a unique element. -/ @[to_additive "The `add_equiv` between two add_monoids with a unique element."] def mul_equiv_of_unique_of_unique {M N} [unique M] [unique N] [has_mul M] [has_mul N] : M ≃* N := { map_mul' := λ _ _, subsingleton.elim _ _, ..equiv_of_unique_of_unique } /-- There is a unique monoid homomorphism between two monoids with a unique element. -/ @[to_additive] instance {M N} [unique M] [unique N] [has_mul M] [has_mul N] : unique (M ≃* N) := { default := mul_equiv_of_unique_of_unique , uniq := λ _, ext $ λ x, subsingleton.elim _ _} /-! ## Monoids -/ /-- A multiplicative equiv of monoids sends 1 to 1 (and is hence a monoid isomorphism). -/ @[simp, to_additive] lemma map_one {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) : h 1 = 1 := by rw [←mul_one (h 1), ←h.apply_symm_apply 1, ←h.map_mul, one_mul] @[simp, to_additive] lemma map_eq_one_iff {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) {x : M} : h x = 1 ↔ x = 1 := h.map_one ▸ h.to_equiv.apply_eq_iff_eq @[to_additive] lemma map_ne_one_iff {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) {x : M} : h x ≠ 1 ↔ x ≠ 1 := ⟨mt h.map_eq_one_iff.2, mt h.map_eq_one_iff.1⟩ /-- A bijective `monoid` homomorphism is an isomorphism -/ @[to_additive "A bijective `add_monoid` homomorphism is an isomorphism"] noncomputable def of_bijective {M N} [mul_one_class M] [mul_one_class N] (f : M →* N) (hf : function.bijective f) : M ≃* N := { map_mul' := f.map_mul', ..equiv.of_bijective f hf } /-- Extract the forward direction of a multiplicative equivalence as a multiplication-preserving function. -/ @[to_additive "Extract the forward direction of an additive equivalence as an addition-preserving function."] def to_monoid_hom {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) : (M →* N) := { map_one' := h.map_one, .. h } @[simp, to_additive] lemma coe_to_monoid_hom {M N} [mul_one_class M] [mul_one_class N] (e : M ≃* N) : ⇑e.to_monoid_hom = e := rfl @[to_additive] lemma to_monoid_hom_injective {M N} [mul_one_class M] [mul_one_class N] : function.injective (to_monoid_hom : (M ≃* N) → M →* N) := λ f g h, mul_equiv.ext (monoid_hom.ext_iff.1 h) /-- A multiplicative analogue of `equiv.arrow_congr`, where the equivalence between the targets is multiplicative. -/ @[to_additive "An additive analogue of `equiv.arrow_congr`, where the equivalence between the targets is additive.", simps apply] def arrow_congr {M N P Q : Type*} [mul_one_class P] [mul_one_class Q] (f : M ≃ N) (g : P ≃* Q) : (M → P) ≃* (N → Q) := { to_fun := λ h n, g (h (f.symm n)), inv_fun := λ k m, g.symm (k (f m)), left_inv := λ h, by { ext, simp, }, right_inv := λ k, by { ext, simp, }, map_mul' := λ h k, by { ext, simp, }, } /-- A multiplicative analogue of `equiv.arrow_congr`, for multiplicative maps from a monoid to a commutative monoid. -/ @[to_additive "An additive analogue of `equiv.arrow_congr`, for additive maps from an additive monoid to a commutative additive monoid.", simps apply] def monoid_hom_congr {M N P Q} [mul_one_class M] [mul_one_class N] [comm_monoid P] [comm_monoid Q] (f : M ≃* N) (g : P ≃* Q) : (M →* P) ≃* (N →* Q) := { to_fun := λ h, g.to_monoid_hom.comp (h.comp f.symm.to_monoid_hom), inv_fun := λ k, g.symm.to_monoid_hom.comp (k.comp f.to_monoid_hom), left_inv := λ h, by { ext, simp, }, right_inv := λ k, by { ext, simp, }, map_mul' := λ h k, by { ext, simp, }, } /-- A family of multiplicative equivalences `Π j, (Ms j ≃* Ns j)` generates a multiplicative equivalence between `Π j, Ms j` and `Π j, Ns j`. This is the `mul_equiv` version of `equiv.Pi_congr_right`, and the dependent version of `mul_equiv.arrow_congr`. -/ @[to_additive add_equiv.Pi_congr_right "A family of additive equivalences `Π j, (Ms j ≃+ Ns j)` generates an additive equivalence between `Π j, Ms j` and `Π j, Ns j`. This is the `add_equiv` version of `equiv.Pi_congr_right`, and the dependent version of `add_equiv.arrow_congr`.", simps apply] def Pi_congr_right {η : Type*} {Ms Ns : η → Type*} [Π j, mul_one_class (Ms j)] [Π j, mul_one_class (Ns j)] (es : ∀ j, Ms j ≃* Ns j) : (Π j, Ms j) ≃* (Π j, Ns j) := { to_fun := λ x j, es j (x j), inv_fun := λ x j, (es j).symm (x j), map_mul' := λ x y, funext $ λ j, (es j).map_mul (x j) (y j), .. equiv.Pi_congr_right (λ j, (es j).to_equiv) } @[simp] lemma Pi_congr_right_refl {η : Type*} {Ms : η → Type*} [Π j, mul_one_class (Ms j)] : Pi_congr_right (λ j, mul_equiv.refl (Ms j)) = mul_equiv.refl _ := rfl @[simp] lemma Pi_congr_right_symm {η : Type*} {Ms Ns : η → Type*} [Π j, mul_one_class (Ms j)] [Π j, mul_one_class (Ns j)] (es : ∀ j, Ms j ≃* Ns j) : (Pi_congr_right es).symm = (Pi_congr_right $ λ i, (es i).symm) := rfl @[simp] lemma Pi_congr_right_trans {η : Type*} {Ms Ns Ps : η → Type*} [Π j, mul_one_class (Ms j)] [Π j, mul_one_class (Ns j)] [Π j, mul_one_class (Ps j)] (es : ∀ j, Ms j ≃* Ns j) (fs : ∀ j, Ns j ≃* Ps j) : (Pi_congr_right es).trans (Pi_congr_right fs) = (Pi_congr_right $ λ i, (es i).trans (fs i)) := rfl /-! # Groups -/ /-- A multiplicative equivalence of groups preserves inversion. -/ @[simp, to_additive] lemma map_inv [group G] [group H] (h : G ≃* H) (x : G) : h x⁻¹ = (h x)⁻¹ := h.to_monoid_hom.map_inv x end mul_equiv -- We don't use `to_additive` to generate definition because it fails to tell Lean about -- equational lemmas /-- Given a pair of additive monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`, returns an additive equivalence with `to_fun = f` and `inv_fun = g`. This constructor is useful if the underlying type(s) have specialized `ext` lemmas for additive monoid homomorphisms. -/ def add_monoid_hom.to_add_equiv [add_zero_class M] [add_zero_class N] (f : M →+ N) (g : N →+ M) (h₁ : g.comp f = add_monoid_hom.id _) (h₂ : f.comp g = add_monoid_hom.id _) : M ≃+ N := { to_fun := f, inv_fun := g, left_inv := add_monoid_hom.congr_fun h₁, right_inv := add_monoid_hom.congr_fun h₂, map_add' := f.map_add } /-- Given a pair of monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`, returns an multiplicative equivalence with `to_fun = f` and `inv_fun = g`. This constructor is useful if the underlying type(s) have specialized `ext` lemmas for monoid homomorphisms. -/ @[to_additive, simps {fully_applied := ff}] def monoid_hom.to_mul_equiv [mul_one_class M] [mul_one_class N] (f : M →* N) (g : N →* M) (h₁ : g.comp f = monoid_hom.id _) (h₂ : f.comp g = monoid_hom.id _) : M ≃* N := { to_fun := f, inv_fun := g, left_inv := monoid_hom.congr_fun h₁, right_inv := monoid_hom.congr_fun h₂, map_mul' := f.map_mul } /-- An additive equivalence of additive groups preserves subtraction. -/ lemma add_equiv.map_sub [add_group A] [add_group B] (h : A ≃+ B) (x y : A) : h (x - y) = h x - h y := h.to_add_monoid_hom.map_sub x y /-- A group is isomorphic to its group of units. -/ @[to_additive to_add_units "An additive group is isomorphic to its group of additive units"] def to_units [group G] : G ≃* units G := { to_fun := λ x, ⟨x, x⁻¹, mul_inv_self _, inv_mul_self _⟩, inv_fun := coe, left_inv := λ x, rfl, right_inv := λ u, units.ext rfl, map_mul' := λ x y, units.ext rfl } @[simp, to_additive coe_to_add_units] lemma coe_to_units [group G] (g : G) : (to_units g : G) = g := rfl protected lemma group.is_unit {G} [group G] (x : G) : is_unit x := (to_units x).is_unit namespace units @[simp, to_additive] lemma coe_inv [group G] (u : units G) : ↑u⁻¹ = (u⁻¹ : G) := to_units.symm.map_inv u variables [monoid M] [monoid N] [monoid P] /-- A multiplicative equivalence of monoids defines a multiplicative equivalence of their groups of units. -/ def map_equiv (h : M ≃* N) : units M ≃* units N := { inv_fun := map h.symm.to_monoid_hom, left_inv := λ u, ext $ h.left_inv u, right_inv := λ u, ext $ h.right_inv u, .. map h.to_monoid_hom } /-- Left multiplication by a unit of a monoid is a permutation of the underlying type. -/ @[to_additive "Left addition of an additive unit is a permutation of the underlying type.", simps apply {fully_applied := ff}] def mul_left (u : units M) : equiv.perm M := { to_fun := λx, u * x, inv_fun := λx, ↑u⁻¹ * x, left_inv := u.inv_mul_cancel_left, right_inv := u.mul_inv_cancel_left } @[simp, to_additive] lemma mul_left_symm (u : units M) : u.mul_left.symm = u⁻¹.mul_left := equiv.ext $ λ x, rfl /-- Right multiplication by a unit of a monoid is a permutation of the underlying type. -/ @[to_additive "Right addition of an additive unit is a permutation of the underlying type.", simps apply {fully_applied := ff}] def mul_right (u : units M) : equiv.perm M := { to_fun := λx, x * u, inv_fun := λx, x * ↑u⁻¹, left_inv := λ x, mul_inv_cancel_right x u, right_inv := λ x, inv_mul_cancel_right x u } @[simp, to_additive] lemma mul_right_symm (u : units M) : u.mul_right.symm = u⁻¹.mul_right := equiv.ext $ λ x, rfl end units namespace equiv section group variables [group G] /-- Left multiplication in a `group` is a permutation of the underlying type. -/ @[to_additive "Left addition in an `add_group` is a permutation of the underlying type."] protected def mul_left (a : G) : perm G := (to_units a).mul_left @[simp, to_additive] lemma coe_mul_left (a : G) : ⇑(equiv.mul_left a) = (*) a := rfl /-- extra simp lemma that `dsimp` can use. `simp` will never use this. -/ @[simp, nolint simp_nf, to_additive] lemma mul_left_symm_apply (a : G) : ((equiv.mul_left a).symm : G → G) = (*) a⁻¹ := rfl @[simp, to_additive] lemma mul_left_symm (a : G) : (equiv.mul_left a).symm = equiv.mul_left a⁻¹ := ext $ λ x, rfl /-- Right multiplication in a `group` is a permutation of the underlying type. -/ @[to_additive "Right addition in an `add_group` is a permutation of the underlying type."] protected def mul_right (a : G) : perm G := (to_units a).mul_right @[simp, to_additive] lemma coe_mul_right (a : G) : ⇑(equiv.mul_right a) = λ x, x * a := rfl @[simp, to_additive] lemma mul_right_symm (a : G) : (equiv.mul_right a).symm = equiv.mul_right a⁻¹ := ext $ λ x, rfl /-- extra simp lemma that `dsimp` can use. `simp` will never use this. -/ @[simp, nolint simp_nf, to_additive] lemma mul_right_symm_apply (a : G) : ((equiv.mul_right a).symm : G → G) = λ x, x * a⁻¹ := rfl attribute [nolint simp_nf] add_left_symm_apply add_right_symm_apply variable (G) /-- Inversion on a `group` is a permutation of the underlying type. -/ @[to_additive "Negation on an `add_group` is a permutation of the underlying type.", simps apply {fully_applied := ff}] protected def inv : perm G := { to_fun := λa, a⁻¹, inv_fun := λa, a⁻¹, left_inv := assume a, inv_inv a, right_inv := assume a, inv_inv a } variable {G} @[simp, to_additive] lemma inv_symm : (equiv.inv G).symm = equiv.inv G := rfl /-- A version of `equiv.mul_left a b⁻¹` that is defeq to `a / b`. -/ @[to_additive /-" A version of `equiv.add_left a (-b)` that is defeq to `a - b`. "-/, simps] protected def div_left (a : G) : G ≃ G := { to_fun := λ b, a / b, inv_fun := λ b, b⁻¹ * a, left_inv := λ b, by simp [div_eq_mul_inv], right_inv := λ b, by simp [div_eq_mul_inv] } @[to_additive] lemma div_left_eq_inv_trans_mul_left (a : G) : equiv.div_left a = (equiv.inv G).trans (equiv.mul_left a) := ext $ λ _, div_eq_mul_inv _ _ /-- A version of `equiv.mul_right a⁻¹ b` that is defeq to `b / a`. -/ @[to_additive /-" A version of `equiv.add_right (-a) b` that is defeq to `b - a`. "-/, simps] protected def div_right (a : G) : G ≃ G := { to_fun := λ b, b / a, inv_fun := λ b, b * a, left_inv := λ b, by simp [div_eq_mul_inv], right_inv := λ b, by simp [div_eq_mul_inv] } @[to_additive] lemma div_right_eq_mul_right_inv (a : G) : equiv.div_right a = equiv.mul_right a⁻¹ := ext $ λ _, div_eq_mul_inv _ _ end group section group_with_zero variables [group_with_zero G] /-- Left multiplication by a nonzero element in a `group_with_zero` is a permutation of the underlying type. -/ @[simps {fully_applied := ff}] protected def mul_left' (a : G) (ha : a ≠ 0) : perm G := { to_fun := λ x, a * x, inv_fun := λ x, a⁻¹ * x, left_inv := λ x, by { dsimp, rw [← mul_assoc, inv_mul_cancel ha, one_mul] }, right_inv := λ x, by { dsimp, rw [← mul_assoc, mul_inv_cancel ha, one_mul] } } /-- Right multiplication by a nonzero element in a `group_with_zero` is a permutation of the underlying type. -/ @[simps {fully_applied := ff}] protected def mul_right' (a : G) (ha : a ≠ 0) : perm G := { to_fun := λ x, x * a, inv_fun := λ x, x * a⁻¹, left_inv := λ x, by { dsimp, rw [mul_assoc, mul_inv_cancel ha, mul_one] }, right_inv := λ x, by { dsimp, rw [mul_assoc, inv_mul_cancel ha, mul_one] } } end group_with_zero end equiv /-- When the group is commutative, `equiv.inv` is a `mul_equiv`. There is a variant of this `mul_equiv.inv' G : G ≃* Gᵒᵖ` for the non-commutative case. -/ @[to_additive "When the `add_group` is commutative, `equiv.neg` is an `add_equiv`."] def mul_equiv.inv (G : Type*) [comm_group G] : G ≃* G := { to_fun := has_inv.inv, inv_fun := has_inv.inv, map_mul' := mul_inv, ..equiv.inv G} section type_tags /-- Reinterpret `G ≃+ H` as `multiplicative G ≃* multiplicative H`. -/ def add_equiv.to_multiplicative [add_zero_class G] [add_zero_class H] : (G ≃+ H) ≃ (multiplicative G ≃* multiplicative H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative, f.symm.to_add_monoid_hom.to_multiplicative, f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `G ≃* H` as `additive G ≃+ additive H`. -/ def mul_equiv.to_additive [mul_one_class G] [mul_one_class H] : (G ≃* H) ≃ (additive G ≃+ additive H) := { to_fun := λ f, ⟨f.to_monoid_hom.to_additive, f.symm.to_monoid_hom.to_additive, f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_add_monoid_hom, f.symm.to_add_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `additive G ≃+ H` as `G ≃* multiplicative H`. -/ def add_equiv.to_multiplicative' [mul_one_class G] [add_zero_class H] : (additive G ≃+ H) ≃ (G ≃* multiplicative H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative', f.symm.to_add_monoid_hom.to_multiplicative'', f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `G ≃* multiplicative H` as `additive G ≃+ H` as. -/ def mul_equiv.to_additive' [mul_one_class G] [add_zero_class H] : (G ≃* multiplicative H) ≃ (additive G ≃+ H) := add_equiv.to_multiplicative'.symm /-- Reinterpret `G ≃+ additive H` as `multiplicative G ≃* H`. -/ def add_equiv.to_multiplicative'' [add_zero_class G] [mul_one_class H] : (G ≃+ additive H) ≃ (multiplicative G ≃* H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative'', f.symm.to_add_monoid_hom.to_multiplicative', f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `multiplicative G ≃* H` as `G ≃+ additive H` as. -/ def mul_equiv.to_additive'' [add_zero_class G] [mul_one_class H] : (multiplicative G ≃* H) ≃ (G ≃+ additive H) := add_equiv.to_multiplicative''.symm end type_tags
d3edd538e60078f7450ce2f1675201fef55e90f0
9dc8cecdf3c4634764a18254e94d43da07142918
/src/topology/algebra/uniform_mul_action.lean
dc90954b31cd73a51483d5dce412d57c919a8ba4
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
7,187
lean
/- Copyright (c) 2022 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import algebra.hom.group_instances import topology.algebra.uniform_group import topology.uniform_space.completion /-! # Multiplicative action on the completion of a uniform space In this file we define typeclasses `has_uniform_continuous_const_vadd` and `has_uniform_continuous_const_smul` and prove that a multiplicative action on `X` with uniformly continuous `(•) c` can be extended to a multiplicative action on `uniform_space.completion X`. In later files once the additive group structure is set up, we provide * `uniform_space.completion.distrib_mul_action` * `uniform_space.completion.mul_action_with_zero` * `uniform_space.completion.module` TODO: Generalise the results here from the concrete `completion` to any `abstract_completion`. -/ universes u v w x y z noncomputable theory variables (R : Type u) (M : Type v) (N : Type w) (X : Type x) (Y : Type y) [uniform_space X] [uniform_space Y] /-- An additive action such that for all `c`, the map `λ x, c +ᵥ x` is uniformly continuous. -/ class has_uniform_continuous_const_vadd [uniform_space X] [has_vadd M X] : Prop := (uniform_continuous_const_vadd : ∀ (c : M), uniform_continuous ((+ᵥ) c : X → X)) /-- A multiplicative action such that for all `c`, the map `λ x, c • x` is uniformly continuous. -/ @[to_additive] class has_uniform_continuous_const_smul [uniform_space X] [has_smul M X] : Prop := (uniform_continuous_const_smul : ∀ (c : M), uniform_continuous ((•) c : X → X)) export has_uniform_continuous_const_vadd (uniform_continuous_const_vadd) has_uniform_continuous_const_smul (uniform_continuous_const_smul) instance add_monoid.has_uniform_continuous_const_smul_nat [add_group X] [uniform_add_group X] : has_uniform_continuous_const_smul ℕ X := ⟨uniform_continuous_const_nsmul⟩ instance add_group.has_uniform_continuous_const_smul_int [add_group X] [uniform_add_group X] : has_uniform_continuous_const_smul ℤ X := ⟨uniform_continuous_const_zsmul⟩ /-- A `distrib_mul_action` that is continuous on a uniform group is uniformly continuous. This can't be an instance due to it forming a loop with `has_uniform_continuous_const_smul.to_has_continuous_const_smul` -/ lemma has_uniform_continuous_const_smul_of_continuous_const_smul [monoid R] [add_comm_group M] [distrib_mul_action R M] [uniform_space M] [uniform_add_group M] [has_continuous_const_smul R M] : has_uniform_continuous_const_smul R M := ⟨λ r, uniform_continuous_of_continuous_at_zero (distrib_mul_action.to_add_monoid_hom M r) (continuous.continuous_at (continuous_const_smul r))⟩ /-- The action of `semiring.to_module` is uniformly continuous. -/ instance ring.has_uniform_continuous_const_smul [ring R] [uniform_space R] [uniform_add_group R] [has_continuous_mul R] : has_uniform_continuous_const_smul R R := has_uniform_continuous_const_smul_of_continuous_const_smul _ _ /-- The action of `semiring.to_opposite_module` is uniformly continuous. -/ instance ring.has_uniform_continuous_const_op_smul [ring R] [uniform_space R] [uniform_add_group R] [has_continuous_mul R] : has_uniform_continuous_const_smul Rᵐᵒᵖ R := has_uniform_continuous_const_smul_of_continuous_const_smul _ _ section has_smul variable [has_smul M X] @[priority 100, to_additive] instance has_uniform_continuous_const_smul.to_has_continuous_const_smul [has_uniform_continuous_const_smul M X] : has_continuous_const_smul M X := ⟨λ c, (uniform_continuous_const_smul c).continuous⟩ variables {M X Y} @[to_additive] lemma uniform_continuous.const_smul [has_uniform_continuous_const_smul M X] {f : Y → X} (hf : uniform_continuous f) (c : M) : uniform_continuous (c • f) := (uniform_continuous_const_smul c).comp hf /-- If a scalar is central, then its right action is uniform continuous when its left action is. -/ @[priority 100] instance has_uniform_continuous_const_smul.op [has_smul Mᵐᵒᵖ X] [is_central_scalar M X] [has_uniform_continuous_const_smul M X] : has_uniform_continuous_const_smul Mᵐᵒᵖ X := ⟨mul_opposite.rec $ λ c, begin change uniform_continuous (λ m, mul_opposite.op c • m), simp_rw op_smul_eq_smul, exact uniform_continuous_const_smul c, end⟩ @[to_additive] instance mul_opposite.has_uniform_continuous_const_smul [has_uniform_continuous_const_smul M X] : has_uniform_continuous_const_smul M Xᵐᵒᵖ := ⟨λ c, mul_opposite.uniform_continuous_op.comp $ mul_opposite.uniform_continuous_unop.const_smul c⟩ end has_smul @[to_additive] instance uniform_group.to_has_uniform_continuous_const_smul {G : Type u} [group G] [uniform_space G] [uniform_group G] : has_uniform_continuous_const_smul G G := ⟨λ c, uniform_continuous_const.mul uniform_continuous_id⟩ namespace uniform_space namespace completion section has_smul variable [has_smul M X] @[to_additive] instance : has_smul M (completion X) := ⟨λ c, completion.map ((•) c)⟩ lemma smul_def (c : M) (x : completion X) : c • x = completion.map ((•) c) x := rfl @[to_additive] instance : has_uniform_continuous_const_smul M (completion X) := ⟨λ c, uniform_continuous_map⟩ instance [has_smul N X] [has_smul M N] [has_uniform_continuous_const_smul M X] [has_uniform_continuous_const_smul N X] [is_scalar_tower M N X] : is_scalar_tower M N (completion X) := ⟨λ m n x, begin have : _ = (_ : completion X → completion X) := map_comp (uniform_continuous_const_smul m) (uniform_continuous_const_smul n), refine eq.trans _ (congr_fun this.symm x), exact congr_arg (λ f, completion.map f x) (by exact funext (smul_assoc _ _)), end⟩ instance [has_smul N X] [smul_comm_class M N X] [has_uniform_continuous_const_smul M X] [has_uniform_continuous_const_smul N X] : smul_comm_class M N (completion X) := ⟨λ m n x, begin have hmn : m • n • x = (( completion.map (has_smul.smul m)) ∘ (completion.map (has_smul.smul n))) x := rfl, have hnm : n • m • x = (( completion.map (has_smul.smul n)) ∘ (completion.map (has_smul.smul m))) x := rfl, rw [hmn, hnm, map_comp, map_comp], exact congr_arg (λ f, completion.map f x) (by exact funext (smul_comm _ _)), repeat{ exact uniform_continuous_const_smul _}, end⟩ instance [has_smul Mᵐᵒᵖ X] [is_central_scalar M X] : is_central_scalar M (completion X) := ⟨λ c a, congr_arg (λ f, completion.map f a) $ by exact funext (op_smul_eq_smul c)⟩ variables {M X} [has_uniform_continuous_const_smul M X] @[simp, norm_cast, to_additive] lemma coe_smul (c : M) (x : X) : ↑(c • x) = (c • x : completion X) := (map_coe (uniform_continuous_const_smul c) x).symm end has_smul @[to_additive] instance [monoid M] [mul_action M X] [has_uniform_continuous_const_smul M X] : mul_action M (completion X) := { smul := (•), one_smul := ext' (continuous_const_smul _) continuous_id $ λ a, by rw [← coe_smul, one_smul], mul_smul := λ x y, ext' (continuous_const_smul _) ((continuous_const_smul _).const_smul _) $ λ a, by simp only [← coe_smul, mul_smul] } end completion end uniform_space
ca6e2504b80780ec13b84dc99001b3309f7093f3
437dc96105f48409c3981d46fb48e57c9ac3a3e4
/src/data/real/cardinality.lean
d7f6e8e97ace8f1fc5a948677115a87663064fb4
[ "Apache-2.0" ]
permissive
dan-c-k/mathlib
08efec79bd7481ee6da9cc44c24a653bff4fbe0d
96efc220f6225bc7a5ed8349900391a33a38cc56
refs/heads/master
1,658,082,847,093
1,589,013,201,000
1,589,013,201,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,888
lean
/- Copyright (c) 2019 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn The cardinality of the reals. -/ import set_theory.ordinal import analysis.specific_limits import data.rat.denumerable open nat set noncomputable theory namespace cardinal variables {c : ℝ} {f g : ℕ → bool} {n : ℕ} def cantor_function_aux (c : ℝ) (f : ℕ → bool) (n : ℕ) : ℝ := cond (f n) (c ^ n) 0 @[simp] lemma cantor_function_aux_tt (h : f n = tt) : cantor_function_aux c f n = c ^ n := by simp [cantor_function_aux, h] @[simp] lemma cantor_function_aux_ff (h : f n = ff) : cantor_function_aux c f n = 0 := by simp [cantor_function_aux, h] lemma cantor_function_aux_nonneg (h : 0 ≤ c) : 0 ≤ cantor_function_aux c f n := by { cases h' : f n; simp [h'], apply pow_nonneg h } lemma cantor_function_aux_eq (h : f n = g n) : cantor_function_aux c f n = cantor_function_aux c g n := by simp [cantor_function_aux, h] lemma cantor_function_aux_succ (f : ℕ → bool) : (λ n, cantor_function_aux c f (n + 1)) = λ n, c * cantor_function_aux c (λ n, f (n + 1)) n := by { ext n, cases h : f (n + 1); simp [h, _root_.pow_succ] } lemma summable_cantor_function (f : ℕ → bool) (h1 : 0 ≤ c) (h2 : c < 1) : summable (cantor_function_aux c f) := begin apply (summable_geometric h1 h2).summable_of_eq_zero_or_self, intro n, cases h : f n; simp [h] end def cantor_function (c : ℝ) (f : ℕ → bool) : ℝ := ∑' n, cantor_function_aux c f n lemma cantor_function_le (h1 : 0 ≤ c) (h2 : c < 1) (h3 : ∀ n, f n → g n) : cantor_function c f ≤ cantor_function c g := begin apply tsum_le_tsum _ (summable_cantor_function f h1 h2) (summable_cantor_function g h1 h2), intro n, cases h : f n, simp [h, cantor_function_aux_nonneg h1], replace h3 : g n = tt := h3 n h, simp [h, h3] end lemma cantor_function_succ (f : ℕ → bool) (h1 : 0 ≤ c) (h2 : c < 1) : cantor_function c f = cond (f 0) 1 0 + c * cantor_function c (λ n, f (n+1)) := begin rw [cantor_function, tsum_eq_zero_add (summable_cantor_function f h1 h2)], rw [cantor_function_aux_succ, tsum_mul_left _ (summable_cantor_function _ h1 h2)], refl end lemma increasing_cantor_function (h1 : 0 < c) (h2 : c < 1 / 2) {n : ℕ} {f g : ℕ → bool} (hn : ∀(k < n), f k = g k) (fn : f n = ff) (gn : g n = tt) : cantor_function c f < cantor_function c g := begin have h3 : c < 1, { apply lt_trans h2, norm_num }, induction n with n ih generalizing f g, { let f_max : ℕ → bool := λ n, nat.rec ff (λ _ _, tt) n, have hf_max : ∀n, f n → f_max n, { intros n hn, cases n, rw [fn] at hn, contradiction, apply rfl }, let g_min : ℕ → bool := λ n, nat.rec tt (λ _ _, ff) n, have hg_min : ∀n, g_min n → g n, { intros n hn, cases n, rw [gn], apply rfl, contradiction }, apply lt_of_le_of_lt (cantor_function_le (le_of_lt h1) h3 hf_max), apply lt_of_lt_of_le _ (cantor_function_le (le_of_lt h1) h3 hg_min), have : c / (1 - c) < 1, { rw [div_lt_one_iff_lt, lt_sub_iff_add_lt], { convert add_lt_add h2 h2, norm_num }, rwa sub_pos }, convert this, { rw [cantor_function_succ _ (le_of_lt h1) h3, div_eq_mul_inv, ←tsum_geometric (le_of_lt h1) h3], apply zero_add }, { apply tsum_eq_single 0, intros n hn, cases n, contradiction, refl, apply_instance }}, rw [cantor_function_succ f (le_of_lt h1) h3, cantor_function_succ g (le_of_lt h1) h3], rw [hn 0 $ zero_lt_succ n], apply add_lt_add_left, rw mul_lt_mul_left h1, exact ih (λ k hk, hn _ $ succ_lt_succ hk) fn gn end lemma injective_cantor_function (h1 : 0 < c) (h2 : c < 1 / 2) : function.injective (cantor_function c) := begin intros f g hfg, classical, by_contra h, revert hfg, have : ∃n, f n ≠ g n, { rw [←not_forall], intro h', apply h, ext, apply h' }, let n := nat.find this, have hn : ∀ (k : ℕ), k < n → f k = g k, { intros k hk, apply of_not_not, exact nat.find_min this hk }, cases fn : f n, { apply ne_of_lt, refine increasing_cantor_function h1 h2 hn fn _, apply eq_tt_of_not_eq_ff, rw [←fn], apply ne.symm, exact nat.find_spec this }, { apply ne_of_gt, refine increasing_cantor_function h1 h2 (λ k hk, (hn k hk).symm) _ fn, apply eq_ff_of_not_eq_tt, rw [←fn], apply ne.symm, exact nat.find_spec this } end lemma mk_real : mk ℝ = 2 ^ omega.{0} := begin apply le_antisymm, { dsimp [real], apply le_trans mk_quotient_le, apply le_trans (mk_subtype_le _), rw [←power_def, mk_nat, mk_rat, power_self_eq (le_refl _)] }, { convert mk_le_of_injective (injective_cantor_function _ _), rw [←power_def, mk_bool, mk_nat], exact 1 / 3, norm_num, norm_num } end lemma not_countable_real : ¬ countable (set.univ : set ℝ) := by { rw [countable_iff, not_le, mk_univ, mk_real], apply cantor } end cardinal
c181167aef7b00706705d2b2f957e4f30869f95d
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/qpf/univariate/basic.lean
d865d2a3eaf10705711aae0dd3ced9b19f7e121d
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
21,835
lean
/- Copyright (c) 2018 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad -/ import data.pfunctor.univariate /-! # Quotients of Polynomial Functors We assume the following: `P` : a polynomial functor `W` : its W-type `M` : its M-type `F` : a functor We define: `q` : `qpf` data, representing `F` as a quotient of `P` The main goal is to construct: `fix` : the initial algebra with structure map `F fix → fix`. `cofix` : the final coalgebra with structure map `cofix → F cofix` We also show that the composition of qpfs is a qpf, and that the quotient of a qpf is a qpf. The present theory focuses on the univariate case for qpfs ## References * [Jeremy Avigad, Mario M. Carneiro and Simon Hudon, *Data Types as Quotients of Polynomial Functors*][avigad-carneiro-hudon2019] -/ universe u /-- Quotients of polynomial functors. Roughly speaking, saying that `F` is a quotient of a polynomial functor means that for each `α`, elements of `F α` are represented by pairs `⟨a, f⟩`, where `a` is the shape of the object and `f` indexes the relevant elements of `α`, in a suitably natural manner. -/ class qpf (F : Type u → Type u) [functor F] := (P : pfunctor.{u}) (abs : Π {α}, P.obj α → F α) (repr : Π {α}, F α → P.obj α) (abs_repr : ∀ {α} (x : F α), abs (repr x) = x) (abs_map : ∀ {α β} (f : α → β) (p : P.obj α), abs (f <$> p) = f <$> abs p) namespace qpf variables {F : Type u → Type u} [functor F] [q : qpf F] include q open functor (liftp liftr) /- Show that every qpf is a lawful functor. Note: every functor has a field, `map_const`, and is_lawful_functor has the defining characterization. We can only propagate the assumption. -/ theorem id_map {α : Type*} (x : F α) : id <$> x = x := by { rw ←abs_repr x, cases repr x with a f, rw [←abs_map], reflexivity } theorem comp_map {α β γ : Type*} (f : α → β) (g : β → γ) (x : F α) : (g ∘ f) <$> x = g <$> f <$> x := by { rw ←abs_repr x, cases repr x with a f, rw [←abs_map, ←abs_map, ←abs_map], reflexivity } theorem is_lawful_functor (h : ∀ α β : Type u, @functor.map_const F _ α _ = functor.map ∘ function.const β) : is_lawful_functor F := { map_const_eq := h, id_map := @id_map F _ _, comp_map := @comp_map F _ _ } /- Lifting predicates and relations -/ section open functor theorem liftp_iff {α : Type u} (p : α → Prop) (x : F α) : liftp p x ↔ ∃ a f, x = abs ⟨a, f⟩ ∧ ∀ i, p (f i) := begin split, { rintros ⟨y, hy⟩, cases h : repr y with a f, use [a, λ i, (f i).val], split, { rw [←hy, ←abs_repr y, h, ←abs_map], reflexivity }, intro i, apply (f i).property }, rintros ⟨a, f, h₀, h₁⟩, dsimp at *, use abs (⟨a, λ i, ⟨f i, h₁ i⟩⟩), rw [←abs_map, h₀], reflexivity end theorem liftp_iff' {α : Type u} (p : α → Prop) (x : F α) : liftp p x ↔ ∃ u : q.P.obj α, abs u = x ∧ ∀ i, p (u.snd i) := begin split, { rintros ⟨y, hy⟩, cases h : repr y with a f, use ⟨a, λ i, (f i).val⟩, dsimp, split, { rw [←hy, ←abs_repr y, h, ←abs_map], reflexivity }, intro i, apply (f i).property }, rintros ⟨⟨a, f⟩, h₀, h₁⟩, dsimp at *, use abs (⟨a, λ i, ⟨f i, h₁ i⟩⟩), rw [←abs_map, ←h₀], reflexivity end theorem liftr_iff {α : Type u} (r : α → α → Prop) (x y : F α) : liftr r x y ↔ ∃ a f₀ f₁, x = abs ⟨a, f₀⟩ ∧ y = abs ⟨a, f₁⟩ ∧ ∀ i, r (f₀ i) (f₁ i) := begin split, { rintros ⟨u, xeq, yeq⟩, cases h : repr u with a f, use [a, λ i, (f i).val.fst, λ i, (f i).val.snd], split, { rw [←xeq, ←abs_repr u, h, ←abs_map], refl }, split, { rw [←yeq, ←abs_repr u, h, ←abs_map], refl }, intro i, exact (f i).property }, rintros ⟨a, f₀, f₁, xeq, yeq, h⟩, use abs ⟨a, λ i, ⟨(f₀ i, f₁ i), h i⟩⟩, dsimp, split, { rw [xeq, ←abs_map], refl }, rw [yeq, ←abs_map], refl end end /- Think of trees in the `W` type corresponding to `P` as representatives of elements of the least fixed point of `F`, and assign a canonical representative to each equivalence class of trees. -/ /-- does recursion on `q.P.W` using `g : F α → α` rather than `g : P α → α` -/ def recF {α : Type*} (g : F α → α) : q.P.W → α | ⟨a, f⟩ := g (abs ⟨a, λ x, recF (f x)⟩) theorem recF_eq {α : Type*} (g : F α → α) (x : q.P.W) : recF g x = g (abs (recF g <$> x.dest)) := by cases x; reflexivity theorem recF_eq' {α : Type*} (g : F α → α) (a : q.P.A) (f : q.P.B a → q.P.W) : recF g ⟨a, f⟩ = g (abs (recF g <$> ⟨a, f⟩)) := rfl /-- two trees are equivalent if their F-abstractions are -/ inductive Wequiv : q.P.W → q.P.W → Prop | ind (a : q.P.A) (f f' : q.P.B a → q.P.W) : (∀ x, Wequiv (f x) (f' x)) → Wequiv ⟨a, f⟩ ⟨a, f'⟩ | abs (a : q.P.A) (f : q.P.B a → q.P.W) (a' : q.P.A) (f' : q.P.B a' → q.P.W) : abs ⟨a, f⟩ = abs ⟨a', f'⟩ → Wequiv ⟨a, f⟩ ⟨a', f'⟩ | trans (u v w : q.P.W) : Wequiv u v → Wequiv v w → Wequiv u w /-- recF is insensitive to the representation -/ theorem recF_eq_of_Wequiv {α : Type u} (u : F α → α) (x y : q.P.W) : Wequiv x y → recF u x = recF u y := begin cases x with a f, cases y with b g, intro h, induction h, case qpf.Wequiv.ind : a f f' h ih { simp only [recF_eq', pfunctor.map_eq, function.comp, ih] }, case qpf.Wequiv.abs : a f a' f' h { simp only [recF_eq', abs_map, h] }, case qpf.Wequiv.trans : x y z e₁ e₂ ih₁ ih₂ { exact eq.trans ih₁ ih₂ } end theorem Wequiv.abs' (x y : q.P.W) (h : abs x.dest = abs y.dest) : Wequiv x y := by { cases x, cases y, apply Wequiv.abs, apply h } theorem Wequiv.refl (x : q.P.W) : Wequiv x x := by cases x with a f; exact Wequiv.abs a f a f rfl theorem Wequiv.symm (x y : q.P.W) : Wequiv x y → Wequiv y x := begin cases x with a f, cases y with b g, intro h, induction h, case qpf.Wequiv.ind : a f f' h ih { exact Wequiv.ind _ _ _ ih }, case qpf.Wequiv.abs : a f a' f' h { exact Wequiv.abs _ _ _ _ h.symm }, case qpf.Wequiv.trans : x y z e₁ e₂ ih₁ ih₂ { exact qpf.Wequiv.trans _ _ _ ih₂ ih₁} end /-- maps every element of the W type to a canonical representative -/ def Wrepr : q.P.W → q.P.W := recF (pfunctor.W.mk ∘ repr) theorem Wrepr_equiv (x : q.P.W) : Wequiv (Wrepr x) x := begin induction x with a f ih, apply Wequiv.trans, { change Wequiv (Wrepr ⟨a, f⟩) (pfunctor.W.mk (Wrepr <$> ⟨a, f⟩)), apply Wequiv.abs', have : Wrepr ⟨a, f⟩ = pfunctor.W.mk (repr (abs (Wrepr <$> ⟨a, f⟩))) := rfl, rw [this, pfunctor.W.dest_mk, abs_repr], reflexivity }, apply Wequiv.ind, exact ih end /-- Define the fixed point as the quotient of trees under the equivalence relation `Wequiv`. -/ def W_setoid : setoid q.P.W := ⟨Wequiv, @Wequiv.refl _ _ _, @Wequiv.symm _ _ _, @Wequiv.trans _ _ _⟩ local attribute [instance] W_setoid /-- inductive type defined as initial algebra of a Quotient of Polynomial Functor -/ @[nolint has_inhabited_instance] def fix (F : Type u → Type u) [functor F] [q : qpf F] := quotient (W_setoid : setoid q.P.W) /-- recursor of a type defined by a qpf -/ def fix.rec {α : Type*} (g : F α → α) : fix F → α := quot.lift (recF g) (recF_eq_of_Wequiv g) /-- access the underlying W-type of a fixpoint data type -/ def fix_to_W : fix F → q.P.W := quotient.lift Wrepr (recF_eq_of_Wequiv (λ x, @pfunctor.W.mk q.P (repr x))) /-- constructor of a type defined by a qpf -/ def fix.mk (x : F (fix F)) : fix F := quot.mk _ (pfunctor.W.mk (fix_to_W <$> repr x)) /-- destructor of a type defined by a qpf -/ def fix.dest : fix F → F (fix F) := fix.rec (functor.map fix.mk) theorem fix.rec_eq {α : Type*} (g : F α → α) (x : F (fix F)) : fix.rec g (fix.mk x) = g (fix.rec g <$> x) := have recF g ∘ fix_to_W = fix.rec g, by { apply funext, apply quotient.ind, intro x, apply recF_eq_of_Wequiv, rw fix_to_W, apply Wrepr_equiv }, begin conv { to_lhs, rw [fix.rec, fix.mk], dsimp }, cases h : repr x with a f, rw [pfunctor.map_eq, recF_eq, ←pfunctor.map_eq, pfunctor.W.dest_mk, ←pfunctor.comp_map, abs_map, ←h, abs_repr, this] end theorem fix.ind_aux (a : q.P.A) (f : q.P.B a → q.P.W) : fix.mk (abs ⟨a, λ x, ⟦f x⟧⟩) = ⟦⟨a, f⟩⟧ := have fix.mk (abs ⟨a, λ x, ⟦f x⟧⟩) = ⟦Wrepr ⟨a, f⟩⟧, begin apply quot.sound, apply Wequiv.abs', rw [pfunctor.W.dest_mk, abs_map, abs_repr, ←abs_map, pfunctor.map_eq], conv { to_rhs, simp only [Wrepr, recF_eq, pfunctor.W.dest_mk, abs_repr] }, reflexivity end, by { rw this, apply quot.sound, apply Wrepr_equiv } theorem fix.ind_rec {α : Type u} (g₁ g₂ : fix F → α) (h : ∀ x : F (fix F), g₁ <$> x = g₂ <$> x → g₁ (fix.mk x) = g₂ (fix.mk x)) : ∀ x, g₁ x = g₂ x := begin apply quot.ind, intro x, induction x with a f ih, change g₁ ⟦⟨a, f⟩⟧ = g₂ ⟦⟨a, f⟩⟧, rw [←fix.ind_aux a f], apply h, rw [←abs_map, ←abs_map, pfunctor.map_eq, pfunctor.map_eq], dsimp [function.comp], congr' with x, apply ih end theorem fix.rec_unique {α : Type u} (g : F α → α) (h : fix F → α) (hyp : ∀ x, h (fix.mk x) = g (h <$> x)) : fix.rec g = h := begin ext x, apply fix.ind_rec, intros x hyp', rw [hyp, ←hyp', fix.rec_eq] end theorem fix.mk_dest (x : fix F) : fix.mk (fix.dest x) = x := begin change (fix.mk ∘ fix.dest) x = id x, apply fix.ind_rec, intro x, dsimp, rw [fix.dest, fix.rec_eq, id_map, comp_map], intro h, rw h end theorem fix.dest_mk (x : F (fix F)) : fix.dest (fix.mk x) = x := begin unfold fix.dest, rw [fix.rec_eq, ←fix.dest, ←comp_map], conv { to_rhs, rw ←(id_map x) }, congr' with x, apply fix.mk_dest end theorem fix.ind (p : fix F → Prop) (h : ∀ x : F (fix F), liftp p x → p (fix.mk x)) : ∀ x, p x := begin apply quot.ind, intro x, induction x with a f ih, change p ⟦⟨a, f⟩⟧, rw [←fix.ind_aux a f], apply h, rw liftp_iff, refine ⟨_, _, rfl, _⟩, apply ih end end qpf /- Construct the final coalgebra to a qpf. -/ namespace qpf variables {F : Type u → Type u} [functor F] [q : qpf F] include q open functor (liftp liftr) /-- does recursion on `q.P.M` using `g : α → F α` rather than `g : α → P α` -/ def corecF {α : Type*} (g : α → F α) : α → q.P.M := pfunctor.M.corec (λ x, repr (g x)) theorem corecF_eq {α : Type*} (g : α → F α) (x : α) : pfunctor.M.dest (corecF g x) = corecF g <$> repr (g x) := by rw [corecF, pfunctor.M.dest_corec] /- Equivalence -/ /-- A pre-congruence on q.P.M *viewed as an F-coalgebra*. Not necessarily symmetric. -/ def is_precongr (r : q.P.M → q.P.M → Prop) : Prop := ∀ ⦃x y⦄, r x y → abs (quot.mk r <$> pfunctor.M.dest x) = abs (quot.mk r <$> pfunctor.M.dest y) /-- The maximal congruence on q.P.M -/ def Mcongr : q.P.M → q.P.M → Prop := λ x y, ∃ r, is_precongr r ∧ r x y /-- coinductive type defined as the final coalgebra of a qpf -/ def cofix (F : Type u → Type u) [functor F] [q : qpf F]:= quot (@Mcongr F _ q) instance [inhabited q.P.A] : inhabited (cofix F) := ⟨ quot.mk _ (default _) ⟩ /-- corecursor for type defined by `cofix` -/ def cofix.corec {α : Type*} (g : α → F α) (x : α) : cofix F := quot.mk _ (corecF g x) /-- destructor for type defined by `cofix` -/ def cofix.dest : cofix F → F (cofix F) := quot.lift (λ x, quot.mk Mcongr <$> (abs (pfunctor.M.dest x))) begin rintros x y ⟨r, pr, rxy⟩, dsimp, have : ∀ x y, r x y → Mcongr x y, { intros x y h, exact ⟨r, pr, h⟩ }, rw [←quot.factor_mk_eq _ _ this], dsimp, conv { to_lhs, rw [comp_map, ←abs_map, pr rxy, abs_map, ←comp_map] } end theorem cofix.dest_corec {α : Type u} (g : α → F α) (x : α) : cofix.dest (cofix.corec g x) = cofix.corec g <$> g x := begin conv { to_lhs, rw [cofix.dest, cofix.corec] }, dsimp, rw [corecF_eq, abs_map, abs_repr, ←comp_map], reflexivity end private theorem cofix.bisim_aux (r : cofix F → cofix F → Prop) (h' : ∀ x, r x x) (h : ∀ x y, r x y → quot.mk r <$> cofix.dest x = quot.mk r <$> cofix.dest y) : ∀ x y, r x y → x = y := begin intro x, apply quot.induction_on x, clear x, intros x y, apply quot.induction_on y, clear y, intros y rxy, apply quot.sound, let r' := λ x y, r (quot.mk _ x) (quot.mk _ y), have : is_precongr r', { intros a b r'ab, have h₀: quot.mk r <$> quot.mk Mcongr <$> abs (pfunctor.M.dest a) = quot.mk r <$> quot.mk Mcongr <$> abs (pfunctor.M.dest b) := h _ _ r'ab, have h₁ : ∀ u v : q.P.M, Mcongr u v → quot.mk r' u = quot.mk r' v, { intros u v cuv, apply quot.sound, dsimp [r'], rw quot.sound cuv, apply h' }, let f : quot r → quot r' := quot.lift (quot.lift (quot.mk r') h₁) begin intro c, apply quot.induction_on c, clear c, intros c d, apply quot.induction_on d, clear d, intros d rcd, apply quot.sound, apply rcd end, have : f ∘ quot.mk r ∘ quot.mk Mcongr = quot.mk r' := rfl, rw [←this, pfunctor.comp_map _ _ f, pfunctor.comp_map _ _ (quot.mk r), abs_map, abs_map, abs_map, h₀], rw [pfunctor.comp_map _ _ f, pfunctor.comp_map _ _ (quot.mk r), abs_map, abs_map, abs_map] }, refine ⟨r', this, rxy⟩ end theorem cofix.bisim_rel (r : cofix F → cofix F → Prop) (h : ∀ x y, r x y → quot.mk r <$> cofix.dest x = quot.mk r <$> cofix.dest y) : ∀ x y, r x y → x = y := let r' x y := x = y ∨ r x y in begin intros x y rxy, apply cofix.bisim_aux r', { intro x, left, reflexivity }, { intros x y r'xy, cases r'xy, { rw r'xy }, have : ∀ x y, r x y → r' x y := λ x y h, or.inr h, rw ←quot.factor_mk_eq _ _ this, dsimp, rw [@comp_map _ _ q _ _ _ (quot.mk r), @comp_map _ _ q _ _ _ (quot.mk r)], rw h _ _ r'xy }, right, exact rxy end theorem cofix.bisim (r : cofix F → cofix F → Prop) (h : ∀ x y, r x y → liftr r (cofix.dest x) (cofix.dest y)) : ∀ x y, r x y → x = y := begin apply cofix.bisim_rel, intros x y rxy, rcases (liftr_iff r _ _).mp (h x y rxy) with ⟨a, f₀, f₁, dxeq, dyeq, h'⟩, rw [dxeq, dyeq, ←abs_map, ←abs_map, pfunctor.map_eq, pfunctor.map_eq], congr' 2 with i, apply quot.sound, apply h' end theorem cofix.bisim' {α : Type*} (Q : α → Prop) (u v : α → cofix F) (h : ∀ x, Q x → ∃ a f f', cofix.dest (u x) = abs ⟨a, f⟩ ∧ cofix.dest (v x) = abs ⟨a, f'⟩ ∧ ∀ i, ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x') : ∀ x, Q x → u x = v x := λ x Qx, let R := λ w z : cofix F, ∃ x', Q x' ∧ w = u x' ∧ z = v x' in cofix.bisim R (λ x y ⟨x', Qx', xeq, yeq⟩, begin rcases h x' Qx' with ⟨a, f, f', ux'eq, vx'eq, h'⟩, rw liftr_iff, refine ⟨a, f, f', xeq.symm ▸ ux'eq, yeq.symm ▸ vx'eq, h'⟩, end) _ _ ⟨x, Qx, rfl, rfl⟩ end qpf /- Composition of qpfs. -/ namespace qpf variables {F₂ : Type u → Type u} [functor F₂] [q₂ : qpf F₂] variables {F₁ : Type u → Type u} [functor F₁] [q₁ : qpf F₁] include q₂ q₁ /-- composition of qpfs gives another qpf -/ def comp : qpf (functor.comp F₂ F₁) := { P := pfunctor.comp (q₂.P) (q₁.P), abs := λ α, begin dsimp [functor.comp], intro p, exact abs ⟨p.1.1, λ x, abs ⟨p.1.2 x, λ y, p.2 ⟨x, y⟩⟩⟩ end, repr := λ α, begin dsimp [functor.comp], intro y, refine ⟨⟨(repr y).1, λ u, (repr ((repr y).2 u)).1⟩, _⟩, dsimp [pfunctor.comp], intro x, exact (repr ((repr y).2 x.1)).snd x.2 end, abs_repr := λ α, begin abstract { dsimp [functor.comp], intro x, conv { to_rhs, rw ←abs_repr x}, cases h : repr x with a f, dsimp, congr' with x, cases h' : repr (f x) with b g, dsimp, rw [←h', abs_repr] } end, abs_map := λ α β f, begin abstract { dsimp [functor.comp, pfunctor.comp], intro p, cases p with a g, dsimp, cases a with b h, dsimp, symmetry, transitivity, symmetry, apply abs_map, congr, rw pfunctor.map_eq, dsimp [function.comp], simp [abs_map], split, reflexivity, ext x, rw ←abs_map, reflexivity } end } end qpf /- Quotients. We show that if `F` is a qpf and `G` is a suitable quotient of `F`, then `G` is a qpf. -/ namespace qpf variables {F : Type u → Type u} [functor F] [q : qpf F] variables {G : Type u → Type u} [functor G] variable {FG_abs : Π {α}, F α → G α} variable {FG_repr : Π {α}, G α → F α} /-- Given a qpf `F` and a well-behaved surjection `FG_abs` from F α to functor G α, `G` is a qpf. We can consider `G` a quotient on `F` where elements `x y : F α` are in the same equivalence class if `FG_abs x = FG_abs y` -/ def quotient_qpf (FG_abs_repr : Π {α} (x : G α), FG_abs (FG_repr x) = x) (FG_abs_map : ∀ {α β} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x) : qpf G := { P := q.P, abs := λ {α} p, FG_abs (abs p), repr := λ {α} x, repr (FG_repr x), abs_repr := λ {α} x, by rw [abs_repr, FG_abs_repr], abs_map := λ {α β} f x, by { rw [abs_map, FG_abs_map] } } end qpf /- Support. -/ namespace qpf variables {F : Type u → Type u} [functor F] [q : qpf F] include q open functor (liftp liftr supp) open set theorem mem_supp {α : Type u} (x : F α) (u : α) : u ∈ supp x ↔ ∀ a f, abs ⟨a, f⟩ = x → u ∈ f '' univ := begin rw [supp], dsimp, split, { intros h a f haf, have : liftp (λ u, u ∈ f '' univ) x, { rw liftp_iff, refine ⟨a, f, haf.symm, λ i, mem_image_of_mem _ (mem_univ _)⟩ }, exact h this }, intros h p, rw liftp_iff, rintros ⟨a, f, xeq, h'⟩, rcases h a f xeq.symm with ⟨i, _, hi⟩, rw ←hi, apply h' end theorem supp_eq {α : Type u} (x : F α) : supp x = { u | ∀ a f, abs ⟨a, f⟩ = x → u ∈ f '' univ } := by ext; apply mem_supp theorem has_good_supp_iff {α : Type u} (x : F α) : (∀ p, liftp p x ↔ ∀ u ∈ supp x, p u) ↔ ∃ a f, abs ⟨a, f⟩ = x ∧ ∀ a' f', abs ⟨a', f'⟩ = x → f '' univ ⊆ f' '' univ := begin split, { intro h, have : liftp (supp x) x, by rw h; intro u; exact id, rw liftp_iff at this, rcases this with ⟨a, f, xeq, h'⟩, refine ⟨a, f, xeq.symm, _⟩, intros a' f' h'', rintros u ⟨i, _, hfi⟩, have : u ∈ supp x, by rw ←hfi; apply h', exact (mem_supp x u).mp this _ _ h'' }, rintros ⟨a, f, xeq, h⟩ p, rw liftp_iff, split, { rintros ⟨a', f', xeq', h'⟩ u usuppx, rcases (mem_supp x u).mp usuppx a' f' xeq'.symm with ⟨i, _, f'ieq⟩, rw ←f'ieq, apply h' }, intro h', refine ⟨a, f, xeq.symm, _⟩, intro i, apply h', rw mem_supp, intros a' f' xeq', apply h a' f' xeq', apply mem_image_of_mem _ (mem_univ _) end variable (q) /-- A qpf is said to be uniform if every polynomial functor representing a single value all have the same range. -/ def is_uniform : Prop := ∀ ⦃α : Type u⦄ (a a' : q.P.A) (f : q.P.B a → α) (f' : q.P.B a' → α), abs ⟨a, f⟩ = abs ⟨a', f'⟩ → f '' univ = f' '' univ /-- does `abs` preserve `liftp`? -/ def liftp_preservation : Prop := ∀ ⦃α⦄ (p : α → Prop) (x : q.P.obj α), liftp p (abs x) ↔ liftp p x /-- does `abs` preserve `supp`? -/ def supp_preservation : Prop := ∀ ⦃α⦄ (x : q.P.obj α), supp (abs x) = supp x variable [q] theorem supp_eq_of_is_uniform (h : q.is_uniform) {α : Type u} (a : q.P.A) (f : q.P.B a → α) : supp (abs ⟨a, f⟩) = f '' univ := begin ext u, rw [mem_supp], split, { intro h', apply h' _ _ rfl }, intros h' a' f' e, rw [←h _ _ _ _ e.symm], apply h' end theorem liftp_iff_of_is_uniform (h : q.is_uniform) {α : Type u} (x : F α) (p : α → Prop) : liftp p x ↔ ∀ u ∈ supp x, p u := begin rw [liftp_iff, ←abs_repr x], cases repr x with a f, split, { rintros ⟨a', f', abseq, hf⟩ u, rw [supp_eq_of_is_uniform h, h _ _ _ _ abseq], rintros ⟨i, _, hi⟩, rw ←hi, apply hf }, intro h', refine ⟨a, f, rfl, λ i, h' _ _⟩, rw supp_eq_of_is_uniform h, exact ⟨i, mem_univ i, rfl⟩ end theorem supp_map (h : q.is_uniform) {α β : Type u} (g : α → β) (x : F α) : supp (g <$> x) = g '' supp x := begin rw ←abs_repr x, cases repr x with a f, rw [←abs_map, pfunctor.map_eq], rw [supp_eq_of_is_uniform h, supp_eq_of_is_uniform h, image_comp] end theorem supp_preservation_iff_uniform : q.supp_preservation ↔ q.is_uniform := begin split, { intros h α a a' f f' h', rw [← pfunctor.supp_eq,← pfunctor.supp_eq,← h,h',h] }, { rintros h α ⟨a,f⟩, rwa [supp_eq_of_is_uniform,pfunctor.supp_eq], } end theorem supp_preservation_iff_liftp_preservation : q.supp_preservation ↔ q.liftp_preservation := begin split; intro h, { rintros α p ⟨a,f⟩, have h' := h, rw supp_preservation_iff_uniform at h', dsimp only [supp_preservation,supp] at h, rwa [liftp_iff_of_is_uniform,supp_eq_of_is_uniform,pfunctor.liftp_iff']; try { assumption }, { simp only [image_univ, mem_range, exists_imp_distrib], split; intros; subst_vars; solve_by_elim } }, { rintros α ⟨a,f⟩, simp only [liftp_preservation] at h, simp only [supp,h] } end theorem liftp_preservation_iff_uniform : q.liftp_preservation ↔ q.is_uniform := by rw [← supp_preservation_iff_liftp_preservation, supp_preservation_iff_uniform] end qpf
ee4ebd79dbe5a0be85bc191603a2e21249ed9d78
c777c32c8e484e195053731103c5e52af26a25d1
/src/analysis/analytic/composition.lean
72c45ccf16d3131400bce594fe5fa82fb43c786e
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
58,816
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Johan Commelin -/ import analysis.analytic.basic import combinatorics.composition /-! # Composition of analytic functions In this file we prove that the composition of analytic functions is analytic. The argument is the following. Assume `g z = ∑' qₙ (z, ..., z)` and `f y = ∑' pₖ (y, ..., y)`. Then `g (f y) = ∑' qₙ (∑' pₖ (y, ..., y), ..., ∑' pₖ (y, ..., y)) = ∑' qₙ (p_{i₁} (y, ..., y), ..., p_{iₙ} (y, ..., y))`. For each `n` and `i₁, ..., iₙ`, define a `i₁ + ... + iₙ` multilinear function mapping `(y₀, ..., y_{i₁ + ... + iₙ - 1})` to `qₙ (p_{i₁} (y₀, ..., y_{i₁-1}), p_{i₂} (y_{i₁}, ..., y_{i₁ + i₂ - 1}), ..., p_{iₙ} (....)))`. Then `g ∘ f` is obtained by summing all these multilinear functions. To formalize this, we use compositions of an integer `N`, i.e., its decompositions into a sum `i₁ + ... + iₙ` of positive integers. Given such a composition `c` and two formal multilinear series `q` and `p`, let `q.comp_along_composition p c` be the above multilinear function. Then the `N`-th coefficient in the power series expansion of `g ∘ f` is the sum of these terms over all `c : composition N`. To complete the proof, we need to show that this power series has a positive radius of convergence. This follows from the fact that `composition N` has cardinality `2^(N-1)` and estimates on the norm of `qₙ` and `pₖ`, which give summability. We also need to show that it indeed converges to `g ∘ f`. For this, we note that the composition of partial sums converges to `g ∘ f`, and that it corresponds to a part of the whole sum, on a subset that increases to the whole space. By summability of the norms, this implies the overall convergence. ## Main results * `q.comp p` is the formal composition of the formal multilinear series `q` and `p`. * `has_fpower_series_at.comp` states that if two functions `g` and `f` admit power series expansions `q` and `p`, then `g ∘ f` admits a power series expansion given by `q.comp p`. * `analytic_at.comp` states that the composition of analytic functions is analytic. * `formal_multilinear_series.comp_assoc` states that composition is associative on formal multilinear series. ## Implementation details The main technical difficulty is to write down things. In particular, we need to define precisely `q.comp_along_composition p c` and to show that it is indeed a continuous multilinear function. This requires a whole interface built on the class `composition`. Once this is set, the main difficulty is to reorder the sums, writing the composition of the partial sums as a sum over some subset of `Σ n, composition n`. We need to check that the reordering is a bijection, running over difficulties due to the dependent nature of the types under consideration, that are controlled thanks to the interface for `composition`. The associativity of composition on formal multilinear series is a nontrivial result: it does not follow from the associativity of composition of analytic functions, as there is no uniqueness for the formal multilinear series representing a function (and also, it holds even when the radius of convergence of the series is `0`). Instead, we give a direct proof, which amounts to reordering double sums in a careful way. The change of variables is a canonical (combinatorial) bijection `composition.sigma_equiv_sigma_pi` between `(Σ (a : composition n), composition a.length)` and `(Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i))`, and is described in more details below in the paragraph on associativity. -/ noncomputable theory variables {𝕜 : Type*} {E F G H : Type*} open filter list open_locale topology big_operators classical nnreal ennreal section topological variables [comm_ring 𝕜] [add_comm_group E] [add_comm_group F] [add_comm_group G] variables [module 𝕜 E] [module 𝕜 F] [module 𝕜 G] variables [topological_space E] [topological_space F] [topological_space G] /-! ### Composing formal multilinear series -/ namespace formal_multilinear_series variables [topological_add_group E] [has_continuous_const_smul 𝕜 E] variables [topological_add_group F] [has_continuous_const_smul 𝕜 F] variables [topological_add_group G] [has_continuous_const_smul 𝕜 G] /-! In this paragraph, we define the composition of formal multilinear series, by summing over all possible compositions of `n`. -/ /-- Given a formal multilinear series `p`, a composition `c` of `n` and the index `i` of a block of `c`, we may define a function on `fin n → E` by picking the variables in the `i`-th block of `n`, and applying the corresponding coefficient of `p` to these variables. This function is called `p.apply_composition c v i` for `v : fin n → E` and `i : fin c.length`. -/ def apply_composition (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (c : composition n) : (fin n → E) → (fin (c.length) → F) := λ v i, p (c.blocks_fun i) (v ∘ (c.embedding i)) lemma apply_composition_ones (p : formal_multilinear_series 𝕜 E F) (n : ℕ) : p.apply_composition (composition.ones n) = λ v i, p 1 (λ _, v (fin.cast_le (composition.length_le _) i)) := begin funext v i, apply p.congr (composition.ones_blocks_fun _ _), intros j hjn hj1, obtain rfl : j = 0, { linarith }, refine congr_arg v _, rw [fin.ext_iff, fin.coe_cast_le, composition.ones_embedding, fin.coe_mk], end lemma apply_composition_single (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (hn : 0 < n) (v : fin n → E) : p.apply_composition (composition.single n hn) v = λ j, p n v := begin ext j, refine p.congr (by simp) (λ i hi1 hi2, _), dsimp, congr' 1, convert composition.single_embedding hn ⟨i, hi2⟩, cases j, have : j_val = 0 := le_bot_iff.1 (nat.lt_succ_iff.1 j_property), unfold_coes, congr; try { assumption <|> simp }, end @[simp] lemma remove_zero_apply_composition (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (c : composition n) : p.remove_zero.apply_composition c = p.apply_composition c := begin ext v i, simp [apply_composition, zero_lt_one.trans_le (c.one_le_blocks_fun i), remove_zero_of_pos], end /-- Technical lemma stating how `p.apply_composition` commutes with updating variables. This will be the key point to show that functions constructed from `apply_composition` retain multilinearity. -/ lemma apply_composition_update (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (c : composition n) (j : fin n) (v : fin n → E) (z : E) : p.apply_composition c (function.update v j z) = function.update (p.apply_composition c v) (c.index j) (p (c.blocks_fun (c.index j)) (function.update (v ∘ (c.embedding (c.index j))) (c.inv_embedding j) z)) := begin ext k, by_cases h : k = c.index j, { rw h, let r : fin (c.blocks_fun (c.index j)) → fin n := c.embedding (c.index j), simp only [function.update_same], change p (c.blocks_fun (c.index j)) ((function.update v j z) ∘ r) = _, let j' := c.inv_embedding j, suffices B : (function.update v j z) ∘ r = function.update (v ∘ r) j' z, by rw B, suffices C : (function.update v (r j') z) ∘ r = function.update (v ∘ r) j' z, by { convert C, exact (c.embedding_comp_inv j).symm }, exact function.update_comp_eq_of_injective _ (c.embedding _).injective _ _ }, { simp only [h, function.update_eq_self, function.update_noteq, ne.def, not_false_iff], let r : fin (c.blocks_fun k) → fin n := c.embedding k, change p (c.blocks_fun k) ((function.update v j z) ∘ r) = p (c.blocks_fun k) (v ∘ r), suffices B : (function.update v j z) ∘ r = v ∘ r, by rw B, apply function.update_comp_eq_of_not_mem_range, rwa c.mem_range_embedding_iff' } end @[simp] lemma comp_continuous_linear_map_apply_composition {n : ℕ} (p : formal_multilinear_series 𝕜 F G) (f : E →L[𝕜] F) (c : composition n) (v : fin n → E) : (p.comp_continuous_linear_map f).apply_composition c v = p.apply_composition c (f ∘ v) := by simp [apply_composition] end formal_multilinear_series namespace continuous_multilinear_map open formal_multilinear_series variables [topological_add_group E] [has_continuous_const_smul 𝕜 E] variables [topological_add_group F] [has_continuous_const_smul 𝕜 F] /-- Given a formal multilinear series `p`, a composition `c` of `n` and a continuous multilinear map `f` in `c.length` variables, one may form a continuous multilinear map in `n` variables by applying the right coefficient of `p` to each block of the composition, and then applying `f` to the resulting vector. It is called `f.comp_along_composition p c`. -/ def comp_along_composition {n : ℕ} (p : formal_multilinear_series 𝕜 E F) (c : composition n) (f : continuous_multilinear_map 𝕜 (λ (i : fin c.length), F) G) : continuous_multilinear_map 𝕜 (λ i : fin n, E) G := { to_fun := λ v, f (p.apply_composition c v), map_add' := λ _ v i x y, by { cases subsingleton.elim ‹_› (fin.decidable_eq _), simp only [apply_composition_update, continuous_multilinear_map.map_add] }, map_smul' := λ _ v i c x, by { cases subsingleton.elim ‹_› (fin.decidable_eq _), simp only [apply_composition_update, continuous_multilinear_map.map_smul] }, cont := f.cont.comp $ continuous_pi $ λ i, (coe_continuous _).comp $ continuous_pi $ λ j, continuous_apply _, } @[simp] lemma comp_along_composition_apply {n : ℕ} (p : formal_multilinear_series 𝕜 E F) (c : composition n) (f : continuous_multilinear_map 𝕜 (λ (i : fin c.length), F) G) (v : fin n → E) : (f.comp_along_composition p c) v = f (p.apply_composition c v) := rfl end continuous_multilinear_map namespace formal_multilinear_series variables [topological_add_group E] [has_continuous_const_smul 𝕜 E] variables [topological_add_group F] [has_continuous_const_smul 𝕜 F] variables [topological_add_group G] [has_continuous_const_smul 𝕜 G] /-- Given two formal multilinear series `q` and `p` and a composition `c` of `n`, one may form a continuous multilinear map in `n` variables by applying the right coefficient of `p` to each block of the composition, and then applying `q c.length` to the resulting vector. It is called `q.comp_along_composition p c`. -/ def comp_along_composition {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : continuous_multilinear_map 𝕜 (λ i : fin n, E) G := (q c.length).comp_along_composition p c @[simp] lemma comp_along_composition_apply {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) (v : fin n → E) : (q.comp_along_composition p c) v = q c.length (p.apply_composition c v) := rfl /-- Formal composition of two formal multilinear series. The `n`-th coefficient in the composition is defined to be the sum of `q.comp_along_composition p c` over all compositions of `n`. In other words, this term (as a multilinear function applied to `v_0, ..., v_{n-1}`) is `∑'_{k} ∑'_{i₁ + ... + iₖ = n} qₖ (p_{i_1} (...), ..., p_{i_k} (...))`, where one puts all variables `v_0, ..., v_{n-1}` in increasing order in the dots. In general, the composition `q ∘ p` only makes sense when the constant coefficient of `p` vanishes. We give a general formula but which ignores the value of `p 0` instead. -/ protected def comp (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) : formal_multilinear_series 𝕜 E G := λ n, ∑ c : composition n, q.comp_along_composition p c /-- The `0`-th coefficient of `q.comp p` is `q 0`. Since these maps are multilinear maps in zero variables, but on different spaces, we can not state this directly, so we state it when applied to arbitrary vectors (which have to be the zero vector). -/ lemma comp_coeff_zero (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (v : fin 0 → E) (v' : fin 0 → F) : (q.comp p) 0 v = q 0 v' := begin let c : composition 0 := composition.ones 0, dsimp [formal_multilinear_series.comp], have : {c} = (finset.univ : finset (composition 0)), { apply finset.eq_of_subset_of_card_le; simp [finset.card_univ, composition_card 0] }, rw [← this, finset.sum_singleton, comp_along_composition_apply], symmetry, congr' end @[simp] lemma comp_coeff_zero' (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (v : fin 0 → E) : (q.comp p) 0 v = q 0 (λ i, 0) := q.comp_coeff_zero p v _ /-- The `0`-th coefficient of `q.comp p` is `q 0`. When `p` goes from `E` to `E`, this can be expressed as a direct equality -/ lemma comp_coeff_zero'' (q : formal_multilinear_series 𝕜 E F) (p : formal_multilinear_series 𝕜 E E) : (q.comp p) 0 = q 0 := by { ext v, exact q.comp_coeff_zero p _ _ } /-- The first coefficient of a composition of formal multilinear series is the composition of the first coefficients seen as continuous linear maps. -/ lemma comp_coeff_one (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (v : fin 1 → E) : (q.comp p) 1 v = q 1 (λ i, p 1 v) := begin have : {composition.ones 1} = (finset.univ : finset (composition 1)) := finset.eq_univ_of_card _ (by simp [composition_card]), simp only [formal_multilinear_series.comp, comp_along_composition_apply, ← this, finset.sum_singleton], refine q.congr (by simp) (λ i hi1 hi2, _), simp only [apply_composition_ones], exact p.congr rfl (λ j hj1 hj2, by congr) end /-- Only `0`-th coefficient of `q.comp p` depends on `q 0`. -/ lemma remove_zero_comp_of_pos (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (hn : 0 < n) : q.remove_zero.comp p n = q.comp p n := begin ext v, simp only [formal_multilinear_series.comp, comp_along_composition, continuous_multilinear_map.comp_along_composition_apply, continuous_multilinear_map.sum_apply], apply finset.sum_congr rfl (λ c hc, _), rw remove_zero_of_pos _ (c.length_pos_of_pos hn) end @[simp] lemma comp_remove_zero (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) : q.comp p.remove_zero = q.comp p := by { ext n, simp [formal_multilinear_series.comp] } end formal_multilinear_series end topological variables [nontrivially_normed_field 𝕜] [normed_add_comm_group E] [normed_space 𝕜 E] [normed_add_comm_group F] [normed_space 𝕜 F] [normed_add_comm_group G] [normed_space 𝕜 G] [normed_add_comm_group H] [normed_space 𝕜 H] namespace formal_multilinear_series /-- The norm of `f.comp_along_composition p c` is controlled by the product of the norms of the relevant bits of `f` and `p`. -/ lemma comp_along_composition_bound {n : ℕ} (p : formal_multilinear_series 𝕜 E F) (c : composition n) (f : continuous_multilinear_map 𝕜 (λ (i : fin c.length), F) G) (v : fin n → E) : ‖f.comp_along_composition p c v‖ ≤ ‖f‖ * (∏ i, ‖p (c.blocks_fun i)‖) * (∏ i : fin n, ‖v i‖) := calc ‖f.comp_along_composition p c v‖ = ‖f (p.apply_composition c v)‖ : rfl ... ≤ ‖f‖ * ∏ i, ‖p.apply_composition c v i‖ : continuous_multilinear_map.le_op_norm _ _ ... ≤ ‖f‖ * ∏ i, ‖p (c.blocks_fun i)‖ * ∏ j : fin (c.blocks_fun i), ‖(v ∘ (c.embedding i)) j‖ : begin apply mul_le_mul_of_nonneg_left _ (norm_nonneg _), refine finset.prod_le_prod (λ i hi, norm_nonneg _) (λ i hi, _), apply continuous_multilinear_map.le_op_norm, end ... = ‖f‖ * (∏ i, ‖p (c.blocks_fun i)‖) * ∏ i (j : fin (c.blocks_fun i)), ‖(v ∘ (c.embedding i)) j‖ : by rw [finset.prod_mul_distrib, mul_assoc] ... = ‖f‖ * (∏ i, ‖p (c.blocks_fun i)‖) * (∏ i : fin n, ‖v i‖) : by { rw [← c.blocks_fin_equiv.prod_comp, ← finset.univ_sigma_univ, finset.prod_sigma], congr } /-- The norm of `q.comp_along_composition p c` is controlled by the product of the norms of the relevant bits of `q` and `p`. -/ lemma comp_along_composition_norm {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : ‖q.comp_along_composition p c‖ ≤ ‖q c.length‖ * ∏ i, ‖p (c.blocks_fun i)‖ := continuous_multilinear_map.op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (finset.prod_nonneg (λ i hi, norm_nonneg _))) (comp_along_composition_bound _ _ _) lemma comp_along_composition_nnnorm {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : ‖q.comp_along_composition p c‖₊ ≤ ‖q c.length‖₊ * ∏ i, ‖p (c.blocks_fun i)‖₊ := by { rw ← nnreal.coe_le_coe, push_cast, exact q.comp_along_composition_norm p c } /-! ### The identity formal power series We will now define the identity power series, and show that it is a neutral element for left and right composition. -/ section variables (𝕜 E) /-- The identity formal multilinear series, with all coefficients equal to `0` except for `n = 1` where it is (the continuous multilinear version of) the identity. -/ def id : formal_multilinear_series 𝕜 E E | 0 := 0 | 1 := (continuous_multilinear_curry_fin1 𝕜 E E).symm (continuous_linear_map.id 𝕜 E) | _ := 0 /-- The first coefficient of `id 𝕜 E` is the identity. -/ @[simp] lemma id_apply_one (v : fin 1 → E) : (formal_multilinear_series.id 𝕜 E) 1 v = v 0 := rfl /-- The `n`th coefficient of `id 𝕜 E` is the identity when `n = 1`. We state this in a dependent way, as it will often appear in this form. -/ lemma id_apply_one' {n : ℕ} (h : n = 1) (v : fin n → E) : (id 𝕜 E) n v = v ⟨0, h.symm ▸ zero_lt_one⟩ := begin subst n, apply id_apply_one end /-- For `n ≠ 1`, the `n`-th coefficient of `id 𝕜 E` is zero, by definition. -/ @[simp] lemma id_apply_ne_one {n : ℕ} (h : n ≠ 1) : (formal_multilinear_series.id 𝕜 E) n = 0 := by { cases n, { refl }, cases n, { contradiction }, refl } end @[simp] theorem comp_id (p : formal_multilinear_series 𝕜 E F) : p.comp (id 𝕜 E) = p := begin ext1 n, dsimp [formal_multilinear_series.comp], rw finset.sum_eq_single (composition.ones n), show comp_along_composition p (id 𝕜 E) (composition.ones n) = p n, { ext v, rw comp_along_composition_apply, apply p.congr (composition.ones_length n), intros, rw apply_composition_ones, refine congr_arg v _, rw [fin.ext_iff, fin.coe_cast_le, fin.coe_mk, fin.coe_mk], }, show ∀ (b : composition n), b ∈ finset.univ → b ≠ composition.ones n → comp_along_composition p (id 𝕜 E) b = 0, { assume b _ hb, obtain ⟨k, hk, lt_k⟩ : ∃ (k : ℕ) (H : k ∈ composition.blocks b), 1 < k := composition.ne_ones_iff.1 hb, obtain ⟨i, i_lt, hi⟩ : ∃ (i : ℕ) (h : i < b.blocks.length), b.blocks.nth_le i h = k := nth_le_of_mem hk, let j : fin b.length := ⟨i, b.blocks_length ▸ i_lt⟩, have A : 1 < b.blocks_fun j := by convert lt_k, ext v, rw [comp_along_composition_apply, continuous_multilinear_map.zero_apply], apply continuous_multilinear_map.map_coord_zero _ j, dsimp [apply_composition], rw id_apply_ne_one _ _ (ne_of_gt A), refl }, { simp } end @[simp] theorem id_comp (p : formal_multilinear_series 𝕜 E F) (h : p 0 = 0) : (id 𝕜 F).comp p = p := begin ext1 n, by_cases hn : n = 0, { rw [hn, h], ext v, rw [comp_coeff_zero', id_apply_ne_one _ _ zero_ne_one], refl }, { dsimp [formal_multilinear_series.comp], have n_pos : 0 < n := bot_lt_iff_ne_bot.mpr hn, rw finset.sum_eq_single (composition.single n n_pos), show comp_along_composition (id 𝕜 F) p (composition.single n n_pos) = p n, { ext v, rw [comp_along_composition_apply, id_apply_one' _ _ (composition.single_length n_pos)], dsimp [apply_composition], refine p.congr rfl (λ i him hin, congr_arg v $ _), ext, simp }, show ∀ (b : composition n), b ∈ finset.univ → b ≠ composition.single n n_pos → comp_along_composition (id 𝕜 F) p b = 0, { assume b _ hb, have A : b.length ≠ 1, by simpa [composition.eq_single_iff_length] using hb, ext v, rw [comp_along_composition_apply, id_apply_ne_one _ _ A], refl }, { simp } } end /-! ### Summability properties of the composition of formal power series-/ section /-- If two formal multilinear series have positive radius of convergence, then the terms appearing in the definition of their composition are also summable (when multiplied by a suitable positive geometric term). -/ theorem comp_summable_nnreal (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (hq : 0 < q.radius) (hp : 0 < p.radius) : ∃ r > (0 : ℝ≥0), summable (λ i : Σ n, composition n, ‖q.comp_along_composition p i.2‖₊ * r ^ i.1) := begin /- This follows from the fact that the growth rate of `‖qₙ‖` and `‖pₙ‖` is at most geometric, giving a geometric bound on each `‖q.comp_along_composition p op‖`, together with the fact that there are `2^(n-1)` compositions of `n`, giving at most a geometric loss. -/ rcases ennreal.lt_iff_exists_nnreal_btwn.1 (lt_min zero_lt_one hq) with ⟨rq, rq_pos, hrq⟩, rcases ennreal.lt_iff_exists_nnreal_btwn.1 (lt_min zero_lt_one hp) with ⟨rp, rp_pos, hrp⟩, simp only [lt_min_iff, ennreal.coe_lt_one_iff, ennreal.coe_pos] at hrp hrq rp_pos rq_pos, obtain ⟨Cq, hCq0, hCq⟩ : ∃ Cq > 0, ∀ n, ‖q n‖₊ * rq^n ≤ Cq := q.nnnorm_mul_pow_le_of_lt_radius hrq.2, obtain ⟨Cp, hCp1, hCp⟩ : ∃ Cp ≥ 1, ∀ n, ‖p n‖₊ * rp^n ≤ Cp, { rcases p.nnnorm_mul_pow_le_of_lt_radius hrp.2 with ⟨Cp, -, hCp⟩, exact ⟨max Cp 1, le_max_right _ _, λ n, (hCp n).trans (le_max_left _ _)⟩ }, let r0 : ℝ≥0 := (4 * Cp)⁻¹, have r0_pos : 0 < r0 := inv_pos.2 (mul_pos zero_lt_four (zero_lt_one.trans_le hCp1)), set r : ℝ≥0 := rp * rq * r0, have r_pos : 0 < r := mul_pos (mul_pos rp_pos rq_pos) r0_pos, have I : ∀ (i : Σ (n : ℕ), composition n), ‖q.comp_along_composition p i.2‖₊ * r ^ i.1 ≤ Cq / 4 ^ i.1, { rintros ⟨n, c⟩, have A, calc ‖q c.length‖₊ * rq ^ n ≤ ‖q c.length‖₊* rq ^ c.length : mul_le_mul' le_rfl (pow_le_pow_of_le_one rq.2 hrq.1.le c.length_le) ... ≤ Cq : hCq _, have B, calc ((∏ i, ‖p (c.blocks_fun i)‖₊) * rp ^ n) = ∏ i, ‖p (c.blocks_fun i)‖₊ * rp ^ c.blocks_fun i : by simp only [finset.prod_mul_distrib, finset.prod_pow_eq_pow_sum, c.sum_blocks_fun] ... ≤ ∏ i : fin c.length, Cp : finset.prod_le_prod' (λ i _, hCp _) ... = Cp ^ c.length : by simp ... ≤ Cp ^ n : pow_le_pow hCp1 c.length_le, calc ‖q.comp_along_composition p c‖₊ * r ^ n ≤ (‖q c.length‖₊ * ∏ i, ‖p (c.blocks_fun i)‖₊) * r ^ n : mul_le_mul' (q.comp_along_composition_nnnorm p c) le_rfl ... = (‖q c.length‖₊ * rq ^ n) * ((∏ i, ‖p (c.blocks_fun i)‖₊) * rp ^ n) * r0 ^ n : by { simp only [r, mul_pow], ring } ... ≤ Cq * Cp ^ n * r0 ^ n : mul_le_mul' (mul_le_mul' A B) le_rfl ... = Cq / 4 ^ n : begin simp only [r0], field_simp [mul_pow, (zero_lt_one.trans_le hCp1).ne'], ring end }, refine ⟨r, r_pos, nnreal.summable_of_le I _⟩, simp_rw div_eq_mul_inv, refine summable.mul_left _ _, have : ∀ n : ℕ, has_sum (λ c : composition n, (4 ^ n : ℝ≥0)⁻¹) (2 ^ (n - 1) / 4 ^ n), { intro n, convert has_sum_fintype (λ c : composition n, (4 ^ n : ℝ≥0)⁻¹), simp [finset.card_univ, composition_card, div_eq_mul_inv] }, refine nnreal.summable_sigma.2 ⟨λ n, (this n).summable, (nnreal.summable_nat_add_iff 1).1 _⟩, convert (nnreal.summable_geometric (nnreal.div_lt_one_of_lt one_lt_two)).mul_left (1 / 4), ext1 n, rw [(this _).tsum_eq, add_tsub_cancel_right], field_simp [← mul_assoc, pow_succ', mul_pow, show (4 : ℝ≥0) = 2 * 2, from (two_mul 2).symm, mul_right_comm] end end /-- Bounding below the radius of the composition of two formal multilinear series assuming summability over all compositions. -/ theorem le_comp_radius_of_summable (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (r : ℝ≥0) (hr : summable (λ i : (Σ n, composition n), ‖q.comp_along_composition p i.2‖₊ * r ^ i.1)) : (r : ℝ≥0∞) ≤ (q.comp p).radius := begin refine le_radius_of_bound_nnreal _ (∑' i : (Σ n, composition n), ‖comp_along_composition q p i.snd‖₊ * r ^ i.fst) (λ n, _), calc ‖formal_multilinear_series.comp q p n‖₊ * r ^ n ≤ ∑' (c : composition n), ‖comp_along_composition q p c‖₊ * r ^ n : begin rw [tsum_fintype, ← finset.sum_mul], exact mul_le_mul' (nnnorm_sum_le _ _) le_rfl end ... ≤ ∑' (i : Σ (n : ℕ), composition n), ‖comp_along_composition q p i.snd‖₊ * r ^ i.fst : nnreal.tsum_comp_le_tsum_of_inj hr sigma_mk_injective end /-! ### Composing analytic functions Now, we will prove that the composition of the partial sums of `q` and `p` up to order `N` is given by a sum over some large subset of `Σ n, composition n` of `q.comp_along_composition p`, to deduce that the series for `q.comp p` indeed converges to `g ∘ f` when `q` is a power series for `g` and `p` is a power series for `f`. This proof is a big reindexing argument of a sum. Since it is a bit involved, we define first the source of the change of variables (`comp_partial_source`), its target (`comp_partial_target`) and the change of variables itself (`comp_change_of_variables`) before giving the main statement in `comp_partial_sum`. -/ /-- Source set in the change of variables to compute the composition of partial sums of formal power series. See also `comp_partial_sum`. -/ def comp_partial_sum_source (m M N : ℕ) : finset (Σ n, (fin n) → ℕ) := finset.sigma (finset.Ico m M) (λ (n : ℕ), fintype.pi_finset (λ (i : fin n), finset.Ico 1 N) : _) @[simp] lemma mem_comp_partial_sum_source_iff (m M N : ℕ) (i : Σ n, (fin n) → ℕ) : i ∈ comp_partial_sum_source m M N ↔ (m ≤ i.1 ∧ i.1 < M) ∧ ∀ (a : fin i.1), 1 ≤ i.2 a ∧ i.2 a < N := by simp only [comp_partial_sum_source, finset.mem_Ico, fintype.mem_pi_finset, finset.mem_sigma, iff_self] /-- Change of variables appearing to compute the composition of partial sums of formal power series -/ def comp_change_of_variables (m M N : ℕ) (i : Σ n, (fin n) → ℕ) (hi : i ∈ comp_partial_sum_source m M N) : (Σ n, composition n) := begin rcases i with ⟨n, f⟩, rw mem_comp_partial_sum_source_iff at hi, refine ⟨∑ j, f j, of_fn (λ a, f a), λ i hi', _, by simp [sum_of_fn]⟩, obtain ⟨j, rfl⟩ : ∃ (j : fin n), f j = i, by rwa [mem_of_fn, set.mem_range] at hi', exact (hi.2 j).1 end @[simp] lemma comp_change_of_variables_length (m M N : ℕ) {i : Σ n, (fin n) → ℕ} (hi : i ∈ comp_partial_sum_source m M N) : composition.length (comp_change_of_variables m M N i hi).2 = i.1 := begin rcases i with ⟨k, blocks_fun⟩, dsimp [comp_change_of_variables], simp only [composition.length, map_of_fn, length_of_fn] end lemma comp_change_of_variables_blocks_fun (m M N : ℕ) {i : Σ n, (fin n) → ℕ} (hi : i ∈ comp_partial_sum_source m M N) (j : fin i.1) : (comp_change_of_variables m M N i hi).2.blocks_fun ⟨j, (comp_change_of_variables_length m M N hi).symm ▸ j.2⟩ = i.2 j := begin rcases i with ⟨n, f⟩, dsimp [composition.blocks_fun, composition.blocks, comp_change_of_variables], simp only [map_of_fn, nth_le_of_fn', function.comp_app], apply congr_arg, exact fin.eta _ _ end /-- Target set in the change of variables to compute the composition of partial sums of formal power series, here given a a set. -/ def comp_partial_sum_target_set (m M N : ℕ) : set (Σ n, composition n) := {i | (m ≤ i.2.length) ∧ (i.2.length < M) ∧ (∀ (j : fin i.2.length), i.2.blocks_fun j < N)} lemma comp_partial_sum_target_subset_image_comp_partial_sum_source (m M N : ℕ) (i : Σ n, composition n) (hi : i ∈ comp_partial_sum_target_set m M N) : ∃ j (hj : j ∈ comp_partial_sum_source m M N), i = comp_change_of_variables m M N j hj := begin rcases i with ⟨n, c⟩, refine ⟨⟨c.length, c.blocks_fun⟩, _, _⟩, { simp only [comp_partial_sum_target_set, set.mem_set_of_eq] at hi, simp only [mem_comp_partial_sum_source_iff, hi.left, hi.right, true_and, and_true], exact λ a, c.one_le_blocks' _ }, { dsimp [comp_change_of_variables], rw composition.sigma_eq_iff_blocks_eq, simp only [composition.blocks_fun, composition.blocks, subtype.coe_eta, nth_le_map'], conv_lhs { rw ← of_fn_nth_le c.blocks } } end /-- Target set in the change of variables to compute the composition of partial sums of formal power series, here given a a finset. See also `comp_partial_sum`. -/ def comp_partial_sum_target (m M N : ℕ) : finset (Σ n, composition n) := set.finite.to_finset $ ((finset.finite_to_set _).dependent_image _).subset $ comp_partial_sum_target_subset_image_comp_partial_sum_source m M N @[simp] lemma mem_comp_partial_sum_target_iff {m M N : ℕ} {a : Σ n, composition n} : a ∈ comp_partial_sum_target m M N ↔ m ≤ a.2.length ∧ a.2.length < M ∧ (∀ (j : fin a.2.length), a.2.blocks_fun j < N) := by simp [comp_partial_sum_target, comp_partial_sum_target_set] /-- `comp_change_of_variables m M N` is a bijection between `comp_partial_sum_source m M N` and `comp_partial_sum_target m M N`, yielding equal sums for functions that correspond to each other under the bijection. As `comp_change_of_variables m M N` is a dependent function, stating that it is a bijection is not directly possible, but the consequence on sums can be stated more easily. -/ lemma comp_change_of_variables_sum {α : Type*} [add_comm_monoid α] (m M N : ℕ) (f : (Σ (n : ℕ), fin n → ℕ) → α) (g : (Σ n, composition n) → α) (h : ∀ e (he : e ∈ comp_partial_sum_source m M N), f e = g (comp_change_of_variables m M N e he)) : ∑ e in comp_partial_sum_source m M N, f e = ∑ e in comp_partial_sum_target m M N, g e := begin apply finset.sum_bij (comp_change_of_variables m M N), -- We should show that the correspondance we have set up is indeed a bijection -- between the index sets of the two sums. -- 1 - show that the image belongs to `comp_partial_sum_target m N N` { rintros ⟨k, blocks_fun⟩ H, rw mem_comp_partial_sum_source_iff at H, simp only [mem_comp_partial_sum_target_iff, composition.length, composition.blocks, H.left, map_of_fn, length_of_fn, true_and, comp_change_of_variables], assume j, simp only [composition.blocks_fun, (H.right _).right, nth_le_of_fn'] }, -- 2 - show that the composition gives the `comp_along_composition` application { rintros ⟨k, blocks_fun⟩ H, rw h }, -- 3 - show that the map is injective { rintros ⟨k, blocks_fun⟩ ⟨k', blocks_fun'⟩ H H' heq, obtain rfl : k = k', { have := (comp_change_of_variables_length m M N H).symm, rwa [heq, comp_change_of_variables_length] at this, }, congr, funext i, calc blocks_fun i = (comp_change_of_variables m M N _ H).2.blocks_fun _ : (comp_change_of_variables_blocks_fun m M N H i).symm ... = (comp_change_of_variables m M N _ H').2.blocks_fun _ : begin apply composition.blocks_fun_congr; try { rw heq }, refl end ... = blocks_fun' i : comp_change_of_variables_blocks_fun m M N H' i }, -- 4 - show that the map is surjective { assume i hi, apply comp_partial_sum_target_subset_image_comp_partial_sum_source m M N i, simpa [comp_partial_sum_target] using hi } end /-- The auxiliary set corresponding to the composition of partial sums asymptotically contains all possible compositions. -/ lemma comp_partial_sum_target_tendsto_at_top : tendsto (λ N, comp_partial_sum_target 0 N N) at_top at_top := begin apply monotone.tendsto_at_top_finset, { assume m n hmn a ha, have : ∀ i, i < m → i < n := λ i hi, lt_of_lt_of_le hi hmn, tidy }, { rintros ⟨n, c⟩, simp only [mem_comp_partial_sum_target_iff], obtain ⟨n, hn⟩ : bdd_above ↑(finset.univ.image (λ (i : fin c.length), c.blocks_fun i)) := finset.bdd_above _, refine ⟨max n c.length + 1, bot_le, lt_of_le_of_lt (le_max_right n c.length) (lt_add_one _), λ j, lt_of_le_of_lt (le_trans _ (le_max_left _ _)) (lt_add_one _)⟩, apply hn, simp only [finset.mem_image_of_mem, finset.mem_coe, finset.mem_univ] } end /-- Composing the partial sums of two multilinear series coincides with the sum over all compositions in `comp_partial_sum_target 0 N N`. This is precisely the motivation for the definition of `comp_partial_sum_target`. -/ lemma comp_partial_sum (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (N : ℕ) (z : E) : q.partial_sum N (∑ i in finset.Ico 1 N, p i (λ j, z)) = ∑ i in comp_partial_sum_target 0 N N, q.comp_along_composition p i.2 (λ j, z) := begin -- we expand the composition, using the multilinearity of `q` to expand along each coordinate. suffices H : ∑ n in finset.range N, ∑ r in fintype.pi_finset (λ (i : fin n), finset.Ico 1 N), q n (λ (i : fin n), p (r i) (λ j, z)) = ∑ i in comp_partial_sum_target 0 N N, q.comp_along_composition p i.2 (λ j, z), by simpa only [formal_multilinear_series.partial_sum, continuous_multilinear_map.map_sum_finset] using H, -- rewrite the first sum as a big sum over a sigma type, in the finset -- `comp_partial_sum_target 0 N N` rw [finset.range_eq_Ico, finset.sum_sigma'], -- use `comp_change_of_variables_sum`, saying that this change of variables respects sums apply comp_change_of_variables_sum 0 N N, rintros ⟨k, blocks_fun⟩ H, apply congr _ (comp_change_of_variables_length 0 N N H).symm, intros, rw ← comp_change_of_variables_blocks_fun 0 N N H, refl end end formal_multilinear_series open formal_multilinear_series /-- If two functions `g` and `f` have power series `q` and `p` respectively at `f x` and `x`, then `g ∘ f` admits the power series `q.comp p` at `x`. -/ theorem has_fpower_series_at.comp {g : F → G} {f : E → F} {q : formal_multilinear_series 𝕜 F G} {p : formal_multilinear_series 𝕜 E F} {x : E} (hg : has_fpower_series_at g q (f x)) (hf : has_fpower_series_at f p x) : has_fpower_series_at (g ∘ f) (q.comp p) x := begin /- Consider `rf` and `rg` such that `f` and `g` have power series expansion on the disks of radius `rf` and `rg`. -/ rcases hg with ⟨rg, Hg⟩, rcases hf with ⟨rf, Hf⟩, /- The terms defining `q.comp p` are geometrically summable in a disk of some radius `r`. -/ rcases q.comp_summable_nnreal p Hg.radius_pos Hf.radius_pos with ⟨r, r_pos : 0 < r, hr⟩, /- We will consider `y` which is smaller than `r` and `rf`, and also small enough that `f (x + y)` is close enough to `f x` to be in the disk where `g` is well behaved. Let `min (r, rf, δ)` be this new radius.-/ have : continuous_at f x := Hf.analytic_at.continuous_at, obtain ⟨δ, δpos, hδ⟩ : ∃ (δ : ℝ≥0∞) (H : 0 < δ), ∀ {z : E}, z ∈ emetric.ball x δ → f z ∈ emetric.ball (f x) rg, { have : emetric.ball (f x) rg ∈ 𝓝 (f x) := emetric.ball_mem_nhds _ Hg.r_pos, rcases emetric.mem_nhds_iff.1 (Hf.analytic_at.continuous_at this) with ⟨δ, δpos, Hδ⟩, exact ⟨δ, δpos, λ z hz, Hδ hz⟩ }, let rf' := min rf δ, have min_pos : 0 < min rf' r, by simp only [r_pos, Hf.r_pos, δpos, lt_min_iff, ennreal.coe_pos, and_self], /- We will show that `g ∘ f` admits the power series `q.comp p` in the disk of radius `min (r, rf', δ)`. -/ refine ⟨min rf' r, _⟩, refine ⟨le_trans (min_le_right rf' r) (formal_multilinear_series.le_comp_radius_of_summable q p r hr), min_pos, λ y hy, _⟩, /- Let `y` satisfy `‖y‖ < min (r, rf', δ)`. We want to show that `g (f (x + y))` is the sum of `q.comp p` applied to `y`. -/ -- First, check that `y` is small enough so that estimates for `f` and `g` apply. have y_mem : y ∈ emetric.ball (0 : E) rf := (emetric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_left _ _))) hy, have fy_mem : f (x + y) ∈ emetric.ball (f x) rg, { apply hδ, have : y ∈ emetric.ball (0 : E) δ := (emetric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_right _ _))) hy, simpa [edist_eq_coe_nnnorm_sub, edist_eq_coe_nnnorm] }, /- Now the proof starts. To show that the sum of `q.comp p` at `y` is `g (f (x + y))`, we will write `q.comp p` applied to `y` as a big sum over all compositions. Since the sum is summable, to get its convergence it suffices to get the convergence along some increasing sequence of sets. We will use the sequence of sets `comp_partial_sum_target 0 n n`, along which the sum is exactly the composition of the partial sums of `q` and `p`, by design. To show that it converges to `g (f (x + y))`, pointwise convergence would not be enough, but we have uniform convergence to save the day. -/ -- First step: the partial sum of `p` converges to `f (x + y)`. have A : tendsto (λ n, ∑ a in finset.Ico 1 n, p a (λ b, y)) at_top (𝓝 (f (x + y) - f x)), { have L : ∀ᶠ n in at_top, ∑ a in finset.range n, p a (λ b, y) - f x = ∑ a in finset.Ico 1 n, p a (λ b, y), { rw eventually_at_top, refine ⟨1, λ n hn, _⟩, symmetry, rw [eq_sub_iff_add_eq', finset.range_eq_Ico, ← Hf.coeff_zero (λi, y), finset.sum_eq_sum_Ico_succ_bot hn] }, have : tendsto (λ n, ∑ a in finset.range n, p a (λ b, y) - f x) at_top (𝓝 (f (x + y) - f x)) := (Hf.has_sum y_mem).tendsto_sum_nat.sub tendsto_const_nhds, exact tendsto.congr' L this }, -- Second step: the composition of the partial sums of `q` and `p` converges to `g (f (x + y))`. have B : tendsto (λ n, q.partial_sum n (∑ a in finset.Ico 1 n, p a (λ b, y))) at_top (𝓝 (g (f (x + y)))), { -- we use the fact that the partial sums of `q` converge locally uniformly to `g`, and that -- composition passes to the limit under locally uniform convergence. have B₁ : continuous_at (λ (z : F), g (f x + z)) (f (x + y) - f x), { refine continuous_at.comp _ (continuous_const.add continuous_id).continuous_at, simp only [add_sub_cancel'_right, id.def], exact Hg.continuous_on.continuous_at (is_open.mem_nhds (emetric.is_open_ball) fy_mem) }, have B₂ : f (x + y) - f x ∈ emetric.ball (0 : F) rg, by simpa [edist_eq_coe_nnnorm, edist_eq_coe_nnnorm_sub] using fy_mem, rw [← emetric.is_open_ball.nhds_within_eq B₂] at A, convert Hg.tendsto_locally_uniformly_on.tendsto_comp B₁.continuous_within_at B₂ A, simp only [add_sub_cancel'_right] }, -- Third step: the sum over all compositions in `comp_partial_sum_target 0 n n` converges to -- `g (f (x + y))`. As this sum is exactly the composition of the partial sum, this is a direct -- consequence of the second step have C : tendsto (λ n, ∑ i in comp_partial_sum_target 0 n n, q.comp_along_composition p i.2 (λ j, y)) at_top (𝓝 (g (f (x + y)))), by simpa [comp_partial_sum] using B, -- Fourth step: the sum over all compositions is `g (f (x + y))`. This follows from the -- convergence along a subsequence proved in the third step, and the fact that the sum is Cauchy -- thanks to the summability properties. have D : has_sum (λ i : (Σ n, composition n), q.comp_along_composition p i.2 (λ j, y)) (g (f (x + y))), { have cau : cauchy_seq (λ (s : finset (Σ n, composition n)), ∑ i in s, q.comp_along_composition p i.2 (λ j, y)), { apply cauchy_seq_finset_of_norm_bounded _ (nnreal.summable_coe.2 hr) _, simp only [coe_nnnorm, nnreal.coe_mul, nnreal.coe_pow], rintros ⟨n, c⟩, calc ‖(comp_along_composition q p c) (λ (j : fin n), y)‖ ≤ ‖comp_along_composition q p c‖ * ∏ j : fin n, ‖y‖ : by apply continuous_multilinear_map.le_op_norm ... ≤ ‖comp_along_composition q p c‖ * (r : ℝ) ^ n : begin apply mul_le_mul_of_nonneg_left _ (norm_nonneg _), rw [finset.prod_const, finset.card_fin], apply pow_le_pow_of_le_left (norm_nonneg _), rw [emetric.mem_ball, edist_eq_coe_nnnorm] at hy, have := (le_trans (le_of_lt hy) (min_le_right _ _)), rwa [ennreal.coe_le_coe, ← nnreal.coe_le_coe, coe_nnnorm] at this end }, exact tendsto_nhds_of_cauchy_seq_of_subseq cau comp_partial_sum_target_tendsto_at_top C }, -- Fifth step: the sum over `n` of `q.comp p n` can be expressed as a particular resummation of -- the sum over all compositions, by grouping together the compositions of the same -- integer `n`. The convergence of the whole sum therefore implies the converence of the sum -- of `q.comp p n` have E : has_sum (λ n, (q.comp p) n (λ j, y)) (g (f (x + y))), { apply D.sigma, assume n, dsimp [formal_multilinear_series.comp], convert has_sum_fintype _, simp only [continuous_multilinear_map.sum_apply], refl }, exact E end /-- If two functions `g` and `f` are analytic respectively at `f x` and `x`, then `g ∘ f` is analytic at `x`. -/ theorem analytic_at.comp {g : F → G} {f : E → F} {x : E} (hg : analytic_at 𝕜 g (f x)) (hf : analytic_at 𝕜 f x) : analytic_at 𝕜 (g ∘ f) x := let ⟨q, hq⟩ := hg, ⟨p, hp⟩ := hf in (hq.comp hp).analytic_at /-! ### Associativity of the composition of formal multilinear series In this paragraph, we prove the associativity of the composition of formal power series. By definition, ``` (r.comp q).comp p n v = ∑_{i₁ + ... + iₖ = n} (r.comp q)ₖ (p_{i₁} (v₀, ..., v_{i₁ -1}), p_{i₂} (...), ..., p_{iₖ}(...)) = ∑_{a : composition n} (r.comp q) a.length (apply_composition p a v) ``` decomposing `r.comp q` in the same way, we get ``` (r.comp q).comp p n v = ∑_{a : composition n} ∑_{b : composition a.length} r b.length (apply_composition q b (apply_composition p a v)) ``` On the other hand, ``` r.comp (q.comp p) n v = ∑_{c : composition n} r c.length (apply_composition (q.comp p) c v) ``` Here, `apply_composition (q.comp p) c v` is a vector of length `c.length`, whose `i`-th term is given by `(q.comp p) (c.blocks_fun i) (v_l, v_{l+1}, ..., v_{m-1})` where `{l, ..., m-1}` is the `i`-th block in the composition `c`, of length `c.blocks_fun i` by definition. To compute this term, we expand it as `∑_{dᵢ : composition (c.blocks_fun i)} q dᵢ.length (apply_composition p dᵢ v')`, where `v' = (v_l, v_{l+1}, ..., v_{m-1})`. Therefore, we get ``` r.comp (q.comp p) n v = ∑_{c : composition n} ∑_{d₀ : composition (c.blocks_fun 0), ..., d_{c.length - 1} : composition (c.blocks_fun (c.length - 1))} r c.length (λ i, q dᵢ.length (apply_composition p dᵢ v'ᵢ)) ``` To show that these terms coincide, we need to explain how to reindex the sums to put them in bijection (and then the terms we are summing will correspond to each other). Suppose we have a composition `a` of `n`, and a composition `b` of `a.length`. Then `b` indicates how to group together some blocks of `a`, giving altogether `b.length` blocks of blocks. These blocks of blocks can be called `d₀, ..., d_{a.length - 1}`, and one obtains a composition `c` of `n` by saying that each `dᵢ` is one single block. Conversely, if one starts from `c` and the `dᵢ`s, one can concatenate the `dᵢ`s to obtain a composition `a` of `n`, and register the lengths of the `dᵢ`s in a composition `b` of `a.length`. An example might be enlightening. Suppose `a = [2, 2, 3, 4, 2]`. It is a composition of length 5 of 13. The content of the blocks may be represented as `0011222333344`. Now take `b = [2, 3]` as a composition of `a.length = 5`. It says that the first 2 blocks of `a` should be merged, and the last 3 blocks of `a` should be merged, giving a new composition of `13` made of two blocks of length `4` and `9`, i.e., `c = [4, 9]`. But one can also remember that the new first block was initially made of two blocks of size `2`, so `d₀ = [2, 2]`, and the new second block was initially made of three blocks of size `3`, `4` and `2`, so `d₁ = [3, 4, 2]`. This equivalence is called `composition.sigma_equiv_sigma_pi n` below. We start with preliminary results on compositions, of a very specialized nature, then define the equivalence `composition.sigma_equiv_sigma_pi n`, and we deduce finally the associativity of composition of formal multilinear series in `formal_multilinear_series.comp_assoc`. -/ namespace composition variable {n : ℕ} /-- Rewriting equality in the dependent type `Σ (a : composition n), composition a.length)` in non-dependent terms with lists, requiring that the blocks coincide. -/ lemma sigma_composition_eq_iff (i j : Σ (a : composition n), composition a.length) : i = j ↔ i.1.blocks = j.1.blocks ∧ i.2.blocks = j.2.blocks := begin refine ⟨by rintro rfl; exact ⟨rfl, rfl⟩, _⟩, rcases i with ⟨a, b⟩, rcases j with ⟨a', b'⟩, rintros ⟨h, h'⟩, have H : a = a', by { ext1, exact h }, induction H, congr, ext1, exact h' end /-- Rewriting equality in the dependent type `Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)` in non-dependent terms with lists, requiring that the lists of blocks coincide. -/ lemma sigma_pi_composition_eq_iff (u v : Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) : u = v ↔ of_fn (λ i, (u.2 i).blocks) = of_fn (λ i, (v.2 i).blocks) := begin refine ⟨λ H, by rw H, λ H, _⟩, rcases u with ⟨a, b⟩, rcases v with ⟨a', b'⟩, dsimp at H, have h : a = a', { ext1, have : map list.sum (of_fn (λ (i : fin (composition.length a)), (b i).blocks)) = map list.sum (of_fn (λ (i : fin (composition.length a')), (b' i).blocks)), by rw H, simp only [map_of_fn] at this, change of_fn (λ (i : fin (composition.length a)), (b i).blocks.sum) = of_fn (λ (i : fin (composition.length a')), (b' i).blocks.sum) at this, simpa [composition.blocks_sum, composition.of_fn_blocks_fun] using this }, induction h, simp only [true_and, eq_self_iff_true, heq_iff_eq], ext i : 2, have : nth_le (of_fn (λ (i : fin (composition.length a)), (b i).blocks)) i (by simp [i.is_lt]) = nth_le (of_fn (λ (i : fin (composition.length a)), (b' i).blocks)) i (by simp [i.is_lt]) := nth_le_of_eq H _, rwa [nth_le_of_fn, nth_le_of_fn] at this end /-- When `a` is a composition of `n` and `b` is a composition of `a.length`, `a.gather b` is the composition of `n` obtained by gathering all the blocks of `a` corresponding to a block of `b`. For instance, if `a = [6, 5, 3, 5, 2]` and `b = [2, 3]`, one should gather together the first two blocks of `a` and its last three blocks, giving `a.gather b = [11, 10]`. -/ def gather (a : composition n) (b : composition a.length) : composition n := { blocks := (a.blocks.split_wrt_composition b).map sum, blocks_pos := begin rw forall_mem_map_iff, intros j hj, suffices H : ∀ i ∈ j, 1 ≤ i, from calc 0 < j.length : length_pos_of_mem_split_wrt_composition hj ... ≤ j.sum : length_le_sum_of_one_le _ H, intros i hi, apply a.one_le_blocks, rw ← a.blocks.join_split_wrt_composition b, exact mem_join_of_mem hj hi, end, blocks_sum := by { rw [← sum_join, join_split_wrt_composition, a.blocks_sum] } } lemma length_gather (a : composition n) (b : composition a.length) : length (a.gather b) = b.length := show (map list.sum (a.blocks.split_wrt_composition b)).length = b.blocks.length, by rw [length_map, length_split_wrt_composition] /-- An auxiliary function used in the definition of `sigma_equiv_sigma_pi` below, associating to two compositions `a` of `n` and `b` of `a.length`, and an index `i` bounded by the length of `a.gather b`, the subcomposition of `a` made of those blocks belonging to the `i`-th block of `a.gather b`. -/ def sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin (a.gather b).length) : composition ((a.gather b).blocks_fun i) := { blocks := nth_le (a.blocks.split_wrt_composition b) i (by { rw [length_split_wrt_composition, ← length_gather], exact i.2 }), blocks_pos := assume i hi, a.blocks_pos (by { rw ← a.blocks.join_split_wrt_composition b, exact mem_join_of_mem (nth_le_mem _ _ _) hi }), blocks_sum := by simp only [composition.blocks_fun, nth_le_map', composition.gather] } lemma length_sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin b.length) : composition.length (composition.sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ i.2⟩) = composition.blocks_fun b i := show list.length (nth_le (split_wrt_composition a.blocks b) i _) = blocks_fun b i, by { rw [nth_le_map_rev list.length, nth_le_of_eq (map_length_split_wrt_composition _ _)], refl } lemma blocks_fun_sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin b.length) (j : fin (blocks_fun b i)) : blocks_fun (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ i.2⟩) ⟨j, (length_sigma_composition_aux a b i).symm ▸ j.2⟩ = blocks_fun a (embedding b i j) := show nth_le (nth_le _ _ _) _ _ = nth_le a.blocks _ _, by { rw [nth_le_of_eq (nth_le_split_wrt_composition _ _ _), nth_le_drop', nth_le_take'], refl } /-- Auxiliary lemma to prove that the composition of formal multilinear series is associative. Consider a composition `a` of `n` and a composition `b` of `a.length`. Grouping together some blocks of `a` according to `b` as in `a.gather b`, one can compute the total size of the blocks of `a` up to an index `size_up_to b i + j` (where the `j` corresponds to a set of blocks of `a` that do not fill a whole block of `a.gather b`). The first part corresponds to a sum of blocks in `a.gather b`, and the second one to a sum of blocks in the next block of `sigma_composition_aux a b`. This is the content of this lemma. -/ lemma size_up_to_size_up_to_add (a : composition n) (b : composition a.length) {i j : ℕ} (hi : i < b.length) (hj : j < blocks_fun b ⟨i, hi⟩) : size_up_to a (size_up_to b i + j) = size_up_to (a.gather b) i + (size_up_to (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ hi⟩) j) := begin induction j with j IHj, { show sum (take ((b.blocks.take i).sum) a.blocks) = sum (take i (map sum (split_wrt_composition a.blocks b))), induction i with i IH, { refl }, { have A : i < b.length := nat.lt_of_succ_lt hi, have B : i < list.length (map list.sum (split_wrt_composition a.blocks b)), by simp [A], have C : 0 < blocks_fun b ⟨i, A⟩ := composition.blocks_pos' _ _ _, rw [sum_take_succ _ _ B, ← IH A C], have : take (sum (take i b.blocks)) a.blocks = take (sum (take i b.blocks)) (take (sum (take (i+1) b.blocks)) a.blocks), { rw [take_take, min_eq_left], apply monotone_sum_take _ (nat.le_succ _) }, rw [this, nth_le_map', nth_le_split_wrt_composition, ← take_append_drop (sum (take i b.blocks)) ((take (sum (take (nat.succ i) b.blocks)) a.blocks)), sum_append], congr, rw [take_append_drop] } }, { have A : j < blocks_fun b ⟨i, hi⟩ := lt_trans (lt_add_one j) hj, have B : j < length (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ hi⟩), by { convert A, rw [← length_sigma_composition_aux], refl }, have C : size_up_to b i + j < size_up_to b (i + 1), { simp only [size_up_to_succ b hi, add_lt_add_iff_left], exact A }, have D : size_up_to b i + j < length a := lt_of_lt_of_le C (b.size_up_to_le _), have : size_up_to b i + nat.succ j = (size_up_to b i + j).succ := rfl, rw [this, size_up_to_succ _ D, IHj A, size_up_to_succ _ B], simp only [sigma_composition_aux, add_assoc, add_left_inj, fin.coe_mk], rw [nth_le_of_eq (nth_le_split_wrt_composition _ _ _), nth_le_drop', nth_le_take _ _ C] } end /-- Natural equivalence between `(Σ (a : composition n), composition a.length)` and `(Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i))`, that shows up as a change of variables in the proof that composition of formal multilinear series is associative. Consider a composition `a` of `n` and a composition `b` of `a.length`. Then `b` indicates how to group together some blocks of `a`, giving altogether `b.length` blocks of blocks. These blocks of blocks can be called `d₀, ..., d_{a.length - 1}`, and one obtains a composition `c` of `n` by saying that each `dᵢ` is one single block. The map `⟨a, b⟩ → ⟨c, (d₀, ..., d_{a.length - 1})⟩` is the direct map in the equiv. Conversely, if one starts from `c` and the `dᵢ`s, one can join the `dᵢ`s to obtain a composition `a` of `n`, and register the lengths of the `dᵢ`s in a composition `b` of `a.length`. This is the inverse map of the equiv. -/ def sigma_equiv_sigma_pi (n : ℕ) : (Σ (a : composition n), composition a.length) ≃ (Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) := { to_fun := λ i, ⟨i.1.gather i.2, i.1.sigma_composition_aux i.2⟩, inv_fun := λ i, ⟨ { blocks := (of_fn (λ j, (i.2 j).blocks)).join, blocks_pos := begin simp only [and_imp, list.mem_join, exists_imp_distrib, forall_mem_of_fn_iff], exact λ i j hj, composition.blocks_pos _ hj end, blocks_sum := by simp [sum_of_fn, composition.blocks_sum, composition.sum_blocks_fun] }, { blocks := of_fn (λ j, (i.2 j).length), blocks_pos := forall_mem_of_fn_iff.2 (λ j, composition.length_pos_of_pos _ (composition.blocks_pos' _ _ _)), blocks_sum := by { dsimp only [composition.length], simp [sum_of_fn] } }⟩, left_inv := begin -- the fact that we have a left inverse is essentially `join_split_wrt_composition`, -- but we need to massage it to take care of the dependent setting. rintros ⟨a, b⟩, rw sigma_composition_eq_iff, dsimp, split, { have A := length_map list.sum (split_wrt_composition a.blocks b), conv_rhs { rw [← join_split_wrt_composition a.blocks b, ← of_fn_nth_le (split_wrt_composition a.blocks b)] }, congr, { exact A }, { exact (fin.heq_fun_iff A).2 (λ i, rfl) } }, { have B : composition.length (composition.gather a b) = list.length b.blocks := composition.length_gather _ _, conv_rhs { rw [← of_fn_nth_le b.blocks] }, congr' 1, apply (fin.heq_fun_iff B).2 (λ i, _), rw [sigma_composition_aux, composition.length, nth_le_map_rev list.length, nth_le_of_eq (map_length_split_wrt_composition _ _)], refl } end, right_inv := begin -- the fact that we have a right inverse is essentially `split_wrt_composition_join`, -- but we need to massage it to take care of the dependent setting. rintros ⟨c, d⟩, have : map list.sum (of_fn (λ (i : fin (composition.length c)), (d i).blocks)) = c.blocks, by simp [map_of_fn, (∘), composition.blocks_sum, composition.of_fn_blocks_fun], rw sigma_pi_composition_eq_iff, dsimp, congr, { ext1, dsimp [composition.gather], rwa split_wrt_composition_join, simp only [map_of_fn] }, { rw fin.heq_fun_iff, { assume i, dsimp [composition.sigma_composition_aux], rw [nth_le_of_eq (split_wrt_composition_join _ _ _)], { simp only [nth_le_of_fn'] }, { simp only [map_of_fn] } }, { congr, ext1, dsimp [composition.gather], rwa split_wrt_composition_join, simp only [map_of_fn] } } end } end composition namespace formal_multilinear_series open composition theorem comp_assoc (r : formal_multilinear_series 𝕜 G H) (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) : (r.comp q).comp p = r.comp (q.comp p) := begin ext n v, /- First, rewrite the two compositions appearing in the theorem as two sums over complicated sigma types, as in the description of the proof above. -/ let f : (Σ (a : composition n), composition a.length) → H := λ c, r c.2.length (apply_composition q c.2 (apply_composition p c.1 v)), let g : (Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) → H := λ c, r c.1.length (λ (i : fin c.1.length), q (c.2 i).length (apply_composition p (c.2 i) (v ∘ c.1.embedding i))), suffices : ∑ c, f c = ∑ c, g c, by simpa only [formal_multilinear_series.comp, continuous_multilinear_map.sum_apply, comp_along_composition_apply, continuous_multilinear_map.map_sum, finset.sum_sigma', apply_composition], /- Now, we use `composition.sigma_equiv_sigma_pi n` to change variables in the second sum, and check that we get exactly the same sums. -/ rw ← (sigma_equiv_sigma_pi n).sum_comp, /- To check that we have the same terms, we should check that we apply the same component of `r`, and the same component of `q`, and the same component of `p`, to the same coordinate of `v`. This is true by definition, but at each step one needs to convince Lean that the types one considers are the same, using a suitable congruence lemma to avoid dependent type issues. This dance has to be done three times, one for `r`, one for `q` and one for `p`.-/ apply finset.sum_congr rfl, rintros ⟨a, b⟩ _, dsimp [f, g, sigma_equiv_sigma_pi], -- check that the `r` components are the same. Based on `composition.length_gather` apply r.congr (composition.length_gather a b).symm, intros i hi1 hi2, -- check that the `q` components are the same. Based on `length_sigma_composition_aux` apply q.congr (length_sigma_composition_aux a b _).symm, intros j hj1 hj2, -- check that the `p` components are the same. Based on `blocks_fun_sigma_composition_aux` apply p.congr (blocks_fun_sigma_composition_aux a b _ _).symm, intros k hk1 hk2, -- finally, check that the coordinates of `v` one is using are the same. Based on -- `size_up_to_size_up_to_add`. refine congr_arg v (fin.eq_of_veq _), dsimp [composition.embedding], rw [size_up_to_size_up_to_add _ _ hi1 hj1, add_assoc], end end formal_multilinear_series
0cd42814a862f0deb4328086e5061e4a824cc03d
94e33a31faa76775069b071adea97e86e218a8ee
/src/field_theory/finite/trace.lean
1212063d27aa6ab5b8c2eb87f8e14b1291afeb28
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
939
lean
/- Copyright (c) 2022 Michael Stoll. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Stoll -/ import ring_theory.trace import field_theory.finite.basic import field_theory.finite.galois_field /-! # The trace map for finite fields We state the fact that the trace map from a finite field of characteristic `p` to `zmod p` is nondegenerate. ## Tags finite field, trace -/ namespace finite_field /-- The trace map from a finite field to its prime field is nongedenerate. -/ lemma trace_to_zmod_nondegenerate (F : Type*) [field F] [fintype F] {a : F} (ha : a ≠ 0) : ∃ b : F, algebra.trace (zmod (ring_char F)) F (a * b) ≠ 0 := begin haveI : fact (ring_char F).prime := ⟨char_p.char_is_prime F _⟩, have htr := trace_form_nondegenerate (zmod (ring_char F)) F a, simp_rw [algebra.trace_form_apply] at htr, by_contra' hf, exact ha (htr hf), end end finite_field
546f535f11f3ac60fcd8f73352cb0bda08dc6421
a7eef317ddec01b9fc6cfbb876fe7ac00f205ac7
/src/analysis/calculus/deriv.lean
5a94667b590eafc87c20d7401409cbce3a546d14
[ "Apache-2.0" ]
permissive
kmill/mathlib
ea5a007b67ae4e9e18dd50d31d8aa60f650425ee
1a419a9fea7b959317eddd556e1bb9639f4dcc05
refs/heads/master
1,668,578,197,719
1,593,629,163,000
1,593,629,163,000
276,482,939
0
0
null
1,593,637,960,000
1,593,637,959,000
null
UTF-8
Lean
false
false
69,536
lean
/- Copyright (c) 2019 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner, Sébastien Gouëzel -/ import analysis.calculus.fderiv import data.polynomial /-! # One-dimensional derivatives This file defines the derivative of a function `f : 𝕜 → F` where `𝕜` is a normed field and `F` is a normed space over this field. The derivative of such a function `f` at a point `x` is given by an element `f' : F`. The theory is developed analogously to the [Fréchet derivatives](./fderiv.lean). We first introduce predicates defined in terms of the corresponding predicates for Fréchet derivatives: - `has_deriv_at_filter f f' x L` states that the function `f` has the derivative `f'` at the point `x` as `x` goes along the filter `L`. - `has_deriv_within_at f f' s x` states that the function `f` has the derivative `f'` at the point `x` within the subset `s`. - `has_deriv_at f f' x` states that the function `f` has the derivative `f'` at the point `x`. - `has_strict_deriv_at f f' x` states that the function `f` has the derivative `f'` at the point `x` in the sense of strict differentiability, i.e., `f y - f z = (y - z) • f' + o (y - z)` as `y, z → x`. For the last two notions we also define a functional version: - `deriv_within f s x` is a derivative of `f` at `x` within `s`. If the derivative does not exist, then `deriv_within f s x` equals zero. - `deriv f x` is a derivative of `f` at `x`. If the derivative does not exist, then `deriv f x` equals zero. The theorems `fderiv_within_deriv_within` and `fderiv_deriv` show that the one-dimensional derivatives coincide with the general Fréchet derivatives. We also show the existence and compute the derivatives of: - constants - the identity function - linear maps - addition - sum of finitely many functions - negation - subtraction - multiplication - inverse `x → x⁻¹` - multiplication of two functions in `𝕜 → 𝕜` - multiplication of a function in `𝕜 → 𝕜` and of a function in `𝕜 → E` - composition of a function in `𝕜 → F` with a function in `𝕜 → 𝕜` - composition of a function in `F → E` with a function in `𝕜 → F` - inverse function (assuming that it exists; the inverse function theorem is in `inverse.lean`) - division - polynomials For most binary operations we also define `const_op` and `op_const` theorems for the cases when the first or second argument is a constant. This makes writing chains of `has_deriv_at`'s easier, and they more frequently lead to the desired result. We set up the simplifier so that it can compute the derivative of simple functions. For instance, ```lean example (x : ℝ) : deriv (λ x, cos (sin x) * exp x) x = (cos(sin(x))-sin(sin(x))*cos(x))*exp(x) := by { simp, ring } ``` ## Implementation notes Most of the theorems are direct restatements of the corresponding theorems for Fréchet derivatives. The strategy to construct simp lemmas that give the simplifier the possibility to compute derivatives is the same as the one for differentiability statements, as explained in `fderiv.lean`. See the explanations there. -/ universes u v w noncomputable theory open_locale classical topological_space big_operators filter open filter asymptotics set open continuous_linear_map (smul_right smul_right_one_eq_iff) variables {𝕜 : Type u} [nondiscrete_normed_field 𝕜] section variables {F : Type v} [normed_group F] [normed_space 𝕜 F] variables {E : Type w} [normed_group E] [normed_space 𝕜 E] /-- `f` has the derivative `f'` at the point `x` as `x` goes along the filter `L`. That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges along the filter `L`. -/ def has_deriv_at_filter (f : 𝕜 → F) (f' : F) (x : 𝕜) (L : filter 𝕜) := has_fderiv_at_filter f (smul_right 1 f' : 𝕜 →L[𝕜] F) x L /-- `f` has the derivative `f'` at the point `x` within the subset `s`. That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges to `x` inside `s`. -/ def has_deriv_within_at (f : 𝕜 → F) (f' : F) (s : set 𝕜) (x : 𝕜) := has_deriv_at_filter f f' x (nhds_within x s) /-- `f` has the derivative `f'` at the point `x`. That is, `f x' = f x + (x' - x) • f' + o(x' - x)` where `x'` converges to `x`. -/ def has_deriv_at (f : 𝕜 → F) (f' : F) (x : 𝕜) := has_deriv_at_filter f f' x (𝓝 x) /-- `f` has the derivative `f'` at the point `x` in the sense of strict differentiability. That is, `f y - f z = (y - z) • f' + o(y - z)` as `y, z → x`. -/ def has_strict_deriv_at (f : 𝕜 → F) (f' : F) (x : 𝕜) := has_strict_fderiv_at f (smul_right 1 f' : 𝕜 →L[𝕜] F) x /-- Derivative of `f` at the point `x` within the set `s`, if it exists. Zero otherwise. If the derivative exists (i.e., `∃ f', has_deriv_within_at f f' s x`), then `f x' = f x + (x' - x) • deriv_within f s x + o(x' - x)` where `x'` converges to `x` inside `s`. -/ def deriv_within (f : 𝕜 → F) (s : set 𝕜) (x : 𝕜) := (fderiv_within 𝕜 f s x : 𝕜 →L[𝕜] F) 1 /-- Derivative of `f` at the point `x`, if it exists. Zero otherwise. If the derivative exists (i.e., `∃ f', has_deriv_at f f' x`), then `f x' = f x + (x' - x) • deriv f x + o(x' - x)` where `x'` converges to `x`. -/ def deriv (f : 𝕜 → F) (x : 𝕜) := (fderiv 𝕜 f x : 𝕜 →L[𝕜] F) 1 variables {f f₀ f₁ g : 𝕜 → F} variables {f' f₀' f₁' g' : F} variables {x : 𝕜} variables {s t : set 𝕜} variables {L L₁ L₂ : filter 𝕜} /-- Expressing `has_fderiv_at_filter f f' x L` in terms of `has_deriv_at_filter` -/ lemma has_fderiv_at_filter_iff_has_deriv_at_filter {f' : 𝕜 →L[𝕜] F} : has_fderiv_at_filter f f' x L ↔ has_deriv_at_filter f (f' 1) x L := by simp [has_deriv_at_filter] lemma has_fderiv_at_filter.has_deriv_at_filter {f' : 𝕜 →L[𝕜] F} : has_fderiv_at_filter f f' x L → has_deriv_at_filter f (f' 1) x L := has_fderiv_at_filter_iff_has_deriv_at_filter.mp /-- Expressing `has_fderiv_within_at f f' s x` in terms of `has_deriv_within_at` -/ lemma has_fderiv_within_at_iff_has_deriv_within_at {f' : 𝕜 →L[𝕜] F} : has_fderiv_within_at f f' s x ↔ has_deriv_within_at f (f' 1) s x := has_fderiv_at_filter_iff_has_deriv_at_filter /-- Expressing `has_deriv_within_at f f' s x` in terms of `has_fderiv_within_at` -/ lemma has_deriv_within_at_iff_has_fderiv_within_at {f' : F} : has_deriv_within_at f f' s x ↔ has_fderiv_within_at f (smul_right 1 f' : 𝕜 →L[𝕜] F) s x := iff.rfl lemma has_fderiv_within_at.has_deriv_within_at {f' : 𝕜 →L[𝕜] F} : has_fderiv_within_at f f' s x → has_deriv_within_at f (f' 1) s x := has_fderiv_within_at_iff_has_deriv_within_at.mp lemma has_deriv_within_at.has_fderiv_within_at {f' : F} : has_deriv_within_at f f' s x → has_fderiv_within_at f (smul_right 1 f' : 𝕜 →L[𝕜] F) s x := has_deriv_within_at_iff_has_fderiv_within_at.mp /-- Expressing `has_fderiv_at f f' x` in terms of `has_deriv_at` -/ lemma has_fderiv_at_iff_has_deriv_at {f' : 𝕜 →L[𝕜] F} : has_fderiv_at f f' x ↔ has_deriv_at f (f' 1) x := has_fderiv_at_filter_iff_has_deriv_at_filter lemma has_fderiv_at.has_deriv_at {f' : 𝕜 →L[𝕜] F} : has_fderiv_at f f' x → has_deriv_at f (f' 1) x := has_fderiv_at_iff_has_deriv_at.mp lemma has_strict_fderiv_at_iff_has_strict_deriv_at {f' : 𝕜 →L[𝕜] F} : has_strict_fderiv_at f f' x ↔ has_strict_deriv_at f (f' 1) x := by simp [has_strict_deriv_at, has_strict_fderiv_at] protected lemma has_strict_fderiv_at.has_strict_deriv_at {f' : 𝕜 →L[𝕜] F} : has_strict_fderiv_at f f' x → has_strict_deriv_at f (f' 1) x := has_strict_fderiv_at_iff_has_strict_deriv_at.mp /-- Expressing `has_deriv_at f f' x` in terms of `has_fderiv_at` -/ lemma has_deriv_at_iff_has_fderiv_at {f' : F} : has_deriv_at f f' x ↔ has_fderiv_at f (smul_right 1 f' : 𝕜 →L[𝕜] F) x := iff.rfl lemma deriv_within_zero_of_not_differentiable_within_at (h : ¬ differentiable_within_at 𝕜 f s x) : deriv_within f s x = 0 := by { unfold deriv_within, rw fderiv_within_zero_of_not_differentiable_within_at, simp, assumption } lemma deriv_zero_of_not_differentiable_at (h : ¬ differentiable_at 𝕜 f x) : deriv f x = 0 := by { unfold deriv, rw fderiv_zero_of_not_differentiable_at, simp, assumption } theorem unique_diff_within_at.eq_deriv (s : set 𝕜) (H : unique_diff_within_at 𝕜 s x) (h : has_deriv_within_at f f' s x) (h₁ : has_deriv_within_at f f₁' s x) : f' = f₁' := smul_right_one_eq_iff.mp $ unique_diff_within_at.eq H h h₁ theorem has_deriv_at_filter_iff_tendsto : has_deriv_at_filter f f' x L ↔ tendsto (λ x' : 𝕜, ∥x' - x∥⁻¹ * ∥f x' - f x - (x' - x) • f'∥) L (𝓝 0) := has_fderiv_at_filter_iff_tendsto theorem has_deriv_within_at_iff_tendsto : has_deriv_within_at f f' s x ↔ tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - (x' - x) • f'∥) (nhds_within x s) (𝓝 0) := has_fderiv_at_filter_iff_tendsto theorem has_deriv_at_iff_tendsto : has_deriv_at f f' x ↔ tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - (x' - x) • f'∥) (𝓝 x) (𝓝 0) := has_fderiv_at_filter_iff_tendsto theorem has_strict_deriv_at.has_deriv_at (h : has_strict_deriv_at f f' x) : has_deriv_at f f' x := h.has_fderiv_at /-- If the domain has dimension one, then Fréchet derivative is equivalent to the classical definition with a limit. In this version we have to take the limit along the subset `-{x}`, because for `y=x` the slope equals zero due to the convention `0⁻¹=0`. -/ lemma has_deriv_at_filter_iff_tendsto_slope {x : 𝕜} {L : filter 𝕜} : has_deriv_at_filter f f' x L ↔ tendsto (λ y, (y - x)⁻¹ • (f y - f x)) (L ⊓ 𝓟 {x}ᶜ) (𝓝 f') := begin conv_lhs { simp only [has_deriv_at_filter_iff_tendsto, (normed_field.norm_inv _).symm, (norm_smul _ _).symm, tendsto_zero_iff_norm_tendsto_zero.symm] }, conv_rhs { rw [← nhds_translation f', tendsto_comap_iff] }, refine (tendsto_inf_principal_nhds_iff_of_forall_eq $ by simp).symm.trans (tendsto_congr' _), refine (eventually_principal.2 $ λ z hz, _).filter_mono inf_le_right, simp only [(∘)], rw [smul_sub, ← mul_smul, inv_mul_cancel (sub_ne_zero.2 hz), one_smul] end lemma has_deriv_within_at_iff_tendsto_slope {x : 𝕜} {s : set 𝕜} : has_deriv_within_at f f' s x ↔ tendsto (λ y, (y - x)⁻¹ • (f y - f x)) (nhds_within x (s \ {x})) (𝓝 f') := begin simp only [has_deriv_within_at, nhds_within, diff_eq, inf_assoc.symm, inf_principal.symm], exact has_deriv_at_filter_iff_tendsto_slope end lemma has_deriv_within_at_iff_tendsto_slope' {x : 𝕜} {s : set 𝕜} (hs : x ∉ s) : has_deriv_within_at f f' s x ↔ tendsto (λ y, (y - x)⁻¹ • (f y - f x)) (nhds_within x s) (𝓝 f') := begin convert ← has_deriv_within_at_iff_tendsto_slope, exact diff_singleton_eq_self hs end lemma has_deriv_at_iff_tendsto_slope {x : 𝕜} : has_deriv_at f f' x ↔ tendsto (λ y, (y - x)⁻¹ • (f y - f x)) (nhds_within x {x}ᶜ) (𝓝 f') := has_deriv_at_filter_iff_tendsto_slope theorem has_deriv_at_iff_is_o_nhds_zero : has_deriv_at f f' x ↔ is_o (λh, f (x + h) - f x - h • f') (λh, h) (𝓝 0) := has_fderiv_at_iff_is_o_nhds_zero theorem has_deriv_at_filter.mono (h : has_deriv_at_filter f f' x L₂) (hst : L₁ ≤ L₂) : has_deriv_at_filter f f' x L₁ := has_fderiv_at_filter.mono h hst theorem has_deriv_within_at.mono (h : has_deriv_within_at f f' t x) (hst : s ⊆ t) : has_deriv_within_at f f' s x := has_fderiv_within_at.mono h hst theorem has_deriv_at.has_deriv_at_filter (h : has_deriv_at f f' x) (hL : L ≤ 𝓝 x) : has_deriv_at_filter f f' x L := has_fderiv_at.has_fderiv_at_filter h hL theorem has_deriv_at.has_deriv_within_at (h : has_deriv_at f f' x) : has_deriv_within_at f f' s x := has_fderiv_at.has_fderiv_within_at h lemma has_deriv_within_at.differentiable_within_at (h : has_deriv_within_at f f' s x) : differentiable_within_at 𝕜 f s x := has_fderiv_within_at.differentiable_within_at h lemma has_deriv_at.differentiable_at (h : has_deriv_at f f' x) : differentiable_at 𝕜 f x := has_fderiv_at.differentiable_at h @[simp] lemma has_deriv_within_at_univ : has_deriv_within_at f f' univ x ↔ has_deriv_at f f' x := has_fderiv_within_at_univ theorem has_deriv_at_unique (h₀ : has_deriv_at f f₀' x) (h₁ : has_deriv_at f f₁' x) : f₀' = f₁' := smul_right_one_eq_iff.mp $ has_fderiv_at_unique h₀ h₁ lemma has_deriv_within_at_inter' (h : t ∈ nhds_within x s) : has_deriv_within_at f f' (s ∩ t) x ↔ has_deriv_within_at f f' s x := has_fderiv_within_at_inter' h lemma has_deriv_within_at_inter (h : t ∈ 𝓝 x) : has_deriv_within_at f f' (s ∩ t) x ↔ has_deriv_within_at f f' s x := has_fderiv_within_at_inter h lemma has_deriv_within_at.union (hs : has_deriv_within_at f f' s x) (ht : has_deriv_within_at f f' t x) : has_deriv_within_at f f' (s ∪ t) x := begin simp only [has_deriv_within_at, nhds_within_union], exact hs.join ht, end lemma has_deriv_within_at.nhds_within (h : has_deriv_within_at f f' s x) (ht : s ∈ nhds_within x t) : has_deriv_within_at f f' t x := (has_deriv_within_at_inter' ht).1 (h.mono (inter_subset_right _ _)) lemma has_deriv_within_at.has_deriv_at (h : has_deriv_within_at f f' s x) (hs : s ∈ 𝓝 x) : has_deriv_at f f' x := has_fderiv_within_at.has_fderiv_at h hs lemma differentiable_within_at.has_deriv_within_at (h : differentiable_within_at 𝕜 f s x) : has_deriv_within_at f (deriv_within f s x) s x := show has_fderiv_within_at _ _ _ _, by { convert h.has_fderiv_within_at, simp [deriv_within] } lemma differentiable_at.has_deriv_at (h : differentiable_at 𝕜 f x) : has_deriv_at f (deriv f x) x := show has_fderiv_at _ _ _, by { convert h.has_fderiv_at, simp [deriv] } lemma has_deriv_at.deriv (h : has_deriv_at f f' x) : deriv f x = f' := has_deriv_at_unique h.differentiable_at.has_deriv_at h lemma has_deriv_within_at.deriv_within (h : has_deriv_within_at f f' s x) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within f s x = f' := hxs.eq_deriv _ h.differentiable_within_at.has_deriv_within_at h lemma fderiv_within_deriv_within : (fderiv_within 𝕜 f s x : 𝕜 → F) 1 = deriv_within f s x := rfl lemma deriv_within_fderiv_within : smul_right 1 (deriv_within f s x) = fderiv_within 𝕜 f s x := by simp [deriv_within] lemma fderiv_deriv : (fderiv 𝕜 f x : 𝕜 → F) 1 = deriv f x := rfl lemma deriv_fderiv : smul_right 1 (deriv f x) = fderiv 𝕜 f x := by simp [deriv] lemma differentiable_at.deriv_within (h : differentiable_at 𝕜 f x) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within f s x = deriv f x := by { unfold deriv_within deriv, rw h.fderiv_within hxs } lemma deriv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f t x) : deriv_within f s x = deriv_within f t x := ((differentiable_within_at.has_deriv_within_at h).mono st).deriv_within ht @[simp] lemma deriv_within_univ : deriv_within f univ = deriv f := by { ext, unfold deriv_within deriv, rw fderiv_within_univ } lemma deriv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) : deriv_within f (s ∩ t) x = deriv_within f s x := by { unfold deriv_within, rw fderiv_within_inter ht hs } section congr /-! ### Congruence properties of derivatives -/ theorem has_deriv_at_filter_congr_of_mem_sets (hx : f₀ x = f₁ x) (h₀ : ∀ᶠ x in L, f₀ x = f₁ x) (h₁ : f₀' = f₁') : has_deriv_at_filter f₀ f₀' x L ↔ has_deriv_at_filter f₁ f₁' x L := has_fderiv_at_filter_congr_of_mem_sets hx h₀ (by simp [h₁]) lemma has_deriv_at_filter.congr_of_mem_sets (h : has_deriv_at_filter f f' x L) (hL : ∀ᶠ x in L, f₁ x = f x) (hx : f₁ x = f x) : has_deriv_at_filter f₁ f' x L := by rwa has_deriv_at_filter_congr_of_mem_sets hx hL rfl lemma has_deriv_within_at.congr_mono (h : has_deriv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : has_deriv_within_at f₁ f' t x := has_fderiv_within_at.congr_mono h ht hx h₁ lemma has_deriv_within_at.congr (h : has_deriv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : has_deriv_within_at f₁ f' s x := h.congr_mono hs hx (subset.refl _) lemma has_deriv_within_at.congr_of_mem_nhds_within (h : has_deriv_within_at f f' s x) (h₁ : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) : has_deriv_within_at f₁ f' s x := has_deriv_at_filter.congr_of_mem_sets h h₁ hx lemma has_deriv_at.congr_of_mem_nhds (h : has_deriv_at f f' x) (h₁ : ∀ᶠ y in 𝓝 x, f₁ y = f y) : has_deriv_at f₁ f' x := has_deriv_at_filter.congr_of_mem_sets h h₁ (mem_of_nhds h₁ : _) lemma deriv_within_congr_of_mem_nhds_within (hs : unique_diff_within_at 𝕜 s x) (hL : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) : deriv_within f₁ s x = deriv_within f s x := by { unfold deriv_within, rw fderiv_within_congr_of_mem_nhds_within hs hL hx } lemma deriv_within_congr (hs : unique_diff_within_at 𝕜 s x) (hL : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) : deriv_within f₁ s x = deriv_within f s x := by { unfold deriv_within, rw fderiv_within_congr hs hL hx } lemma deriv_congr_of_mem_nhds (hL : ∀ᶠ y in 𝓝 x, f₁ y = f y) : deriv f₁ x = deriv f x := by { unfold deriv, rwa fderiv_congr_of_mem_nhds } end congr section id /-! ### Derivative of the identity -/ variables (s x L) theorem has_deriv_at_filter_id : has_deriv_at_filter id 1 x L := (has_fderiv_at_filter_id x L).has_deriv_at_filter theorem has_deriv_within_at_id : has_deriv_within_at id 1 s x := has_deriv_at_filter_id _ _ theorem has_deriv_at_id : has_deriv_at id 1 x := has_deriv_at_filter_id _ _ theorem has_deriv_at_id' : has_deriv_at (λ (x : 𝕜), x) 1 x := has_deriv_at_filter_id _ _ theorem has_strict_deriv_at_id : has_strict_deriv_at id 1 x := (has_strict_fderiv_at_id x).has_strict_deriv_at lemma deriv_id : deriv id x = 1 := has_deriv_at.deriv (has_deriv_at_id x) @[simp] lemma deriv_id' : deriv (@id 𝕜) = λ _, 1 := funext deriv_id @[simp] lemma deriv_id'' : deriv (λ x : 𝕜, x) x = 1 := deriv_id x lemma deriv_within_id (hxs : unique_diff_within_at 𝕜 s x) : deriv_within id s x = 1 := (has_deriv_within_at_id x s).deriv_within hxs end id section const /-! ### Derivative of constant functions -/ variables (c : F) (s x L) theorem has_deriv_at_filter_const : has_deriv_at_filter (λ x, c) 0 x L := (has_fderiv_at_filter_const c x L).has_deriv_at_filter theorem has_strict_deriv_at_const : has_strict_deriv_at (λ x, c) 0 x := (has_strict_fderiv_at_const c x).has_strict_deriv_at theorem has_deriv_within_at_const : has_deriv_within_at (λ x, c) 0 s x := has_deriv_at_filter_const _ _ _ theorem has_deriv_at_const : has_deriv_at (λ x, c) 0 x := has_deriv_at_filter_const _ _ _ lemma deriv_const : deriv (λ x, c) x = 0 := has_deriv_at.deriv (has_deriv_at_const x c) @[simp] lemma deriv_const' : deriv (λ x:𝕜, c) = λ x, 0 := funext (λ x, deriv_const x c) lemma deriv_within_const (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λ x, c) s x = 0 := (has_deriv_within_at_const _ _ _).deriv_within hxs end const section continuous_linear_map /-! ### Derivative of continuous linear maps -/ variables (e : 𝕜 →L[𝕜] F) lemma continuous_linear_map.has_deriv_at_filter : has_deriv_at_filter e (e 1) x L := e.has_fderiv_at_filter.has_deriv_at_filter lemma continuous_linear_map.has_strict_deriv_at : has_strict_deriv_at e (e 1) x := e.has_strict_fderiv_at.has_strict_deriv_at lemma continuous_linear_map.has_deriv_at : has_deriv_at e (e 1) x := e.has_deriv_at_filter lemma continuous_linear_map.has_deriv_within_at : has_deriv_within_at e (e 1) s x := e.has_deriv_at_filter @[simp] lemma continuous_linear_map.deriv : deriv e x = e 1 := e.has_deriv_at.deriv lemma continuous_linear_map.deriv_within (hxs : unique_diff_within_at 𝕜 s x) : deriv_within e s x = e 1 := e.has_deriv_within_at.deriv_within hxs end continuous_linear_map section linear_map /-! ### Derivative of bundled linear maps -/ variables (e : 𝕜 →ₗ[𝕜] F) lemma linear_map.has_deriv_at_filter : has_deriv_at_filter e (e 1) x L := e.to_continuous_linear_map₁.has_deriv_at_filter lemma linear_map.has_strict_deriv_at : has_strict_deriv_at e (e 1) x := e.to_continuous_linear_map₁.has_strict_deriv_at lemma linear_map.has_deriv_at : has_deriv_at e (e 1) x := e.has_deriv_at_filter lemma linear_map.has_deriv_within_at : has_deriv_within_at e (e 1) s x := e.has_deriv_at_filter @[simp] lemma linear_map.deriv : deriv e x = e 1 := e.has_deriv_at.deriv lemma linear_map.deriv_within (hxs : unique_diff_within_at 𝕜 s x) : deriv_within e s x = e 1 := e.has_deriv_within_at.deriv_within hxs end linear_map section add /-! ### Derivative of the sum of two functions -/ theorem has_deriv_at_filter.add (hf : has_deriv_at_filter f f' x L) (hg : has_deriv_at_filter g g' x L) : has_deriv_at_filter (λ y, f y + g y) (f' + g') x L := by simpa using (hf.add hg).has_deriv_at_filter theorem has_strict_deriv_at.add (hf : has_strict_deriv_at f f' x) (hg : has_strict_deriv_at g g' x) : has_strict_deriv_at (λ y, f y + g y) (f' + g') x := by simpa using (hf.add hg).has_strict_deriv_at theorem has_deriv_within_at.add (hf : has_deriv_within_at f f' s x) (hg : has_deriv_within_at g g' s x) : has_deriv_within_at (λ y, f y + g y) (f' + g') s x := hf.add hg theorem has_deriv_at.add (hf : has_deriv_at f f' x) (hg : has_deriv_at g g' x) : has_deriv_at (λ x, f x + g x) (f' + g') x := hf.add hg lemma deriv_within_add (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : deriv_within (λy, f y + g y) s x = deriv_within f s x + deriv_within g s x := (hf.has_deriv_within_at.add hg.has_deriv_within_at).deriv_within hxs @[simp] lemma deriv_add (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : deriv (λy, f y + g y) x = deriv f x + deriv g x := (hf.has_deriv_at.add hg.has_deriv_at).deriv theorem has_deriv_at_filter.add_const (hf : has_deriv_at_filter f f' x L) (c : F) : has_deriv_at_filter (λ y, f y + c) f' x L := add_zero f' ▸ hf.add (has_deriv_at_filter_const x L c) theorem has_deriv_within_at.add_const (hf : has_deriv_within_at f f' s x) (c : F) : has_deriv_within_at (λ y, f y + c) f' s x := hf.add_const c theorem has_deriv_at.add_const (hf : has_deriv_at f f' x) (c : F) : has_deriv_at (λ x, f x + c) f' x := hf.add_const c lemma deriv_within_add_const (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (c : F) : deriv_within (λy, f y + c) s x = deriv_within f s x := (hf.has_deriv_within_at.add_const c).deriv_within hxs lemma deriv_add_const (hf : differentiable_at 𝕜 f x) (c : F) : deriv (λy, f y + c) x = deriv f x := (hf.has_deriv_at.add_const c).deriv theorem has_deriv_at_filter.const_add (c : F) (hf : has_deriv_at_filter f f' x L) : has_deriv_at_filter (λ y, c + f y) f' x L := zero_add f' ▸ (has_deriv_at_filter_const x L c).add hf theorem has_deriv_within_at.const_add (c : F) (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (λ y, c + f y) f' s x := hf.const_add c theorem has_deriv_at.const_add (c : F) (hf : has_deriv_at f f' x) : has_deriv_at (λ x, c + f x) f' x := hf.const_add c lemma deriv_within_const_add (hxs : unique_diff_within_at 𝕜 s x) (c : F) (hf : differentiable_within_at 𝕜 f s x) : deriv_within (λy, c + f y) s x = deriv_within f s x := (hf.has_deriv_within_at.const_add c).deriv_within hxs lemma deriv_const_add (c : F) (hf : differentiable_at 𝕜 f x) : deriv (λy, c + f y) x = deriv f x := (hf.has_deriv_at.const_add c).deriv end add section sum /-! ### Derivative of a finite sum of functions -/ open_locale big_operators variables {ι : Type*} {u : finset ι} {A : ι → (𝕜 → F)} {A' : ι → F} theorem has_deriv_at_filter.sum (h : ∀ i ∈ u, has_deriv_at_filter (A i) (A' i) x L) : has_deriv_at_filter (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x L := by simpa [continuous_linear_map.sum_apply] using (has_fderiv_at_filter.sum h).has_deriv_at_filter theorem has_strict_deriv_at.sum (h : ∀ i ∈ u, has_strict_deriv_at (A i) (A' i) x) : has_strict_deriv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x := by simpa [continuous_linear_map.sum_apply] using (has_strict_fderiv_at.sum h).has_strict_deriv_at theorem has_deriv_within_at.sum (h : ∀ i ∈ u, has_deriv_within_at (A i) (A' i) s x) : has_deriv_within_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) s x := has_deriv_at_filter.sum h theorem has_deriv_at.sum (h : ∀ i ∈ u, has_deriv_at (A i) (A' i) x) : has_deriv_at (λ y, ∑ i in u, A i y) (∑ i in u, A' i) x := has_deriv_at_filter.sum h lemma deriv_within_sum (hxs : unique_diff_within_at 𝕜 s x) (h : ∀ i ∈ u, differentiable_within_at 𝕜 (A i) s x) : deriv_within (λ y, ∑ i in u, A i y) s x = ∑ i in u, deriv_within (A i) s x := (has_deriv_within_at.sum (λ i hi, (h i hi).has_deriv_within_at)).deriv_within hxs @[simp] lemma deriv_sum (h : ∀ i ∈ u, differentiable_at 𝕜 (A i) x) : deriv (λ y, ∑ i in u, A i y) x = ∑ i in u, deriv (A i) x := (has_deriv_at.sum (λ i hi, (h i hi).has_deriv_at)).deriv end sum section mul_vector /-! ### Derivative of the multiplication of a scalar function and a vector function -/ variables {c : 𝕜 → 𝕜} {c' : 𝕜} theorem has_deriv_within_at.smul (hc : has_deriv_within_at c c' s x) (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (λ y, c y • f y) (c x • f' + c' • f x) s x := by simpa using (has_fderiv_within_at.smul hc hf).has_deriv_within_at theorem has_deriv_at.smul (hc : has_deriv_at c c' x) (hf : has_deriv_at f f' x) : has_deriv_at (λ y, c y • f y) (c x • f' + c' • f x) x := begin rw [← has_deriv_within_at_univ] at *, exact hc.smul hf end theorem has_strict_deriv_at.smul (hc : has_strict_deriv_at c c' x) (hf : has_strict_deriv_at f f' x) : has_strict_deriv_at (λ y, c y • f y) (c x • f' + c' • f x) x := by simpa using (hc.smul hf).has_strict_deriv_at lemma deriv_within_smul (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) : deriv_within (λ y, c y • f y) s x = c x • deriv_within f s x + (deriv_within c s x) • f x := (hc.has_deriv_within_at.smul hf.has_deriv_within_at).deriv_within hxs lemma deriv_smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) : deriv (λ y, c y • f y) x = c x • deriv f x + (deriv c x) • f x := (hc.has_deriv_at.smul hf.has_deriv_at).deriv theorem has_deriv_within_at.smul_const (hc : has_deriv_within_at c c' s x) (f : F) : has_deriv_within_at (λ y, c y • f) (c' • f) s x := begin have := hc.smul (has_deriv_within_at_const x s f), rwa [smul_zero, zero_add] at this end theorem has_deriv_at.smul_const (hc : has_deriv_at c c' x) (f : F) : has_deriv_at (λ y, c y • f) (c' • f) x := begin rw [← has_deriv_within_at_univ] at *, exact hc.smul_const f end lemma deriv_within_smul_const (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (f : F) : deriv_within (λ y, c y • f) s x = (deriv_within c s x) • f := (hc.has_deriv_within_at.smul_const f).deriv_within hxs lemma deriv_smul_const (hc : differentiable_at 𝕜 c x) (f : F) : deriv (λ y, c y • f) x = (deriv c x) • f := (hc.has_deriv_at.smul_const f).deriv theorem has_deriv_within_at.const_smul (c : 𝕜) (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (λ y, c • f y) (c • f') s x := begin convert (has_deriv_within_at_const x s c).smul hf, rw [zero_smul, add_zero] end theorem has_deriv_at.const_smul (c : 𝕜) (hf : has_deriv_at f f' x) : has_deriv_at (λ y, c • f y) (c • f') x := begin rw [← has_deriv_within_at_univ] at *, exact hf.const_smul c end lemma deriv_within_const_smul (hxs : unique_diff_within_at 𝕜 s x) (c : 𝕜) (hf : differentiable_within_at 𝕜 f s x) : deriv_within (λ y, c • f y) s x = c • deriv_within f s x := (hf.has_deriv_within_at.const_smul c).deriv_within hxs lemma deriv_const_smul (c : 𝕜) (hf : differentiable_at 𝕜 f x) : deriv (λ y, c • f y) x = c • deriv f x := (hf.has_deriv_at.const_smul c).deriv end mul_vector section neg /-! ### Derivative of the negative of a function -/ theorem has_deriv_at_filter.neg (h : has_deriv_at_filter f f' x L) : has_deriv_at_filter (λ x, -f x) (-f') x L := by simpa using h.neg.has_deriv_at_filter theorem has_deriv_within_at.neg (h : has_deriv_within_at f f' s x) : has_deriv_within_at (λ x, -f x) (-f') s x := h.neg theorem has_deriv_at.neg (h : has_deriv_at f f' x) : has_deriv_at (λ x, -f x) (-f') x := h.neg theorem has_strict_deriv_at.neg (h : has_strict_deriv_at f f' x) : has_strict_deriv_at (λ x, -f x) (-f') x := by simpa using h.neg.has_strict_deriv_at lemma deriv_within_neg (hxs : unique_diff_within_at 𝕜 s x) (h : differentiable_within_at 𝕜 f s x) : deriv_within (λy, -f y) s x = - deriv_within f s x := h.has_deriv_within_at.neg.deriv_within hxs lemma deriv_neg : deriv (λy, -f y) x = - deriv f x := if h : differentiable_at 𝕜 f x then h.has_deriv_at.neg.deriv else have ¬differentiable_at 𝕜 (λ y, -f y) x, from λ h', by simpa only [neg_neg] using h'.neg, by simp only [deriv_zero_of_not_differentiable_at h, deriv_zero_of_not_differentiable_at this, neg_zero] @[simp] lemma deriv_neg' : deriv (λy, -f y) = (λ x, - deriv f x) := funext $ λ x, deriv_neg end neg section sub /-! ### Derivative of the difference of two functions -/ theorem has_deriv_at_filter.sub (hf : has_deriv_at_filter f f' x L) (hg : has_deriv_at_filter g g' x L) : has_deriv_at_filter (λ x, f x - g x) (f' - g') x L := hf.add hg.neg theorem has_deriv_within_at.sub (hf : has_deriv_within_at f f' s x) (hg : has_deriv_within_at g g' s x) : has_deriv_within_at (λ x, f x - g x) (f' - g') s x := hf.sub hg theorem has_deriv_at.sub (hf : has_deriv_at f f' x) (hg : has_deriv_at g g' x) : has_deriv_at (λ x, f x - g x) (f' - g') x := hf.sub hg theorem has_strict_deriv_at.sub (hf : has_strict_deriv_at f f' x) (hg : has_strict_deriv_at g g' x) : has_strict_deriv_at (λ x, f x - g x) (f' - g') x := hf.add hg.neg lemma deriv_within_sub (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) : deriv_within (λy, f y - g y) s x = deriv_within f s x - deriv_within g s x := (hf.has_deriv_within_at.sub hg.has_deriv_within_at).deriv_within hxs @[simp] lemma deriv_sub (hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) : deriv (λ y, f y - g y) x = deriv f x - deriv g x := (hf.has_deriv_at.sub hg.has_deriv_at).deriv theorem has_deriv_at_filter.is_O_sub (h : has_deriv_at_filter f f' x L) : is_O (λ x', f x' - f x) (λ x', x' - x) L := has_fderiv_at_filter.is_O_sub h theorem has_deriv_at_filter.sub_const (hf : has_deriv_at_filter f f' x L) (c : F) : has_deriv_at_filter (λ x, f x - c) f' x L := hf.add_const (-c) theorem has_deriv_within_at.sub_const (hf : has_deriv_within_at f f' s x) (c : F) : has_deriv_within_at (λ x, f x - c) f' s x := hf.sub_const c theorem has_deriv_at.sub_const (hf : has_deriv_at f f' x) (c : F) : has_deriv_at (λ x, f x - c) f' x := hf.sub_const c lemma deriv_within_sub_const (hxs : unique_diff_within_at 𝕜 s x) (hf : differentiable_within_at 𝕜 f s x) (c : F) : deriv_within (λy, f y - c) s x = deriv_within f s x := (hf.has_deriv_within_at.sub_const c).deriv_within hxs lemma deriv_sub_const (c : F) (hf : differentiable_at 𝕜 f x) : deriv (λ y, f y - c) x = deriv f x := (hf.has_deriv_at.sub_const c).deriv theorem has_deriv_at_filter.const_sub (c : F) (hf : has_deriv_at_filter f f' x L) : has_deriv_at_filter (λ x, c - f x) (-f') x L := hf.neg.const_add c theorem has_deriv_within_at.const_sub (c : F) (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (λ x, c - f x) (-f') s x := hf.const_sub c theorem has_deriv_at.const_sub (c : F) (hf : has_deriv_at f f' x) : has_deriv_at (λ x, c - f x) (-f') x := hf.const_sub c lemma deriv_within_const_sub (hxs : unique_diff_within_at 𝕜 s x) (c : F) (hf : differentiable_within_at 𝕜 f s x) : deriv_within (λy, c - f y) s x = -deriv_within f s x := (hf.has_deriv_within_at.const_sub c).deriv_within hxs lemma deriv_const_sub (c : F) (hf : differentiable_at 𝕜 f x) : deriv (λ y, c - f y) x = -deriv f x := (hf.has_deriv_at.const_sub c).deriv end sub section continuous /-! ### Continuity of a function admitting a derivative -/ theorem has_deriv_at_filter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : has_deriv_at_filter f f' x L) : tendsto f L (𝓝 (f x)) := h.tendsto_nhds hL theorem has_deriv_within_at.continuous_within_at (h : has_deriv_within_at f f' s x) : continuous_within_at f s x := has_deriv_at_filter.tendsto_nhds inf_le_left h theorem has_deriv_at.continuous_at (h : has_deriv_at f f' x) : continuous_at f x := has_deriv_at_filter.tendsto_nhds (le_refl _) h end continuous section cartesian_product /-! ### Derivative of the cartesian product of two functions -/ variables {G : Type w} [normed_group G] [normed_space 𝕜 G] variables {f₂ : 𝕜 → G} {f₂' : G} lemma has_deriv_at_filter.prod (hf₁ : has_deriv_at_filter f₁ f₁' x L) (hf₂ : has_deriv_at_filter f₂ f₂' x L) : has_deriv_at_filter (λ x, (f₁ x, f₂ x)) (f₁', f₂') x L := show has_fderiv_at_filter _ _ _ _, by convert has_fderiv_at_filter.prod hf₁ hf₂ lemma has_deriv_within_at.prod (hf₁ : has_deriv_within_at f₁ f₁' s x) (hf₂ : has_deriv_within_at f₂ f₂' s x) : has_deriv_within_at (λ x, (f₁ x, f₂ x)) (f₁', f₂') s x := hf₁.prod hf₂ lemma has_deriv_at.prod (hf₁ : has_deriv_at f₁ f₁' x) (hf₂ : has_deriv_at f₂ f₂' x) : has_deriv_at (λ x, (f₁ x, f₂ x)) (f₁', f₂') x := hf₁.prod hf₂ end cartesian_product section composition /-! ### Derivative of the composition of a vector function and a scalar function We use `scomp` in lemmas on composition of vector valued and scalar valued functions, and `comp` in lemmas on composition of scalar valued functions, in analogy for `smul` and `mul` (and also because the `comp` version with the shorter name will show up much more often in applications). The formula for the derivative involves `smul` in `scomp` lemmas, which can be reduced to usual multiplication in `comp` lemmas. -/ variables {h h₁ h₂ : 𝕜 → 𝕜} {h' h₁' h₂' : 𝕜} /- For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to get confused since there are too many possibilities for composition -/ variable (x) theorem has_deriv_at_filter.scomp (hg : has_deriv_at_filter g g' (h x) (L.map h)) (hh : has_deriv_at_filter h h' x L) : has_deriv_at_filter (g ∘ h) (h' • g') x L := by simpa using (hg.comp x hh).has_deriv_at_filter theorem has_deriv_within_at.scomp {t : set 𝕜} (hg : has_deriv_within_at g g' t (h x)) (hh : has_deriv_within_at h h' s x) (hst : s ⊆ h ⁻¹' t) : has_deriv_within_at (g ∘ h) (h' • g') s x := begin apply has_deriv_at_filter.scomp _ (has_deriv_at_filter.mono hg _) hh, calc map h (nhds_within x s) ≤ nhds_within (h x) (h '' s) : hh.continuous_within_at.tendsto_nhds_within_image ... ≤ nhds_within (h x) t : nhds_within_mono _ (image_subset_iff.mpr hst) end /-- The chain rule. -/ theorem has_deriv_at.scomp (hg : has_deriv_at g g' (h x)) (hh : has_deriv_at h h' x) : has_deriv_at (g ∘ h) (h' • g') x := (hg.mono hh.continuous_at).scomp x hh theorem has_strict_deriv_at.scomp (hg : has_strict_deriv_at g g' (h x)) (hh : has_strict_deriv_at h h' x) : has_strict_deriv_at (g ∘ h) (h' • g') x := by simpa using (hg.comp x hh).has_strict_deriv_at theorem has_deriv_at.scomp_has_deriv_within_at (hg : has_deriv_at g g' (h x)) (hh : has_deriv_within_at h h' s x) : has_deriv_within_at (g ∘ h) (h' • g') s x := begin rw ← has_deriv_within_at_univ at hg, exact has_deriv_within_at.scomp x hg hh subset_preimage_univ end lemma deriv_within.scomp (hg : differentiable_within_at 𝕜 g t (h x)) (hh : differentiable_within_at 𝕜 h s x) (hs : s ⊆ h ⁻¹' t) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (g ∘ h) s x = deriv_within h s x • deriv_within g t (h x) := begin apply has_deriv_within_at.deriv_within _ hxs, exact has_deriv_within_at.scomp x (hg.has_deriv_within_at) (hh.has_deriv_within_at) hs end lemma deriv.scomp (hg : differentiable_at 𝕜 g (h x)) (hh : differentiable_at 𝕜 h x) : deriv (g ∘ h) x = deriv h x • deriv g (h x) := begin apply has_deriv_at.deriv, exact has_deriv_at.scomp x hg.has_deriv_at hh.has_deriv_at end /-! ### Derivative of the composition of two scalar functions -/ theorem has_deriv_at_filter.comp (hh₁ : has_deriv_at_filter h₁ h₁' (h₂ x) (L.map h₂)) (hh₂ : has_deriv_at_filter h₂ h₂' x L) : has_deriv_at_filter (h₁ ∘ h₂) (h₁' * h₂') x L := by { rw mul_comm, exact hh₁.scomp x hh₂ } theorem has_deriv_within_at.comp {t : set 𝕜} (hh₁ : has_deriv_within_at h₁ h₁' t (h₂ x)) (hh₂ : has_deriv_within_at h₂ h₂' s x) (hst : s ⊆ h₂ ⁻¹' t) : has_deriv_within_at (h₁ ∘ h₂) (h₁' * h₂') s x := by { rw mul_comm, exact hh₁.scomp x hh₂ hst, } /-- The chain rule. -/ theorem has_deriv_at.comp (hh₁ : has_deriv_at h₁ h₁' (h₂ x)) (hh₂ : has_deriv_at h₂ h₂' x) : has_deriv_at (h₁ ∘ h₂) (h₁' * h₂') x := (hh₁.mono hh₂.continuous_at).comp x hh₂ theorem has_strict_deriv_at.comp (hh₁ : has_strict_deriv_at h₁ h₁' (h₂ x)) (hh₂ : has_strict_deriv_at h₂ h₂' x) : has_strict_deriv_at (h₁ ∘ h₂) (h₁' * h₂') x := by { rw mul_comm, exact hh₁.scomp x hh₂ } theorem has_deriv_at.comp_has_deriv_within_at (hh₁ : has_deriv_at h₁ h₁' (h₂ x)) (hh₂ : has_deriv_within_at h₂ h₂' s x) : has_deriv_within_at (h₁ ∘ h₂) (h₁' * h₂') s x := begin rw ← has_deriv_within_at_univ at hh₁, exact has_deriv_within_at.comp x hh₁ hh₂ subset_preimage_univ end lemma deriv_within.comp (hh₁ : differentiable_within_at 𝕜 h₁ t (h₂ x)) (hh₂ : differentiable_within_at 𝕜 h₂ s x) (hs : s ⊆ h₂ ⁻¹' t) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (h₁ ∘ h₂) s x = deriv_within h₁ t (h₂ x) * deriv_within h₂ s x := begin apply has_deriv_within_at.deriv_within _ hxs, exact has_deriv_within_at.comp x (hh₁.has_deriv_within_at) (hh₂.has_deriv_within_at) hs end lemma deriv.comp (hh₁ : differentiable_at 𝕜 h₁ (h₂ x)) (hh₂ : differentiable_at 𝕜 h₂ x) : deriv (h₁ ∘ h₂) x = deriv h₁ (h₂ x) * deriv h₂ x := begin apply has_deriv_at.deriv, exact has_deriv_at.comp x hh₁.has_deriv_at hh₂.has_deriv_at end protected lemma has_deriv_at_filter.iterate {f : 𝕜 → 𝕜} {f' : 𝕜} (hf : has_deriv_at_filter f f' x L) (hL : tendsto f L L) (hx : f x = x) (n : ℕ) : has_deriv_at_filter (f^[n]) (f'^n) x L := begin have := hf.iterate hL hx n, rwa [continuous_linear_map.smul_right_one_pow] at this end protected lemma has_deriv_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜} (hf : has_deriv_at f f' x) (hx : f x = x) (n : ℕ) : has_deriv_at (f^[n]) (f'^n) x := begin have := has_fderiv_at.iterate hf hx n, rwa [continuous_linear_map.smul_right_one_pow] at this end protected lemma has_deriv_within_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜} (hf : has_deriv_within_at f f' s x) (hx : f x = x) (hs : maps_to f s s) (n : ℕ) : has_deriv_within_at (f^[n]) (f'^n) s x := begin have := has_fderiv_within_at.iterate hf hx hs n, rwa [continuous_linear_map.smul_right_one_pow] at this end protected lemma has_strict_deriv_at.iterate {f : 𝕜 → 𝕜} {f' : 𝕜} (hf : has_strict_deriv_at f f' x) (hx : f x = x) (n : ℕ) : has_strict_deriv_at (f^[n]) (f'^n) x := begin have := hf.iterate hx n, rwa [continuous_linear_map.smul_right_one_pow] at this end end composition section composition_vector /-! ### Derivative of the composition of a function between vector spaces and of a function defined on `𝕜` -/ variables {l : F → E} {l' : F →L[𝕜] E} variable (x) /-- The composition `l ∘ f` where `l : F → E` and `f : 𝕜 → F`, has a derivative within a set equal to the Fréchet derivative of `l` applied to the derivative of `f`. -/ theorem has_fderiv_within_at.comp_has_deriv_within_at {t : set F} (hl : has_fderiv_within_at l l' t (f x)) (hf : has_deriv_within_at f f' s x) (hst : s ⊆ f ⁻¹' t) : has_deriv_within_at (l ∘ f) (l' (f')) s x := begin rw has_deriv_within_at_iff_has_fderiv_within_at, convert has_fderiv_within_at.comp x hl hf hst, ext, simp end /-- The composition `l ∘ f` where `l : F → E` and `f : 𝕜 → F`, has a derivative equal to the Fréchet derivative of `l` applied to the derivative of `f`. -/ theorem has_fderiv_at.comp_has_deriv_at (hl : has_fderiv_at l l' (f x)) (hf : has_deriv_at f f' x) : has_deriv_at (l ∘ f) (l' (f')) x := begin rw has_deriv_at_iff_has_fderiv_at, convert has_fderiv_at.comp x hl hf, ext, simp end theorem has_fderiv_at.comp_has_deriv_within_at (hl : has_fderiv_at l l' (f x)) (hf : has_deriv_within_at f f' s x) : has_deriv_within_at (l ∘ f) (l' (f')) s x := begin rw ← has_fderiv_within_at_univ at hl, exact has_fderiv_within_at.comp_has_deriv_within_at x hl hf subset_preimage_univ end lemma fderiv_within.comp_deriv_within {t : set F} (hl : differentiable_within_at 𝕜 l t (f x)) (hf : differentiable_within_at 𝕜 f s x) (hs : s ⊆ f ⁻¹' t) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (l ∘ f) s x = (fderiv_within 𝕜 l t (f x) : F → E) (deriv_within f s x) := begin apply has_deriv_within_at.deriv_within _ hxs, exact (hl.has_fderiv_within_at).comp_has_deriv_within_at x (hf.has_deriv_within_at) hs end lemma fderiv.comp_deriv (hl : differentiable_at 𝕜 l (f x)) (hf : differentiable_at 𝕜 f x) : deriv (l ∘ f) x = (fderiv 𝕜 l (f x) : F → E) (deriv f x) := begin apply has_deriv_at.deriv _, exact (hl.has_fderiv_at).comp_has_deriv_at x (hf.has_deriv_at) end end composition_vector section mul /-! ### Derivative of the multiplication of two scalar functions -/ variables {c d : 𝕜 → 𝕜} {c' d' : 𝕜} theorem has_deriv_within_at.mul (hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) : has_deriv_within_at (λ y, c y * d y) (c' * d x + c x * d') s x := begin convert hc.smul hd using 1, rw [smul_eq_mul, smul_eq_mul, add_comm] end theorem has_deriv_at.mul (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) : has_deriv_at (λ y, c y * d y) (c' * d x + c x * d') x := begin rw [← has_deriv_within_at_univ] at *, exact hc.mul hd end theorem has_strict_deriv_at.mul (hc : has_strict_deriv_at c c' x) (hd : has_strict_deriv_at d d' x) : has_strict_deriv_at (λ y, c y * d y) (c' * d x + c x * d') x := begin convert hc.smul hd using 1, rw [smul_eq_mul, smul_eq_mul, add_comm] end lemma deriv_within_mul (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) : deriv_within (λ y, c y * d y) s x = deriv_within c s x * d x + c x * deriv_within d s x := (hc.has_deriv_within_at.mul hd.has_deriv_within_at).deriv_within hxs @[simp] lemma deriv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) : deriv (λ y, c y * d y) x = deriv c x * d x + c x * deriv d x := (hc.has_deriv_at.mul hd.has_deriv_at).deriv theorem has_deriv_within_at.mul_const (hc : has_deriv_within_at c c' s x) (d : 𝕜) : has_deriv_within_at (λ y, c y * d) (c' * d) s x := begin convert hc.mul (has_deriv_within_at_const x s d), rw [mul_zero, add_zero] end theorem has_deriv_at.mul_const (hc : has_deriv_at c c' x) (d : 𝕜) : has_deriv_at (λ y, c y * d) (c' * d) x := begin rw [← has_deriv_within_at_univ] at *, exact hc.mul_const d end lemma deriv_within_mul_const (hxs : unique_diff_within_at 𝕜 s x) (hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) : deriv_within (λ y, c y * d) s x = deriv_within c s x * d := (hc.has_deriv_within_at.mul_const d).deriv_within hxs lemma deriv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝕜) : deriv (λ y, c y * d) x = deriv c x * d := (hc.has_deriv_at.mul_const d).deriv theorem has_deriv_within_at.const_mul (c : 𝕜) (hd : has_deriv_within_at d d' s x) : has_deriv_within_at (λ y, c * d y) (c * d') s x := begin convert (has_deriv_within_at_const x s c).mul hd, rw [zero_mul, zero_add] end theorem has_deriv_at.const_mul (c : 𝕜) (hd : has_deriv_at d d' x) : has_deriv_at (λ y, c * d y) (c * d') x := begin rw [← has_deriv_within_at_univ] at *, exact hd.const_mul c end lemma deriv_within_const_mul (hxs : unique_diff_within_at 𝕜 s x) (c : 𝕜) (hd : differentiable_within_at 𝕜 d s x) : deriv_within (λ y, c * d y) s x = c * deriv_within d s x := (hd.has_deriv_within_at.const_mul c).deriv_within hxs lemma deriv_const_mul (c : 𝕜) (hd : differentiable_at 𝕜 d x) : deriv (λ y, c * d y) x = c * deriv d x := (hd.has_deriv_at.const_mul c).deriv end mul section inverse /-! ### Derivative of `x ↦ x⁻¹` -/ theorem has_strict_deriv_at_inv (hx : x ≠ 0) : has_strict_deriv_at has_inv.inv (-(x^2)⁻¹) x := begin suffices : is_o (λ p : 𝕜 × 𝕜, (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹)) (λ (p : 𝕜 × 𝕜), (p.1 - p.2) * 1) (𝓝 (x, x)), { refine this.congr' _ (eventually_of_forall _ $ λ _, mul_one _), refine eventually.mono (mem_nhds_sets (is_open_prod is_open_ne is_open_ne) ⟨hx, hx⟩) _, rintro ⟨y, z⟩ ⟨hy, hz⟩, simp only [mem_set_of_eq] at hy hz, -- hy : y ≠ 0, hz : z ≠ 0 field_simp [hx, hy, hz], ring, }, refine (is_O_refl (λ p : 𝕜 × 𝕜, p.1 - p.2) _).mul_is_o ((is_o_one_iff _).2 _), rw [← sub_self (x * x)⁻¹], exact tendsto_const_nhds.sub ((continuous_mul.tendsto (x, x)).inv' $ mul_ne_zero hx hx) end theorem has_deriv_at_inv (x_ne_zero : x ≠ 0) : has_deriv_at (λy, y⁻¹) (-(x^2)⁻¹) x := (has_strict_deriv_at_inv x_ne_zero).has_deriv_at theorem has_deriv_within_at_inv (x_ne_zero : x ≠ 0) (s : set 𝕜) : has_deriv_within_at (λx, x⁻¹) (-(x^2)⁻¹) s x := (has_deriv_at_inv x_ne_zero).has_deriv_within_at lemma differentiable_at_inv (x_ne_zero : x ≠ 0) : differentiable_at 𝕜 (λx, x⁻¹) x := (has_deriv_at_inv x_ne_zero).differentiable_at lemma differentiable_within_at_inv (x_ne_zero : x ≠ 0) : differentiable_within_at 𝕜 (λx, x⁻¹) s x := (differentiable_at_inv x_ne_zero).differentiable_within_at lemma differentiable_on_inv : differentiable_on 𝕜 (λx:𝕜, x⁻¹) {x | x ≠ 0} := λx hx, differentiable_within_at_inv hx lemma deriv_inv (x_ne_zero : x ≠ 0) : deriv (λx, x⁻¹) x = -(x^2)⁻¹ := (has_deriv_at_inv x_ne_zero).deriv lemma deriv_within_inv (x_ne_zero : x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, x⁻¹) s x = -(x^2)⁻¹ := begin rw differentiable_at.deriv_within (differentiable_at_inv x_ne_zero) hxs, exact deriv_inv x_ne_zero end lemma has_fderiv_at_inv (x_ne_zero : x ≠ 0) : has_fderiv_at (λx, x⁻¹) (smul_right 1 (-(x^2)⁻¹) : 𝕜 →L[𝕜] 𝕜) x := has_deriv_at_inv x_ne_zero lemma has_fderiv_within_at_inv (x_ne_zero : x ≠ 0) : has_fderiv_within_at (λx, x⁻¹) (smul_right 1 (-(x^2)⁻¹) : 𝕜 →L[𝕜] 𝕜) s x := (has_fderiv_at_inv x_ne_zero).has_fderiv_within_at lemma fderiv_inv (x_ne_zero : x ≠ 0) : fderiv 𝕜 (λx, x⁻¹) x = smul_right 1 (-(x^2)⁻¹) := (has_fderiv_at_inv x_ne_zero).fderiv lemma fderiv_within_inv (x_ne_zero : x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λx, x⁻¹) s x = smul_right 1 (-(x^2)⁻¹) := begin rw differentiable_at.fderiv_within (differentiable_at_inv x_ne_zero) hxs, exact fderiv_inv x_ne_zero end variables {c : 𝕜 → 𝕜} {c' : 𝕜} lemma has_deriv_within_at.inv (hc : has_deriv_within_at c c' s x) (hx : c x ≠ 0) : has_deriv_within_at (λ y, (c y)⁻¹) (- c' / (c x)^2) s x := begin convert (has_deriv_at_inv hx).comp_has_deriv_within_at x hc, field_simp end lemma has_deriv_at.inv (hc : has_deriv_at c c' x) (hx : c x ≠ 0) : has_deriv_at (λ y, (c y)⁻¹) (- c' / (c x)^2) x := begin rw ← has_deriv_within_at_univ at *, exact hc.inv hx end lemma differentiable_within_at.inv (hc : differentiable_within_at 𝕜 c s x) (hx : c x ≠ 0) : differentiable_within_at 𝕜 (λx, (c x)⁻¹) s x := (hc.has_deriv_within_at.inv hx).differentiable_within_at @[simp] lemma differentiable_at.inv (hc : differentiable_at 𝕜 c x) (hx : c x ≠ 0) : differentiable_at 𝕜 (λx, (c x)⁻¹) x := (hc.has_deriv_at.inv hx).differentiable_at lemma differentiable_on.inv (hc : differentiable_on 𝕜 c s) (hx : ∀ x ∈ s, c x ≠ 0) : differentiable_on 𝕜 (λx, (c x)⁻¹) s := λx h, (hc x h).inv (hx x h) @[simp] lemma differentiable.inv (hc : differentiable 𝕜 c) (hx : ∀ x, c x ≠ 0) : differentiable 𝕜 (λx, (c x)⁻¹) := λx, (hc x).inv (hx x) lemma deriv_within_inv' (hc : differentiable_within_at 𝕜 c s x) (hx : c x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, (c x)⁻¹) s x = - (deriv_within c s x) / (c x)^2 := (hc.has_deriv_within_at.inv hx).deriv_within hxs @[simp] lemma deriv_inv' (hc : differentiable_at 𝕜 c x) (hx : c x ≠ 0) : deriv (λx, (c x)⁻¹) x = - (deriv c x) / (c x)^2 := (hc.has_deriv_at.inv hx).deriv end inverse section division /-! ### Derivative of `x ↦ c x / d x` -/ variables {c d : 𝕜 → 𝕜} {c' d' : 𝕜} lemma has_deriv_within_at.div (hc : has_deriv_within_at c c' s x) (hd : has_deriv_within_at d d' s x) (hx : d x ≠ 0) : has_deriv_within_at (λ y, c y / d y) ((c' * d x - c x * d') / (d x)^2) s x := begin have A : (d x)⁻¹ * (d x)⁻¹ * (c' * d x) = (d x)⁻¹ * c', by rw [← mul_assoc, mul_comm, ← mul_assoc, ← mul_assoc, mul_inv_cancel hx, one_mul], convert hc.mul ((has_deriv_at_inv hx).comp_has_deriv_within_at x hd), simp [div_eq_inv_mul, pow_two, mul_inv', mul_add, A, sub_eq_add_neg], ring end lemma has_deriv_at.div (hc : has_deriv_at c c' x) (hd : has_deriv_at d d' x) (hx : d x ≠ 0) : has_deriv_at (λ y, c y / d y) ((c' * d x - c x * d') / (d x)^2) x := begin rw ← has_deriv_within_at_univ at *, exact hc.div hd hx end lemma differentiable_within_at.div (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x ≠ 0) : differentiable_within_at 𝕜 (λx, c x / d x) s x := ((hc.has_deriv_within_at).div (hd.has_deriv_within_at) hx).differentiable_within_at @[simp] lemma differentiable_at.div (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x ≠ 0) : differentiable_at 𝕜 (λx, c x / d x) x := ((hc.has_deriv_at).div (hd.has_deriv_at) hx).differentiable_at lemma differentiable_on.div (hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) (hx : ∀ x ∈ s, d x ≠ 0) : differentiable_on 𝕜 (λx, c x / d x) s := λx h, (hc x h).div (hd x h) (hx x h) @[simp] lemma differentiable.div (hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) (hx : ∀ x, d x ≠ 0) : differentiable 𝕜 (λx, c x / d x) := λx, (hc x).div (hd x) (hx x) lemma deriv_within_div (hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) (hx : d x ≠ 0) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, c x / d x) s x = ((deriv_within c s x) * d x - c x * (deriv_within d s x)) / (d x)^2 := ((hc.has_deriv_within_at).div (hd.has_deriv_within_at) hx).deriv_within hxs @[simp] lemma deriv_div (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) (hx : d x ≠ 0) : deriv (λx, c x / d x) x = ((deriv c x) * d x - c x * (deriv d x)) / (d x)^2 := ((hc.has_deriv_at).div (hd.has_deriv_at) hx).deriv lemma differentiable_within_at.div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜} : differentiable_within_at 𝕜 (λx, c x / d) s x := by simp [div_eq_inv_mul, differentiable_within_at.const_mul, hc] @[simp] lemma differentiable_at.div_const (hc : differentiable_at 𝕜 c x) {d : 𝕜} : differentiable_at 𝕜 (λ x, c x / d) x := by simp [div_eq_inv_mul, hc] lemma differentiable_on.div_const (hc : differentiable_on 𝕜 c s) {d : 𝕜} : differentiable_on 𝕜 (λx, c x / d) s := by simp [div_eq_inv_mul, differentiable_on.const_mul, hc] @[simp] lemma differentiable.div_const (hc : differentiable 𝕜 c) {d : 𝕜} : differentiable 𝕜 (λx, c x / d) := by simp [div_eq_inv_mul, differentiable.const_mul, hc] lemma deriv_within_div_const (hc : differentiable_within_at 𝕜 c s x) {d : 𝕜} (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, c x / d) s x = (deriv_within c s x) / d := by simp [div_eq_inv_mul, deriv_within_const_mul, hc, hxs] @[simp] lemma deriv_div_const (hc : differentiable_at 𝕜 c x) {d : 𝕜} : deriv (λx, c x / d) x = (deriv c x) / d := by simp [div_eq_inv_mul, deriv_const_mul, hc] end division theorem has_strict_deriv_at.has_strict_fderiv_at_equiv {f : 𝕜 → 𝕜} {f' x : 𝕜} (hf : has_strict_deriv_at f f' x) (hf' : f' ≠ 0) : has_strict_fderiv_at f (continuous_linear_equiv.units_equiv_aut 𝕜 (units.mk0 f' hf') : 𝕜 →L[𝕜] 𝕜) x := hf theorem has_deriv_at.has_fderiv_at_equiv {f : 𝕜 → 𝕜} {f' x : 𝕜} (hf : has_deriv_at f f' x) (hf' : f' ≠ 0) : has_fderiv_at f (continuous_linear_equiv.units_equiv_aut 𝕜 (units.mk0 f' hf') : 𝕜 →L[𝕜] 𝕜) x := hf /-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an invertible derivative `f'` at `g a` in the strict sense, then `g` has the derivative `f'⁻¹` at `a` in the strict sense. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ theorem has_strict_deriv_at.of_local_left_inverse {f g : 𝕜 → 𝕜} {f' a : 𝕜} (hg : continuous_at g a) (hf : has_strict_deriv_at f f' (g a)) (hf' : f' ≠ 0) (hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) : has_strict_deriv_at g f'⁻¹ a := (hf.has_strict_fderiv_at_equiv hf').of_local_left_inverse hg hfg /-- If `f (g y) = y` for `y` in some neighborhood of `a`, `g` is continuous at `a`, and `f` has an invertible derivative `f'` at `g a`, then `g` has the derivative `f'⁻¹` at `a`. This is one of the easy parts of the inverse function theorem: it assumes that we already have an inverse function. -/ theorem has_deriv_at.of_local_left_inverse {f g : 𝕜 → 𝕜} {f' a : 𝕜} (hg : continuous_at g a) (hf : has_deriv_at f f' (g a)) (hf' : f' ≠ 0) (hfg : ∀ᶠ y in 𝓝 a, f (g y) = y) : has_deriv_at g f'⁻¹ a := (hf.has_fderiv_at_equiv hf').of_local_left_inverse hg hfg end namespace polynomial /-! ### Derivative of a polynomial -/ variables {x : 𝕜} {s : set 𝕜} variable (p : polynomial 𝕜) /-- The derivative (in the analysis sense) of a polynomial `p` is given by `p.derivative`. -/ protected lemma has_strict_deriv_at (x : 𝕜) : has_strict_deriv_at (λx, p.eval x) (p.derivative.eval x) x := begin apply p.induction_on, { simp [has_strict_deriv_at_const] }, { assume p q hp hq, convert hp.add hq; simp }, { assume n a h, convert h.mul (has_strict_deriv_at_id x), { ext y, simp [pow_add, mul_assoc] }, { simp [pow_add], ring } } end /-- The derivative (in the analysis sense) of a polynomial `p` is given by `p.derivative`. -/ protected lemma has_deriv_at (x : 𝕜) : has_deriv_at (λx, p.eval x) (p.derivative.eval x) x := (p.has_strict_deriv_at x).has_deriv_at protected theorem has_deriv_within_at (x : 𝕜) (s : set 𝕜) : has_deriv_within_at (λx, p.eval x) (p.derivative.eval x) s x := (p.has_deriv_at x).has_deriv_within_at protected lemma differentiable_at : differentiable_at 𝕜 (λx, p.eval x) x := (p.has_deriv_at x).differentiable_at protected lemma differentiable_within_at : differentiable_within_at 𝕜 (λx, p.eval x) s x := p.differentiable_at.differentiable_within_at protected lemma differentiable : differentiable 𝕜 (λx, p.eval x) := λx, p.differentiable_at protected lemma differentiable_on : differentiable_on 𝕜 (λx, p.eval x) s := p.differentiable.differentiable_on @[simp] protected lemma deriv : deriv (λx, p.eval x) x = p.derivative.eval x := (p.has_deriv_at x).deriv protected lemma deriv_within (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, p.eval x) s x = p.derivative.eval x := begin rw differentiable_at.deriv_within p.differentiable_at hxs, exact p.deriv end protected lemma continuous : continuous (λx, p.eval x) := p.differentiable.continuous protected lemma continuous_on : continuous_on (λx, p.eval x) s := p.continuous.continuous_on protected lemma continuous_at : continuous_at (λx, p.eval x) x := p.continuous.continuous_at protected lemma continuous_within_at : continuous_within_at (λx, p.eval x) s x := p.continuous_at.continuous_within_at protected lemma has_fderiv_at (x : 𝕜) : has_fderiv_at (λx, p.eval x) (smul_right 1 (p.derivative.eval x) : 𝕜 →L[𝕜] 𝕜) x := by simpa [has_deriv_at_iff_has_fderiv_at] using p.has_deriv_at x protected lemma has_fderiv_within_at (x : 𝕜) : has_fderiv_within_at (λx, p.eval x) (smul_right 1 (p.derivative.eval x) : 𝕜 →L[𝕜] 𝕜) s x := (p.has_fderiv_at x).has_fderiv_within_at @[simp] protected lemma fderiv : fderiv 𝕜 (λx, p.eval x) x = smul_right 1 (p.derivative.eval x) := (p.has_fderiv_at x).fderiv protected lemma fderiv_within (hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 (λx, p.eval x) s x = smul_right 1 (p.derivative.eval x) := begin rw differentiable_at.fderiv_within p.differentiable_at hxs, exact p.fderiv end end polynomial section pow /-! ### Derivative of `x ↦ x^n` for `n : ℕ` -/ variables {x : 𝕜} {s : set 𝕜} {c : 𝕜 → 𝕜} {c' : 𝕜} variable {n : ℕ } lemma has_strict_deriv_at_pow (n : ℕ) (x : 𝕜) : has_strict_deriv_at (λx, x^n) ((n : 𝕜) * x^(n-1)) x := begin convert (polynomial.C (1 : 𝕜) * (polynomial.X)^n).has_strict_deriv_at x, { simp }, { rw [polynomial.derivative_monomial], simp } end lemma has_deriv_at_pow (n : ℕ) (x : 𝕜) : has_deriv_at (λx, x^n) ((n : 𝕜) * x^(n-1)) x := (has_strict_deriv_at_pow n x).has_deriv_at theorem has_deriv_within_at_pow (n : ℕ) (x : 𝕜) (s : set 𝕜) : has_deriv_within_at (λx, x^n) ((n : 𝕜) * x^(n-1)) s x := (has_deriv_at_pow n x).has_deriv_within_at lemma differentiable_at_pow : differentiable_at 𝕜 (λx, x^n) x := (has_deriv_at_pow n x).differentiable_at lemma differentiable_within_at_pow : differentiable_within_at 𝕜 (λx, x^n) s x := differentiable_at_pow.differentiable_within_at lemma differentiable_pow : differentiable 𝕜 (λx:𝕜, x^n) := λx, differentiable_at_pow lemma differentiable_on_pow : differentiable_on 𝕜 (λx, x^n) s := differentiable_pow.differentiable_on lemma deriv_pow : deriv (λx, x^n) x = (n : 𝕜) * x^(n-1) := (has_deriv_at_pow n x).deriv @[simp] lemma deriv_pow' : deriv (λx, x^n) = λ x, (n : 𝕜) * x^(n-1) := funext $ λ x, deriv_pow lemma deriv_within_pow (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, x^n) s x = (n : 𝕜) * x^(n-1) := (has_deriv_within_at_pow n x s).deriv_within hxs lemma iter_deriv_pow' {k : ℕ} : deriv^[k] (λx:𝕜, x^n) = λ x, (∏ i in finset.range k, (n - i) : ℕ) * x^(n-k) := begin induction k with k ihk, { simp only [one_mul, finset.prod_range_zero, function.iterate_zero_apply, nat.sub_zero, nat.cast_one] }, { simp only [function.iterate_succ_apply', ihk, finset.prod_range_succ], ext x, rw [((has_deriv_at_pow (n - k) x).const_mul _).deriv, nat.cast_mul, mul_left_comm, mul_assoc, nat.succ_eq_add_one, nat.sub_sub] } end lemma iter_deriv_pow {k : ℕ} : deriv^[k] (λx:𝕜, x^n) x = (∏ i in finset.range k, (n - i) : ℕ) * x^(n-k) := congr_fun iter_deriv_pow' x lemma has_deriv_within_at.pow (hc : has_deriv_within_at c c' s x) : has_deriv_within_at (λ y, (c y)^n) ((n : 𝕜) * (c x)^(n-1) * c') s x := (has_deriv_at_pow n (c x)).comp_has_deriv_within_at x hc lemma has_deriv_at.pow (hc : has_deriv_at c c' x) : has_deriv_at (λ y, (c y)^n) ((n : 𝕜) * (c x)^(n-1) * c') x := by { rw ← has_deriv_within_at_univ at *, exact hc.pow } lemma differentiable_within_at.pow (hc : differentiable_within_at 𝕜 c s x) : differentiable_within_at 𝕜 (λx, (c x)^n) s x := hc.has_deriv_within_at.pow.differentiable_within_at @[simp] lemma differentiable_at.pow (hc : differentiable_at 𝕜 c x) : differentiable_at 𝕜 (λx, (c x)^n) x := hc.has_deriv_at.pow.differentiable_at lemma differentiable_on.pow (hc : differentiable_on 𝕜 c s) : differentiable_on 𝕜 (λx, (c x)^n) s := λx h, (hc x h).pow @[simp] lemma differentiable.pow (hc : differentiable 𝕜 c) : differentiable 𝕜 (λx, (c x)^n) := λx, (hc x).pow lemma deriv_within_pow' (hc : differentiable_within_at 𝕜 c s x) (hxs : unique_diff_within_at 𝕜 s x) : deriv_within (λx, (c x)^n) s x = (n : 𝕜) * (c x)^(n-1) * (deriv_within c s x) := hc.has_deriv_within_at.pow.deriv_within hxs @[simp] lemma deriv_pow'' (hc : differentiable_at 𝕜 c x) : deriv (λx, (c x)^n) x = (n : 𝕜) * (c x)^(n-1) * (deriv c x) := hc.has_deriv_at.pow.deriv end pow section fpow /-! ### Derivative of `x ↦ x^m` for `m : ℤ` -/ variables {x : 𝕜} {s : set 𝕜} variable {m : ℤ} lemma has_strict_deriv_at_fpow (m : ℤ) (hx : x ≠ 0) : has_strict_deriv_at (λx, x^m) ((m : 𝕜) * x^(m-1)) x := begin have : ∀ m : ℤ, 0 < m → has_strict_deriv_at (λx, x^m) ((m:𝕜) * x^(m-1)) x, { assume m hm, lift m to ℕ using (le_of_lt hm), simp only [fpow_of_nat, int.cast_coe_nat], convert has_strict_deriv_at_pow _ _ using 2, rw [← int.coe_nat_one, ← int.coe_nat_sub, fpow_coe_nat], norm_cast at hm, exact nat.succ_le_of_lt hm }, rcases lt_trichotomy m 0 with hm|hm|hm, { have := (has_strict_deriv_at_inv _).scomp _ (this (-m) (neg_pos.2 hm)); [skip, exact fpow_ne_zero_of_ne_zero hx _], simp only [(∘), fpow_neg, one_div_eq_inv, inv_inv', smul_eq_mul] at this, convert this using 1, rw [pow_two, mul_inv', inv_inv', int.cast_neg, ← neg_mul_eq_neg_mul, neg_mul_neg, ← fpow_add hx, mul_assoc, ← fpow_add hx], congr, abel }, { simp only [hm, fpow_zero, int.cast_zero, zero_mul, has_strict_deriv_at_const] }, { exact this m hm } end lemma has_deriv_at_fpow (m : ℤ) (hx : x ≠ 0) : has_deriv_at (λx, x^m) ((m : 𝕜) * x^(m-1)) x := (has_strict_deriv_at_fpow m hx).has_deriv_at theorem has_deriv_within_at_fpow (m : ℤ) (hx : x ≠ 0) (s : set 𝕜) : has_deriv_within_at (λx, x^m) ((m : 𝕜) * x^(m-1)) s x := (has_deriv_at_fpow m hx).has_deriv_within_at lemma differentiable_at_fpow (hx : x ≠ 0) : differentiable_at 𝕜 (λx, x^m) x := (has_deriv_at_fpow m hx).differentiable_at lemma differentiable_within_at_fpow (hx : x ≠ 0) : differentiable_within_at 𝕜 (λx, x^m) s x := (differentiable_at_fpow hx).differentiable_within_at lemma differentiable_on_fpow (hs : (0:𝕜) ∉ s) : differentiable_on 𝕜 (λx, x^m) s := λ x hxs, differentiable_within_at_fpow (λ hx, hs $ hx ▸ hxs) -- TODO : this is true at `x=0` as well lemma deriv_fpow (hx : x ≠ 0) : deriv (λx, x^m) x = (m : 𝕜) * x^(m-1) := (has_deriv_at_fpow m hx).deriv lemma deriv_within_fpow (hxs : unique_diff_within_at 𝕜 s x) (hx : x ≠ 0) : deriv_within (λx, x^m) s x = (m : 𝕜) * x^(m-1) := (has_deriv_within_at_fpow m hx s).deriv_within hxs lemma iter_deriv_fpow {k : ℕ} (hx : x ≠ 0) : deriv^[k] (λx:𝕜, x^m) x = (∏ i in finset.range k, (m - i) : ℤ) * x^(m-k) := begin induction k with k ihk generalizing x hx, { simp only [one_mul, finset.prod_range_zero, function.iterate_zero_apply, int.coe_nat_zero, sub_zero, int.cast_one] }, { rw [function.iterate_succ', finset.prod_range_succ, int.cast_mul, mul_assoc, mul_left_comm, int.coe_nat_succ, ← sub_sub, ← ((has_deriv_at_fpow _ hx).const_mul _).deriv], exact deriv_congr_of_mem_nhds (eventually.mono (mem_nhds_sets is_open_ne hx) @ihk) } end end fpow /-! ### Upper estimates on liminf and limsup -/ section real variables {f : ℝ → ℝ} {f' : ℝ} {s : set ℝ} {x : ℝ} {r : ℝ} lemma has_deriv_within_at.limsup_slope_le (hf : has_deriv_within_at f f' s x) (hr : f' < r) : ∀ᶠ z in nhds_within x (s \ {x}), (z - x)⁻¹ * (f z - f x) < r := has_deriv_within_at_iff_tendsto_slope.1 hf (mem_nhds_sets is_open_Iio hr) lemma has_deriv_within_at.limsup_slope_le' (hf : has_deriv_within_at f f' s x) (hs : x ∉ s) (hr : f' < r) : ∀ᶠ z in nhds_within x s, (z - x)⁻¹ * (f z - f x) < r := (has_deriv_within_at_iff_tendsto_slope' hs).1 hf (mem_nhds_sets is_open_Iio hr) lemma has_deriv_within_at.liminf_right_slope_le (hf : has_deriv_within_at f f' (Ioi x) x) (hr : f' < r) : ∃ᶠ z in nhds_within x (Ioi x), (z - x)⁻¹ * (f z - f x) < r := (hf.limsup_slope_le' (lt_irrefl x) hr).frequently (nhds_within_Ioi_self_ne_bot x) end real section real_space open metric variables {E : Type u} [normed_group E] [normed_space ℝ E] {f : ℝ → E} {f' : E} {s : set ℝ} {x r : ℝ} /-- If `f` has derivative `f'` within `s` at `x`, then for any `r > ∥f'∥` the ratio `∥f z - f x∥ / ∥z - x∥` is less than `r` in some neighborhood of `x` within `s`. In other words, the limit superior of this ratio as `z` tends to `x` along `s` is less than or equal to `∥f'∥`. -/ lemma has_deriv_within_at.limsup_norm_slope_le (hf : has_deriv_within_at f f' s x) (hr : ∥f'∥ < r) : ∀ᶠ z in nhds_within x s, ∥z - x∥⁻¹ * ∥f z - f x∥ < r := begin have hr₀ : 0 < r, from lt_of_le_of_lt (norm_nonneg f') hr, have A : ∀ᶠ z in nhds_within x (s \ {x}), ∥(z - x)⁻¹ • (f z - f x)∥ ∈ Iio r, from (has_deriv_within_at_iff_tendsto_slope.1 hf).norm (mem_nhds_sets is_open_Iio hr), have B : ∀ᶠ z in nhds_within x {x}, ∥(z - x)⁻¹ • (f z - f x)∥ ∈ Iio r, from mem_sets_of_superset self_mem_nhds_within (singleton_subset_iff.2 $ by simp [hr₀]), have C := mem_sup_sets.2 ⟨A, B⟩, rw [← nhds_within_union, diff_union_self, nhds_within_union, mem_sup_sets] at C, filter_upwards [C.1], simp only [mem_set_of_eq, norm_smul, mem_Iio, normed_field.norm_inv], exact λ _, id end /-- If `f` has derivative `f'` within `s` at `x`, then for any `r > ∥f'∥` the ratio `(∥f z∥ - ∥f x∥) / ∥z - x∥` is less than `r` in some neighborhood of `x` within `s`. In other words, the limit superior of this ratio as `z` tends to `x` along `s` is less than or equal to `∥f'∥`. This lemma is a weaker version of `has_deriv_within_at.limsup_norm_slope_le` where `∥f z∥ - ∥f x∥` is replaced by `∥f z - f x∥`. -/ lemma has_deriv_within_at.limsup_slope_norm_le (hf : has_deriv_within_at f f' s x) (hr : ∥f'∥ < r) : ∀ᶠ z in nhds_within x s, ∥z - x∥⁻¹ * (∥f z∥ - ∥f x∥) < r := begin apply (hf.limsup_norm_slope_le hr).mono, assume z hz, refine lt_of_le_of_lt (mul_le_mul_of_nonneg_left (norm_sub_norm_le _ _) _) hz, exact inv_nonneg.2 (norm_nonneg _) end /-- If `f` has derivative `f'` within `(x, +∞)` at `x`, then for any `r > ∥f'∥` the ratio `∥f z - f x∥ / ∥z - x∥` is frequently less than `r` as `z → x+0`. In other words, the limit inferior of this ratio as `z` tends to `x+0` is less than or equal to `∥f'∥`. See also `has_deriv_within_at.limsup_norm_slope_le` for a stronger version using limit superior and any set `s`. -/ lemma has_deriv_within_at.liminf_right_norm_slope_le (hf : has_deriv_within_at f f' (Ioi x) x) (hr : ∥f'∥ < r) : ∃ᶠ z in nhds_within x (Ioi x), ∥z - x∥⁻¹ * ∥f z - f x∥ < r := (hf.limsup_norm_slope_le hr).frequently (nhds_within_Ioi_self_ne_bot x) /-- If `f` has derivative `f'` within `(x, +∞)` at `x`, then for any `r > ∥f'∥` the ratio `(∥f z∥ - ∥f x∥) / (z - x)` is frequently less than `r` as `z → x+0`. In other words, the limit inferior of this ratio as `z` tends to `x+0` is less than or equal to `∥f'∥`. See also * `has_deriv_within_at.limsup_norm_slope_le` for a stronger version using limit superior and any set `s`; * `has_deriv_within_at.liminf_right_norm_slope_le` for a stronger version using `∥f z - f x∥` instead of `∥f z∥ - ∥f x∥`. -/ lemma has_deriv_within_at.liminf_right_slope_norm_le (hf : has_deriv_within_at f f' (Ioi x) x) (hr : ∥f'∥ < r) : ∃ᶠ z in nhds_within x (Ioi x), (z - x)⁻¹ * (∥f z∥ - ∥f x∥) < r := begin have := (hf.limsup_slope_norm_le hr).frequently (nhds_within_Ioi_self_ne_bot x), refine this.mp (eventually.mono self_mem_nhds_within _), assume z hxz hz, rwa [real.norm_eq_abs, abs_of_pos (sub_pos_of_lt hxz)] at hz end end real_space
1247036728ee081628a0c42c0dc9e9360d9d7daa
d7189ea2ef694124821b033e533f18905b5e87ef
/galois/intmod.lean
a46e111ecdf3e7ef5da91236efe5a6eb9b7b20f0
[ "Apache-2.0" ]
permissive
digama0/lean-protocol-support
eaa7e6f8b8e0d5bbfff1f7f52bfb79a3b11b0f59
cabfa3abedbdd6fdca6e2da6fbbf91a13ed48dda
refs/heads/master
1,625,421,450,627
1,506,035,462,000
1,506,035,462,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,203
lean
/- This modules defines a type for representing integers modulo a natural number n, along with the standard commutative ring operations. The representation uses a canonical form of numbers between 0 and n-1. Operations preserve the canonical form. -/ import galois.nat.div_lemmas def intmod (n:ℕ) := { x : ℕ // x < n } namespace intmod open nat variable {n : nat} def of_nat (x:ℕ) : intmod (succ n) := ⟨ x % succ n, nat.mod_lt x (nat.zero_lt_succ _) ⟩ private lemma mlt {b : nat} : ∀ {a}, n > a → b % n < n | 0 h := nat.mod_lt _ h | (a+1) h := have n > 0, from lt.trans (nat.zero_lt_succ _) h, nat.mod_lt _ this def zero : intmod (succ n) := ⟨ 0, nat.succ_pos n ⟩ def one : intmod (succ n) := of_nat 1 def add : intmod n → intmod n → intmod n | ⟨x,x_lt⟩ ⟨y,y_lt⟩ := if p:x+y < n then ⟨x+y, p⟩ else let q : (x+y)-n < n := begin simp [nat.sub_lt_iff'], have xy_lt_nn : x + y < n + n := add_lt_add x_lt y_lt, have n_le_xy : n ≤ x + y := le_of_not_gt p, cc, end in ⟨ (x+y)-n, q⟩ def neg : intmod n → intmod n | ⟨x,p⟩ := let r := if x = 0 then 0 else n-x in let q : (if x = 0 then 0 else n-x) < n := begin by_cases x = 0, { simp [h], simp [h] at p, exact p, }, { -- Show x > 0 have x_pos := nat.eq_zero_or_pos x, simp [h] at x_pos, -- show n - x < n simp [h, nat.sub_lt_iff'], -- Decompose and constructor, -- n < n + x exact lt_add_of_le_of_pos (le_refl n) x_pos, -- show 0 < n exact or.inr (lt_trans x_pos p), } end in ⟨r, q ⟩ def sub : intmod n → intmod n → intmod n | ⟨x,h⟩ ⟨y,y_lt⟩ := if p : y ≤ x then let q : x - y < n := begin apply nat.lt_of_le_of_lt, apply nat.sub_le, exact h, end in ⟨ x-y, q ⟩ else let q : x + n - y < n := begin --have p : x < y := sorry, simp [nat.sub_lt_iff'], constructor, { apply add_lt_add_left, -- Enforce h := x < y exact lt_of_not_ge p, }, { -- Pick right branch to prove y ≤ n + x apply or.inr, transitivity, exact nat.le_of_lt y_lt, apply nat.le_add_right, } end in ⟨ x+n-y, q ⟩ def mul : intmod n → intmod n → intmod n | ⟨x,h⟩ ⟨y,_⟩ := ⟨(x*y)%n, mlt h ⟩ instance (n:ℕ) : has_zero (intmod (succ n)) := ⟨ zero ⟩ instance (n:ℕ) : has_one (intmod (succ n)) := ⟨ one ⟩ instance (n:ℕ) : has_add (intmod n) := ⟨ add ⟩ instance (n:ℕ) : has_neg (intmod n) := ⟨ neg ⟩ instance (n:ℕ) : has_sub (intmod n) := ⟨ sub ⟩ instance (n:ℕ) : has_mul (intmod n) := ⟨ mul ⟩ theorem zero_val (n : ℕ) : (0 : intmod (succ n)).val = 0 := rfl theorem one_val (n : ℕ) : (1 : intmod (succ n)).val = 1 % succ n := rfl theorem add_val (x y : intmod n) : (x + y).val = (x.val + y.val) % n := begin cases x with xv x_lt, cases y with yv y_lt, transitivity, unfold has_add.add, by_cases (xv + yv < n) with p, { simp [add, p, nat.mod_eq_of_lt], }, { -- Show xv + yv ≥ n have q : xv + yv ≥ n := or.resolve_left (nat.lt_or_ge (xv + yv) n) p, have r : (xv + yv - n) < n, { simp [nat.sub_lt_iff'], constructor, { transitivity, exact nat.add_lt_add_left y_lt _, exact nat.add_lt_add_right x_lt _, }, -- Show n ≤ x + y exact or.inr q, }, simp [add, mod_eq_sub_mod, mod_eq_of_lt, *], }, end theorem mul_val (x y : intmod n) : (x * y).val = (x.val * y.val) % n := begin cases x with xv xp, cases y with yv yp, refl, end theorem zero_add (x : intmod (succ n)) : 0 + x = x := begin apply subtype.eq, simp [add_val, zero_val], exact nat.mod_eq_of_lt x.property, end theorem add_zero (x : intmod (succ n)) : x + 0 = x := begin apply subtype.eq, simp [add_val, zero_val], exact nat.mod_eq_of_lt x.property, end theorem add_assoc (x y z : intmod n) : (x + y) + z = x + (y + z) := begin apply subtype.eq, simp [add_val, nat.mod_add_right_mod], end theorem add_comm (x y : intmod n) : x + y = y + x := begin apply subtype.eq, simp [add_val], end theorem add_left_neg (x : intmod (succ n)) : -x + x = 0 := begin cases x with xv x_lt, apply subtype.eq, simp [add_val, has_neg.neg, neg], by_cases (xv = 0) with h, { simp [h, zero_val], }, { have x_le : xv ≤ succ n := nat.le_of_lt x_lt, simp only [h, if_false, nat.add_comm xv, ge, *, nat.sub_add_cancel], simp [nat.mod_eq_sub_mod, zero_val], } end theorem one_mul (x : intmod (succ n)) : 1 * x = x := begin apply subtype.eq, simp [mul_val, one_val, nat.mod_mul_left_mod, nat.mod_mul_right_mod], exact nat.mod_eq_of_lt x.property, end theorem mul_one (x : intmod (succ n)) : x * 1 = x := begin apply subtype.eq, simp [mul_val, one_val, nat.mod_mul_left_mod, nat.mod_mul_right_mod], exact nat.mod_eq_of_lt x.property, end theorem mul_assoc (x y z : intmod n) : (x * y) * z = x * (y * z) := begin apply subtype.eq, simp [mul_val, nat.mod_mul_right_mod], end theorem mul_comm (x y : intmod n) : x * y = y * x := begin apply subtype.eq, simp [mul_val], end theorem left_distrib (a b c : intmod n) : a * (b + c) = a * b + a * c := begin apply subtype.eq, simp [add_val, mul_val], simp [nat.mod_add_right_mod, nat.mod_mul_right_mod, nat.left_distrib], end theorem right_distrib (a b c : intmod n) : (a + b) * c = a * c + b * c := begin simp only [mul_comm _ c, left_distrib], end instance (n:ℕ) : comm_ring (intmod (succ n)) := { zero := 0 , one := 1 , add := add , neg := neg , mul := mul , zero_add := zero_add , add_zero := add_zero , add_assoc := add_assoc , add_comm := add_comm , add_left_neg := add_left_neg , one_mul := one_mul , mul_one := mul_one , mul_assoc := mul_assoc , mul_comm := mul_comm , left_distrib := left_distrib , right_distrib := right_distrib } end intmod
57fc1260e156165ada838aeb771b06e84633d4bf
592ee40978ac7604005a4e0d35bbc4b467389241
/Library/generated/mathscheme-lean/AssocPlusRingoid.lean
903e44c0ff7f68dfea551ea690350c00d358f834
[]
no_license
ysharoda/Deriving-Definitions
3e149e6641fae440badd35ac110a0bd705a49ad2
dfecb27572022de3d4aa702cae8db19957523a59
refs/heads/master
1,679,127,857,700
1,615,939,007,000
1,615,939,007,000
229,785,731
4
0
null
null
null
null
UTF-8
Lean
false
false
9,137
lean
import init.data.nat.basic import init.data.fin.basic import data.vector import .Prelude open Staged open nat open fin open vector section AssocPlusRingoid structure AssocPlusRingoid (A : Type) : Type := (plus : (A → (A → A))) (times : (A → (A → A))) (associative_plus : (∀ {x y z : A} , (plus (plus x y) z) = (plus x (plus y z)))) open AssocPlusRingoid structure Sig (AS : Type) : Type := (plusS : (AS → (AS → AS))) (timesS : (AS → (AS → AS))) structure Product (A : Type) : Type := (plusP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (timesP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (associative_plusP : (∀ {xP yP zP : (Prod A A)} , (plusP (plusP xP yP) zP) = (plusP xP (plusP yP zP)))) structure Hom {A1 : Type} {A2 : Type} (As1 : (AssocPlusRingoid A1)) (As2 : (AssocPlusRingoid A2)) : Type := (hom : (A1 → A2)) (pres_plus : (∀ {x1 x2 : A1} , (hom ((plus As1) x1 x2)) = ((plus As2) (hom x1) (hom x2)))) (pres_times : (∀ {x1 x2 : A1} , (hom ((times As1) x1 x2)) = ((times As2) (hom x1) (hom x2)))) structure RelInterp {A1 : Type} {A2 : Type} (As1 : (AssocPlusRingoid A1)) (As2 : (AssocPlusRingoid A2)) : Type 1 := (interp : (A1 → (A2 → Type))) (interp_plus : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((plus As1) x1 x2) ((plus As2) y1 y2)))))) (interp_times : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((times As1) x1 x2) ((times As2) y1 y2)))))) inductive AssocPlusRingoidTerm : Type | plusL : (AssocPlusRingoidTerm → (AssocPlusRingoidTerm → AssocPlusRingoidTerm)) | timesL : (AssocPlusRingoidTerm → (AssocPlusRingoidTerm → AssocPlusRingoidTerm)) open AssocPlusRingoidTerm inductive ClAssocPlusRingoidTerm (A : Type) : Type | sing : (A → ClAssocPlusRingoidTerm) | plusCl : (ClAssocPlusRingoidTerm → (ClAssocPlusRingoidTerm → ClAssocPlusRingoidTerm)) | timesCl : (ClAssocPlusRingoidTerm → (ClAssocPlusRingoidTerm → ClAssocPlusRingoidTerm)) open ClAssocPlusRingoidTerm inductive OpAssocPlusRingoidTerm (n : ℕ) : Type | v : ((fin n) → OpAssocPlusRingoidTerm) | plusOL : (OpAssocPlusRingoidTerm → (OpAssocPlusRingoidTerm → OpAssocPlusRingoidTerm)) | timesOL : (OpAssocPlusRingoidTerm → (OpAssocPlusRingoidTerm → OpAssocPlusRingoidTerm)) open OpAssocPlusRingoidTerm inductive OpAssocPlusRingoidTerm2 (n : ℕ) (A : Type) : Type | v2 : ((fin n) → OpAssocPlusRingoidTerm2) | sing2 : (A → OpAssocPlusRingoidTerm2) | plusOL2 : (OpAssocPlusRingoidTerm2 → (OpAssocPlusRingoidTerm2 → OpAssocPlusRingoidTerm2)) | timesOL2 : (OpAssocPlusRingoidTerm2 → (OpAssocPlusRingoidTerm2 → OpAssocPlusRingoidTerm2)) open OpAssocPlusRingoidTerm2 def simplifyCl {A : Type} : ((ClAssocPlusRingoidTerm A) → (ClAssocPlusRingoidTerm A)) | (plusCl x1 x2) := (plusCl (simplifyCl x1) (simplifyCl x2)) | (timesCl x1 x2) := (timesCl (simplifyCl x1) (simplifyCl x2)) | (sing x1) := (sing x1) def simplifyOpB {n : ℕ} : ((OpAssocPlusRingoidTerm n) → (OpAssocPlusRingoidTerm n)) | (plusOL x1 x2) := (plusOL (simplifyOpB x1) (simplifyOpB x2)) | (timesOL x1 x2) := (timesOL (simplifyOpB x1) (simplifyOpB x2)) | (v x1) := (v x1) def simplifyOp {n : ℕ} {A : Type} : ((OpAssocPlusRingoidTerm2 n A) → (OpAssocPlusRingoidTerm2 n A)) | (plusOL2 x1 x2) := (plusOL2 (simplifyOp x1) (simplifyOp x2)) | (timesOL2 x1 x2) := (timesOL2 (simplifyOp x1) (simplifyOp x2)) | (v2 x1) := (v2 x1) | (sing2 x1) := (sing2 x1) def evalB {A : Type} : ((AssocPlusRingoid A) → (AssocPlusRingoidTerm → A)) | As (plusL x1 x2) := ((plus As) (evalB As x1) (evalB As x2)) | As (timesL x1 x2) := ((times As) (evalB As x1) (evalB As x2)) def evalCl {A : Type} : ((AssocPlusRingoid A) → ((ClAssocPlusRingoidTerm A) → A)) | As (sing x1) := x1 | As (plusCl x1 x2) := ((plus As) (evalCl As x1) (evalCl As x2)) | As (timesCl x1 x2) := ((times As) (evalCl As x1) (evalCl As x2)) def evalOpB {A : Type} {n : ℕ} : ((AssocPlusRingoid A) → ((vector A n) → ((OpAssocPlusRingoidTerm n) → A))) | As vars (v x1) := (nth vars x1) | As vars (plusOL x1 x2) := ((plus As) (evalOpB As vars x1) (evalOpB As vars x2)) | As vars (timesOL x1 x2) := ((times As) (evalOpB As vars x1) (evalOpB As vars x2)) def evalOp {A : Type} {n : ℕ} : ((AssocPlusRingoid A) → ((vector A n) → ((OpAssocPlusRingoidTerm2 n A) → A))) | As vars (v2 x1) := (nth vars x1) | As vars (sing2 x1) := x1 | As vars (plusOL2 x1 x2) := ((plus As) (evalOp As vars x1) (evalOp As vars x2)) | As vars (timesOL2 x1 x2) := ((times As) (evalOp As vars x1) (evalOp As vars x2)) def inductionB {P : (AssocPlusRingoidTerm → Type)} : ((∀ (x1 x2 : AssocPlusRingoidTerm) , ((P x1) → ((P x2) → (P (plusL x1 x2))))) → ((∀ (x1 x2 : AssocPlusRingoidTerm) , ((P x1) → ((P x2) → (P (timesL x1 x2))))) → (∀ (x : AssocPlusRingoidTerm) , (P x)))) | pplusl ptimesl (plusL x1 x2) := (pplusl _ _ (inductionB pplusl ptimesl x1) (inductionB pplusl ptimesl x2)) | pplusl ptimesl (timesL x1 x2) := (ptimesl _ _ (inductionB pplusl ptimesl x1) (inductionB pplusl ptimesl x2)) def inductionCl {A : Type} {P : ((ClAssocPlusRingoidTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClAssocPlusRingoidTerm A)) , ((P x1) → ((P x2) → (P (plusCl x1 x2))))) → ((∀ (x1 x2 : (ClAssocPlusRingoidTerm A)) , ((P x1) → ((P x2) → (P (timesCl x1 x2))))) → (∀ (x : (ClAssocPlusRingoidTerm A)) , (P x))))) | psing ppluscl ptimescl (sing x1) := (psing x1) | psing ppluscl ptimescl (plusCl x1 x2) := (ppluscl _ _ (inductionCl psing ppluscl ptimescl x1) (inductionCl psing ppluscl ptimescl x2)) | psing ppluscl ptimescl (timesCl x1 x2) := (ptimescl _ _ (inductionCl psing ppluscl ptimescl x1) (inductionCl psing ppluscl ptimescl x2)) def inductionOpB {n : ℕ} {P : ((OpAssocPlusRingoidTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpAssocPlusRingoidTerm n)) , ((P x1) → ((P x2) → (P (plusOL x1 x2))))) → ((∀ (x1 x2 : (OpAssocPlusRingoidTerm n)) , ((P x1) → ((P x2) → (P (timesOL x1 x2))))) → (∀ (x : (OpAssocPlusRingoidTerm n)) , (P x))))) | pv pplusol ptimesol (v x1) := (pv x1) | pv pplusol ptimesol (plusOL x1 x2) := (pplusol _ _ (inductionOpB pv pplusol ptimesol x1) (inductionOpB pv pplusol ptimesol x2)) | pv pplusol ptimesol (timesOL x1 x2) := (ptimesol _ _ (inductionOpB pv pplusol ptimesol x1) (inductionOpB pv pplusol ptimesol x2)) def inductionOp {n : ℕ} {A : Type} {P : ((OpAssocPlusRingoidTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpAssocPlusRingoidTerm2 n A)) , ((P x1) → ((P x2) → (P (plusOL2 x1 x2))))) → ((∀ (x1 x2 : (OpAssocPlusRingoidTerm2 n A)) , ((P x1) → ((P x2) → (P (timesOL2 x1 x2))))) → (∀ (x : (OpAssocPlusRingoidTerm2 n A)) , (P x)))))) | pv2 psing2 pplusol2 ptimesol2 (v2 x1) := (pv2 x1) | pv2 psing2 pplusol2 ptimesol2 (sing2 x1) := (psing2 x1) | pv2 psing2 pplusol2 ptimesol2 (plusOL2 x1 x2) := (pplusol2 _ _ (inductionOp pv2 psing2 pplusol2 ptimesol2 x1) (inductionOp pv2 psing2 pplusol2 ptimesol2 x2)) | pv2 psing2 pplusol2 ptimesol2 (timesOL2 x1 x2) := (ptimesol2 _ _ (inductionOp pv2 psing2 pplusol2 ptimesol2 x1) (inductionOp pv2 psing2 pplusol2 ptimesol2 x2)) def stageB : (AssocPlusRingoidTerm → (Staged AssocPlusRingoidTerm)) | (plusL x1 x2) := (stage2 plusL (codeLift2 plusL) (stageB x1) (stageB x2)) | (timesL x1 x2) := (stage2 timesL (codeLift2 timesL) (stageB x1) (stageB x2)) def stageCl {A : Type} : ((ClAssocPlusRingoidTerm A) → (Staged (ClAssocPlusRingoidTerm A))) | (sing x1) := (Now (sing x1)) | (plusCl x1 x2) := (stage2 plusCl (codeLift2 plusCl) (stageCl x1) (stageCl x2)) | (timesCl x1 x2) := (stage2 timesCl (codeLift2 timesCl) (stageCl x1) (stageCl x2)) def stageOpB {n : ℕ} : ((OpAssocPlusRingoidTerm n) → (Staged (OpAssocPlusRingoidTerm n))) | (v x1) := (const (code (v x1))) | (plusOL x1 x2) := (stage2 plusOL (codeLift2 plusOL) (stageOpB x1) (stageOpB x2)) | (timesOL x1 x2) := (stage2 timesOL (codeLift2 timesOL) (stageOpB x1) (stageOpB x2)) def stageOp {n : ℕ} {A : Type} : ((OpAssocPlusRingoidTerm2 n A) → (Staged (OpAssocPlusRingoidTerm2 n A))) | (sing2 x1) := (Now (sing2 x1)) | (v2 x1) := (const (code (v2 x1))) | (plusOL2 x1 x2) := (stage2 plusOL2 (codeLift2 plusOL2) (stageOp x1) (stageOp x2)) | (timesOL2 x1 x2) := (stage2 timesOL2 (codeLift2 timesOL2) (stageOp x1) (stageOp x2)) structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type := (plusT : ((Repr A) → ((Repr A) → (Repr A)))) (timesT : ((Repr A) → ((Repr A) → (Repr A)))) end AssocPlusRingoid