Dataset Viewer
Auto-converted to Parquet Duplicate
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
256741b442524fa1904d7f954f22a9152b7b0f5e
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/algebra/module/basic.lean
420af75d6a8f2f3f32a6195eb9cdb0b006af2758
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
19,538
lean
/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro -/ import algebra.big_operators.basic import algebra.group.hom import group_theory.group_action.group import algebra.smul_with_zero /-! # Modules over a ring In this file we define * `module R M` : an additive commutative monoid `M` is a `module` over a `semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and the operation `•` satisfies some natural associativity and distributivity axioms similar to those on a ring. ## Implementation notes In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`. If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space. Since those assumptions can be made by changing the typeclasses applied to `R` and `M`, without changing the axioms in `module`, mathlib calls everything a `module`. In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations. This caused inference issues in some cases, while not providing any real advantages, so we decided to use a canonical `module` typeclass throughout. ## Tags semimodule, module, vector space -/ open function open_locale big_operators universes u u' v w x y z variables {R : Type u} {k : Type u'} {S : Type v} {M : Type w} {M₂ : Type x} {M₃ : Type y} {ι : Type z} /-- A module is a generalization of vector spaces to a scalar semiring. It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`, connected by a "scalar multiplication" operation `r • x : M` (where `r : R` and `x : M`) with some natural associativity and distributivity axioms similar to those on a ring. -/ @[protect_proj] class module (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M] extends distrib_mul_action R M := (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (zero_smul : ∀x : M, (0 : R) • x = 0) section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M) /-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/ @[priority 100] -- see Note [lower instance priority] instance module.to_mul_action_with_zero : mul_action_with_zero R M := { smul_zero := smul_zero, zero_smul := module.zero_smul, ..(infer_instance : mul_action R M) } instance add_comm_monoid.nat_module : module ℕ M := { one_smul := one_nsmul, mul_smul := λ m n a, mul_nsmul a m n, smul_add := λ n a b, nsmul_add a b n, smul_zero := nsmul_zero, zero_smul := zero_nsmul, add_smul := λ r s x, add_nsmul x r s } theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x variables (R) theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul] theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x /-- Pullback a `module` structure along an injective additive monoid homomorphism. -/ protected def function.injective.module [add_comm_monoid M₂] [has_scalar R M₂] (f : M₂ →+ M) (hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul], zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero], .. hf.distrib_mul_action f smul } /-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/ protected def function.surjective.module [add_comm_monoid M₂] [has_scalar R M₂] (f : M →+ M₂) (hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩, simp only [add_smul, ← smul, ← f.map_add] }, zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] }, .. hf.distrib_mul_action f smul } variables {R} (M) /-- Compose a `module` with a `ring_hom`, with action `f s • m` -/ def module.comp_hom [semiring S] (f : S →+* R) : module S M := { smul := (•) ∘ f, add_smul := λ r s x, by simp [add_smul], .. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom, .. distrib_mul_action.comp_hom M (f : S →* R) } variables (R) (M) /-- `(•)` as an `add_monoid_hom`. -/ def smul_add_hom : R →+ M →+ M := { to_fun := const_smul_hom M, map_zero' := add_monoid_hom.ext $ λ r, by simp, map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul] } variables {R M} @[simp] lemma smul_add_hom_apply (r : R) (x : M) : smul_add_hom R M r x = r • x := rfl @[simp] lemma smul_add_hom_one {R M : Type*} [semiring R] [add_comm_monoid M] [module R M] : smul_add_hom R M 1 = add_monoid_hom.id _ := const_smul_hom_one lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 := by rw [←one_smul R x, ←zero_eq_one, zero_smul] lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_list_sum l lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_multiset_sum l lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} : (∑ i in s, f i) • x = (∑ i in s, (f i) • x) := ((smul_add_hom R M).flip x).map_sum f s end add_comm_monoid variables (R) /-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group` structure. -/ def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] : add_comm_group M := { neg := λ a, (-1 : R) • a, add_left_neg := λ a, show (-1 : R) • a + a = 0, by { nth_rewrite 1 ← one_smul _ a, rw [← add_smul, add_left_neg, zero_smul] }, ..(infer_instance : add_comm_monoid M), } variables {R} section add_comm_group variables (R M) [semiring R] [add_comm_group M] instance add_comm_group.int_module : module ℤ M := { one_smul := one_gsmul, mul_smul := λ m n a, mul_gsmul a m n, smul_add := λ n a b, gsmul_add a b n, smul_zero := gsmul_zero, zero_smul := zero_gsmul, add_smul := λ r s x, add_gsmul x r s } /-- A structure containing most informations as in a module, except the fields `zero_smul` and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`, this provides a way to construct a module structure by checking less properties, in `module.of_core`. -/ @[nolint has_inhabited_instance] structure module.core extends has_scalar R M := (smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y) (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x) (one_smul : ∀x : M, (1 : R) • x = x) variables {R M} /-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary structure `module.core`, when the underlying space is an `add_comm_group`. -/ def module.of_core (H : module.core R M) : module R M := by letI := H.to_has_scalar; exact { zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero, smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero, ..H } end add_comm_group /-- To prove two module structures on a fixed `add_comm_monoid` agree, it suffices to check the scalar multiplications agree. -/ -- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons. @[ext] lemma module_ext {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M) (w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) : P = Q := begin unfreezingI { rcases P with ⟨⟨⟨⟨P⟩⟩⟩⟩, rcases Q with ⟨⟨⟨⟨Q⟩⟩⟩⟩ }, congr, funext r m, exact w r m, all_goals { apply proof_irrel_heq }, end section module variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M) @[simp] theorem neg_smul : -r • x = - (r • x) := eq_neg_of_add_eq_zero (by rw [← add_smul, add_left_neg, zero_smul]) @[simp] theorem units.neg_smul (u : units R) (x : M) : -u • x = - (u • x) := by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def] variables (R) theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp variables {R} theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y := by simp [add_smul, sub_eq_add_neg] end module /-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this as an instance because Lean has no way to guess `R`. -/ protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R] [add_comm_monoid M] [module R M] : subsingleton M := ⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩ @[priority 910] -- see Note [lower instance priority] instance semiring.to_module [semiring R] : module R R := { smul_add := mul_add, add_smul := add_mul, zero_smul := zero_mul, smul_zero := mul_zero } /-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/ def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S := { smul := λ r x, f r * x, smul_add := λ r x y, by unfold has_scalar.smul; rw [mul_add], add_smul := λ r s x, by unfold has_scalar.smul; rw [f.map_add, add_mul], mul_smul := λ r s x, by unfold has_scalar.smul; rw [f.map_mul, mul_assoc], one_smul := λ x, show f 1 * x = _, by rw [f.map_one, one_mul], zero_smul := λ x, show f 0 * x = 0, by rw [f.map_zero, zero_mul], smul_zero := λ r, mul_zero (f r) } section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] section variables (R) /-- `nsmul` is equal to any other module structure via a cast. -/ lemma nsmul_eq_smul_cast (n : ℕ) (b : M) : n • b = (n : R) • b := begin induction n with n ih, { rw [nat.cast_zero, zero_smul, zero_smul] }, { rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], } end end /-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design. -/ lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) : @has_scalar.smul ℕ M h.to_has_scalar n x = n • x := by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id] /-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid` should normally have exactly one `ℕ`-module structure by design. -/ def add_comm_monoid.nat_module.unique : unique (module ℕ M) := { default := by apply_instance, uniq := λ P, module_ext P _ $ λ n, nat_smul_eq_nsmul P n } instance add_comm_monoid.nat_is_scalar_tower : is_scalar_tower ℕ R M := { smul_assoc := λ n x y, nat.rec_on n (by simp only [zero_smul]) (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) } instance add_comm_monoid.nat_smul_comm_class : smul_comm_class ℕ R M := { smul_comm := λ n r m, nat.rec_on n (by simp only [zero_smul, smul_zero]) (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ←ih, smul_add]) } -- `smul_comm_class.symm` is not registered as an instance, as it would cause a loop instance add_comm_monoid.nat_smul_comm_class' : smul_comm_class R ℕ M := smul_comm_class.symm _ _ _ end add_comm_monoid section add_comm_group variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M] section variables (R) /-- `gsmul` is equal to any other module structure via a cast. -/ lemma gsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b := begin induction n using int.induction_on with p hp n hn, { rw [int.cast_zero, zero_smul, zero_smul] }, { rw [int.cast_add, int.cast_one, add_smul, add_smul, one_smul, one_smul, hp] }, { rw [int.cast_sub, int.cast_one, sub_smul, sub_smul, one_smul, one_smul, hn] }, end end /-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/ lemma int_smul_eq_gsmul (h : module ℤ M) (n : ℤ) (x : M) : @has_scalar.smul ℤ M h.to_has_scalar n x = n • x := by rw [gsmul_eq_smul_cast ℤ n x, int.cast_id] /-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group` should normally have exactly one `ℤ`-module structure by design. -/ def add_comm_group.int_module.unique : unique (module ℤ M) := { default := by apply_instance, uniq := λ P, module_ext P _ $ λ n, int_smul_eq_gsmul P n } instance add_comm_group.int_is_scalar_tower : is_scalar_tower ℤ R M := { smul_assoc := λ n x y, int.induction_on n (by simp only [zero_smul]) (λ n ih, by simp only [one_smul, add_smul, ih]) (λ n ih, by simp only [one_smul, sub_smul, ih]) } instance add_comm_group.int_smul_comm_class : smul_comm_class ℤ S M := { smul_comm := λ n x y, int.induction_on n (by simp only [zero_smul, smul_zero]) (λ n ih, by simp only [one_smul, add_smul, smul_add, ih]) (λ n ih, by simp only [one_smul, sub_smul, smul_sub, ih]) } -- `smul_comm_class.symm` is not registered as an instance, as it would cause a loop instance add_comm_group.int_smul_comm_class' : smul_comm_class S ℤ M := smul_comm_class.symm _ _ _ end add_comm_group namespace add_monoid_hom lemma map_nat_module_smul [add_comm_monoid M] [add_comm_monoid M₂] (f : M →+ M₂) (x : ℕ) (a : M) : f (x • a) = x • f a := by simp only [f.map_nsmul] lemma map_int_module_smul [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) (x : ℤ) (a : M) : f (x • a) = x • f a := by simp only [f.map_gsmul] lemma map_int_cast_smul [ring R] [add_comm_group M] [add_comm_group M₂] [module R M] [module R M₂] (f : M →+ M₂) (x : ℤ) (a : M) : f ((x : R) • a) = (x : R) • f a := by simp only [←gsmul_eq_smul_cast, f.map_gsmul] lemma map_nat_cast_smul [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M →+ M₂) (x : ℕ) (a : M) : f ((x : R) • a) = (x : R) • f a := by simp only [←nsmul_eq_smul_cast, f.map_nsmul] lemma map_rat_cast_smul {R : Type*} [division_ring R] [char_zero R] {E : Type*} [add_comm_group E] [module R E] {F : Type*} [add_comm_group F] [module R F] (f : E →+ F) (c : ℚ) (x : E) : f ((c : R) • x) = (c : R) • f x := begin have : ∀ (x : E) (n : ℕ), 0 < n → f (((n⁻¹ : ℚ) : R) • x) = ((n⁻¹ : ℚ) : R) • f x, { intros x n hn, replace hn : (n : R) ≠ 0 := nat.cast_ne_zero.2 (ne_of_gt hn), conv_rhs { congr, skip, rw [← one_smul R x, ← mul_inv_cancel hn, mul_smul] }, rw [f.map_nat_cast_smul, smul_smul, rat.cast_inv, rat.cast_coe_nat, inv_mul_cancel hn, one_smul] }, refine c.num_denom_cases_on (λ m n hn hmn, _), rw [rat.mk_eq_div, div_eq_mul_inv, rat.cast_mul, int.cast_coe_nat, mul_smul, mul_smul, rat.cast_coe_int, f.map_int_cast_smul, this _ n hn] end lemma map_rat_module_smul {E : Type*} [add_comm_group E] [module ℚ E] {F : Type*} [add_comm_group F] [module ℚ F] (f : E →+ F) (c : ℚ) (x : E) : f (c • x) = c • f x := rat.cast_id c ▸ f.map_rat_cast_smul c x end add_monoid_hom section no_zero_smul_divisors /-! ### `no_zero_smul_divisors` This section defines the `no_zero_smul_divisors` class, and includes some tests for the vanishing of elements (especially in modules over division rings). -/ /-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`. This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free. The main application of `no_zero_smul_divisors R M`, when `M` is a module, is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`. It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication. -/ class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_scalar R M] : Prop := (eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0) export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero) section module variables [semiring R] [add_comm_monoid M] [module R M] instance no_zero_smul_divisors.of_no_zero_divisors [no_zero_divisors R] : no_zero_smul_divisors R R := ⟨λ c x, no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero⟩ @[simp] theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x = 0 ↔ c = 0 ∨ x = 0 := ⟨eq_zero_or_eq_zero_of_smul_eq_zero, λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩ theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 := by simp only [ne.def, smul_eq_zero, not_or_distrib] section nat variables (R) (M) [no_zero_smul_divisors R M] [char_zero R] include R lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M := ⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩ variables {M} lemma eq_zero_of_smul_two_eq_zero {v : M} (hv : 2 • v = 0) : v = 0 := by haveI := nat.no_zero_smul_divisors R M; exact (smul_eq_zero.mp hv).resolve_left (by norm_num) end nat end module section add_comm_group -- `R` can still be a semiring here variables [semiring R] [add_comm_group M] [module R M] section smul_injective variables (M) lemma smul_left_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) : function.injective (λ (x : M), c • x) := λ x y h, sub_eq_zero.mp ((smul_eq_zero.mp (calc c • (x - y) = c • x - c • y : smul_sub c x y ... = 0 : sub_eq_zero.mpr h)).resolve_left hc) end smul_injective section nat variables (R) [no_zero_smul_divisors R M] [char_zero R] include R lemma eq_zero_of_eq_neg {v : M} (hv : v = - v) : v = 0 := begin haveI := nat.no_zero_smul_divisors R M, refine eq_zero_of_smul_two_eq_zero R _, rw two_smul, exact add_eq_zero_iff_eq_neg.mpr hv end end nat end add_comm_group section module variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] section smul_injective variables (R) lemma smul_right_injective {x : M} (hx : x ≠ 0) : function.injective (λ (c : R), c • x) := λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp (calc (c - d) • x = c • x - d • x : sub_smul c d x ... = 0 : sub_eq_zero.mpr h)).resolve_right hx) end smul_injective section nat variables [char_zero R] lemma ne_neg_of_ne_zero [no_zero_divisors R] {v : R} (hv : v ≠ 0) : v ≠ -v := λ h, hv (eq_zero_of_eq_neg R h) end nat end module section division_ring variables [division_ring R] [add_comm_group M] [module R M] @[priority 100] -- see note [lower instance priority] instance no_zero_smul_divisors.of_division_ring : no_zero_smul_divisors R M := ⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩ end division_ring end no_zero_smul_divisors @[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) : m • (1 : R) = ↑m := by rw [nsmul_eq_mul, mul_one] @[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) : m • (1 : R) = ↑m := by rw [gsmul_eq_mul, mul_one]
ea8390c7adb9ca681bac341ad61a57137814039f
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/interactive/complete.lean
a45eedff1966a409fbdb55fe19597867b48fb5bf
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
498
lean
prelude inductive foo example := foo --^ "command": "complete" -- should not complete empty declaration completion example := foo --^ "command": "complete" @[reducible] --^ "command": "complete", "skip_completions": true example := foo set_option trace.simplify true --^ "command": "complete", "skip_completions": true #print foo --^ "command": "complete", "skip_completions": true section foo end foo --^ "command": "complete", "skip_completions": true
06c2a3b5aaebbfaca2488e20acbf64141f76e792
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/topology/basic.lean
5273b659085013740ae19dec70b6a9624a3c0788
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
68,830
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad -/ import order.filter.ultrafilter import order.filter.partial import algebra.support /-! # Basic theory of topological spaces. The main definition is the type class `topological space α` which endows a type `α` with a topology. Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and `frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. A filter `F` on `α` has `x` as a cluster point if `cluster_pt x F : 𝓝 x ⊓ F ≠ ⊥`. A map `f : ι → α` clusters at `x` along `F : filter ι` if `map_cluster_pt x F f : cluster_pt x (map f F)`. In particular the notion of cluster point of a sequence `u` is `map_cluster_pt x at_top u`. This file also defines locally finite families of subsets of `α`. For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`, `continuous_at f a` means `f` is continuous at `a`, and global continuity is `continuous f`. There is also a version of continuity `pcontinuous` for partially defined functions. ## Notation * `𝓝 x`: the filter of neighborhoods of a point `x`; * `𝓟 s`: the principal filter of a set `s`; * `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`. ## Implementation notes Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in <https://leanprover-community.github.io/theories/topology.html>. ## References * [N. Bourbaki, *General Topology*][bourbaki1966] * [I. M. James, *Topologies and Uniformities*][james1999] ## Tags topological space, interior, closure, frontier, neighborhood, continuity, continuous function -/ noncomputable theory open set filter classical open_locale classical filter universes u v w /-! ### Topological spaces -/ /-- A topology on `α`. -/ @[protect_proj] structure topological_space (α : Type u) := (is_open : set α → Prop) (is_open_univ : is_open univ) (is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t)) (is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s)) attribute [class] topological_space /-- A constructor for topologies by specifying the closed sets, and showing that they satisfy the appropriate conditions. -/ def topological_space.of_closed {α : Type u} (T : set (set α)) (empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) : topological_space α := { is_open := λ X, Xᶜ ∈ T, is_open_univ := by simp [empty_mem], is_open_inter := λ s t hs ht, by simpa [set.compl_inter] using union_mem sᶜ tᶜ hs ht, is_open_sUnion := λ s hs, by rw set.compl_sUnion; exact sInter_mem (set.compl '' s) (λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) } section topological_space variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ : set α} {p p₁ p₂ : α → Prop} @[ext] lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g | ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl section variables [t : topological_space α] include t /-- `is_open s` means that `s` is open in the ambient topological space on `α` -/ def is_open (s : set α) : Prop := topological_space.is_open t s @[simp] lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ t lemma is_open.inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) := topological_space.is_open_inter t s₁ s₂ h₁ h₂ lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) := topological_space.is_open_sUnion t s h end lemma topological_space_eq_iff {t t' : topological_space α} : t = t' ↔ ∀ s, @is_open α t s ↔ @is_open α t' s := ⟨λ h s, h ▸ iff.rfl, λ h, by { ext, exact h _ }⟩ lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s := rfl variables [topological_space α] lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) := is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) : is_open (⋃i∈s, f i) := is_open_Union $ assume i, is_open_Union $ assume hi, h i hi lemma is_open.union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) := by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩) @[simp] lemma is_open_empty : is_open (∅ : set α) := by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim) lemma is_open_sInter {s : set (set α)} (hs : finite s) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) := finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $ λ a s has hs ih h, by rw sInter_insert; exact is_open.inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _) lemma is_open_bInter {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) := finite.induction_on hs (λ _, by rw bInter_empty; exact is_open_univ) (λ a s has hs ih h, by rw bInter_insert; exact is_open.inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_open_Inter [fintype β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) := suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa, is_open_bInter finite_univ (λ i _, h i) lemma is_open_Inter_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_open (s h)) : is_open (Inter s) := by by_cases p; simp * lemma is_open_const {p : Prop} : is_open {a : α | p} := by_cases (assume : p, begin simp only [this]; exact is_open_univ end) (assume : ¬ p, begin simp only [this]; exact is_open_empty end) lemma is_open.and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} := is_open.inter /-- A set is closed if its complement is open -/ class is_closed (s : set α) : Prop := (is_open_compl : is_open sᶜ) @[simp] lemma is_open_compl_iff {s : set α} : is_open sᶜ ↔ is_closed s := ⟨λ h, ⟨h⟩, λ h, h.is_open_compl⟩ @[simp] lemma is_closed_empty : is_closed (∅ : set α) := by { rw [← is_open_compl_iff, compl_empty], exact is_open_univ } @[simp] lemma is_closed_univ : is_closed (univ : set α) := by { rw [← is_open_compl_iff, compl_univ], exact is_open_empty } lemma is_closed.union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) := λ h₁ h₂, by { rw [← is_open_compl_iff] at *, rw compl_union, exact is_open.inter h₁ h₂ } lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) := by simpa only [← is_open_compl_iff, compl_sInter, sUnion_image] using is_open_bUnion lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) := is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i lemma is_closed_bInter {s : set β} {f : β → set α} (h : ∀ i ∈ s, is_closed (f i)) : is_closed (⋂ i ∈ s, f i) := is_closed_Inter $ λ i, is_closed_Inter $ h i @[simp] lemma is_closed_compl_iff {s : set α} : is_closed sᶜ ↔ is_open s := by rw [←is_open_compl_iff, compl_compl] lemma is_open.is_closed_compl {s : set α} (hs : is_open s) : is_closed sᶜ := is_closed_compl_iff.2 hs lemma is_open.sdiff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) := is_open.inter h₁ $ is_open_compl_iff.mpr h₂ lemma is_closed.inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) := by { rw [← is_open_compl_iff] at *, rw compl_inter, exact is_open.union h₁ h₂ } lemma is_closed.sdiff {s t : set α} (h₁ : is_closed s) (h₂ : is_open t) : is_closed (s \ t) := is_closed.inter h₁ (is_closed_compl_iff.mpr h₂) lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) := finite.induction_on hs (λ _, by rw bUnion_empty; exact is_closed_empty) (λ a s has hs ih h, by rw bUnion_insert; exact is_closed.union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_closed_Union [fintype β] {s : β → set α} (h : ∀ i, is_closed (s i)) : is_closed (Union s) := suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i), by convert this; simp [set.ext_iff], is_closed_bUnion finite_univ (λ i _, h i) lemma is_closed_Union_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_closed (s h)) : is_closed (Union s) := by by_cases p; simp * lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x}) (hq : is_closed {x | q x}) : is_closed {x | p x → q x} := have {x | p x → q x} = {x | p x}ᶜ ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or, by rw [this]; exact is_closed.union (is_closed_compl_iff.mpr hp) hq lemma is_closed.not : is_closed {a | p a} → is_open {a | ¬ p a} := is_open_compl_iff.mpr /-! ### Interior of a set -/ /-- The interior of a set `s` is the largest open subset of `s`. -/ def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s} lemma mem_interior {s : set α} {x : α} : x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t := by simp only [interior, mem_set_of_eq, exists_prop, and_assoc, and.left_comm] @[simp] lemma is_open_interior {s : set α} : is_open (interior s) := is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁ lemma interior_subset {s : set α} : interior s ⊆ s := sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂ lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s := subset_sUnion_of_mem ⟨h₂, h₁⟩ lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s := subset.antisymm interior_subset (interior_maximal (subset.refl s) h) lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s := ⟨assume h, h ▸ is_open_interior, is_open.interior_eq⟩ lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s := by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and] lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) : s ⊆ interior t ↔ s ⊆ t := ⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩ @[mono] lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t := interior_maximal (subset.trans interior_subset h) is_open_interior @[simp] lemma interior_empty : interior (∅ : set α) = ∅ := is_open_empty.interior_eq @[simp] lemma interior_univ : interior (univ : set α) = univ := is_open_univ.interior_eq @[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s := is_open_interior.interior_eq @[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t := subset.antisymm (subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t)) (interior_maximal (inter_subset_inter interior_subset interior_subset) $ is_open.inter is_open_interior is_open_interior) @[simp] lemma finset.interior_Inter {ι : Type*} (s : finset ι) (f : ι → set α) : interior (⋂ i ∈ s, f i) = ⋂ i ∈ s, interior (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma interior_Inter_of_fintype {ι : Type*} [fintype ι] (f : ι → set α) : interior (⋂ i, f i) = ⋂ i, interior (f i) := by { convert finset.univ.interior_Inter f; simp, } lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) (h₂ : interior t = ∅) : interior (s ∪ t) = interior s := have interior (s ∪ t) ⊆ s, from assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩, classical.by_contradiction $ assume hx₂ : x ∉ s, have u \ s ⊆ t, from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂, have u \ s ⊆ interior t, by rwa subset_interior_iff_subset_of_open (is_open.sdiff hu₁ h₁), have u \ s ⊆ ∅, by rwa h₂ at this, this ⟨hx₁, hx₂⟩, subset.antisymm (interior_maximal this is_open_interior) (interior_mono $ subset_union_left _ _) lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t := by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior] lemma interior_Inter_subset (s : ι → set α) : interior (⋂ i, s i) ⊆ ⋂ i, interior (s i) := subset_Inter $ λ i, interior_mono $ Inter_subset _ _ lemma interior_bInter_subset (p : ι → Sort*) (s : Π i, p i → set α) : interior (⋂ i (hi : p i), s i hi) ⊆ ⋂ i (hi : p i), interior (s i hi) := (interior_Inter_subset _).trans $ Inter_subset_Inter $ λ i, interior_Inter_subset _ lemma interior_sInter_subset (S : set (set α)) : interior (⋂₀ S) ⊆ ⋂ s ∈ S, interior s := calc interior (⋂₀ S) = interior (⋂ s ∈ S, s) : by rw sInter_eq_bInter ... ⊆ ⋂ s ∈ S, interior s : interior_bInter_subset _ _ /-! ### Closure of a set -/ /-- The closure of `s` is the smallest closed set containing `s`. -/ def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t} @[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) := is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁ lemma subset_closure {s : set α} : s ⊆ closure s := subset_sInter $ assume t ⟨h₁, h₂⟩, h₂ lemma not_mem_of_not_mem_closure {s : set α} {P : α} (hP : P ∉ closure s) : P ∉ s := λ h, hP (subset_closure h) lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t := sInter_subset_of_mem ⟨h₂, h₁⟩ lemma is_closed.closure_eq {s : set α} (h : is_closed s) : closure s = s := subset.antisymm (closure_minimal (subset.refl s) h) subset_closure lemma is_closed.closure_subset {s : set α} (hs : is_closed s) : closure s ⊆ s := closure_minimal (subset.refl _) hs lemma is_closed.closure_subset_iff {s t : set α} (h₁ : is_closed t) : closure s ⊆ t ↔ s ⊆ t := ⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩ @[mono] lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t := closure_minimal (subset.trans h subset_closure) is_closed_closure lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) := λ _ _, closure_mono lemma diff_subset_closure_iff {s t : set α} : s \ t ⊆ closure t ↔ s ⊆ closure t := by rw [diff_subset_iff, union_eq_self_of_subset_left subset_closure] lemma closure_inter_subset_inter_closure (s t : set α) : closure (s ∩ t) ⊆ closure s ∩ closure t := (monotone_closure α).map_inf_le s t lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s := by rw subset.antisymm subset_closure h; exact is_closed_closure lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s := ⟨assume h, h ▸ is_closed_closure, is_closed.closure_eq⟩ lemma closure_subset_iff_is_closed {s : set α} : closure s ⊆ s ↔ is_closed s := ⟨is_closed_of_closure_subset, is_closed.closure_subset⟩ @[simp] lemma closure_empty : closure (∅ : set α) = ∅ := is_closed_empty.closure_eq @[simp] lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ := ⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩ @[simp] lemma closure_nonempty_iff {s : set α} : (closure s).nonempty ↔ s.nonempty := by simp only [← ne_empty_iff_nonempty, ne.def, closure_empty_iff] alias closure_nonempty_iff ↔ set.nonempty.of_closure set.nonempty.closure @[simp] lemma closure_univ : closure (univ : set α) = univ := is_closed_univ.closure_eq @[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s := is_closed_closure.closure_eq @[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t := subset.antisymm (closure_minimal (union_subset_union subset_closure subset_closure) $ is_closed.union is_closed_closure is_closed_closure) ((monotone_closure α).le_map_sup s t) @[simp] lemma finset.closure_Union {ι : Type*} (s : finset ι) (f : ι → set α) : closure (⋃ i ∈ s, f i) = ⋃ i ∈ s, closure (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma closure_Union_of_fintype {ι : Type*} [fintype ι] (f : ι → set α) : closure (⋃ i, f i) = ⋃ i, closure (f i) := by { convert finset.univ.closure_Union f; simp, } lemma interior_subset_closure {s : set α} : interior s ⊆ closure s := subset.trans interior_subset subset_closure lemma closure_eq_compl_interior_compl {s : set α} : closure s = (interior sᶜ)ᶜ := begin rw [interior, closure, compl_sUnion, compl_image_set_of], simp only [compl_subset_compl, is_open_compl_iff], end @[simp] lemma interior_compl {s : set α} : interior sᶜ = (closure s)ᶜ := by simp [closure_eq_compl_interior_compl] @[simp] lemma closure_compl {s : set α} : closure sᶜ = (interior s)ᶜ := by simp [closure_eq_compl_interior_compl] theorem mem_closure_iff {s : set α} {a : α} : a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty := ⟨λ h o oo ao, classical.by_contradiction $ λ os, have s ⊆ oᶜ, from λ x xs xo, os ⟨x, xo, xs⟩, closure_minimal this (is_closed_compl_iff.2 oo) h ao, λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc, let ⟨x, hc, hs⟩ := (H _ h₁.is_open_compl nc) in hc (h₂ hs)⟩ /-- A set is dense in a topological space if every point belongs to its closure. -/ def dense (s : set α) : Prop := ∀ x, x ∈ closure s lemma dense_iff_closure_eq {s : set α} : dense s ↔ closure s = univ := eq_univ_iff_forall.symm lemma dense.closure_eq {s : set α} (h : dense s) : closure s = univ := dense_iff_closure_eq.mp h lemma interior_eq_empty_iff_dense_compl {s : set α} : interior s = ∅ ↔ dense sᶜ := by rw [dense_iff_closure_eq, closure_compl, compl_univ_iff] lemma dense.interior_compl {s : set α} (h : dense s) : interior sᶜ = ∅ := interior_eq_empty_iff_dense_compl.2 $ by rwa compl_compl /-- The closure of a set `s` is dense if and only if `s` is dense. -/ @[simp] lemma dense_closure {s : set α} : dense (closure s) ↔ dense s := by rw [dense, dense, closure_closure] alias dense_closure ↔ dense.of_closure dense.closure @[simp] lemma dense_univ : dense (univ : set α) := λ x, subset_closure trivial /-- A set is dense if and only if it has a nonempty intersection with each nonempty open set. -/ lemma dense_iff_inter_open {s : set α} : dense s ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty := begin split ; intro h, { rintros U U_op ⟨x, x_in⟩, exact mem_closure_iff.1 (by simp only [h.closure_eq]) U U_op x_in }, { intro x, rw mem_closure_iff, intros U U_op x_in, exact h U U_op ⟨_, x_in⟩ }, end alias dense_iff_inter_open ↔ dense.inter_open_nonempty _ lemma dense.exists_mem_open {s : set α} (hs : dense s) {U : set α} (ho : is_open U) (hne : U.nonempty) : ∃ x ∈ s, x ∈ U := let ⟨x, hx⟩ := hs.inter_open_nonempty U ho hne in ⟨x, hx.2, hx.1⟩ lemma dense.nonempty_iff {s : set α} (hs : dense s) : s.nonempty ↔ nonempty α := ⟨λ ⟨x, hx⟩, ⟨x⟩, λ ⟨x⟩, let ⟨y, hy⟩ := hs.inter_open_nonempty _ is_open_univ ⟨x, trivial⟩ in ⟨y, hy.2⟩⟩ lemma dense.nonempty [h : nonempty α] {s : set α} (hs : dense s) : s.nonempty := hs.nonempty_iff.2 h @[mono] lemma dense.mono {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : dense s₁) : dense s₂ := λ x, closure_mono h (hd x) /-- Complement to a singleton is dense if and only if the singleton is not an open set. -/ lemma dense_compl_singleton_iff_not_open {x : α} : dense ({x}ᶜ : set α) ↔ ¬is_open ({x} : set α) := begin fsplit, { intros hd ho, exact (hd.inter_open_nonempty _ ho (singleton_nonempty _)).ne_empty (inter_compl_self _) }, { refine λ ho, dense_iff_inter_open.2 (λ U hU hne, inter_compl_nonempty_iff.2 $ λ hUx, _), obtain rfl : U = {x}, from eq_singleton_iff_nonempty_unique_mem.2 ⟨hne, hUx⟩, exact ho hU } end /-! ### Frontier of a set -/ /-- The frontier of a set is the set of points between the closure and interior. -/ def frontier (s : set α) : set α := closure s \ interior s lemma frontier_eq_closure_inter_closure {s : set α} : frontier s = closure s ∩ closure sᶜ := by rw [closure_compl, frontier, diff_eq] lemma frontier_subset_closure {s : set α} : frontier s ⊆ closure s := diff_subset _ _ /-- The complement of a set has the same frontier as the original set. -/ @[simp] lemma frontier_compl (s : set α) : frontier sᶜ = frontier s := by simp only [frontier_eq_closure_inter_closure, compl_compl, inter_comm] @[simp] lemma frontier_univ : frontier (univ : set α) = ∅ := by simp [frontier] @[simp] lemma frontier_empty : frontier (∅ : set α) = ∅ := by simp [frontier] lemma frontier_inter_subset (s t : set α) : frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) := begin simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union], convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t), simp only [inter_distrib_left, inter_distrib_right, inter_assoc], congr' 2, apply inter_comm end lemma frontier_union_subset (s t : set α) : frontier (s ∪ t) ⊆ (frontier s ∩ closure tᶜ) ∪ (closure sᶜ ∩ frontier t) := by simpa only [frontier_compl, ← compl_union] using frontier_inter_subset sᶜ tᶜ lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s := by rw [frontier, hs.closure_eq] lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s := by rw [frontier, hs.interior_eq] lemma is_open.inter_frontier_eq {s : set α} (hs : is_open s) : s ∩ frontier s = ∅ := by rw [hs.frontier_eq, inter_diff_self] /-- The frontier of a set is closed. -/ lemma is_closed_frontier {s : set α} : is_closed (frontier s) := by rw frontier_eq_closure_inter_closure; exact is_closed.inter is_closed_closure is_closed_closure /-- The frontier of a closed set has no interior point. -/ lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ := begin have A : frontier s = s \ interior s, from h.frontier_eq, have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _), have C : interior (frontier s) ⊆ frontier s := interior_subset, have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) := subset_inter B (by simpa [A] using C), rwa [inter_diff_self, subset_empty_iff] at this, end lemma closure_eq_interior_union_frontier (s : set α) : closure s = interior s ∪ frontier s := (union_diff_cancel interior_subset_closure).symm lemma closure_eq_self_union_frontier (s : set α) : closure s = s ∪ frontier s := (union_diff_cancel' interior_subset subset_closure).symm lemma is_open.inter_frontier_eq_empty_of_disjoint {s t : set α} (ht : is_open t) (hd : disjoint s t) : t ∩ frontier s = ∅ := begin rw [inter_comm, ← subset_compl_iff_disjoint], exact subset.trans frontier_subset_closure (closure_minimal (λ _, disjoint_left.1 hd) (is_closed_compl_iff.2 ht)) end lemma frontier_eq_inter_compl_interior {s : set α} : frontier s = (interior s)ᶜ ∩ (interior (sᶜ))ᶜ := by { rw [←frontier_compl, ←closure_compl], refl } lemma compl_frontier_eq_union_interior {s : set α} : (frontier s)ᶜ = interior s ∪ interior sᶜ := begin rw frontier_eq_inter_compl_interior, simp only [compl_inter, compl_compl], end /-! ### Neighborhoods -/ /-- A set is called a neighborhood of `a` if it contains an open set around `a`. The set of all neighborhoods of `a` forms a filter, the neighborhood filter at `a`, is here defined as the infimum over the principal filters of all open sets containing `a`. -/ @[irreducible] def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) localized "notation `𝓝` := nhds" in topological_space /-- The "neighborhood within" filter. Elements of `𝓝[s] a` are sets containing the intersection of `s` and a neighborhood of `a`. -/ def nhds_within (a : α) (s : set α) : filter α := 𝓝 a ⊓ 𝓟 s localized "notation `𝓝[` s `] ` x:100 := nhds_within x s" in topological_space lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) := by rw nhds /-- The open sets containing `a` are a basis for the neighborhood filter. See `nhds_basis_opens'` for a variant using open neighborhoods instead. -/ lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) (λ x, x) := begin rw nhds_def, exact has_basis_binfi_principal (λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open.inter hs ht⟩, ⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩) ⟨univ, ⟨mem_univ a, is_open_univ⟩⟩ end /-- A filter lies below the neighborhood filter at `a` iff it contains every open set around `a`. -/ lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f := by simp [nhds_def] /-- To show a filter is above the neighborhood filter at `a`, it suffices to show that it is above the principal filter of some open set `s` containing `a`. -/ lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : 𝓟 s ≤ f) : 𝓝 a ≤ f := by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf) lemma mem_nhds_iff {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃t⊆s, is_open t ∧ a ∈ t := (nhds_basis_opens a).mem_iff.trans ⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩ /-- A predicate is true in a neighborhood of `a` iff it is true for all the points in an open set containing `a`. -/ lemma eventually_nhds_iff {a : α} {p : α → Prop} : (∀ᶠ x in 𝓝 a, p x) ↔ ∃ (t : set α), (∀ x ∈ t, p x) ∧ is_open t ∧ a ∈ t := mem_nhds_iff.trans $ by simp only [subset_def, exists_prop, mem_set_of_eq] lemma map_nhds {a : α} {f : α → β} : map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 (image f s)) := ((nhds_basis_opens a).map f).eq_binfi lemma mem_of_mem_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s := λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_iff.1 H in ht hs /-- If a predicate is true in a neighborhood of `a`, then it is true for `a`. -/ lemma filter.eventually.self_of_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : p a := mem_of_mem_nhds h lemma is_open.mem_nhds {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : s ∈ 𝓝 a := mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩ lemma is_closed.compl_mem_nhds {a : α} {s : set α} (hs : is_closed s) (ha : a ∉ s) : sᶜ ∈ 𝓝 a := hs.is_open_compl.mem_nhds (mem_compl ha) lemma is_open.eventually_mem {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : ∀ᶠ x in 𝓝 a, x ∈ s := is_open.mem_nhds hs ha /-- The open neighborhoods of `a` are a basis for the neighborhood filter. See `nhds_basis_opens` for a variant using open sets around `a` instead. -/ lemma nhds_basis_opens' (a : α) : (𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_open s) (λ x, x) := begin convert nhds_basis_opens a, ext s, split, { rintros ⟨s_in, s_op⟩, exact ⟨mem_of_mem_nhds s_in, s_op⟩ }, { rintros ⟨a_in, s_op⟩, exact ⟨is_open.mem_nhds s_op a_in, s_op⟩ }, end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of `s`: it contains an open set containing `s`. -/ lemma exists_open_set_nhds {s U : set α} (h : ∀ x ∈ s, U ∈ 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := begin have := λ x hx, (nhds_basis_opens x).mem_iff.1 (h x hx), choose! Z hZ hZ' using this, refine ⟨⋃ x ∈ s, Z x, _, _, bUnion_subset hZ'⟩, { intros x hx, simp only [mem_Union], exact ⟨x, hx, (hZ x hx).1⟩ }, { apply is_open_Union, intros x, by_cases hx : x ∈ s ; simp [hx], exact (hZ x hx).2 } end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of s: it contains an open set containing `s`. -/ lemma exists_open_set_nhds' {s U : set α} (h : U ∈ ⨆ x ∈ s, 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := exists_open_set_nhds (by simpa using h) /-- If a predicate is true in a neighbourhood of `a`, then for `y` sufficiently close to `a` this predicate is true in a neighbourhood of `y`. -/ lemma filter.eventually.eventually_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : ∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x := let ⟨t, htp, hto, ha⟩ := eventually_nhds_iff.1 h in eventually_nhds_iff.2 ⟨t, λ x hx, eventually_nhds_iff.2 ⟨t, htp, hto, hx⟩, hto, ha⟩ @[simp] lemma eventually_eventually_nhds {p : α → Prop} {a : α} : (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝 a, p x := ⟨λ h, h.self_of_nhds, λ h, h.eventually_nhds⟩ @[simp] lemma nhds_bind_nhds : (𝓝 a).bind 𝓝 = 𝓝 a := filter.ext $ λ s, eventually_eventually_nhds @[simp] lemma eventually_eventually_eq_nhds {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g) ↔ f =ᶠ[𝓝 a] g := eventually_eventually_nhds lemma filter.eventually_eq.eq_of_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : f a = g a := h.self_of_nhds @[simp] lemma eventually_eventually_le_nhds [has_le β] {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g) ↔ f ≤ᶠ[𝓝 a] g := eventually_eventually_nhds /-- If two functions are equal in a neighbourhood of `a`, then for `y` sufficiently close to `a` these functions are equal in a neighbourhood of `y`. -/ lemma filter.eventually_eq.eventually_eq_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g := h.eventually_nhds /-- If `f x ≤ g x` in a neighbourhood of `a`, then for `y` sufficiently close to `a` we have `f x ≤ g x` in a neighbourhood of `y`. -/ lemma filter.eventually_le.eventually_le_nhds [has_le β] {f g : α → β} {a : α} (h : f ≤ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g := h.eventually_nhds theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) : (∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) := ((nhds_basis_opens x).forall_iff hP).trans $ by simp only [and_comm (x ∈ _), and_imp] theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t) (l : filter β) : (∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) := all_mem_nhds _ _ (λ s t ssubt h, mem_of_superset h (hf s t ssubt)) theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) := all_mem_nhds_filter _ _ (λ s t, id) _ theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) := by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono } theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) := rtendsto_nhds theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) := rtendsto'_nhds theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} : tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) := all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _ lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) := tendsto_nhds.mpr $ assume s hs ha, univ_mem' $ assume _, ha lemma tendsto_at_top_of_eventually_const {ι : Type*} [semilattice_sup ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≥ i₀, u i = x) : tendsto u at_top (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_top.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma tendsto_at_bot_of_eventually_const {ι : Type*} [semilattice_inf ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≤ i₀, u i = x) : tendsto u at_bot (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_bot.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) := assume a s hs, mem_pure.2 $ mem_of_mem_nhds hs lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) : tendsto f (pure a) (𝓝 (f a)) := (tendsto_pure_pure f a).mono_right (pure_le_nhds _) lemma order_top.tendsto_at_top_nhds {α : Type*} [partial_order α] [order_top α] [topological_space β] (f : α → β) : tendsto f at_top (𝓝 $ f ⊤) := (tendsto_at_top_pure f).mono_right (pure_le_nhds _) @[simp] instance nhds_ne_bot {a : α} : ne_bot (𝓝 a) := ne_bot_of_le (pure_le_nhds a) /-! ### Cluster points In this section we define [cluster points](https://en.wikipedia.org/wiki/Limit_point) (also known as limit points and accumulation points) of a filter and of a sequence. -/ /-- A point `x` is a cluster point of a filter `F` if 𝓝 x ⊓ F ≠ ⊥. Also known as an accumulation point or a limit point. -/ def cluster_pt (x : α) (F : filter α) : Prop := ne_bot (𝓝 x ⊓ F) lemma cluster_pt.ne_bot {x : α} {F : filter α} (h : cluster_pt x F) : ne_bot (𝓝 x ⊓ F) := h lemma filter.has_basis.cluster_pt_iff {ιa ιF} {pa : ιa → Prop} {sa : ιa → set α} {pF : ιF → Prop} {sF : ιF → set α} {F : filter α} (ha : (𝓝 a).has_basis pa sa) (hF : F.has_basis pF sF) : cluster_pt a F ↔ ∀ ⦃i⦄ (hi : pa i) ⦃j⦄ (hj : pF j), (sa i ∩ sF j).nonempty := ha.inf_basis_ne_bot_iff hF lemma cluster_pt_iff {x : α} {F : filter α} : cluster_pt x F ↔ ∀ ⦃U : set α⦄ (hU : U ∈ 𝓝 x) ⦃V⦄ (hV : V ∈ F), (U ∩ V).nonempty := inf_ne_bot_iff /-- `x` is a cluster point of a set `s` if every neighbourhood of `x` meets `s` on a nonempty set. -/ lemma cluster_pt_principal_iff {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∀ U ∈ 𝓝 x, (U ∩ s).nonempty := inf_principal_ne_bot_iff lemma cluster_pt_principal_iff_frequently {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∃ᶠ y in 𝓝 x, y ∈ s := by simp only [cluster_pt_principal_iff, frequently_iff, set.nonempty, exists_prop, mem_inter_iff] lemma cluster_pt.of_le_nhds {x : α} {f : filter α} (H : f ≤ 𝓝 x) [ne_bot f] : cluster_pt x f := by rwa [cluster_pt, inf_eq_right.mpr H] lemma cluster_pt.of_le_nhds' {x : α} {f : filter α} (H : f ≤ 𝓝 x) (hf : ne_bot f) : cluster_pt x f := cluster_pt.of_le_nhds H lemma cluster_pt.of_nhds_le {x : α} {f : filter α} (H : 𝓝 x ≤ f) : cluster_pt x f := by simp only [cluster_pt, inf_eq_left.mpr H, nhds_ne_bot] lemma cluster_pt.mono {x : α} {f g : filter α} (H : cluster_pt x f) (h : f ≤ g) : cluster_pt x g := ⟨ne_bot_of_le_ne_bot H.ne $ inf_le_inf_left _ h⟩ lemma cluster_pt.of_inf_left {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x f := H.mono inf_le_left lemma cluster_pt.of_inf_right {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x g := H.mono inf_le_right lemma ultrafilter.cluster_pt_iff {x : α} {f : ultrafilter α} : cluster_pt x f ↔ ↑f ≤ 𝓝 x := ⟨f.le_of_inf_ne_bot', λ h, cluster_pt.of_le_nhds h⟩ /-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point of `map u F`. -/ def map_cluster_pt {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : Prop := cluster_pt x (map u F) lemma map_cluster_pt_iff {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : map_cluster_pt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := by { simp_rw [map_cluster_pt, cluster_pt, inf_ne_bot_iff_frequently_left, frequently_map], refl } lemma map_cluster_pt_of_comp {ι δ :Type*} {F : filter ι} {φ : δ → ι} {p : filter δ} {x : α} {u : ι → α} [ne_bot p] (h : tendsto φ p F) (H : tendsto (u ∘ φ) p (𝓝 x)) : map_cluster_pt x F u := begin have := calc map (u ∘ φ) p = map u (map φ p) : map_map ... ≤ map u F : map_mono h, have : map (u ∘ φ) p ≤ 𝓝 x ⊓ map u F, from le_inf H this, exact ne_bot_of_le this end /-! ### Interior, closure and frontier in terms of neighborhoods -/ lemma interior_eq_nhds' {s : set α} : interior s = {a | s ∈ 𝓝 a} := set.ext $ λ x, by simp only [mem_interior, mem_nhds_iff, mem_set_of_eq] lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ 𝓟 s} := interior_eq_nhds'.trans $ by simp only [le_principal_iff] lemma mem_interior_iff_mem_nhds {s : set α} {a : α} : a ∈ interior s ↔ s ∈ 𝓝 a := by rw [interior_eq_nhds', mem_set_of_eq] @[simp] lemma interior_mem_nhds {s : set α} {a : α} : interior s ∈ 𝓝 a ↔ s ∈ 𝓝 a := ⟨λ h, mem_of_superset h interior_subset, λ h, is_open.mem_nhds is_open_interior (mem_interior_iff_mem_nhds.2 h)⟩ lemma interior_set_of_eq {p : α → Prop} : interior {x | p x} = {x | ∀ᶠ y in 𝓝 x, p y} := interior_eq_nhds' lemma is_open_set_of_eventually_nhds {p : α → Prop} : is_open {x | ∀ᶠ y in 𝓝 x, p y} := by simp only [← interior_set_of_eq, is_open_interior] lemma subset_interior_iff_nhds {s V : set α} : s ⊆ interior V ↔ ∀ x ∈ s, V ∈ 𝓝 x := show (∀ x, x ∈ s → x ∈ _) ↔ _, by simp_rw mem_interior_iff_mem_nhds lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ 𝓟 s := calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm ... ↔ (∀a∈s, 𝓝 a ≤ 𝓟 s) : by rw [interior_eq_nhds]; refl lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a := is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff theorem is_open_iff_ultrafilter {s : set α} : is_open s ↔ (∀ (x ∈ s) (l : ultrafilter α), ↑l ≤ 𝓝 x → s ∈ l) := by simp_rw [is_open_iff_mem_nhds, ← mem_iff_ultrafilter] lemma mem_closure_iff_frequently {s : set α} {a : α} : a ∈ closure s ↔ ∃ᶠ x in 𝓝 a, x ∈ s := by rw [filter.frequently, filter.eventually, ← mem_interior_iff_mem_nhds, closure_eq_compl_interior_compl]; refl alias mem_closure_iff_frequently ↔ _ filter.frequently.mem_closure /-- The set of cluster points of a filter is closed. In particular, the set of limit points of a sequence is closed. -/ lemma is_closed_set_of_cluster_pt {f : filter α} : is_closed {x | cluster_pt x f} := begin simp only [cluster_pt, inf_ne_bot_iff_frequently_left, set_of_forall, imp_iff_not_or], refine is_closed_Inter (λ p, is_closed.union _ _); apply is_closed_compl_iff.2, exacts [is_open_set_of_eventually_nhds, is_open_const] end theorem mem_closure_iff_cluster_pt {s : set α} {a : α} : a ∈ closure s ↔ cluster_pt a (𝓟 s) := mem_closure_iff_frequently.trans cluster_pt_principal_iff_frequently.symm lemma mem_closure_iff_nhds_ne_bot {s : set α} : a ∈ closure s ↔ 𝓝 a ⊓ 𝓟 s ≠ ⊥ := mem_closure_iff_cluster_pt.trans ne_bot_iff lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} : x ∈ closure s ↔ ne_bot (𝓝[s] x) := mem_closure_iff_cluster_pt /-- If `x` is not an isolated point of a topological space, then `{x}ᶜ` is dense in the whole space. -/ lemma dense_compl_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : dense ({x}ᶜ : set α) := begin intro y, unfreezingI { rcases eq_or_ne y x with rfl|hne }, { rwa mem_closure_iff_nhds_within_ne_bot }, { exact subset_closure hne } end /-- If `x` is not an isolated point of a topological space, then the closure of `{x}ᶜ` is the whole space. -/ @[simp] lemma closure_compl_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : closure {x}ᶜ = (univ : set α) := (dense_compl_singleton x).closure_eq /-- If `x` is not an isolated point of a topological space, then the interior of `{x}ᶜ` is empty. -/ @[simp] lemma interior_singleton (x : α) [ne_bot (𝓝[{x}ᶜ] x)] : interior {x} = (∅ : set α) := interior_eq_empty_iff_dense_compl.2 (dense_compl_singleton x) lemma closure_eq_cluster_pts {s : set α} : closure s = {a | cluster_pt a (𝓟 s)} := set.ext $ λ x, mem_closure_iff_cluster_pt theorem mem_closure_iff_nhds {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty := mem_closure_iff_cluster_pt.trans cluster_pt_principal_iff theorem mem_closure_iff_nhds' {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, ∃ y : s, ↑y ∈ t := by simp only [mem_closure_iff_nhds, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_comap_ne_bot {A : set α} {x : α} : x ∈ closure A ↔ ne_bot (comap (coe : A → α) (𝓝 x)) := by simp_rw [mem_closure_iff_nhds, comap_ne_bot_iff, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_nhds_basis' {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → (s i ∩ t).nonempty := mem_closure_iff_cluster_pt.trans $ (h.cluster_pt_iff (has_basis_principal _)).trans $ by simp only [exists_prop, forall_const] theorem mem_closure_iff_nhds_basis {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i := (mem_closure_iff_nhds_basis' h).trans $ by simp only [set.nonempty, mem_inter_eq, exists_prop, and_comm] /-- `x` belongs to the closure of `s` if and only if some ultrafilter supported on `s` converges to `x`. -/ lemma mem_closure_iff_ultrafilter {s : set α} {x : α} : x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u ∧ ↑u ≤ 𝓝 x := by simp [closure_eq_cluster_pts, cluster_pt, ← exists_ultrafilter_iff, and.comm] lemma is_closed_iff_cluster_pt {s : set α} : is_closed s ↔ ∀a, cluster_pt a (𝓟 s) → a ∈ s := calc is_closed s ↔ closure s ⊆ s : closure_subset_iff_is_closed.symm ... ↔ (∀a, cluster_pt a (𝓟 s) → a ∈ s) : by simp only [subset_def, mem_closure_iff_cluster_pt] lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).nonempty) → x ∈ s := by simp_rw [is_closed_iff_cluster_pt, cluster_pt, inf_principal_ne_bot_iff] lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) := begin rintro a ⟨hs, ht⟩, have : s ∈ 𝓝 a := is_open.mem_nhds h hs, rw mem_closure_iff_nhds_ne_bot at ht ⊢, rwa [← inf_principal, ← inf_assoc, inf_eq_left.2 (le_principal_iff.2 this)], end lemma closure_inter_open' {s t : set α} (h : is_open t) : closure s ∩ t ⊆ closure (s ∩ t) := by simpa only [inter_comm] using closure_inter_open h lemma dense.open_subset_closure_inter {s t : set α} (hs : dense s) (ht : is_open t) : t ⊆ closure (t ∩ s) := calc t = t ∩ closure s : by rw [hs.closure_eq, inter_univ] ... ⊆ closure (t ∩ s) : closure_inter_open ht lemma mem_closure_of_mem_closure_union {s₁ s₂ : set α} {x : α} (h : x ∈ closure (s₁ ∪ s₂)) (h₁ : s₁ᶜ ∈ 𝓝 x) : x ∈ closure s₂ := begin rw mem_closure_iff_nhds_ne_bot at *, rwa ← calc 𝓝 x ⊓ principal (s₁ ∪ s₂) = 𝓝 x ⊓ (principal s₁ ⊔ principal s₂) : by rw sup_principal ... = (𝓝 x ⊓ principal s₁) ⊔ (𝓝 x ⊓ principal s₂) : inf_sup_left ... = ⊥ ⊔ 𝓝 x ⊓ principal s₂ : by rw inf_principal_eq_bot.mpr h₁ ... = 𝓝 x ⊓ principal s₂ : bot_sup_eq end /-- The intersection of an open dense set with a dense set is a dense set. -/ lemma dense.inter_of_open_left {s t : set α} (hs : dense s) (ht : dense t) (hso : is_open s) : dense (s ∩ t) := λ x, (closure_minimal (closure_inter_open hso) is_closed_closure) $ by simp [hs.closure_eq, ht.closure_eq] /-- The intersection of a dense set with an open dense set is a dense set. -/ lemma dense.inter_of_open_right {s t : set α} (hs : dense s) (ht : dense t) (hto : is_open t) : dense (s ∩ t) := inter_comm t s ▸ ht.inter_of_open_left hs hto lemma dense.inter_nhds_nonempty {s t : set α} (hs : dense s) {x : α} (ht : t ∈ 𝓝 x) : (s ∩ t).nonempty := let ⟨U, hsub, ho, hx⟩ := mem_nhds_iff.1 ht in (hs.inter_open_nonempty U ho ⟨x, hx⟩).mono $ λ y hy, ⟨hy.2, hsub hy.1⟩ lemma closure_diff {s t : set α} : closure s \ closure t ⊆ closure (s \ t) := calc closure s \ closure t = (closure t)ᶜ ∩ closure s : by simp only [diff_eq, inter_comm] ... ⊆ closure ((closure t)ᶜ ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure ... = closure (s \ closure t) : by simp only [diff_eq, inter_comm] ... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure lemma filter.frequently.mem_of_closed {a : α} {s : set α} (h : ∃ᶠ x in 𝓝 a, x ∈ s) (hs : is_closed s) : a ∈ s := hs.closure_subset h.mem_closure lemma is_closed.mem_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (hs : is_closed s) (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ s := (hf.frequently $ show ∃ᶠ x in b, (λ y, y ∈ s) (f x), from h).mem_of_closed hs lemma is_closed.mem_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hs : is_closed s) (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ s := hs.mem_of_frequently_of_tendsto h.frequently hf lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ closure s := is_closed_closure.mem_of_tendsto hf $ h.mono (preimage_mono subset_closure) /-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter. Then `f` tends to `a` along `l` restricted to `s` if and only if it tends to `a` along `l`. -/ lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β} {a : α} (h : ∀ x ∉ s, f x = a) : tendsto f (l ⊓ 𝓟 s) (𝓝 a) ↔ tendsto f l (𝓝 a) := begin rw [tendsto_iff_comap, tendsto_iff_comap], replace h : 𝓟 sᶜ ≤ comap f (𝓝 a), { rintros U ⟨t, ht, htU⟩ x hx, have : f x ∈ t, from (h x hx).symm ▸ mem_of_mem_nhds ht, exact htU this }, refine ⟨λ h', _, le_trans inf_le_left⟩, have := sup_le h' h, rw [sup_inf_right, sup_principal, union_compl_self, principal_univ, inf_top_eq, sup_le_iff] at this, exact this.1 end /-! ### Limits of filters in topological spaces -/ section lim /-- If `f` is a filter, then `Lim f` is a limit of the filter, if it exists. -/ noncomputable def Lim [nonempty α] (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a /-- If `f` is a filter satisfying `ne_bot f`, then `Lim' f` is a limit of the filter, if it exists. -/ def Lim' (f : filter α) [ne_bot f] : α := @Lim _ _ (nonempty_of_ne_bot f) f /-- If `F` is an ultrafilter, then `filter.ultrafilter.Lim F` is a limit of the filter, if it exists. Note that dot notation `F.Lim` can be used for `F : ultrafilter α`. -/ def ultrafilter.Lim : ultrafilter α → α := λ F, Lim' F /-- If `f` is a filter in `β` and `g : β → α` is a function, then `lim f` is a limit of `g` at `f`, if it exists. -/ noncomputable def lim [nonempty α] (f : filter β) (g : β → α) : α := Lim (f.map g) /-- If a filter `f` is majorated by some `𝓝 a`, then it is majorated by `𝓝 (Lim f)`. We formulate this lemma with a `[nonempty α]` argument of `Lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma le_nhds_Lim {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (@Lim _ _ (nonempty_of_exists h) f) := epsilon_spec h /-- If `g` tends to some `𝓝 a` along `f`, then it tends to `𝓝 (lim f g)`. We formulate this lemma with a `[nonempty α]` argument of `lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma tendsto_nhds_lim {f : filter β} {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) : tendsto g f (𝓝 $ @lim _ _ _ (nonempty_of_exists h) f g) := le_nhds_Lim h end lim /-! ### Locally finite families -/ /- locally finite family [General Topology (Bourbaki, 1995)] -/ section locally_finite /-- A family of sets in `set α` is locally finite if at every point `x:α`, there is a neighborhood of `x` which meets only finitely many sets in the family -/ def locally_finite (f : β → set α) := ∀x:α, ∃t ∈ 𝓝 x, finite {i | (f i ∩ t).nonempty } lemma locally_finite.point_finite {f : β → set α} (hf : locally_finite f) (x : α) : finite {b | x ∈ f b} := let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩ lemma locally_finite_of_fintype [fintype β] (f : β → set α) : locally_finite f := assume x, ⟨univ, univ_mem, finite.of_fintype _⟩ lemma locally_finite.subset {f₁ f₂ : β → set α} (hf₂ : locally_finite f₂) (hf : ∀b, f₁ b ⊆ f₂ b) : locally_finite f₁ := assume a, let ⟨t, ht₁, ht₂⟩ := hf₂ a in ⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hf i) $ subset.refl _⟩ lemma locally_finite.comp_injective {ι} {f : β → set α} {g : ι → β} (hf : locally_finite f) (hg : function.injective g) : locally_finite (f ∘ g) := λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage (hg.inj_on _)⟩ lemma locally_finite.closure {f : β → set α} (hf : locally_finite f) : locally_finite (λ i, closure (f i)) := begin intro x, rcases hf x with ⟨s, hsx, hsf⟩, refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩, exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono (inter_subset_inter_right _ interior_subset) end lemma locally_finite.is_closed_Union {f : β → set α} (h₁ : locally_finite f) (h₂ : ∀i, is_closed (f i)) : is_closed (⋃i, f i) := begin simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter], intros a ha, replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (h₂ i).is_open_compl.mem_nhds (ha i), rcases h₁ a with ⟨t, h_nhds, h_fin⟩, have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a, from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)), filter_upwards [this], simp only [mem_inter_eq, mem_Inter], rintros b ⟨hbt, hn⟩ i hfb, exact hn i ⟨b, hfb, hbt⟩ hfb end lemma locally_finite.closure_Union {f : β → set α} (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) := subset.antisymm (closure_minimal (Union_subset_Union $ λ _, subset_closure) $ h.closure.is_closed_Union $ λ _, is_closed_closure) (Union_subset $ λ i, closure_mono $ subset_Union _ _) end locally_finite end topological_space /-! ### Continuity -/ section continuous variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] open_locale topological_space /-- A function between topological spaces is continuous if the preimage of every open set is open. Registered as a structure to make sure it is not unfolded by Lean. -/ structure continuous (f : α → β) : Prop := (is_open_preimage : ∀s, is_open s → is_open (f ⁻¹' s)) lemma continuous_def {f : α → β} : continuous f ↔ (∀s, is_open s → is_open (f ⁻¹' s)) := ⟨λ hf s hs, hf.is_open_preimage s hs, λ h, ⟨h⟩⟩ lemma is_open.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_open s) : is_open (f ⁻¹' s) := hf.is_open_preimage s h /-- A function between topological spaces is continuous at a point `x₀` if `f x` tends to `f x₀` when `x` tends to `x₀`. -/ def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x)) lemma continuous_at.tendsto {f : α → β} {x : α} (h : continuous_at f x) : tendsto f (𝓝 x) (𝓝 (f x)) := h lemma continuous_at_congr {f g : α → β} {x : α} (h : f =ᶠ[𝓝 x] g) : continuous_at f x ↔ continuous_at g x := by simp only [continuous_at, tendsto_congr' h, h.eq_of_nhds] lemma continuous_at.congr {f g : α → β} {x : α} (hf : continuous_at f x) (h : f =ᶠ[𝓝 x] g) : continuous_at g x := (continuous_at_congr h).1 hf lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x := h ht lemma eventually_eq_zero_nhds {M₀} [has_zero M₀] {a : α} {f : α → M₀} : f =ᶠ[𝓝 a] 0 ↔ a ∉ closure (function.support f) := by rw [← mem_compl_eq, ← interior_compl, mem_interior_iff_mem_nhds, function.compl_support]; refl lemma cluster_pt.map {x : α} {la : filter α} {lb : filter β} (H : cluster_pt x la) {f : α → β} (hfc : continuous_at f x) (hf : tendsto f la lb) : cluster_pt (f x) lb := ⟨ne_bot_of_le_ne_bot ((map_ne_bot_iff f).2 H).ne $ hfc.tendsto.inf hf⟩ /-- See also `interior_preimage_subset_preimage_interior`. -/ lemma preimage_interior_subset_interior_preimage {f : α → β} {s : set β} (hf : continuous f) : f⁻¹' (interior s) ⊆ interior (f⁻¹' s) := interior_maximal (preimage_mono interior_subset) (is_open_interior.preimage hf) lemma continuous_id : continuous (id : α → α) := continuous_def.2 $ assume s h, h lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) : continuous (g ∘ f) := continuous_def.2 $ assume s h, (h.preimage hg).preimage hf lemma continuous.iterate {f : α → α} (h : continuous f) (n : ℕ) : continuous (f^[n]) := nat.rec_on n continuous_id (λ n ihn, ihn.comp h) lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α} (hg : continuous_at g (f x)) (hf : continuous_at f x) : continuous_at (g ∘ f) x := hg.comp hf lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) : tendsto f (𝓝 x) (𝓝 (f x)) := ((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $ λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, ht.preimage hf⟩, subset.refl _⟩ /-- A version of `continuous.tendsto` that allows one to specify a simpler form of the limit. E.g., one can write `continuous_exp.tendsto' 0 1 exp_zero`. -/ lemma continuous.tendsto' {f : α → β} (hf : continuous f) (x : α) (y : β) (h : f x = y) : tendsto f (𝓝 x) (𝓝 y) := h ▸ hf.tendsto x lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) : continuous_at f x := h.tendsto x lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x := ⟨continuous.tendsto, assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)), continuous_def.2 $ assume s, assume hs : is_open s, have ∀a, f a ∈ s → s ∈ 𝓝 (f a), from λ a ha, is_open.mem_nhds hs ha, show is_open (f ⁻¹' s), from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩ lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x := tendsto_const_nhds lemma continuous_const {b : β} : continuous (λa:α, b) := continuous_iff_continuous_at.mpr $ assume a, continuous_at_const lemma filter.eventually_eq.continuous_at {x : α} {f : α → β} {y : β} (h : f =ᶠ[𝓝 x] (λ _, y)) : continuous_at f x := (continuous_at_congr h).2 tendsto_const_nhds lemma continuous_of_const {f : α → β} (h : ∀ x y, f x = f y) : continuous f := continuous_iff_continuous_at.mpr $ λ x, filter.eventually_eq.continuous_at $ eventually_of_forall (λ y, h y x) lemma continuous_at_id {x : α} : continuous_at id x := continuous_id.continuous_at lemma continuous_at.iterate {f : α → α} {x : α} (hf : continuous_at f x) (hx : f x = x) (n : ℕ) : continuous_at (f^[n]) x := nat.rec_on n continuous_at_id $ λ n ihn, show continuous_at (f^[n] ∘ f) x, from continuous_at.comp (hx.symm ▸ ihn) hf lemma continuous_iff_is_closed {f : α → β} : continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) := ⟨assume hf s hs, by simpa using (continuous_def.1 hf sᶜ hs.is_open_compl).is_closed_compl, assume hf, continuous_def.2 $ assume s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩ lemma is_closed.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_closed s) : is_closed (f ⁻¹' s) := continuous_iff_is_closed.mp hf s h lemma mem_closure_image {f : α → β} {x : α} {s : set α} (hf : continuous_at f x) (hx : x ∈ closure s) : f x ∈ closure (f '' s) := begin rw [mem_closure_iff_nhds_ne_bot] at hx ⊢, rw ← bot_lt_iff_ne_bot, haveI : ne_bot _ := ⟨hx⟩, calc ⊥ < map f (𝓝 x ⊓ principal s) : bot_lt_iff_ne_bot.mpr ne_bot.ne' ... ≤ (map f $ 𝓝 x) ⊓ (map f $ principal s) : map_inf_le ... = (map f $ 𝓝 x) ⊓ (principal $ f '' s) : by rw map_principal ... ≤ 𝓝 (f x) ⊓ (principal $ f '' s) : inf_le_inf hf le_rfl end lemma continuous_at_iff_ultrafilter {f : α → β} {x} : continuous_at f x ↔ ∀ g : ultrafilter α, ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x)) lemma continuous_iff_ultrafilter {f : α → β} : continuous f ↔ ∀ x (g : ultrafilter α), ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter] lemma continuous.closure_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : closure (f ⁻¹' t) ⊆ f ⁻¹' (closure t) := begin rw ← (is_closed_closure.preimage hf).closure_eq, exact closure_mono (preimage_mono subset_closure), end lemma continuous.frontier_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : frontier (f ⁻¹' t) ⊆ f ⁻¹' (frontier t) := diff_subset_diff (hf.closure_preimage_subset t) (preimage_interior_subset_interior_preimage hf) /-! ### Continuity and partial functions -/ /-- Continuity of a partial function -/ def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s) lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom := by rw [←pfun.preimage_univ]; exact h _ is_open_univ lemma pcontinuous_iff' {f : α →. β} : pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) := begin split, { intros h x y h', simp only [ptendsto'_def, mem_nhds_iff], rintros s ⟨t, tsubs, opent, yt⟩, exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ }, intros hf s os, rw is_open_iff_nhds, rintros x ⟨y, ys, fxy⟩ t, rw [mem_principal], assume h : f.preimage s ⊆ t, change t ∈ 𝓝 x, apply mem_of_superset _ h, have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x, { intros s hs, have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy, rw ptendsto'_def at this, exact this s hs }, show f.preimage s ∈ 𝓝 x, apply h', rw mem_nhds_iff, exact ⟨s, set.subset.refl _, os, ys⟩ end /-- If a continuous map `f` maps `s` to `t`, then it maps `closure s` to `closure t`. -/ lemma set.maps_to.closure {s : set α} {t : set β} {f : α → β} (h : maps_to f s t) (hc : continuous f) : maps_to f (closure s) (closure t) := begin simp only [maps_to, mem_closure_iff_cluster_pt], exact λ x hx, hx.map hc.continuous_at (tendsto_principal_principal.2 h) end lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) : f '' closure s ⊆ closure (f '' s) := ((maps_to_image f s).closure h).image_subset lemma closure_subset_preimage_closure_image {f : α → β} {s : set α} (h : continuous f) : closure s ⊆ f ⁻¹' (closure (f '' s)) := by { rw ← set.image_subset_iff, exact image_closure_subset_closure_image h } lemma map_mem_closure {s : set α} {t : set β} {f : α → β} {a : α} (hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t := set.maps_to.closure ht hf ha /-! ### Function with dense range -/ section dense_range variables {κ ι : Type*} (f : κ → β) (g : β → γ) /-- `f : ι → β` has dense range if its range (image) is a dense subset of β. -/ def dense_range := dense (range f) variables {f} /-- A surjective map has dense range. -/ lemma function.surjective.dense_range (hf : function.surjective f) : dense_range f := λ x, by simp [hf.range_eq] lemma dense_range_iff_closure_range : dense_range f ↔ closure (range f) = univ := dense_iff_closure_eq lemma dense_range.closure_range (h : dense_range f) : closure (range f) = univ := h.closure_eq lemma dense.dense_range_coe {s : set α} (h : dense s) : dense_range (coe : s → α) := by simpa only [dense_range, subtype.range_coe_subtype] lemma continuous.range_subset_closure_image_dense {f : α → β} (hf : continuous f) {s : set α} (hs : dense s) : range f ⊆ closure (f '' s) := by { rw [← image_univ, ← hs.closure_eq], exact image_closure_subset_closure_image hf } /-- The image of a dense set under a continuous map with dense range is a dense set. -/ lemma dense_range.dense_image {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) : dense (f '' s) := (hf'.mono $ hf.range_subset_closure_image_dense hs).of_closure /-- If `f` has dense range and `s` is an open set in the codomain of `f`, then the image of the preimage of `s` under `f` is dense in `s`. -/ lemma dense_range.subset_closure_image_preimage_of_is_open (hf : dense_range f) {s : set β} (hs : is_open s) : s ⊆ closure (f '' (f ⁻¹' s)) := by { rw image_preimage_eq_inter_range, exact hf.open_subset_closure_inter hs } /-- If a continuous map with dense range maps a dense set to a subset of `t`, then `t` is a dense set. -/ lemma dense_range.dense_of_maps_to {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) {t : set β} (ht : maps_to f s t) : dense t := (hf'.dense_image hf hs).mono ht.image_subset /-- Composition of a continuous map with dense range and a function with dense range has dense range. -/ lemma dense_range.comp {g : β → γ} {f : κ → β} (hg : dense_range g) (hf : dense_range f) (cg : continuous g) : dense_range (g ∘ f) := by { rw [dense_range, range_comp], exact hg.dense_image cg hf } lemma dense_range.nonempty_iff (hf : dense_range f) : nonempty κ ↔ nonempty β := range_nonempty_iff_nonempty.symm.trans hf.nonempty_iff lemma dense_range.nonempty [h : nonempty β] (hf : dense_range f) : nonempty κ := hf.nonempty_iff.mpr h /-- Given a function `f : α → β` with dense range and `b : β`, returns some `a : α`. -/ def dense_range.some (hf : dense_range f) (b : β) : κ := classical.choice $ hf.nonempty_iff.mpr ⟨b⟩ lemma dense_range.exists_mem_open (hf : dense_range f) {s : set β} (ho : is_open s) (hs : s.nonempty) : ∃ a, f a ∈ s := exists_range_iff.1 $ hf.exists_mem_open ho hs lemma dense_range.mem_nhds {f : κ → β} (h : dense_range f) {b : β} {U : set β} (U_in : U ∈ nhds b) : ∃ a, f a ∈ U := begin rcases (mem_closure_iff_nhds.mp ((dense_range_iff_closure_range.mp h).symm ▸ mem_univ b : b ∈ closure (range f)) U U_in) with ⟨_, h, a, rfl⟩, exact ⟨a, h⟩ end end dense_range end continuous /-- The library contains many lemmas stating that functions/operations are continuous. There are many ways to formulate the continuity of operations. Some are more convenient than others. Note: for the most part this note also applies to other properties (`measurable`, `differentiable`, `continuous_on`, ...). ### The traditional way As an example, let's look at addition `(+) : M → M → M`. We can state that this is continuous in different definitionally equal ways (omitting some typing information) * `continuous (λ p, p.1 + p.2)`; * `continuous (function.uncurry (+))`; * `continuous ↿(+)`. (`↿` is notation for recursively uncurrying a function) However, lemmas with this conclusion are not nice to use in practice because 1. They confuse the elaborator. The following two examples fail, because of limitations in the elaboration process. ``` variables {M : Type*} [has_mul M] [topological_space M] [has_continuous_mul M] example : continuous (λ x : M, x + x) := continuous_add.comp _ example : continuous (λ x : M, x + x) := continuous_add.comp (continuous_id.prod_mk continuous_id) ``` The second is a valid proof, which is accepted if you write it as `continuous_add.comp (continuous_id.prod_mk continuous_id : _)` 2. If the operation has more than 2 arguments, they are impractical to use, because in your application the arguments in the domain might be in a different order or associated differently. ### The convenient way A much more convenient way to write continuity lemmas is like `continuous.add`: ``` continuous.add {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λ x, f x + g x) ``` The conclusion can be `continuous (f + g)`, which is definitionally equal. This has the following advantages * It supports projection notation, so is shorter to write. * `continuous.add _ _` is recognized correctly by the elaborator and gives useful new goals. * It works generally, since the domain is a variable. As an example for an unary operation, we have `continuous.neg`. ``` continuous.neg {f : α → G} (hf : continuous f) : continuous (λ x, -f x) ``` For unary functions, the elaborator is not confused when applying the traditional lemma (like `continuous_neg`), but it's still convenient to have the short version available (compare `hf.neg.neg.neg` with `continuous_neg.comp $ continuous_neg.comp $ continuous_neg.comp hf`). As a harder example, consider an operation of the following type: ``` def strans {x : F} (γ γ' : path x x) (t₀ : I) : path x x ``` The precise definition is not important, only its type. The correct continuity principle for this operation is something like this: ``` {f : X → F} {γ γ' : ∀ x, path (f x) (f x)} {t₀ s : X → I} (hγ : continuous ↿γ) (hγ' : continuous ↿γ') (ht : continuous t₀) (hs : continuous s) : continuous (λ x, strans (γ x) (γ' x) (t x) (s x)) ``` Note that *all* arguments of `strans` are indexed over `X`, even the basepoint `x`, and the last argument `s` that arises since `path x x` has a coercion to `I → F`. The paths `γ` and `γ'` (which are unary functions from `I`) become binary functions in the continuity lemma. ### Summary * Make sure that your continuity lemmas are stated in the most general way, and in a convenient form. That means that: - The conclusion has a variable `X` as domain (not something like `Y × Z`); - Wherever possible, all point arguments `c : Y` are replaced by functions `c : X → Y`; - All `n`-ary function arguments are replaced by `n+1`-ary functions (`f : Y → Z` becomes `f : X → Y → Z`); - All (relevant) arguments have continuity assumptions, and perhaps there are additional assumptions needed to make the operation continuous; - The function in the conclusion is fully applied. * These remarks are mostly about the format of the *conclusion* of a continuity lemma. In assumptions it's fine to state that a function with more than 1 argument is continuous using `↿` or `function.uncurry`. ### Functions with discontinuities In some cases, you want to work with discontinuous functions, and in certain expressions they are still continuous. For example, consider the fractional part of a number, `fract : ℝ → ℝ`. In this case, you want to add conditions to when a function involving `fract` is continuous, so you get something like this: (assumption `hf` could be weakened, but the important thing is the shape of the conclusion) ``` lemma continuous_on.comp_fract {X Y : Type*} [topological_space X] [topological_space Y] {f : X → ℝ → Y} {g : X → ℝ} (hf : continuous ↿f) (hg : continuous g) (h : ∀ s, f s 0 = f s 1) : continuous (λ x, f x (fract (g x))) ``` With `continuous_at` you can be even more precise about what to prove in case of discontinuities, see e.g. `continuous_at.comp_div_cases`. -/ library_note "continuity lemma statement"
21d2fe2c80c51c995ccbc03780688f8a5dbdddec
f20db13587f4dd28a4b1fbd31953afd491691fa0
/library/init/meta/lean/parser.lean
a1e305ddfd3e88d16c2b6146333a2a0297a87aef
[ "Apache-2.0" ]
permissive
AHartNtkn/lean
9a971edfc6857c63edcbf96bea6841b9a84cf916
0d83a74b26541421fc1aa33044c35b03759710ed
refs/heads/master
1,620,592,591,236
1,516,749,881,000
1,516,749,881,000
118,697,288
1
0
null
1,516,759,470,000
1,516,759,470,000
null
UTF-8
Lean
false
false
3,156
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ prelude import init.meta.tactic namespace lean -- TODO: make inspectable (and pure) meta constant parser_state : Type meta constant parser_state.env : parser_state → environment meta constant parser_state.options : parser_state → options meta constant parser_state.cur_pos : parser_state → pos @[reducible] meta def parser := interaction_monad parser_state @[reducible] meta def parser_result := interaction_monad.result parser_state open interaction_monad open interaction_monad.result namespace parser variable {α : Type} meta constant set_env : environment → parser unit /-- Make sure the next token is an identifier, consume it, and produce the quoted name `t, where t is the identifier. -/ meta constant ident : parser name /-- Make sure the next token is a small nat, consume it, and produce it -/ meta constant small_nat : parser nat /-- Check that the next token is `tk` and consume it. `tk` must be a registered token. -/ meta constant tk (tk : string) : parser unit /-- Parse an unelaborated expression using the given right-binding power. -/ protected meta constant pexpr (rbp := std.prec.max) : parser pexpr /-- Do not report info from content parsed by `p`. -/ meta constant skip_info (p : parser α) : parser α /-- Set goal info position of content parsed by `p` to current position. Nested calls take precedence. -/ meta constant set_goal_info_pos (p : parser α) : parser α /-- Return the current parser position without consuming any input. -/ meta def cur_pos : parser pos := λ s, success (parser_state.cur_pos s) s /-- Temporarily replace input of the parser state, run `p`, and return remaining input. -/ meta constant with_input (p : parser α) (input : string) : parser (α × string) /-- Parse a top-level command. -/ meta constant command_like : parser unit meta def parser_orelse (p₁ p₂ : parser α) : parser α := λ s, let pos₁ := parser_state.cur_pos s in result.cases_on (p₁ s) success (λ e₁ ref₁ s', let pos₂ := parser_state.cur_pos s' in if pos₁ ≠ pos₂ then exception e₁ ref₁ s' else result.cases_on (p₂ s) success exception) meta instance : alternative parser := { failure := @interaction_monad.failed _, orelse := @parser_orelse, ..interaction_monad.monad } -- TODO: move meta def {u v} many {f : Type u → Type v} [monad f] [alternative f] {a : Type u} : f a → f (list a) | x := (do y ← x, ys ← many x, return $ y::ys) <|> pure list.nil local postfix `?`:100 := optional local postfix `*`:100 := many meta def sep_by : parser unit → parser α → parser (list α) | s p := (list.cons <$> p <*> (s *> p)*) <|> return [] meta def tactic_to_parser : tactic α → parser α := λ t s, match t (tactic_state.mk_empty s.env s.options) with | success x ts := (set_env ts.env >> pure x) s | exception f p _ := exception f p s end meta instance : has_coe (tactic α) (parser α) := ⟨tactic_to_parser⟩ end parser end lean
9618c4214b108133dfcbfa679f72b231d8228fd4
9b9a16fa2cb737daee6b2785474678b6fa91d6d4
/src/order/filter/basic.lean
96a927b27eb7db751b86611bb4b3656473f5f0e8
[ "Apache-2.0" ]
permissive
johoelzl/mathlib
253f46daa30b644d011e8e119025b01ad69735c4
592e3c7a2dfbd5826919b4605559d35d4d75938f
refs/heads/master
1,625,657,216,488
1,551,374,946,000
1,551,374,946,000
98,915,829
0
0
Apache-2.0
1,522,917,267,000
1,501,524,499,000
Lean
UTF-8
Lean
false
false
79,639
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Jeremy Avigad Theory of filters on sets. -/ import order.galois_connection order.zorn import data.set.finite data.list data.pfun import algebra.pi_instances import category.applicative open lattice set universes u v w x y local attribute [instance] classical.prop_decidable namespace lattice variables {α : Type u} {ι : Sort v} def complete_lattice.copy (c : complete_lattice α) (le : α → α → Prop) (eq_le : le = @complete_lattice.le α c) (top : α) (eq_top : top = @complete_lattice.top α c) (bot : α) (eq_bot : bot = @complete_lattice.bot α c) (sup : α → α → α) (eq_sup : sup = @complete_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @complete_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @complete_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @complete_lattice.Inf α c) : complete_lattice α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, ..}; subst_vars, exact @complete_lattice.le_refl α c, exact @complete_lattice.le_trans α c, exact @complete_lattice.le_antisymm α c, exact @complete_lattice.le_sup_left α c, exact @complete_lattice.le_sup_right α c, exact @complete_lattice.sup_le α c, exact @complete_lattice.inf_le_left α c, exact @complete_lattice.inf_le_right α c, exact @complete_lattice.le_inf α c, exact @complete_lattice.le_top α c, exact @complete_lattice.bot_le α c, exact @complete_lattice.le_Sup α c, exact @complete_lattice.Sup_le α c, exact @complete_lattice.Inf_le α c, exact @complete_lattice.le_Inf α c end end lattice open set lattice section order variables {α : Type u} (r : α → α → Prop) local infix `≼` : 50 := r lemma directed_on_Union {r} {ι : Sort v} {f : ι → set α} (hd : directed (⊆) f) (h : ∀x, directed_on r (f x)) : directed_on r (⋃x, f x) := by simp only [directed_on, exists_prop, mem_Union, exists_imp_distrib]; exact assume a₁ b₁ fb₁ a₂ b₂ fb₂, let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂, ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) in ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ end order theorem directed_of_chain {α β r} [is_refl β r] {f : α → β} {c : set α} (h : zorn.chain (f ⁻¹'o r) c) : directed r (λx:{a:α // a ∈ c}, f (x.val)) := assume ⟨a, ha⟩ ⟨b, hb⟩, classical.by_cases (assume : a = b, by simp only [this, exists_prop, and_self, subtype.exists]; exact ⟨b, hb, refl _⟩) (assume : a ≠ b, (h a ha b hb this).elim (λ h : r (f a) (f b), ⟨⟨b, hb⟩, h, refl _⟩) (λ h : r (f b) (f a), ⟨⟨a, ha⟩, refl _, h⟩)) structure filter (α : Type*) := (sets : set (set α)) (univ_sets : set.univ ∈ sets) (sets_of_superset {x y} : x ∈ sets → x ⊆ y → y ∈ sets) (inter_sets {x y} : x ∈ sets → y ∈ sets → x ∩ y ∈ sets) namespace filter variables {α : Type u} {f g : filter α} {s t : set α} lemma filter_eq : ∀{f g : filter α}, f.sets = g.sets → f = g | ⟨a, _, _, _⟩ ⟨._, _, _, _⟩ rfl := rfl lemma filter_eq_iff : f = g ↔ f.sets = g.sets := ⟨congr_arg _, filter_eq⟩ protected lemma ext_iff : f = g ↔ ∀ s, s ∈ f.sets ↔ s ∈ g.sets := by rw [filter_eq_iff, ext_iff] @[extensionality] protected lemma ext : (∀ s, s ∈ f.sets ↔ s ∈ g.sets) → f = g := filter.ext_iff.2 lemma univ_mem_sets : univ ∈ f.sets := f.univ_sets lemma mem_sets_of_superset : ∀{x y : set α}, x ∈ f.sets → x ⊆ y → y ∈ f.sets := f.sets_of_superset lemma inter_mem_sets : ∀{s t}, s ∈ f.sets → t ∈ f.sets → s ∩ t ∈ f.sets := f.inter_sets lemma univ_mem_sets' (h : ∀ a, a ∈ s): s ∈ f.sets := mem_sets_of_superset univ_mem_sets (assume x _, h x) lemma mp_sets (hs : s ∈ f.sets) (h : {x | x ∈ s → x ∈ t} ∈ f.sets) : t ∈ f.sets := mem_sets_of_superset (inter_mem_sets hs h) $ assume x ⟨h₁, h₂⟩, h₂ h₁ lemma Inter_mem_sets {β : Type v} {s : β → set α} {is : set β} (hf : finite is) : (∀i∈is, s i ∈ f.sets) → (⋂i∈is, s i) ∈ f.sets := finite.induction_on hf (assume hs, by simp only [univ_mem_sets, mem_empty_eq, Inter_neg, Inter_univ, not_false_iff]) (assume i is _ hf hi hs, have h₁ : s i ∈ f.sets, from hs i (by simp), have h₂ : (⋂x∈is, s x) ∈ f.sets, from hi $ assume a ha, hs _ $ by simp only [ha, mem_insert_iff, or_true], by simp [inter_mem_sets h₁ h₂]) lemma exists_sets_subset_iff : (∃t∈f.sets, t ⊆ s) ↔ s ∈ f.sets := ⟨assume ⟨t, ht, ts⟩, mem_sets_of_superset ht ts, assume hs, ⟨s, hs, subset.refl _⟩⟩ lemma monotone_mem_sets {f : filter α} : monotone (λs, s ∈ f.sets) := assume s t hst h, mem_sets_of_superset h hst end filter namespace tactic.interactive open tactic interactive /-- `filter_upwards [h1, ⋯, hn]` replaces a goal of the form `s ∈ f.sets` and terms `h1 : t1 ∈ f.sets, ⋯, hn : tn ∈ f.sets` with `∀x, x ∈ t1 → ⋯ → x ∈ tn → x ∈ s`. `filter_upwards [h1, ⋯, hn] e` is a short form for `{ filter_upwards [h1, ⋯, hn], exact e }`. -/ meta def filter_upwards (s : parse types.pexpr_list) (e' : parse $ optional types.texpr) : tactic unit := do s.reverse.mmap (λ e, eapplyc `filter.mp_sets >> eapply e), eapplyc `filter.univ_mem_sets', match e' with | some e := interactive.exact e | none := skip end end tactic.interactive namespace filter variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} section principal /-- The principal filter of `s` is the collection of all supersets of `s`. -/ def principal (s : set α) : filter α := { sets := {t | s ⊆ t}, univ_sets := subset_univ s, sets_of_superset := assume x y hx hy, subset.trans hx hy, inter_sets := assume x y, subset_inter } instance : inhabited (filter α) := ⟨principal ∅⟩ @[simp] lemma mem_principal_sets {s t : set α} : s ∈ (principal t).sets ↔ t ⊆ s := iff.rfl lemma mem_principal_self (s : set α) : s ∈ (principal s).sets := subset.refl _ end principal section join /-- The join of a filter of filters is defined by the relation `s ∈ join f ↔ {t | s ∈ t} ∈ f`. -/ def join (f : filter (filter α)) : filter α := { sets := {s | {t : filter α | s ∈ t.sets} ∈ f.sets}, univ_sets := by simp only [univ_mem_sets, mem_set_of_eq]; exact univ_mem_sets, sets_of_superset := assume x y hx xy, mem_sets_of_superset hx $ assume f h, mem_sets_of_superset h xy, inter_sets := assume x y hx hy, mem_sets_of_superset (inter_mem_sets hx hy) $ assume f ⟨h₁, h₂⟩, inter_mem_sets h₁ h₂ } @[simp] lemma mem_join_sets {s : set α} {f : filter (filter α)} : s ∈ (join f).sets ↔ {t | s ∈ filter.sets t} ∈ f.sets := iff.rfl end join section lattice instance : partial_order (filter α) := { le := λf g, g.sets ⊆ f.sets, le_antisymm := assume a b h₁ h₂, filter_eq $ subset.antisymm h₂ h₁, le_refl := assume a, subset.refl _, le_trans := assume a b c h₁ h₂, subset.trans h₂ h₁ } theorem le_def {f g : filter α} : f ≤ g ↔ ∀ x ∈ g.sets, x ∈ f.sets := iff.rfl /-- `generate_sets g s`: `s` is in the filter closure of `g`. -/ inductive generate_sets (g : set (set α)) : set α → Prop | basic {s : set α} : s ∈ g → generate_sets s | univ {} : generate_sets univ | superset {s t : set α} : generate_sets s → s ⊆ t → generate_sets t | inter {s t : set α} : generate_sets s → generate_sets t → generate_sets (s ∩ t) /-- `generate g` is the smallest filter containing the sets `g`. -/ def generate (g : set (set α)) : filter α := { sets := {s | generate_sets g s}, univ_sets := generate_sets.univ, sets_of_superset := assume x y, generate_sets.superset, inter_sets := assume s t, generate_sets.inter } lemma sets_iff_generate {s : set (set α)} {f : filter α} : f ≤ filter.generate s ↔ s ⊆ f.sets := iff.intro (assume h u hu, h $ generate_sets.basic $ hu) (assume h u hu, hu.rec_on h univ_mem_sets (assume x y _ hxy hx, mem_sets_of_superset hx hxy) (assume x y _ _ hx hy, inter_mem_sets hx hy)) protected def mk_of_closure (s : set (set α)) (hs : (generate s).sets = s) : filter α := { sets := s, univ_sets := hs ▸ univ_mem_sets, sets_of_superset := assume x y, hs ▸ mem_sets_of_superset, inter_sets := assume x y, hs ▸ inter_mem_sets } lemma mk_of_closure_sets {s : set (set α)} {hs : (generate s).sets = s} : filter.mk_of_closure s hs = generate s := filter.ext $ assume u, hs.symm ▸ iff.refl _ /- Galois insertion from sets of sets into a filters. -/ def gi_generate (α : Type*) : @galois_insertion (set (set α)) (order_dual (filter α)) _ _ filter.generate filter.sets := { gc := assume s f, sets_iff_generate, le_l_u := assume f u, generate_sets.basic, choice := λs hs, filter.mk_of_closure s (le_antisymm hs $ sets_iff_generate.1 $ le_refl _), choice_eq := assume s hs, mk_of_closure_sets } /-- The infimum of filters is the filter generated by intersections of elements of the two filters. -/ instance : has_inf (filter α) := ⟨λf g : filter α, { sets := {s | ∃ (a ∈ f.sets) (b ∈ g.sets), a ∩ b ⊆ s }, univ_sets := ⟨_, univ_mem_sets, _, univ_mem_sets, inter_subset_left _ _⟩, sets_of_superset := assume x y ⟨a, ha, b, hb, h⟩ xy, ⟨a, ha, b, hb, subset.trans h xy⟩, inter_sets := assume x y ⟨a, ha, b, hb, hx⟩ ⟨c, hc, d, hd, hy⟩, ⟨_, inter_mem_sets ha hc, _, inter_mem_sets hb hd, calc a ∩ c ∩ (b ∩ d) = (a ∩ b) ∩ (c ∩ d) : by ac_refl ... ⊆ x ∩ y : inter_subset_inter hx hy⟩ }⟩ @[simp] lemma mem_inf_sets {f g : filter α} {s : set α} : s ∈ (f ⊓ g).sets ↔ ∃t₁∈f.sets, ∃t₂∈g.sets, t₁ ∩ t₂ ⊆ s := iff.rfl lemma mem_inf_sets_of_left {f g : filter α} {s : set α} (h : s ∈ f.sets) : s ∈ (f ⊓ g).sets := ⟨s, h, univ, univ_mem_sets, inter_subset_left _ _⟩ lemma mem_inf_sets_of_right {f g : filter α} {s : set α} (h : s ∈ g.sets) : s ∈ (f ⊓ g).sets := ⟨univ, univ_mem_sets, s, h, inter_subset_right _ _⟩ lemma inter_mem_inf_sets {α : Type u} {f g : filter α} {s t : set α} (hs : s ∈ f.sets) (ht : t ∈ g.sets) : s ∩ t ∈ (f ⊓ g).sets := inter_mem_sets (mem_inf_sets_of_left hs) (mem_inf_sets_of_right ht) instance : has_top (filter α) := ⟨{ sets := {s | ∀x, x ∈ s}, univ_sets := assume x, mem_univ x, sets_of_superset := assume x y hx hxy a, hxy (hx a), inter_sets := assume x y hx hy a, mem_inter (hx _) (hy _) }⟩ lemma mem_top_sets_iff_forall {s : set α} : s ∈ (⊤ : filter α).sets ↔ (∀x, x ∈ s) := iff.refl _ @[simp] lemma mem_top_sets {s : set α} : s ∈ (⊤ : filter α).sets ↔ s = univ := by rw [mem_top_sets_iff_forall, eq_univ_iff_forall] section complete_lattice /- We lift the complete lattice along the Galois connection `generate` / `sets`. Unfortunately, we want to have different definitional equalities for the lattice operations. So we define them upfront and change the lattice operations for the complete lattice instance. -/ private def original_complete_lattice : complete_lattice (filter α) := @order_dual.lattice.complete_lattice _ (gi_generate α).lift_complete_lattice local attribute [instance] original_complete_lattice instance : complete_lattice (filter α) := original_complete_lattice.copy /- le -/ filter.partial_order.le rfl /- top -/ (filter.lattice.has_top).1 (top_unique $ assume s hs, (eq_univ_of_forall hs).symm ▸ univ_mem_sets) /- bot -/ _ rfl /- sup -/ _ rfl /- inf -/ (filter.lattice.has_inf).1 begin ext f g : 2, exact le_antisymm (le_inf (assume s, mem_inf_sets_of_left) (assume s, mem_inf_sets_of_right)) (assume s ⟨a, ha, b, hb, hs⟩, mem_sets_of_superset (inter_mem_sets (@inf_le_left (filter α) _ _ _ _ ha) (@inf_le_right (filter α) _ _ _ _ hb)) hs) end /- Sup -/ (join ∘ principal) (by ext s x; exact (@mem_bInter_iff _ _ s filter.sets x).symm) /- Inf -/ _ rfl end complete_lattice lemma bot_sets_eq : (⊥ : filter α).sets = univ := rfl lemma sup_sets_eq {f g : filter α} : (f ⊔ g).sets = f.sets ∩ g.sets := (gi_generate α).gc.u_inf lemma Sup_sets_eq {s : set (filter α)} : (Sup s).sets = (⋂f∈s, (f:filter α).sets) := (gi_generate α).gc.u_Inf lemma supr_sets_eq {f : ι → filter α} : (supr f).sets = (⋂i, (f i).sets) := (gi_generate α).gc.u_infi lemma generate_empty : filter.generate ∅ = (⊤ : filter α) := (gi_generate α).gc.l_bot lemma generate_univ : filter.generate univ = (⊥ : filter α) := mk_of_closure_sets.symm lemma generate_union {s t : set (set α)} : filter.generate (s ∪ t) = filter.generate s ⊓ filter.generate t := (gi_generate α).gc.l_sup lemma generate_Union {s : ι → set (set α)} : filter.generate (⋃ i, s i) = (⨅ i, filter.generate (s i)) := (gi_generate α).gc.l_supr @[simp] lemma mem_bot_sets {s : set α} : s ∈ (⊥ : filter α).sets := trivial @[simp] lemma mem_sup_sets {f g : filter α} {s : set α} : s ∈ (f ⊔ g).sets ↔ s ∈ f.sets ∧ s ∈ g.sets := iff.rfl @[simp] lemma mem_Sup_sets {x : set α} {s : set (filter α)} : x ∈ (Sup s).sets ↔ (∀f∈s, x ∈ (f:filter α).sets) := iff.rfl @[simp] lemma mem_supr_sets {x : set α} {f : ι → filter α} : x ∈ (supr f).sets ↔ (∀i, x ∈ (f i).sets) := by simp only [supr_sets_eq, iff_self, mem_Inter] @[simp] lemma le_principal_iff {s : set α} {f : filter α} : f ≤ principal s ↔ s ∈ f.sets := show (∀{t}, s ⊆ t → t ∈ f.sets) ↔ s ∈ f.sets, from ⟨assume h, h (subset.refl s), assume hs t ht, mem_sets_of_superset hs ht⟩ lemma principal_mono {s t : set α} : principal s ≤ principal t ↔ s ⊆ t := by simp only [le_principal_iff, iff_self, mem_principal_sets] lemma monotone_principal : monotone (principal : set α → filter α) := by simp only [monotone, principal_mono]; exact assume a b h, h @[simp] lemma principal_eq_iff_eq {s t : set α} : principal s = principal t ↔ s = t := by simp only [le_antisymm_iff, le_principal_iff, mem_principal_sets]; refl @[simp] lemma join_principal_eq_Sup {s : set (filter α)} : join (principal s) = Sup s := rfl /- lattice equations -/ lemma empty_in_sets_eq_bot {f : filter α} : ∅ ∈ f.sets ↔ f = ⊥ := ⟨assume h, bot_unique $ assume s _, mem_sets_of_superset h (empty_subset s), assume : f = ⊥, this.symm ▸ mem_bot_sets⟩ lemma inhabited_of_mem_sets {f : filter α} {s : set α} (hf : f ≠ ⊥) (hs : s ∈ f.sets) : ∃x, x ∈ s := have ∅ ∉ f.sets, from assume h, hf $ empty_in_sets_eq_bot.mp h, have s ≠ ∅, from assume h, this (h ▸ hs), exists_mem_of_ne_empty this lemma filter_eq_bot_of_not_nonempty {f : filter α} (ne : ¬ nonempty α) : f = ⊥ := empty_in_sets_eq_bot.mp $ univ_mem_sets' $ assume x, false.elim (ne ⟨x⟩) lemma forall_sets_neq_empty_iff_neq_bot {f : filter α} : (∀ (s : set α), s ∈ f.sets → s ≠ ∅) ↔ f ≠ ⊥ := by simp only [(@empty_in_sets_eq_bot α f).symm, ne.def]; exact ⟨assume h hs, h _ hs rfl, assume h s hs eq, h $ eq ▸ hs⟩ lemma mem_sets_of_neq_bot {f : filter α} {s : set α} (h : f ⊓ principal (-s) = ⊥) : s ∈ f.sets := have ∅ ∈ (f ⊓ principal (- s)).sets, from h.symm ▸ mem_bot_sets, let ⟨s₁, hs₁, s₂, (hs₂ : -s ⊆ s₂), (hs : s₁ ∩ s₂ ⊆ ∅)⟩ := this in by filter_upwards [hs₁] assume a ha, classical.by_contradiction $ assume ha', hs ⟨ha, hs₂ ha'⟩ lemma infi_sets_eq {f : ι → filter α} (h : directed (≥) f) (ne : nonempty ι) : (infi f).sets = (⋃ i, (f i).sets) := let ⟨i⟩ := ne, u := { filter . sets := (⋃ i, (f i).sets), univ_sets := by simp only [mem_Union]; exact ⟨i, univ_mem_sets⟩, sets_of_superset := by simp only [mem_Union, exists_imp_distrib]; intros x y i hx hxy; exact ⟨i, mem_sets_of_superset hx hxy⟩, inter_sets := begin simp only [mem_Union, exists_imp_distrib], assume x y a hx b hy, rcases h a b with ⟨c, ha, hb⟩, exact ⟨c, inter_mem_sets (ha hx) (hb hy)⟩ end } in subset.antisymm (show u ≤ infi f, from le_infi $ assume i, le_supr (λi, (f i).sets) i) (Union_subset $ assume i, infi_le f i) lemma infi_sets_eq' {f : β → filter α} {s : set β} (h : directed_on (f ⁻¹'o (≥)) s) (ne : ∃i, i ∈ s) : (⨅ i∈s, f i).sets = (⋃ i ∈ s, (f i).sets) := let ⟨i, hi⟩ := ne in calc (⨅ i ∈ s, f i).sets = (⨅ t : {t // t ∈ s}, (f t.val)).sets : by rw [infi_subtype]; refl ... = (⨆ t : {t // t ∈ s}, (f t.val).sets) : infi_sets_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨆ t ∈ {t | t ∈ s}, (f t).sets) : by rw [supr_subtype]; refl lemma infi_sets_eq_finite (f : ι → filter α) : (⨅i, f i).sets = (⋃t:finset (plift ι), (⨅i∈t, f (plift.down i)).sets) := begin rw [infi_eq_infi_finset, infi_sets_eq], exact (directed_of_sup $ λs₁ s₂ hs, infi_le_infi $ λi, infi_le_infi_const $ λh, hs h), apply_instance end @[simp] lemma sup_join {f₁ f₂ : filter (filter α)} : (join f₁ ⊔ join f₂) = join (f₁ ⊔ f₂) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, mem_sup_sets, iff_self, mem_set_of_eq] @[simp] lemma supr_join {ι : Sort w} {f : ι → filter (filter α)} : (⨆x, join (f x)) = join (⨆x, f x) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, iff_self, mem_Inter, mem_set_of_eq] instance : bounded_distrib_lattice (filter α) := { le_sup_inf := begin assume x y z s, simp only [and_assoc, mem_inf_sets, mem_sup_sets, exists_prop, exists_imp_distrib, and_imp], intros hs t₁ ht₁ t₂ ht₂ hts, exact ⟨s ∪ t₁, x.sets_of_superset hs $ subset_union_left _ _, y.sets_of_superset ht₁ $ subset_union_right _ _, s ∪ t₂, x.sets_of_superset hs $ subset_union_left _ _, z.sets_of_superset ht₂ $ subset_union_right _ _, subset.trans (@le_sup_inf (set α) _ _ _ _) (union_subset (subset.refl _) hts)⟩ end, ..filter.lattice.complete_lattice } /- the complementary version with ⨆i, f ⊓ g i does not hold! -/ lemma infi_sup_eq {f : filter α} {g : ι → filter α} : (⨅ x, f ⊔ g x) = f ⊔ infi g := begin refine le_antisymm _ (le_infi $ assume i, sup_le_sup (le_refl f) $ infi_le _ _), rintros t ⟨h₁, h₂⟩, rw [infi_sets_eq_finite] at h₂, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at h₂, rcases h₂ with ⟨s, hs⟩, suffices : (⨅i, f ⊔ g i) ≤ f ⊔ s.inf (λi, g i.down), { exact this ⟨h₁, hs⟩ }, refine finset.induction_on s _ _, { exact le_sup_right_of_le le_top }, { rintros ⟨i⟩ s his ih, rw [finset.inf_insert, sup_inf_left], exact le_inf (infi_le _ _) ih } end lemma mem_infi_sets_finset {s : finset α} {f : α → filter β} : ∀t, t ∈ (⨅a∈s, f a).sets ↔ (∃p:α → set β, (∀a∈s, p a ∈ (f a).sets) ∧ (⋂a∈s, p a) ⊆ t) := show ∀t, t ∈ (⨅a∈s, f a).sets ↔ (∃p:α → set β, (∀a∈s, p a ∈ (f a).sets) ∧ (⨅a∈s, p a) ≤ t), begin simp only [(finset.inf_eq_infi _ _).symm], refine finset.induction_on s _ _, { simp only [finset.not_mem_empty, false_implies_iff, finset.inf_empty, top_le_iff, imp_true_iff, mem_top_sets, true_and, exists_const], intros; refl }, { intros a s has ih t, simp only [ih, finset.forall_mem_insert, finset.inf_insert, mem_inf_sets, exists_prop, iff_iff_implies_and_implies, exists_imp_distrib, and_imp, and_assoc] {contextual := tt}, split, { intros t₁ ht₁ t₂ p hp ht₂ ht, existsi function.update p a t₁, have : ∀a'∈s, function.update p a t₁ a' = p a', from assume a' ha', have a' ≠ a, from assume h, has $ h ▸ ha', function.update_noteq this, have eq : s.inf (λj, function.update p a t₁ j) = s.inf (λj, p j) := finset.inf_congr rfl this, simp only [this, ht₁, hp, function.update_same, true_and, imp_true_iff, eq] {contextual := tt}, exact subset.trans (inter_subset_inter (subset.refl _) ht₂) ht }, assume p hpa hp ht, exact ⟨p a, hpa, (s.inf p), ⟨⟨p, hp, le_refl _⟩, ht⟩⟩ } end /- principal equations -/ @[simp] lemma inf_principal {s t : set α} : principal s ⊓ principal t = principal (s ∩ t) := le_antisymm (by simp; exact ⟨s, subset.refl s, t, subset.refl t, by simp⟩) (by simp [le_inf_iff, inter_subset_left, inter_subset_right]) @[simp] lemma sup_principal {s t : set α} : principal s ⊔ principal t = principal (s ∪ t) := filter_eq $ set.ext $ by simp only [union_subset_iff, union_subset_iff, mem_sup_sets, forall_const, iff_self, mem_principal_sets] @[simp] lemma supr_principal {ι : Sort w} {s : ι → set α} : (⨆x, principal (s x)) = principal (⋃i, s i) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, mem_principal_sets, mem_Inter]; exact (@supr_le_iff (set α) _ _ _ _).symm lemma principal_univ : principal (univ : set α) = ⊤ := top_unique $ by simp only [le_principal_iff, mem_top_sets, eq_self_iff_true] lemma principal_empty : principal (∅ : set α) = ⊥ := bot_unique $ assume s _, empty_subset _ @[simp] lemma principal_eq_bot_iff {s : set α} : principal s = ⊥ ↔ s = ∅ := ⟨assume h, principal_eq_iff_eq.mp $ by simp only [principal_empty, h, eq_self_iff_true], assume h, by simp only [h, principal_empty, eq_self_iff_true]⟩ lemma inf_principal_eq_bot {f : filter α} {s : set α} (hs : -s ∈ f.sets) : f ⊓ principal s = ⊥ := empty_in_sets_eq_bot.mp ⟨_, hs, s, mem_principal_self s, assume x ⟨h₁, h₂⟩, h₁ h₂⟩ theorem mem_inf_principal (f : filter α) (s t : set α) : s ∈ (f ⊓ principal t).sets ↔ { x | x ∈ t → x ∈ s } ∈ f.sets := begin simp only [mem_inf_sets, mem_principal_sets, exists_prop], split, { rintros ⟨u, ul, v, tsubv, uvinter⟩, apply filter.mem_sets_of_superset ul, intros x xu xt, exact uvinter ⟨xu, tsubv xt⟩ }, intro h, refine ⟨_, h, t, set.subset.refl t, _⟩, rintros x ⟨hx, xt⟩, exact hx xt end end lattice section map /-- The forward map of a filter -/ def map (m : α → β) (f : filter α) : filter β := { sets := preimage m ⁻¹' f.sets, univ_sets := univ_mem_sets, sets_of_superset := assume s t hs st, mem_sets_of_superset hs $ preimage_mono st, inter_sets := assume s t hs ht, inter_mem_sets hs ht } @[simp] lemma map_principal {s : set α} {f : α → β} : map f (principal s) = principal (set.image f s) := filter_eq $ set.ext $ assume a, image_subset_iff.symm variables {f : filter α} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] lemma mem_map : t ∈ (map m f).sets ↔ {x | m x ∈ t} ∈ f.sets := iff.rfl lemma image_mem_map (hs : s ∈ f.sets) : m '' s ∈ (map m f).sets := f.sets_of_superset hs $ subset_preimage_image m s lemma range_mem_map : range m ∈ (map m f).sets := by rw ←image_univ; exact image_mem_map univ_mem_sets lemma mem_map_sets_iff : t ∈ (map m f).sets ↔ (∃s∈f.sets, m '' s ⊆ t) := iff.intro (assume ht, ⟨set.preimage m t, ht, image_preimage_subset _ _⟩) (assume ⟨s, hs, ht⟩, mem_sets_of_superset (image_mem_map hs) ht) @[simp] lemma map_id : filter.map id f = f := filter_eq $ rfl @[simp] lemma map_compose : filter.map m' ∘ filter.map m = filter.map (m' ∘ m) := funext $ assume _, filter_eq $ rfl @[simp] lemma map_map : filter.map m' (filter.map m f) = filter.map (m' ∘ m) f := congr_fun (@@filter.map_compose m m') f end map section comap /-- The inverse map of a filter -/ def comap (m : α → β) (f : filter β) : filter α := { sets := { s | ∃t∈f.sets, m ⁻¹' t ⊆ s }, univ_sets := ⟨univ, univ_mem_sets, by simp only [subset_univ, preimage_univ]⟩, sets_of_superset := assume a b ⟨a', ha', ma'a⟩ ab, ⟨a', ha', subset.trans ma'a ab⟩, inter_sets := assume a b ⟨a', ha₁, ha₂⟩ ⟨b', hb₁, hb₂⟩, ⟨a' ∩ b', inter_mem_sets ha₁ hb₁, inter_subset_inter ha₂ hb₂⟩ } end comap /-- The cofinite filter is the filter of subsets whose complements are finite. -/ def cofinite : filter α := { sets := {s | finite (- s)}, univ_sets := by simp only [compl_univ, finite_empty, mem_set_of_eq], sets_of_superset := assume s t (hs : finite (-s)) (st: s ⊆ t), finite_subset hs $ @lattice.neg_le_neg (set α) _ _ _ st, inter_sets := assume s t (hs : finite (-s)) (ht : finite (-t)), by simp only [compl_inter, finite_union, ht, hs, mem_set_of_eq] } /-- The monadic bind operation on filter is defined the usual way in terms of `map` and `join`. Unfortunately, this `bind` does not result in the expected applicative. See `filter.seq` for the applicative instance. -/ def bind (f : filter α) (m : α → filter β) : filter β := join (map m f) /-- The applicative sequentiation operation. This is not induced by the bind operation. -/ def seq (f : filter (α → β)) (g : filter α) : filter β := ⟨{ s | ∃u∈f.sets, ∃t∈g.sets, (∀m∈u, ∀x∈t, (m : α → β) x ∈ s) }, ⟨univ, univ_mem_sets, univ, univ_mem_sets, by simp only [forall_prop_of_true, mem_univ, forall_true_iff]⟩, assume s₀ s₁ ⟨t₀, t₁, h₀, h₁, h⟩ hst, ⟨t₀, t₁, h₀, h₁, assume x hx y hy, hst $ h _ hx _ hy⟩, assume s₀ s₁ ⟨t₀, ht₀, t₁, ht₁, ht⟩ ⟨u₀, hu₀, u₁, hu₁, hu⟩, ⟨t₀ ∩ u₀, inter_mem_sets ht₀ hu₀, t₁ ∩ u₁, inter_mem_sets ht₁ hu₁, assume x ⟨hx₀, hx₁⟩ x ⟨hy₀, hy₁⟩, ⟨ht _ hx₀ _ hy₀, hu _ hx₁ _ hy₁⟩⟩⟩ instance : has_pure filter := ⟨λ(α : Type u) x, principal {x}⟩ instance : has_bind filter := ⟨@filter.bind⟩ instance : has_seq filter := ⟨@filter.seq⟩ instance : functor filter := { map := @filter.map } section -- this section needs to be before applicative, otherwise the wrong instance will be chosen protected def monad : monad filter := { map := @filter.map } local attribute [instance] filter.monad protected def is_lawful_monad : is_lawful_monad filter := { id_map := assume α f, filter_eq rfl, pure_bind := assume α β a f, by simp only [bind, Sup_image, image_singleton, join_principal_eq_Sup, lattice.Sup_singleton, map_principal, eq_self_iff_true], bind_assoc := assume α β γ f m₁ m₂, filter_eq rfl, bind_pure_comp_eq_map := assume α β f x, filter_eq $ by simp only [bind, join, map, preimage, principal, set.subset_univ, eq_self_iff_true, function.comp_app, mem_set_of_eq, singleton_subset_iff] } end instance : applicative filter := { map := @filter.map, seq := @filter.seq } instance : alternative filter := { failure := λα, ⊥, orelse := λα x y, x ⊔ y } @[simp] lemma pure_def (x : α) : pure x = principal {x} := rfl @[simp] lemma mem_pure {a : α} {s : set α} : a ∈ s → s ∈ (pure a : filter α).sets := by simp only [imp_self, pure_def, mem_principal_sets, singleton_subset_iff]; exact id @[simp] lemma mem_pure_iff {a : α} {s : set α} : s ∈ (pure a : filter α).sets ↔ a ∈ s := by rw [pure_def, mem_principal_sets, set.singleton_subset_iff] @[simp] lemma map_def {α β} (m : α → β) (f : filter α) : m <$> f = map m f := rfl @[simp] lemma bind_def {α β} (f : filter α) (m : α → filter β) : f >>= m = bind f m := rfl /- map and comap equations -/ section map variables {f f₁ f₂ : filter α} {g g₁ g₂ : filter β} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] theorem mem_comap_sets : s ∈ (comap m g).sets ↔ ∃t∈g.sets, m ⁻¹' t ⊆ s := iff.rfl theorem preimage_mem_comap (ht : t ∈ g.sets) : m ⁻¹' t ∈ (comap m g).sets := ⟨t, ht, subset.refl _⟩ lemma comap_id : comap id f = f := le_antisymm (assume s, preimage_mem_comap) (assume s ⟨t, ht, hst⟩, mem_sets_of_superset ht hst) lemma comap_comap_comp {m : γ → β} {n : β → α} : comap m (comap n f) = comap (n ∘ m) f := le_antisymm (assume c ⟨b, hb, (h : preimage (n ∘ m) b ⊆ c)⟩, ⟨preimage n b, preimage_mem_comap hb, h⟩) (assume c ⟨b, ⟨a, ha, (h₁ : preimage n a ⊆ b)⟩, (h₂ : preimage m b ⊆ c)⟩, ⟨a, ha, show preimage m (preimage n a) ⊆ c, from subset.trans (preimage_mono h₁) h₂⟩) @[simp] theorem comap_principal {t : set β} : comap m (principal t) = principal (m ⁻¹' t) := filter_eq $ set.ext $ assume s, ⟨assume ⟨u, (hu : t ⊆ u), (b : preimage m u ⊆ s)⟩, subset.trans (preimage_mono hu) b, assume : preimage m t ⊆ s, ⟨t, subset.refl t, this⟩⟩ lemma map_le_iff_le_comap : map m f ≤ g ↔ f ≤ comap m g := ⟨assume h s ⟨t, ht, hts⟩, mem_sets_of_superset (h ht) hts, assume h s ht, h ⟨_, ht, subset.refl _⟩⟩ lemma gc_map_comap (m : α → β) : galois_connection (map m) (comap m) := assume f g, map_le_iff_le_comap lemma map_mono (h : f₁ ≤ f₂) : map m f₁ ≤ map m f₂ := (gc_map_comap m).monotone_l h lemma monotone_map : monotone (map m) | a b := map_mono lemma comap_mono (h : g₁ ≤ g₂) : comap m g₁ ≤ comap m g₂ := (gc_map_comap m).monotone_u h lemma monotone_comap : monotone (comap m) | a b := comap_mono @[simp] lemma map_bot : map m ⊥ = ⊥ := (gc_map_comap m).l_bot @[simp] lemma map_sup : map m (f₁ ⊔ f₂) = map m f₁ ⊔ map m f₂ := (gc_map_comap m).l_sup @[simp] lemma map_supr {f : ι → filter α} : map m (⨆i, f i) = (⨆i, map m (f i)) := (gc_map_comap m).l_supr @[simp] lemma comap_top : comap m ⊤ = ⊤ := (gc_map_comap m).u_top @[simp] lemma comap_inf : comap m (g₁ ⊓ g₂) = comap m g₁ ⊓ comap m g₂ := (gc_map_comap m).u_inf @[simp] lemma comap_infi {f : ι → filter β} : comap m (⨅i, f i) = (⨅i, comap m (f i)) := (gc_map_comap m).u_infi lemma map_comap_le : map m (comap m g) ≤ g := (gc_map_comap m).l_u_le _ lemma le_comap_map : f ≤ comap m (map m f) := (gc_map_comap m).le_u_l _ @[simp] lemma comap_bot : comap m ⊥ = ⊥ := bot_unique $ assume s _, ⟨∅, by simp only [mem_bot_sets], by simp only [empty_subset, preimage_empty]⟩ lemma comap_supr {ι} {f : ι → filter β} {m : α → β} : comap m (supr f) = (⨆i, comap m (f i)) := le_antisymm (assume s hs, have ∀i, ∃t, t ∈ (f i).sets ∧ m ⁻¹' t ⊆ s, by simpa only [mem_comap_sets, exists_prop, mem_supr_sets] using mem_supr_sets.1 hs, let ⟨t, ht⟩ := classical.axiom_of_choice this in ⟨⋃i, t i, mem_supr_sets.2 $ assume i, (f i).sets_of_superset (ht i).1 (subset_Union _ _), begin rw [preimage_Union, Union_subset_iff], assume i, exact (ht i).2 end⟩) (supr_le $ assume i, monotone_comap $ le_supr _ _) lemma comap_Sup {s : set (filter β)} {m : α → β} : comap m (Sup s) = (⨆f∈s, comap m f) := by simp only [Sup_eq_supr, comap_supr, eq_self_iff_true] lemma comap_sup : comap m (g₁ ⊔ g₂) = comap m g₁ ⊔ comap m g₂ := le_antisymm (assume s ⟨⟨t₁, ht₁, hs₁⟩, ⟨t₂, ht₂, hs₂⟩⟩, ⟨t₁ ∪ t₂, ⟨g₁.sets_of_superset ht₁ (subset_union_left _ _), g₂.sets_of_superset ht₂ (subset_union_right _ _)⟩, union_subset hs₁ hs₂⟩) (sup_le (comap_mono le_sup_left) (comap_mono le_sup_right)) lemma map_comap {f : filter β} {m : α → β} (hf : range m ∈ f.sets) : (f.comap m).map m = f := le_antisymm map_comap_le (assume t' ⟨t, ht, sub⟩, by filter_upwards [ht, hf]; rintros x hxt ⟨y, rfl⟩; exact sub hxt) lemma comap_map {f : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : comap m (map m f) = f := have ∀s, preimage m (image m s) = s, from assume s, preimage_image_eq s h, le_antisymm (assume s hs, ⟨ image m s, f.sets_of_superset hs $ by simp only [this, subset.refl], by simp only [this, subset.refl]⟩) le_comap_map lemma le_of_map_le_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f ≤ map m g) : f ≤ g := assume t ht, by filter_upwards [hsf, h $ image_mem_map (inter_mem_sets hsg ht)] assume a has ⟨b, ⟨hbs, hb⟩, h⟩, have b = a, from hm _ hbs _ has h, this ▸ hb lemma le_of_map_le_map_inj_iff {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) : map m f ≤ map m g ↔ f ≤ g := iff.intro (le_of_map_le_map_inj' hsf hsg hm) map_mono lemma eq_of_map_eq_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f.sets) (hsg : s ∈ g.sets) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f = map m g) : f = g := le_antisymm (le_of_map_le_map_inj' hsf hsg hm $ le_of_eq h) (le_of_map_le_map_inj' hsg hsf hm $ le_of_eq h.symm) lemma map_inj {f g : filter α} {m : α → β} (hm : ∀ x y, m x = m y → x = y) (h : map m f = map m g) : f = g := have comap m (map m f) = comap m (map m g), by rw h, by rwa [comap_map hm, comap_map hm] at this theorem le_map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l.sets) (hf : ∀ y ∈ u, ∃ x, f x = y) : l ≤ map f (comap f l) := assume s ⟨t, tl, ht⟩, have t ∩ u ⊆ s, from assume x ⟨xt, xu⟩, exists.elim (hf x xu) $ λ a faeq, by { rw ←faeq, apply ht, change f a ∈ t, rw faeq, exact xt }, mem_sets_of_superset (inter_mem_sets tl ul) this theorem map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l.sets) (hf : ∀ y ∈ u, ∃ x, f x = y) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective' ul hf) theorem le_map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : l ≤ map f (comap f l) := le_map_comap_of_surjective' univ_mem_sets (λ y _, hf y) theorem map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective hf l) lemma comap_neq_bot {f : filter β} {m : α → β} (hm : ∀t∈f.sets, ∃a, m a ∈ t) : comap m f ≠ ⊥ := forall_sets_neq_empty_iff_neq_bot.mp $ assume s ⟨t, ht, t_s⟩, let ⟨a, (ha : a ∈ preimage m t)⟩ := hm t ht in neq_bot_of_le_neq_bot (ne_empty_of_mem ha) t_s lemma comap_neq_bot_of_surj {f : filter β} {m : α → β} (hf : f ≠ ⊥) (hm : ∀b, ∃a, m a = b) : comap m f ≠ ⊥ := comap_neq_bot $ assume t ht, let ⟨b, (hx : b ∈ t)⟩ := inhabited_of_mem_sets hf ht, ⟨a, (ha : m a = b)⟩ := hm b in ⟨a, ha.symm ▸ hx⟩ @[simp] lemma map_eq_bot_iff : map m f = ⊥ ↔ f = ⊥ := ⟨by rw [←empty_in_sets_eq_bot, ←empty_in_sets_eq_bot]; exact id, assume h, by simp only [h, eq_self_iff_true, map_bot]⟩ lemma map_ne_bot (hf : f ≠ ⊥) : map m f ≠ ⊥ := assume h, hf $ by rwa [map_eq_bot_iff] at h lemma sInter_comap_sets (f : α → β) (F : filter β) : ⋂₀(comap f F).sets = ⋂ U ∈ F.sets, f ⁻¹' U := begin ext x, suffices : (∀ (A : set α) (B : set β), B ∈ F.sets → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : set β), B ∈ F.sets → f x ∈ B, by simp only [mem_sInter, mem_Inter, mem_comap_sets, this, and_imp, mem_comap_sets, exists_prop, mem_sInter, iff_self, mem_Inter, mem_preimage_eq, exists_imp_distrib], split, { intros h U U_in, simpa only [set.subset.refl, forall_prop_of_true, mem_preimage_eq] using h (f ⁻¹' U) U U_in }, { intros h V U U_in f_U_V, exact f_U_V (h U U_in) }, end end map lemma map_cong {m₁ m₂ : α → β} {f : filter α} (h : {x | m₁ x = m₂ x} ∈ f.sets) : map m₁ f = map m₂ f := have ∀(m₁ m₂ : α → β) (h : {x | m₁ x = m₂ x} ∈ f.sets), map m₁ f ≤ map m₂ f, begin intros m₁ m₂ h s hs, show {x | m₁ x ∈ s} ∈ f.sets, filter_upwards [h, hs], simp only [subset_def, mem_preimage_eq, mem_set_of_eq, forall_true_iff] {contextual := tt} end, le_antisymm (this m₁ m₂ h) (this m₂ m₁ $ mem_sets_of_superset h $ assume x, eq.symm) -- this is a generic rule for monotone functions: lemma map_infi_le {f : ι → filter α} {m : α → β} : map m (infi f) ≤ (⨅ i, map m (f i)) := le_infi $ assume i, map_mono $ infi_le _ _ lemma map_infi_eq {f : ι → filter α} {m : α → β} (hf : directed (≥) f) (hι : nonempty ι) : map m (infi f) = (⨅ i, map m (f i)) := le_antisymm map_infi_le (assume s (hs : preimage m s ∈ (infi f).sets), have ∃i, preimage m s ∈ (f i).sets, by simp only [infi_sets_eq hf hι, mem_Union] at hs; assumption, let ⟨i, hi⟩ := this in have (⨅ i, map m (f i)) ≤ principal s, from infi_le_of_le i $ by simp only [le_principal_iff, mem_map]; assumption, by simp only [filter.le_principal_iff] at this; assumption) lemma map_binfi_eq {ι : Type w} {f : ι → filter α} {m : α → β} {p : ι → Prop} (h : directed_on (f ⁻¹'o (≥)) {x | p x}) (ne : ∃i, p i) : map m (⨅i (h : p i), f i) = (⨅i (h: p i), map m (f i)) := let ⟨i, hi⟩ := ne in calc map m (⨅i (h : p i), f i) = map m (⨅i:subtype p, f i.val) : by simp only [infi_subtype, eq_self_iff_true] ... = (⨅i:subtype p, map m (f i.val)) : map_infi_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨅i (h : p i), map m (f i)) : by simp only [infi_subtype, eq_self_iff_true] lemma map_inf' {f g : filter α} {m : α → β} {t : set α} (htf : t ∈ f.sets) (htg : t ∈ g.sets) (h : ∀x∈t, ∀y∈t, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := begin refine le_antisymm (le_inf (map_mono inf_le_left) (map_mono inf_le_right)) (assume s hs, _), simp only [map, mem_inf_sets, exists_prop, mem_map, mem_preimage_eq, mem_inf_sets] at hs ⊢, rcases hs with ⟨t₁, h₁, t₂, h₂, hs⟩, refine ⟨m '' (t₁ ∩ t), _, m '' (t₂ ∩ t), _, _⟩, { filter_upwards [h₁, htf] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { filter_upwards [h₂, htg] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { rw [image_inter_on], { refine image_subset_iff.2 _, exact λ x ⟨⟨h₁, _⟩, h₂, _⟩, hs ⟨h₁, h₂⟩ }, { exact λ x ⟨_, hx⟩ y ⟨_, hy⟩, h x hx y hy } } end lemma map_inf {f g : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := map_inf' univ_mem_sets univ_mem_sets (assume x _ y _, h x y) lemma map_eq_comap_of_inverse {f : filter α} {m : α → β} {n : β → α} (h₁ : m ∘ n = id) (h₂ : n ∘ m = id) : map m f = comap n f := le_antisymm (assume b ⟨a, ha, (h : preimage n a ⊆ b)⟩, f.sets_of_superset ha $ calc a = preimage (n ∘ m) a : by simp only [h₂, preimage_id, eq_self_iff_true] ... ⊆ preimage m b : preimage_mono h) (assume b (hb : preimage m b ∈ f.sets), ⟨preimage m b, hb, show preimage (m ∘ n) b ⊆ b, by simp only [h₁]; apply subset.refl⟩) lemma map_swap_eq_comap_swap {f : filter (α × β)} : prod.swap <$> f = comap prod.swap f := map_eq_comap_of_inverse prod.swap_swap_eq prod.swap_swap_eq lemma le_map {f : filter α} {m : α → β} {g : filter β} (h : ∀s∈f.sets, m '' s ∈ g.sets) : g ≤ f.map m := assume s hs, mem_sets_of_superset (h _ hs) $ image_preimage_subset _ _ section applicative @[simp] lemma mem_pure_sets {a : α} {s : set α} : s ∈ (pure a : filter α).sets ↔ a ∈ s := by simp only [iff_self, pure_def, mem_principal_sets, singleton_subset_iff] lemma singleton_mem_pure_sets {a : α} : {a} ∈ (pure a : filter α).sets := by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] @[simp] lemma pure_neq_bot {α : Type u} {a : α} : pure a ≠ (⊥ : filter α) := by simp only [pure, has_pure.pure, ne.def, not_false_iff, singleton_ne_empty, principal_eq_bot_iff] lemma mem_seq_sets_def {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ (f.seq g).sets ↔ (∃u∈f.sets, ∃t∈g.sets, ∀x∈u, ∀y∈t, (x : α → β) y ∈ s) := iff.refl _ lemma mem_seq_sets_iff {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ (f.seq g).sets ↔ (∃u∈f.sets, ∃t∈g.sets, set.seq u t ⊆ s) := by simp only [mem_seq_sets_def, seq_subset, exists_prop, iff_self] lemma mem_map_seq_iff {f : filter α} {g : filter β} {m : α → β → γ} {s : set γ} : s ∈ ((f.map m).seq g).sets ↔ (∃t u, t ∈ g.sets ∧ u ∈ f.sets ∧ ∀x∈u, ∀y∈t, m x y ∈ s) := iff.intro (assume ⟨t, ht, s, hs, hts⟩, ⟨s, m ⁻¹' t, hs, ht, assume a, hts _⟩) (assume ⟨t, s, ht, hs, hts⟩, ⟨m '' s, image_mem_map hs, t, ht, assume f ⟨a, has, eq⟩, eq ▸ hts _ has⟩) lemma seq_mem_seq_sets {f : filter (α → β)} {g : filter α} {s : set (α → β)} {t : set α} (hs : s ∈ f.sets) (ht : t ∈ g.sets): s.seq t ∈ (f.seq g).sets := ⟨s, hs, t, ht, assume f hf a ha, ⟨f, hf, a, ha, rfl⟩⟩ lemma le_seq {f : filter (α → β)} {g : filter α} {h : filter β} (hh : ∀t∈f.sets, ∀u∈g.sets, set.seq t u ∈ h.sets) : h ≤ seq f g := assume s ⟨t, ht, u, hu, hs⟩, mem_sets_of_superset (hh _ ht _ hu) $ assume b ⟨m, hm, a, ha, eq⟩, eq ▸ hs _ hm _ ha lemma seq_mono {f₁ f₂ : filter (α → β)} {g₁ g₂ : filter α} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.seq g₁ ≤ f₂.seq g₂ := le_seq $ assume s hs t ht, seq_mem_seq_sets (hf hs) (hg ht) @[simp] lemma pure_seq_eq_map (g : α → β) (f : filter α) : seq (pure g) f = f.map g := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← singleton_seq, apply seq_mem_seq_sets _ hs, simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] }, { rw mem_pure_sets at hs, refine sets_of_superset (map g f) (image_mem_map ht) _, rintros b ⟨a, ha, rfl⟩, exact ⟨g, hs, a, ha, rfl⟩ } end @[simp] lemma map_pure (f : α → β) (a : α) : map f (pure a) = pure (f a) := le_antisymm (le_principal_iff.2 $ sets_of_superset (map f (pure a)) (image_mem_map singleton_mem_pure_sets) $ by simp only [image_singleton, mem_singleton, singleton_subset_iff]) (le_map $ assume s, begin simp only [mem_image, pure_def, mem_principal_sets, singleton_subset_iff], exact assume has, ⟨a, has, rfl⟩ end) @[simp] lemma seq_pure (f : filter (α → β)) (a : α) : seq f (pure a) = map (λg:α → β, g a) f := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← seq_singleton, exact seq_mem_seq_sets hs (by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff]) }, { rw mem_pure_sets at ht, refine sets_of_superset (map (λg:α→β, g a) f) (image_mem_map hs) _, rintros b ⟨g, hg, rfl⟩, exact ⟨g, hg, a, ht, rfl⟩ } end @[simp] lemma seq_assoc (x : filter α) (g : filter (α → β)) (h : filter (β → γ)) : seq h (seq g x) = seq (seq (map (∘) h) g) x := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_seq_sets_iff.1 hs with ⟨u, hu, v, hv, hs⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hu⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.trans (set.seq_mono hu (subset.refl _)) hs) (subset.refl _)), rw ← set.seq_seq, exact seq_mem_seq_sets hw (seq_mem_seq_sets hv ht) }, { rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.refl _) ht), rw set.seq_seq, exact seq_mem_seq_sets (seq_mem_seq_sets (image_mem_map hs) hu) hv } end lemma prod_map_seq_comm (f : filter α) (g : filter β) : (map prod.mk f).seq g = seq (map (λb a, (a, b)) g) f := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw ← set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu }, { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu } end instance : is_lawful_functor (filter : Type u → Type u) := { id_map := assume α f, map_id, comp_map := assume α β γ f g a, map_map.symm } instance : is_lawful_applicative (filter : Type u → Type u) := { pure_seq_eq_map := assume α β, pure_seq_eq_map, map_pure := assume α β, map_pure, seq_pure := assume α β, seq_pure, seq_assoc := assume α β γ, seq_assoc } instance : is_comm_applicative (filter : Type u → Type u) := ⟨assume α β f g, prod_map_seq_comm f g⟩ lemma {l} seq_eq_filter_seq {α β : Type l} (f : filter (α → β)) (g : filter α) : f <*> g = seq f g := rfl end applicative /- bind equations -/ section bind @[simp] lemma mem_bind_sets {s : set β} {f : filter α} {m : α → filter β} : s ∈ (bind f m).sets ↔ ∃t ∈ f.sets, ∀x ∈ t, s ∈ (m x).sets := calc s ∈ (bind f m).sets ↔ {a | s ∈ (m a).sets} ∈ f.sets : by simp only [bind, mem_map, iff_self, mem_join_sets, mem_set_of_eq] ... ↔ (∃t ∈ f.sets, t ⊆ {a | s ∈ (m a).sets}) : exists_sets_subset_iff.symm ... ↔ (∃t ∈ f.sets, ∀x ∈ t, s ∈ (m x).sets) : iff.refl _ lemma bind_mono {f : filter α} {g h : α → filter β} (h₁ : {a | g a ≤ h a} ∈ f.sets) : bind f g ≤ bind f h := assume x h₂, show (_ ∈ f.sets), by filter_upwards [h₁, h₂] assume s gh' h', gh' h' lemma bind_sup {f g : filter α} {h : α → filter β} : bind (f ⊔ g) h = bind f h ⊔ bind g h := by simp only [bind, sup_join, map_sup, eq_self_iff_true] lemma bind_mono2 {f g : filter α} {h : α → filter β} (h₁ : f ≤ g) : bind f h ≤ bind g h := assume s h', h₁ h' lemma principal_bind {s : set α} {f : α → filter β} : (bind (principal s) f) = (⨆x ∈ s, f x) := show join (map f (principal s)) = (⨆x ∈ s, f x), by simp only [Sup_image, join_principal_eq_Sup, map_principal, eq_self_iff_true] end bind lemma infi_neq_bot_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) (hb : ∀i, f i ≠ ⊥) : (infi f) ≠ ⊥ := let ⟨x⟩ := hn in assume h, have he: ∅ ∈ (infi f).sets, from h.symm ▸ mem_bot_sets, classical.by_cases (assume : nonempty ι, have ∃i, ∅ ∈ (f i).sets, by rw [infi_sets_eq hd this] at he; simp only [mem_Union] at he; assumption, let ⟨i, hi⟩ := this in hb i $ bot_unique $ assume s _, (f i).sets_of_superset hi $ empty_subset _) (assume : ¬ nonempty ι, have univ ⊆ (∅ : set α), begin rw [←principal_mono, principal_univ, principal_empty, ←h], exact (le_infi $ assume i, false.elim $ this ⟨i⟩) end, this $ mem_univ x) lemma infi_neq_bot_iff_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) : (infi f) ≠ ⊥ ↔ (∀i, f i ≠ ⊥) := ⟨assume neq_bot i eq_bot, neq_bot $ bot_unique $ infi_le_of_le i $ eq_bot ▸ le_refl _, infi_neq_bot_of_directed hn hd⟩ lemma mem_infi_sets {f : ι → filter α} (i : ι) : ∀{s}, s ∈ (f i).sets → s ∈ (⨅i, f i).sets := show (⨅i, f i) ≤ f i, from infi_le _ _ @[elab_as_eliminator] lemma infi_sets_induct {f : ι → filter α} {s : set α} (hs : s ∈ (infi f).sets) {p : set α → Prop} (uni : p univ) (ins : ∀{i s₁ s₂}, s₁ ∈ (f i).sets → p s₂ → p (s₁ ∩ s₂)) (upw : ∀{s₁ s₂}, s₁ ⊆ s₂ → p s₁ → p s₂) : p s := begin rw [infi_sets_eq_finite] at hs, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at hs, rcases hs with ⟨is, his⟩, revert s, refine finset.induction_on is _ _, { assume s hs, rwa [mem_top_sets.1 hs] }, { rintros ⟨i⟩ js his ih s hs, rw [finset.inf_insert, mem_inf_sets] at hs, rcases hs with ⟨s₁, hs₁, s₂, hs₂, hs⟩, exact upw hs (ins hs₁ (ih hs₂)) } end /- tendsto -/ /-- `tendsto` is the generic "limit of a function" predicate. `tendsto f l₁ l₂` asserts that for every `l₂` neighborhood `a`, the `f`-preimage of `a` is an `l₁` neighborhood. -/ def tendsto (f : α → β) (l₁ : filter α) (l₂ : filter β) := l₁.map f ≤ l₂ lemma tendsto_def {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ ∀ s ∈ l₂.sets, f ⁻¹' s ∈ l₁.sets := iff.rfl lemma tendsto_iff_comap {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ l₁ ≤ l₂.comap f := map_le_iff_le_comap lemma tendsto_cong {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β} (h : tendsto f₁ l₁ l₂) (hl : {x | f₁ x = f₂ x} ∈ l₁.sets) : tendsto f₂ l₁ l₂ := by rwa [tendsto, ←map_cong hl] lemma tendsto_id' {x y : filter α} : x ≤ y → tendsto id x y := by simp only [tendsto, map_id, forall_true_iff] {contextual := tt} lemma tendsto_id {x : filter α} : tendsto id x x := tendsto_id' $ le_refl x lemma tendsto.comp {f : α → β} {g : β → γ} {x : filter α} {y : filter β} {z : filter γ} (hf : tendsto f x y) (hg : tendsto g y z) : tendsto (g ∘ f) x z := calc map (g ∘ f) x = map g (map f x) : by rw [map_map] ... ≤ map g y : map_mono hf ... ≤ z : hg lemma tendsto_le_left {f : α → β} {x y : filter α} {z : filter β} (h : y ≤ x) : tendsto f x z → tendsto f y z := le_trans (map_mono h) lemma tendsto_le_right {f : α → β} {x : filter α} {y z : filter β} (h₁ : y ≤ z) (h₂ : tendsto f x y) : tendsto f x z := le_trans h₂ h₁ lemma tendsto_map {f : α → β} {x : filter α} : tendsto f x (map f x) := le_refl (map f x) lemma tendsto_map' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} (h : tendsto (f ∘ g) x y) : tendsto f (map g x) y := by rwa [tendsto, map_map] lemma tendsto_map'_iff {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} : tendsto f (map g x) y ↔ tendsto (f ∘ g) x y := by rw [tendsto, map_map]; refl lemma tendsto_comap {f : α → β} {x : filter β} : tendsto f (comap f x) x := map_comap_le lemma tendsto_comap_iff {f : α → β} {g : β → γ} {a : filter α} {c : filter γ} : tendsto f a (c.comap g) ↔ tendsto (g ∘ f) a c := ⟨assume h, h.comp tendsto_comap, assume h, map_le_iff_le_comap.mp $ by rwa [map_map]⟩ lemma tendsto_comap'_iff {m : α → β} {f : filter α} {g : filter β} {i : γ → α} (h : range i ∈ f.sets) : tendsto (m ∘ i) (comap i f) g ↔ tendsto m f g := by rw [tendsto, ← map_compose]; simp only [(∘), map_comap h, tendsto] lemma comap_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : ψ ∘ φ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : comap φ g = f := begin refine le_antisymm (le_trans (comap_mono $ map_le_iff_le_comap.1 hψ) _) (map_le_iff_le_comap.1 hφ), rw [comap_comap_comp, eq, comap_id], exact le_refl _ end lemma map_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : φ ∘ ψ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : map φ f = g := begin refine le_antisymm hφ (le_trans _ (map_mono hψ)), rw [map_map, eq, map_id], exact le_refl _ end lemma tendsto_inf {f : α → β} {x : filter α} {y₁ y₂ : filter β} : tendsto f x (y₁ ⊓ y₂) ↔ tendsto f x y₁ ∧ tendsto f x y₂ := by simp only [tendsto, lattice.le_inf_iff, iff_self] lemma tendsto_inf_left {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₁ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_left) h lemma tendsto_inf_right {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₂ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_right) h lemma tendsto_infi {f : α → β} {x : filter α} {y : ι → filter β} : tendsto f x (⨅i, y i) ↔ ∀i, tendsto f x (y i) := by simp only [tendsto, iff_self, lattice.le_infi_iff] lemma tendsto_infi' {f : α → β} {x : ι → filter α} {y : filter β} (i : ι) : tendsto f (x i) y → tendsto f (⨅i, x i) y := tendsto_le_left (infi_le _ _) lemma tendsto_principal {f : α → β} {a : filter α} {s : set β} : tendsto f a (principal s) ↔ {a | f a ∈ s} ∈ a.sets := by simp only [tendsto, le_principal_iff, mem_map, iff_self] lemma tendsto_principal_principal {f : α → β} {s : set α} {t : set β} : tendsto f (principal s) (principal t) ↔ ∀a∈s, f a ∈ t := by simp only [tendsto, image_subset_iff, le_principal_iff, map_principal, mem_principal_sets]; refl lemma tendsto_pure_pure (f : α → β) (a : α) : tendsto f (pure a) (pure (f a)) := show filter.map f (pure a) ≤ pure (f a), by rw [filter.map_pure]; exact le_refl _ lemma tendsto_const_pure {a : filter α} {b : β} : tendsto (λa, b) a (pure b) := by simp [tendsto]; exact univ_mem_sets lemma tendsto_if {l₁ : filter α} {l₂ : filter β} {f g : α → β} {p : α → Prop} [decidable_pred p] (h₀ : tendsto f (l₁ ⊓ principal p) l₂) (h₁ : tendsto g (l₁ ⊓ principal { x | ¬ p x }) l₂) : tendsto (λ x, if p x then f x else g x) l₁ l₂ := begin revert h₀ h₁, simp only [tendsto_def, mem_inf_principal], intros h₀ h₁ s hs, apply mem_sets_of_superset (inter_mem_sets (h₀ s hs) (h₁ s hs)), rintros x ⟨hp₀, hp₁⟩, dsimp, by_cases h : p x, { rw if_pos h, exact hp₀ h }, rw if_neg h, exact hp₁ h end section prod variables {s : set α} {t : set β} {f : filter α} {g : filter β} /- The product filter cannot be defined using the monad structure on filters. For example: F := do {x <- seq, y <- top, return (x, y)} hence: s ∈ F <-> ∃n, [n..∞] × univ ⊆ s G := do {y <- top, x <- seq, return (x, y)} hence: s ∈ G <-> ∀i:ℕ, ∃n, [n..∞] × {i} ⊆ s Now ⋃i, [i..∞] × {i} is in G but not in F. As product filter we want to have F as result. -/ /-- Product of filters. This is the filter generated by cartesian products of elements of the component filters. -/ protected def prod (f : filter α) (g : filter β) : filter (α × β) := f.comap prod.fst ⊓ g.comap prod.snd lemma prod_mem_prod {s : set α} {t : set β} {f : filter α} {g : filter β} (hs : s ∈ f.sets) (ht : t ∈ g.sets) : set.prod s t ∈ (filter.prod f g).sets := inter_mem_inf_sets (preimage_mem_comap hs) (preimage_mem_comap ht) lemma mem_prod_iff {s : set (α×β)} {f : filter α} {g : filter β} : s ∈ (filter.prod f g).sets ↔ (∃t₁∈f.sets, ∃t₂∈g.sets, set.prod t₁ t₂ ⊆ s) := begin simp only [filter.prod], split, exact assume ⟨t₁, ⟨s₁, hs₁, hts₁⟩, t₂, ⟨s₂, hs₂, hts₂⟩, h⟩, ⟨s₁, hs₁, s₂, hs₂, subset.trans (inter_subset_inter hts₁ hts₂) h⟩, exact assume ⟨t₁, ht₁, t₂, ht₂, h⟩, ⟨prod.fst ⁻¹' t₁, ⟨t₁, ht₁, subset.refl _⟩, prod.snd ⁻¹' t₂, ⟨t₂, ht₂, subset.refl _⟩, h⟩ end lemma tendsto_fst {f : filter α} {g : filter β} : tendsto prod.fst (filter.prod f g) f := tendsto_inf_left tendsto_comap lemma tendsto_snd {f : filter α} {g : filter β} : tendsto prod.snd (filter.prod f g) g := tendsto_inf_right tendsto_comap lemma tendsto.prod_mk {f : filter α} {g : filter β} {h : filter γ} {m₁ : α → β} {m₂ : α → γ} (h₁ : tendsto m₁ f g) (h₂ : tendsto m₂ f h) : tendsto (λx, (m₁ x, m₂ x)) f (filter.prod g h) := tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ lemma prod_infi_left {f : ι → filter α} {g : filter β} (i : ι) : filter.prod (⨅i, f i) g = (⨅i, filter.prod (f i) g) := by rw [filter.prod, comap_infi, infi_inf i]; simp only [filter.prod, eq_self_iff_true] lemma prod_infi_right {f : filter α} {g : ι → filter β} (i : ι) : filter.prod f (⨅i, g i) = (⨅i, filter.prod f (g i)) := by rw [filter.prod, comap_infi, inf_infi i]; simp only [filter.prod, eq_self_iff_true] lemma prod_mono {f₁ f₂ : filter α} {g₁ g₂ : filter β} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : filter.prod f₁ g₁ ≤ filter.prod f₂ g₂ := inf_le_inf (comap_mono hf) (comap_mono hg) lemma prod_comap_comap_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : β₁ → α₁} {m₂ : β₂ → α₂} : filter.prod (comap m₁ f₁) (comap m₂ f₂) = comap (λp:β₁×β₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := by simp only [filter.prod, comap_comap_comp, eq_self_iff_true, comap_inf] lemma prod_comm' : filter.prod f g = comap (prod.swap) (filter.prod g f) := by simp only [filter.prod, comap_comap_comp, (∘), inf_comm, prod.fst_swap, eq_self_iff_true, prod.snd_swap, comap_inf] lemma prod_comm : filter.prod f g = map (λp:β×α, (p.2, p.1)) (filter.prod g f) := by rw [prod_comm', ← map_swap_eq_comap_swap]; refl lemma prod_map_map_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : α₁ → β₁} {m₂ : α₂ → β₂} : filter.prod (map m₁ f₁) (map m₂ f₂) = map (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := le_antisymm (assume s hs, let ⟨s₁, hs₁, s₂, hs₂, h⟩ := mem_prod_iff.mp hs in filter.sets_of_superset _ (prod_mem_prod (image_mem_map hs₁) (image_mem_map hs₂)) $ calc set.prod (m₁ '' s₁) (m₂ '' s₂) = (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) '' set.prod s₁ s₂ : set.prod_image_image_eq ... ⊆ _ : by rwa [image_subset_iff]) ((tendsto_fst.comp (le_refl _)).prod_mk (tendsto_snd.comp (le_refl _))) lemma map_prod (m : α × β → γ) (f : filter α) (g : filter β) : map m (f.prod g) = (f.map (λa b, m (a, b))).seq g := begin simp [filter.ext_iff, mem_prod_iff, mem_map_seq_iff], assume s, split, exact assume ⟨t, ht, s, hs, h⟩, ⟨s, hs, t, ht, assume x hx y hy, @h ⟨x, y⟩ ⟨hx, hy⟩⟩, exact assume ⟨s, hs, t, ht, h⟩, ⟨t, ht, s, hs, assume ⟨x, y⟩ ⟨hx, hy⟩, h x hx y hy⟩ end lemma prod_eq {f : filter α} {g : filter β} : f.prod g = (f.map prod.mk).seq g := have h : _ := map_prod id f g, by rwa [map_id] at h lemma prod_inf_prod {f₁ f₂ : filter α} {g₁ g₂ : filter β} : filter.prod f₁ g₁ ⊓ filter.prod f₂ g₂ = filter.prod (f₁ ⊓ f₂) (g₁ ⊓ g₂) := by simp only [filter.prod, comap_inf, inf_comm, inf_assoc, lattice.inf_left_comm] @[simp] lemma prod_bot {f : filter α} : filter.prod f (⊥ : filter β) = ⊥ := by simp [filter.prod] @[simp] lemma bot_prod {g : filter β} : filter.prod (⊥ : filter α) g = ⊥ := by simp [filter.prod] @[simp] lemma prod_principal_principal {s : set α} {t : set β} : filter.prod (principal s) (principal t) = principal (set.prod s t) := by simp only [filter.prod, comap_principal, principal_eq_iff_eq, comap_principal, inf_principal]; refl @[simp] lemma prod_pure_pure {a : α} {b : β} : filter.prod (pure a) (pure b) = pure (a, b) := by simp lemma prod_eq_bot {f : filter α} {g : filter β} : filter.prod f g = ⊥ ↔ (f = ⊥ ∨ g = ⊥) := begin split, { assume h, rcases mem_prod_iff.1 (empty_in_sets_eq_bot.2 h) with ⟨s, hs, t, ht, hst⟩, rw [subset_empty_iff, set.prod_eq_empty_iff] at hst, cases hst with s_eq t_eq, { left, exact empty_in_sets_eq_bot.1 (s_eq ▸ hs) }, { right, exact empty_in_sets_eq_bot.1 (t_eq ▸ ht) } }, { rintros (rfl | rfl), exact bot_prod, exact prod_bot } end lemma prod_neq_bot {f : filter α} {g : filter β} : filter.prod f g ≠ ⊥ ↔ (f ≠ ⊥ ∧ g ≠ ⊥) := by rw [(≠), prod_eq_bot, not_or_distrib] lemma tendsto_prod_iff {f : α × β → γ} {x : filter α} {y : filter β} {z : filter γ} : filter.tendsto f (filter.prod x y) z ↔ ∀ W ∈ z.sets, ∃ U ∈ x.sets, ∃ V ∈ y.sets, ∀ x y, x ∈ U → y ∈ V → f (x, y) ∈ W := by simp only [tendsto_def, mem_prod_iff, prod_sub_preimage_iff, exists_prop, iff_self] end prod /- at_top and at_bot -/ /-- `at_top` is the filter representing the limit `→ ∞` on an ordered set. It is generated by the collection of up-sets `{b | a ≤ b}`. (The preorder need not have a top element for this to be well defined, and indeed is trivial when a top element exists.) -/ def at_top [preorder α] : filter α := ⨅ a, principal {b | a ≤ b} /-- `at_bot` is the filter representing the limit `→ -∞` on an ordered set. It is generated by the collection of down-sets `{b | b ≤ a}`. (The preorder need not have a bottom element for this to be well defined, and indeed is trivial when a bottom element exists.) -/ def at_bot [preorder α] : filter α := ⨅ a, principal {b | b ≤ a} lemma mem_at_top [preorder α] (a : α) : {b : α | a ≤ b} ∈ (@at_top α _).sets := mem_infi_sets a $ subset.refl _ @[simp] lemma at_top_ne_bot [nonempty α] [semilattice_sup α] : (at_top : filter α) ≠ ⊥ := infi_neq_bot_of_directed (by apply_instance) (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (assume a, by simp only [principal_eq_bot_iff, ne.def, principal_eq_bot_iff]; exact ne_empty_of_mem (le_refl a)) @[simp] lemma mem_at_top_sets [nonempty α] [semilattice_sup α] {s : set α} : s ∈ (at_top : filter α).sets ↔ ∃a:α, ∀b≥a, b ∈ s := let ⟨a⟩ := ‹nonempty α› in iff.intro (assume h, infi_sets_induct h ⟨a, by simp only [forall_const, mem_univ, forall_true_iff]⟩ (assume a s₁ s₂ ha ⟨b, hb⟩, ⟨a ⊔ b, assume c hc, ⟨ha $ le_trans le_sup_left hc, hb _ $ le_trans le_sup_right hc⟩⟩) (assume s₁ s₂ h ⟨a, ha⟩, ⟨a, assume b hb, h $ ha _ hb⟩)) (assume ⟨a, h⟩, mem_infi_sets a $ assume x, h x) lemma map_at_top_eq [nonempty α] [semilattice_sup α] {f : α → β} : at_top.map f = (⨅a, principal $ f '' {a' | a ≤ a'}) := calc map f (⨅a, principal {a' | a ≤ a'}) = (⨅a, map f $ principal {a' | a ≤ a'}) : map_infi_eq (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (by apply_instance) ... = (⨅a, principal $ f '' {a' | a ≤ a'}) : by simp only [map_principal, eq_self_iff_true] lemma tendsto_at_top [preorder β] (m : α → β) (f : filter α) : tendsto m f at_top ↔ (∀b, {a | b ≤ m a} ∈ f.sets) := by simp only [at_top, tendsto_infi, tendsto_principal]; refl lemma tendsto_at_top' [nonempty α] [semilattice_sup α] (f : α → β) (l : filter β) : tendsto f at_top l ↔ (∀s∈l.sets, ∃a, ∀b≥a, f b ∈ s) := by simp only [tendsto_def, mem_at_top_sets]; refl theorem tendsto_at_top_principal [nonempty β] [semilattice_sup β] {f : β → α} {s : set α} : tendsto f at_top (principal s) ↔ ∃N, ∀n≥N, f n ∈ s := by rw [tendsto_iff_comap, comap_principal, le_principal_iff, mem_at_top_sets]; refl /-- A function `f` grows to infinity independent of an order-preserving embedding `e`. -/ lemma tendsto_at_top_embedding {α β γ : Type*} [preorder β] [preorder γ] {f : α → β} {e : β → γ} {l : filter α} (hm : ∀b₁ b₂, e b₁ ≤ e b₂ ↔ b₁ ≤ b₂) (hu : ∀c, ∃b, c ≤ e b) : tendsto (e ∘ f) l at_top ↔ tendsto f l at_top := begin rw [tendsto_at_top, tendsto_at_top], split, { assume hc b, filter_upwards [hc (e b)] assume a, (hm b (f a)).1 }, { assume hb c, rcases hu c with ⟨b, hc⟩, filter_upwards [hb b] assume a ha, le_trans hc ((hm b (f a)).2 ha) } end lemma tendsto_at_top_at_top [nonempty α] [semilattice_sup α] [preorder β] (f : α → β) : tendsto f at_top at_top ↔ ∀ b : β, ∃ i : α, ∀ a : α, i ≤ a → b ≤ f a := iff.trans tendsto_infi $ forall_congr $ assume b, tendsto_at_top_principal lemma tendsto_finset_image_at_top_at_top {i : β → γ} {j : γ → β} (h : ∀x, j (i x) = x) : tendsto (λs:finset γ, s.image j) at_top at_top := tendsto_infi.2 $ assume s, tendsto_infi' (s.image i) $ tendsto_principal_principal.2 $ assume t (ht : s.image i ⊆ t), calc s = (s.image i).image j : by simp only [finset.image_image, (∘), h]; exact finset.image_id.symm ... ⊆ t.image j : finset.image_subset_image ht lemma prod_at_top_at_top_eq {β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] : filter.prod (@at_top β₁ _) (@at_top β₂ _) = @at_top (β₁ × β₂) _ := by simp [at_top, prod_infi_left (default β₁), prod_infi_right (default β₂), infi_prod]; exact infi_comm lemma prod_map_at_top_eq {α₁ α₂ β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] (u₁ : β₁ → α₁) (u₂ : β₂ → α₂) : filter.prod (map u₁ at_top) (map u₂ at_top) = map (prod.map u₁ u₂) at_top := by rw [prod_map_map_eq, prod_at_top_at_top_eq, prod.map_def] /-- A function `f` maps upwards closed sets (at_top sets) to upwards closed sets when it is a Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an insertion and a connetion above `b'`. -/ lemma map_at_top_eq_of_gc [semilattice_sup α] [semilattice_sup β] {f : α → β} (g : β → α) (b' : β)(hf : monotone f) (gc : ∀a, ∀b≥b', f a ≤ b ↔ a ≤ g b) (hgi : ∀b≥b', b ≤ f (g b)) : map f at_top = at_top := begin rw [@map_at_top_eq α _ ⟨g b'⟩], refine le_antisymm (le_infi $ assume b, infi_le_of_le (g (b ⊔ b')) $ principal_mono.2 $ image_subset_iff.2 _) (le_infi $ assume a, infi_le_of_le (f a ⊔ b') $ principal_mono.2 _), { assume a ha, exact (le_trans le_sup_left $ le_trans (hgi _ le_sup_right) $ hf ha) }, { assume b hb, have hb' : b' ≤ b := le_trans le_sup_right hb, exact ⟨g b, (gc _ _ hb').1 (le_trans le_sup_left hb), le_antisymm ((gc _ _ hb').2 (le_refl _)) (hgi _ hb')⟩ } end lemma map_add_at_top_eq_nat (k : ℕ) : map (λa, a + k) at_top = at_top := map_at_top_eq_of_gc (λa, a - k) k (assume a b h, add_le_add_right h k) (assume a b h, (nat.le_sub_right_iff_add_le h).symm) (assume a h, by rw [nat.sub_add_cancel h]) lemma map_sub_at_top_eq_nat (k : ℕ) : map (λa, a - k) at_top = at_top := map_at_top_eq_of_gc (λa, a + k) 0 (assume a b h, nat.sub_le_sub_right h _) (assume a b _, nat.sub_le_right_iff_le_add) (assume b _, by rw [nat.add_sub_cancel]) lemma tendso_add_at_top_nat (k : ℕ) : tendsto (λa, a + k) at_top at_top := le_of_eq (map_add_at_top_eq_nat k) lemma tendso_sub_at_top_nat (k : ℕ) : tendsto (λa, a - k) at_top at_top := le_of_eq (map_sub_at_top_eq_nat k) lemma tendsto_add_at_top_iff_nat {f : ℕ → α} {l : filter α} (k : ℕ) : tendsto (λn, f (n + k)) at_top l ↔ tendsto f at_top l := show tendsto (f ∘ (λn, n + k)) at_top l ↔ tendsto f at_top l, by rw [← tendsto_map'_iff, map_add_at_top_eq_nat] lemma map_div_at_top_eq_nat (k : ℕ) (hk : k > 0) : map (λa, a / k) at_top = at_top := map_at_top_eq_of_gc (λb, b * k + (k - 1)) 1 (assume a b h, nat.div_le_div_right h) (assume a b _, calc a / k ≤ b ↔ a / k < b + 1 : by rw [← nat.succ_eq_add_one, nat.lt_succ_iff] ... ↔ a < (b + 1) * k : nat.div_lt_iff_lt_mul _ _ hk ... ↔ _ : begin cases k, exact (lt_irrefl _ hk).elim, simp [mul_add, add_mul, nat.succ_add, nat.lt_succ_iff] end) (assume b _, calc b = (b * k) / k : by rw [nat.mul_div_cancel b hk] ... ≤ (b * k + (k - 1)) / k : nat.div_le_div_right $ nat.le_add_right _ _) /- ultrafilter -/ section ultrafilter open zorn variables {f g : filter α} /-- An ultrafilter is a minimal (maximal in the set order) proper filter. -/ def is_ultrafilter (f : filter α) := f ≠ ⊥ ∧ ∀g, g ≠ ⊥ → g ≤ f → f ≤ g lemma ultrafilter_unique (hg : is_ultrafilter g) (hf : f ≠ ⊥) (h : f ≤ g) : f = g := le_antisymm h (hg.right _ hf h) lemma le_of_ultrafilter {g : filter α} (hf : is_ultrafilter f) (h : f ⊓ g ≠ ⊥) : f ≤ g := le_of_inf_eq $ ultrafilter_unique hf h inf_le_left /-- Equivalent characterization of ultrafilters: A filter f is an ultrafilter if and only if for each set s, -s belongs to f if and only if s does not belong to f. -/ lemma ultrafilter_iff_compl_mem_iff_not_mem : is_ultrafilter f ↔ (∀ s, -s ∈ f.sets ↔ s ∉ f.sets) := ⟨assume hf s, ⟨assume hns hs, hf.1 $ empty_in_sets_eq_bot.mp $ by convert f.inter_sets hs hns; rw [inter_compl_self], assume hs, have f ≤ principal (-s), from le_of_ultrafilter hf $ assume h, hs $ mem_sets_of_neq_bot $ by simp only [h, eq_self_iff_true, lattice.neg_neg], by simp only [le_principal_iff] at this; assumption⟩, assume hf, ⟨mt empty_in_sets_eq_bot.mpr ((hf ∅).mp (by convert f.univ_sets; rw [compl_empty])), assume g hg g_le s hs, classical.by_contradiction $ mt (hf s).mpr $ assume : - s ∈ f.sets, have s ∩ -s ∈ g.sets, from inter_mem_sets hs (g_le this), by simp only [empty_in_sets_eq_bot, hg, inter_compl_self] at this; contradiction⟩⟩ lemma mem_or_compl_mem_of_ultrafilter (hf : is_ultrafilter f) (s : set α) : s ∈ f.sets ∨ - s ∈ f.sets := classical.or_iff_not_imp_left.2 (ultrafilter_iff_compl_mem_iff_not_mem.mp hf s).mpr lemma mem_or_mem_of_ultrafilter {s t : set α} (hf : is_ultrafilter f) (h : s ∪ t ∈ f.sets) : s ∈ f.sets ∨ t ∈ f.sets := (mem_or_compl_mem_of_ultrafilter hf s).imp_right (assume : -s ∈ f.sets, by filter_upwards [this, h] assume x hnx hx, hx.resolve_left hnx) lemma mem_of_finite_sUnion_ultrafilter {s : set (set α)} (hf : is_ultrafilter f) (hs : finite s) : ⋃₀ s ∈ f.sets → ∃t∈s, t ∈ f.sets := finite.induction_on hs (by simp only [empty_in_sets_eq_bot, hf.left, mem_empty_eq, sUnion_empty, forall_prop_of_false, exists_false, not_false_iff, exists_prop_of_false]) $ λ t s' ht' hs' ih, by simp only [exists_prop, mem_insert_iff, set.sUnion_insert]; exact assume h, (mem_or_mem_of_ultrafilter hf h).elim (assume : t ∈ f.sets, ⟨t, or.inl rfl, this⟩) (assume h, let ⟨t, hts', ht⟩ := ih h in ⟨t, or.inr hts', ht⟩) lemma mem_of_finite_Union_ultrafilter {is : set β} {s : β → set α} (hf : is_ultrafilter f) (his : finite is) (h : (⋃i∈is, s i) ∈ f.sets) : ∃i∈is, s i ∈ f.sets := have his : finite (image s is), from finite_image s his, have h : (⋃₀ image s is) ∈ f.sets, from by simp only [sUnion_image, set.sUnion_image]; assumption, let ⟨t, ⟨i, hi, h_eq⟩, (ht : t ∈ f.sets)⟩ := mem_of_finite_sUnion_ultrafilter hf his h in ⟨i, hi, h_eq.symm ▸ ht⟩ lemma ultrafilter_map {f : filter α} {m : α → β} (h : is_ultrafilter f) : is_ultrafilter (map m f) := by rw ultrafilter_iff_compl_mem_iff_not_mem at ⊢ h; exact assume s, h (m ⁻¹' s) lemma ultrafilter_pure {a : α} : is_ultrafilter (pure a) := begin rw ultrafilter_iff_compl_mem_iff_not_mem, intro s, rw [mem_pure_sets, mem_pure_sets], exact iff.rfl end lemma ultrafilter_bind {f : filter α} (hf : is_ultrafilter f) {m : α → filter β} (hm : ∀ a, is_ultrafilter (m a)) : is_ultrafilter (f.bind m) := begin simp only [ultrafilter_iff_compl_mem_iff_not_mem] at ⊢ hf hm, intro s, dsimp [bind, join, map], simp only [hm], apply hf end /-- The ultrafilter lemma: Any proper filter is contained in an ultrafilter. -/ lemma exists_ultrafilter (h : f ≠ ⊥) : ∃u, u ≤ f ∧ is_ultrafilter u := let τ := {f' // f' ≠ ⊥ ∧ f' ≤ f}, r : τ → τ → Prop := λt₁ t₂, t₂.val ≤ t₁.val, ⟨a, ha⟩ := inhabited_of_mem_sets h univ_mem_sets, top : τ := ⟨f, h, le_refl f⟩, sup : Π(c:set τ), chain r c → τ := λc hc, ⟨⨅a:{a:τ // a ∈ insert top c}, a.val.val, infi_neq_bot_of_directed ⟨a⟩ (directed_of_chain $ chain_insert hc $ assume ⟨b, _, hb⟩ _ _, or.inl hb) (assume ⟨⟨a, ha, _⟩, _⟩, ha), infi_le_of_le ⟨top, mem_insert _ _⟩ (le_refl _)⟩ in have ∀c (hc: chain r c) a (ha : a ∈ c), r a (sup c hc), from assume c hc a ha, infi_le_of_le ⟨a, mem_insert_of_mem _ ha⟩ (le_refl _), have (∃ (u : τ), ∀ (a : τ), r u a → r a u), from zorn (assume c hc, ⟨sup c hc, this c hc⟩) (assume f₁ f₂ f₃ h₁ h₂, le_trans h₂ h₁), let ⟨uτ, hmin⟩ := this in ⟨uτ.val, uτ.property.right, uτ.property.left, assume g hg₁ hg₂, hmin ⟨g, hg₁, le_trans hg₂ uτ.property.right⟩ hg₂⟩ /-- Construct an ultrafilter extending a given filter. The ultrafilter lemma is the assertion that such a filter exists; we use the axiom of choice to pick one. -/ noncomputable def ultrafilter_of (f : filter α) : filter α := if h : f = ⊥ then ⊥ else classical.epsilon (λu, u ≤ f ∧ is_ultrafilter u) lemma ultrafilter_of_spec (h : f ≠ ⊥) : ultrafilter_of f ≤ f ∧ is_ultrafilter (ultrafilter_of f) := begin have h' := classical.epsilon_spec (exists_ultrafilter h), simp only [ultrafilter_of, dif_neg, h, dif_neg, not_false_iff], simp only at h', assumption end lemma ultrafilter_of_le : ultrafilter_of f ≤ f := if h : f = ⊥ then by simp only [ultrafilter_of, dif_pos, h, dif_pos, eq_self_iff_true, le_bot_iff]; exact le_refl _ else (ultrafilter_of_spec h).left lemma ultrafilter_ultrafilter_of (h : f ≠ ⊥) : is_ultrafilter (ultrafilter_of f) := (ultrafilter_of_spec h).right lemma ultrafilter_of_ultrafilter (h : is_ultrafilter f) : ultrafilter_of f = f := ultrafilter_unique h (ultrafilter_ultrafilter_of h.left).left ultrafilter_of_le /-- A filter equals the intersection of all the ultrafilters which contain it. -/ lemma sup_of_ultrafilters (f : filter α) : f = ⨆ (g) (u : is_ultrafilter g) (H : g ≤ f), g := begin refine le_antisymm _ (supr_le $ λ g, supr_le $ λ u, supr_le $ λ H, H), intros s hs, -- If s ∉ f.sets, we'll apply the ultrafilter lemma to the restriction of f to -s. by_contradiction hs', let j : (-s) → α := subtype.val, have j_inv_s : j ⁻¹' s = ∅, by erw [←preimage_inter_range, subtype.val_range, inter_compl_self, preimage_empty], let f' := comap j f, have : f' ≠ ⊥, { apply mt empty_in_sets_eq_bot.mpr, rintro ⟨t, htf, ht⟩, suffices : t ⊆ s, from absurd (f.sets_of_superset htf this) hs', rw [subset_empty_iff] at ht, have : j '' (j ⁻¹' t) = ∅, by rw [ht, image_empty], erw [image_preimage_eq_inter_range, subtype.val_range, ←subset_compl_iff_disjoint, set.compl_compl] at this, exact this }, rcases exists_ultrafilter this with ⟨g', g'f', u'⟩, simp only [supr_sets_eq, mem_Inter] at hs, have := hs (g'.map subtype.val) (ultrafilter_map u') (map_le_iff_le_comap.mpr g'f'), rw [←le_principal_iff, map_le_iff_le_comap, comap_principal, j_inv_s, principal_empty, le_bot_iff] at this, exact absurd this u'.1 end /-- The `tendsto` relation can be checked on ultrafilters. -/ lemma tendsto_iff_ultrafilter (f : α → β) (l₁ : filter α) (l₂ : filter β) : tendsto f l₁ l₂ ↔ ∀ g, is_ultrafilter g → g ≤ l₁ → g.map f ≤ l₂ := ⟨assume h g u gx, le_trans (map_mono gx) h, assume h, by rw [sup_of_ultrafilters l₁]; simpa only [tendsto, map_supr, supr_le_iff]⟩ /- The ultrafilter monad. The monad structure on ultrafilters is the restriction of the one on filters. -/ def ultrafilter (α : Type u) : Type u := {f : filter α // is_ultrafilter f} def ultrafilter.map (m : α → β) (u : ultrafilter α) : ultrafilter β := ⟨u.val.map m, ultrafilter_map u.property⟩ def ultrafilter.pure (x : α) : ultrafilter α := ⟨pure x, ultrafilter_pure⟩ def ultrafilter.bind (u : ultrafilter α) (m : α → ultrafilter β) : ultrafilter β := ⟨u.val.bind (λ a, (m a).val), ultrafilter_bind u.property (λ a, (m a).property)⟩ instance ultrafilter.has_pure : has_pure ultrafilter := ⟨@ultrafilter.pure⟩ instance ultrafilter.has_bind : has_bind ultrafilter := ⟨@ultrafilter.bind⟩ instance ultrafilter.functor : functor ultrafilter := { map := @ultrafilter.map } instance ultrafilter.monad : monad ultrafilter := { map := @ultrafilter.map } section local attribute [instance] filter.monad filter.is_lawful_monad instance ultrafilter.is_lawful_monad : is_lawful_monad ultrafilter := { id_map := assume α f, subtype.eq (id_map f.val), pure_bind := assume α β a f, subtype.eq (pure_bind a (subtype.val ∘ f)), bind_assoc := assume α β γ f m₁ m₂, subtype.eq (filter_eq rfl), bind_pure_comp_eq_map := assume α β f x, subtype.eq (bind_pure_comp_eq_map _ f x.val) } end lemma ultrafilter.eq_iff_val_le_val {u v : ultrafilter α} : u = v ↔ u.val ≤ v.val := ⟨assume h, by rw h; exact le_refl _, assume h, by rw subtype.ext; apply ultrafilter_unique v.property u.property.1 h⟩ lemma exists_ultrafilter_iff (f : filter α) : (∃ (u : ultrafilter α), u.val ≤ f) ↔ f ≠ ⊥ := ⟨assume ⟨u, uf⟩, lattice.neq_bot_of_le_neq_bot u.property.1 uf, assume h, let ⟨u, uf, hu⟩ := exists_ultrafilter h in ⟨⟨u, hu⟩, uf⟩⟩ end ultrafilter end filter namespace filter variables {α β γ : Type u} {f : β → filter α} {s : γ → set α} open list lemma mem_traverse_sets : ∀(fs : list β) (us : list γ), forall₂ (λb c, s c ∈ (f b).sets) fs us → traverse s us ∈ (traverse f fs).sets | [] [] forall₂.nil := mem_pure_sets.2 $ mem_singleton _ | (f::fs) (u::us) (forall₂.cons h hs) := seq_mem_seq_sets (image_mem_map h) (mem_traverse_sets fs us hs) lemma mem_traverse_sets_iff (fs : list β) (t : set (list α)) : t ∈ (traverse f fs).sets ↔ (∃us:list (set α), forall₂ (λb (s : set α), s ∈ (f b).sets) fs us ∧ sequence us ⊆ t) := begin split, { induction fs generalizing t, case nil { simp only [sequence, pure_def, imp_self, forall₂_nil_left_iff, pure_def, exists_eq_left, mem_principal_sets, set.pure_def, singleton_subset_iff, traverse_nil] }, case cons : b fs ih t { assume ht, rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hwu⟩, rcases ih v hv with ⟨us, hus, hu⟩, exact ⟨w :: us, forall₂.cons hw hus, subset.trans (set.seq_mono hwu hu) ht⟩ } }, { rintros ⟨us, hus, hs⟩, exact mem_sets_of_superset (mem_traverse_sets _ _ hus) hs } end lemma sequence_mono : ∀(as bs : list (filter α)), forall₂ (≤) as bs → sequence as ≤ sequence bs | [] [] forall₂.nil := le_refl _ | (a::as) (b::bs) (forall₂.cons h hs) := seq_mono (map_mono h) (sequence_mono as bs hs) end filter
201cf95cfd0d3171dd0215320e30064058a440aa
c3f2fcd060adfa2ca29f924839d2d925e8f2c685
/tests/lean/var2.lean
836f1151e628586304f1d5d1d79efbf2822ad68b
[ "Apache-2.0" ]
permissive
respu/lean
6582d19a2f2838a28ecd2b3c6f81c32d07b5341d
8c76419c60b63d0d9f7bc04ebb0b99812d0ec654
refs/heads/master
1,610,882,451,231
1,427,747,084,000
1,427,747,429,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
186
lean
import logic context universe l variable A : Type.{l} variable a : A parameter B : Type.{l} parameter b : B definition foo := fun (H : A = B), cast H a = b end check foo
4ca6f906e6b6e98d9b75af8904d36b0754167b10
cf39355caa609c0f33405126beee2739aa3cb77e
/library/init/data/nat/lemmas.lean
93231a9b8e28b95a62c00b815c29304a4b565a6e
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
48,955
lean
"/-\nCopyright (c) 2016 Microsoft Corporation. All rights reserved.\nReleased under Apache 2.0 licen(...TRUNCATED)
1063e5b6df717f78c166abc15b4cfb053add1504
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/algebra/char_p/quotient.lean
d6257701ef9c1a215c155fa1e6e2a067a8b6aa91
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
1,985
lean
"/-\nCopyright (c) 2020 Kenny Lau. All rights reserved.\nReleased under Apache 2.0 license as descri(...TRUNCATED)
c49587b0e4742399525e8b90992db05e8529689c
77c5b91fae1b966ddd1db969ba37b6f0e4901e88
/src/ring_theory/adjoin/basic.lean
fb83bd8cfc7f3c7cc687c0180d851cca1fd5a6be
[ "Apache-2.0" ]
permissive
dexmagic/mathlib
ff48eefc56e2412429b31d4fddd41a976eb287ce
7a5d15a955a92a90e1d398b2281916b9c41270b2
refs/heads/master
1,693,481,322,046
1,633,360,193,000
1,633,360,193,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,436
lean
"/-\nCopyright (c) 2019 Kenny Lau. All rights reserved.\nReleased under Apache 2.0 license as descri(...TRUNCATED)
de4120c626a65c49318c3640d9383f536d43c5cf
453dcd7c0d1ef170b0843a81d7d8caedc9741dce
/linear_algebra/multivariate_polynomial.lean
67371cb3350e9c8c9872eab0b197bd75dd9f4a64
[ "Apache-2.0" ]
permissive
amswerdlow/mathlib
9af77a1f08486d8fa059448ae2d97795bd12ec0c
27f96e30b9c9bf518341705c99d641c38638dfd0
refs/heads/master
1,585,200,953,598
1,534,275,532,000
1,534,275,532,000
144,564,700
0
0
null
1,534,156,197,000
1,534,156,197,000
null
UTF-8
Lean
false
false
12,410
lean
"/-\nCopyright (c) 2017 Johannes Hölzl. All rights reserved.\nReleased under Apache 2.0 license as (...TRUNCATED)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
5