Dataset Viewer
Auto-converted to Parquet Duplicate
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    CastError
Message:      Couldn't cast
data_type: string
metric_name: string
value: double
item_name: string
-- schema metadata --
huggingface: '{"info": {"features": {"data_type": {"dtype": "string", "_t' + 172
to
{'pattern_name': Value('string'), 'collaboration_count': Value('float64'), 'collaboration_pct': Value('float64')}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                         ^^^^^^^^^
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
                  for key, example in ex_iterable:
                                      ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1975, in _iter_arrow
                  for key, pa_table in self.ex_iterable._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables
                  yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
                                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table
                  pa_table = table_cast(pa_table, self.info.features.arrow_schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              data_type: string
              metric_name: string
              value: double
              item_name: string
              -- schema metadata --
              huggingface: '{"info": {"features": {"data_type": {"dtype": "string", "_t' + 172
              to
              {'pattern_name': Value('string'), 'collaboration_count': Value('float64'), 'collaboration_pct': Value('float64')}
              because column names don't match

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Economic Index - Structured & Cleaned Dataset

This dataset is a cleaned, structured version of the Anthropic Economic Index, organized for easy integration with persona-based scenario generation pipelines.

Dataset Description

The Anthropic Economic Index tracks how people use Claude AI for work-related tasks. This structured version extracts and organizes the key information into easy-to-use tables.

Original Data Period: August 4-11, 2025
Source: Anthropic Economic Index Release 2025-09-15
Processing: Extracted from enriched_claude_ai.csv with comprehensive structuring

Dataset Structure

This dataset contains 5 splits:

1. tasks (2,616 rows)

All unique tasks people do with Claude AI, with usage metrics.

Columns:

  • task_name (string): Description of the task
  • onet_task_count (float): Number of conversations using this task
  • onet_task_pct (float): Percentage of total usage
  • onet_task_pct_index (float): Specialization index
  • automation_pct (float): Automation percentage (where available)
  • augmentation_pct (float): Augmentation percentage (where available)
  • has_automation_data (bool): Whether automation data exists
  • has_augmentation_data (bool): Whether augmentation data exists
  • has_usage_data (bool): Whether usage data exists

Example:

from datasets import load_dataset
ds = load_dataset("anna-sarvam/economic-index-structured")
print(ds['tasks'][0])
# {'task_name': 'write new programs or modify existing programs...', 
#  'onet_task_count': 6618.0, 'onet_task_pct': 0.52, ...}

2. collaboration_patterns (5 rows)

How users interact with Claude AI.

Patterns:

  1. directive (38.8%) - Direct instructions
  2. task iteration (22.2%) - Step-by-step refinement
  3. learning (20.3%) - Educational assistance
  4. feedback loop (10.3%) - Iterative improvement
  5. validation (4.5%) - Verification

Columns:

  • pattern_name (string): Name of collaboration pattern
  • collaboration_count (float): Number of uses
  • collaboration_pct (float): Percentage of total

3. task_collaboration_intersections (4,528 rows)

Which collaboration patterns are used for which tasks.

Columns:

  • task_name (string): Task description
  • collaboration_pattern (string): Pattern used
  • onet_task_collaboration_count (float): Count for this combination
  • onet_task_collaboration_pct (float): Percentage within task

4. occupations (22 rows)

SOC (Standard Occupational Classification) occupation groups.

Top Occupations:

  1. Computer and Mathematical (35.9%)
  2. Educational Instruction and Library (12.3%)
  3. Arts, Design, Entertainment, Sports, and Media (8.2%)

Columns:

  • soc_group (string): Occupation group name
  • percentage (float): Percentage of classified tasks
  • facet (string): Data facet

5. india (65 rows)

India-specific usage patterns and top tasks.

Columns:

  • data_type (string): Type of data (overall_metric, top_task, collaboration_pattern)
  • metric_name (string): Name of metric
  • value (float): Metric value
  • item_name (string): Task or pattern name (if applicable)

Key Statistics

  • Total Tasks: 2,616 unique tasks
  • Collaboration Patterns: 5 main types
  • Occupation Groups: 22 SOC categories
  • Task-Pattern Combinations: 4,528
  • Geographic Coverage: 201 countries (including India)

Usage Examples

Load the entire dataset

from datasets import load_dataset

ds = load_dataset("anna-sarvam/economic-index-structured")

Get top 10 tasks

tasks = ds['tasks'].to_pandas()
top_10 = tasks.nlargest(10, 'onet_task_count')
print(top_10[['task_name', 'onet_task_count']])

Find education-related tasks

tasks = ds['tasks'].to_pandas()
education_tasks = tasks[tasks['task_name'].str.contains('education', case=False)]

Get India-specific top tasks

india = ds['india'].to_pandas()
india_top_tasks = india[india['data_type'] == 'top_task']
top_5_india = india_top_tasks.nlargest(5, 'value')

Find tasks for software developers

tasks = ds['tasks'].to_pandas()
software_tasks = tasks[tasks['task_name'].str.contains('software|program|code', case=False)]

Analyze collaboration patterns

patterns = ds['collaboration_patterns'].to_pandas()
print(patterns[['pattern_name', 'collaboration_pct']].sort_values('collaboration_pct', ascending=False))

India-Specific Insights

Usage Statistics

  • Total Conversations: 1,831
  • Global Percentage: 0.88%
  • Automation: 45.5%
  • Augmentation: 54.5%

Top 5 Tasks in India

  1. Write/modify programs (6,618 uses)
  2. Fix software errors (5,118 uses)
  3. Adapt software to new hardware (3,594 uses)
  4. Debug and correct errors (2,663 uses)
  5. Build/maintain websites (2,661 uses)

Top 3 Collaboration Patterns in India

  1. directive (44.7%) - Higher than global average
  2. task iteration (23.4%)
  3. learning (14.5%)

Use Cases

1. Persona-Scenario Matching

Match tasks from this dataset to expanded personas based on occupation:

# Load tasks
tasks = ds['tasks'].to_pandas()

# Filter for teachers
education_tasks = tasks[tasks['task_name'].str.contains('educat|teach|tutor', case=False)]

# Match to teacher personas

2. Realistic Collaboration Patterns

Use actual collaboration patterns in scenario generation:

patterns = ds['collaboration_patterns'].to_pandas()

# Sample by actual distribution
sampled_pattern = patterns.sample(1, weights='collaboration_pct')

3. India-Specific Scenarios

Generate scenarios using India's actual usage patterns:

india = ds['india'].to_pandas()
india_tasks = india[india['data_type'] == 'top_task'].nlargest(20, 'value')

Data Processing

This dataset was created from the Anthropic Economic Index through:

  1. Download: Extracted enriched_claude_ai.csv (137K rows)
  2. Filtering: Selected global-level data (geo_id='GLOBAL')
  3. Structuring: Organized by facets (tasks, collaboration, occupations)
  4. Flattening: Converted nested metrics to flat tables
  5. India Extraction: Isolated India-specific patterns (3,874 rows)

Automation vs Augmentation

Global Averages:

  • Automation: 51.1% (AI does the task)
  • Augmentation: 48.9% (AI assists human)

India:

  • Automation: 45.5%
  • Augmentation: 54.5%

India shows more augmentation-focused usage compared to global patterns.

Limitations

  • Data from only one week (Aug 4-11, 2025)
  • Filtered for privacy (>200 conversations per country)
  • "not_classified" and "none" categories removed for clarity
  • Some tasks may not have automation/augmentation data

Citation

If you use this dataset, please cite both the structured version and the original:

@dataset{economic_index_structured,
  title={Economic Index - Structured & Cleaned Dataset},
  author={Your Name},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/anna-sarvam/economic-index-structured}
}

@dataset{anthropic_economic_index,
  title={Anthropic Economic Index},
  author={Anthropic},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/Anthropic/EconomicIndex}
}

Related Resources

License

Same as the original Anthropic Economic Index dataset (MIT License).

Maintenance

This is a snapshot of the Economic Index as of September 2025. For the most up-to-date data, refer to the original dataset.

Downloads last month
6