Datasets:
Formats:
parquet
Size:
100K - 1M
Tags:
audio
audio-similarity
zero-shot-learning
representation-learning
embedding-evaluation
unsupervised-learning
License:
metadata
license: cc-by-4.0
size_categories:
- 100K<n<1M
pretty_name: VocSim
tags:
- audio
- audio-similarity
- zero-shot-learning
- representation-learning
- embedding-evaluation
- unsupervised-learning
- speech
- environmental-sounds
- animal-vocalizations
- benchmark
paperswithcode_id: audiosim
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: subset
dtype: string
- name: speaker
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 5452179735
num_examples: 114641
download_size: 5500616162
dataset_size: 5452179735
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
VocSim: A Training-Free Benchmark for Content Identity in Single-Source Audio Embeddings
VocSim evaluates how well neural audio embeddings generalize for zero-shot audio similarity. It tests recognizing fine-grained acoustic similarity without specific similarity training.
Key Features
- Diverse Sources: Human speech (phones, words, utterances), birdsong, otter calls, environmental sounds.
- Varied Conditions: Spans clean to noisy recordings, short (<100ms) to long durations, few to many classes per subset.
- Standardized: All audio is 16kHz mono.
Data Format
{
'audio': {'array': array([...], dtype=float32), 'sampling_rate': 16000},
'subset': 'HW1', # Origin identifier
'speaker': 'spk_id', # Speaker/Animal/Source ID or 'N/A'
'label': 'hello' # Ground truth class for similarity
}
Train split: 114,641 public examples from 15 subsets for evaluation.
Blind Test Sets: 4 additional subsets held out privately.
Citation
@inproceedings{vocsim_authors_2025,
title={VocSim: A Training-Free Benchmark for Content Identity in Single-Source Audio Embeddings},
author={Anonymous Authors},
booktitle={Conference/Journal},
year={2025},
url={[Link to paper upon DOI]}
}
License
CC BY 4.0 - Creative Commons Attribution 4.0 International.