Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    HfHubHTTPError
Message:      502 Server Error: Bad Gateway for url: https://huggingface.co/api/datasets/bifold-pathomics/PathoROB-tcga/paths-info/6e1dbd4306ebee9759b32503914523e84bddabd0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 409, in hf_raise_for_status
                  response.raise_for_status()
                File "/usr/local/lib/python3.12/site-packages/requests/models.py", line 1026, in raise_for_status
                  raise HTTPError(http_error_msg, response=self)
              requests.exceptions.HTTPError: 502 Server Error: Bad Gateway for url: https://huggingface.co/api/datasets/bifold-pathomics/PathoROB-tcga/paths-info/6e1dbd4306ebee9759b32503914523e84bddabd0
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 223, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info
                  builder = load_dataset_builder(
                            ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1166, in load_dataset_builder
                  builder_instance: DatasetBuilder = builder_cls(
                                                     ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 343, in __init__
                  self.config, self.config_id = self._create_builder_config(
                                                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 567, in _create_builder_config
                  builder_config._resolve_data_files(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 207, in _resolve_data_files
                  self.data_files = self.data_files.resolve(base_path, download_config)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 788, in resolve
                  out[key] = data_files_patterns_list.resolve(base_path, download_config)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 741, in resolve
                  resolve_pattern(
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 360, in resolve_pattern
                  for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 521, in glob
                  return super().glob(path, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/fsspec/spec.py", line 604, in glob
                  allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 556, in find
                  return super().find(
                         ^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/fsspec/spec.py", line 495, in find
                  out[path] = self.info(path)
                              ^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 719, in info
                  paths_info = self._api.get_paths_info(
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 3371, in get_paths_info
                  hf_raise_for_status(response)
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status
                  raise _format(HfHubHTTPError, str(e), response) from e
              huggingface_hub.errors.HfHubHTTPError: 502 Server Error: Bad Gateway for url: https://huggingface.co/api/datasets/bifold-pathomics/PathoROB-tcga/paths-info/6e1dbd4306ebee9759b32503914523e84bddabd0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

PathoROB

Preprint | Code | Licenses | Cite

PathoROB is a benchmark for the robustness of pathology foundation models (FMs) to non-biological medical center differences.

PathoROB pipeline

PathoROB contains four datasets covering 28 biological classes from 34 medical centers and three metrics:

  1. Robustness Index: Measures the dominance of biological over non-biological features in an FM representation space.
  2. Average Performance Drop (APD): Measures the robustness of downstream models to shortcut learning of non-biological features and the effect on generalization performance.
  3. Clustering Score: Measures the robustness of clustering to non-biological features and the impact on the quality of k-means clusters.
PathoROB overview

How to use

Check out our PathoROB GitHub repository.

Latest updates

  • December 2025: PathoROB codes are available on GitHub.
  • September 2025: PathoROB data are available on Hugging Face.

Licenses

The PathoROB datasets were subsampled from public sources. Therefore, we redistribute each PathoROB dataset under the license of its original data source. You can run PathoROB on any subset of datasets with licenses suitable for your application.

Acknowledgements

We want to thank the authors of the original datasets for making their data publicly available.

Contact

If you have questions or feedback, please contact:

How to cite

If you find PathoROB useful, please cite our preprint:

@article{koemen2025pathorob,
    title={Towards Robust Foundation Models for Digital Pathology},
    author={K{\"o}men, Jonah and de Jong, Edwin D and Hense, Julius and Marienwald, Hannah and Dippel, Jonas and Naumann, Philip and Marcus, Eric and Ruff, Lukas and Alber, Maximilian and Teuwen, Jonas and others},
    journal={arXiv preprint arXiv:2507.17845},
    year={2025}
}

Please also cite the source publications of all PathoROB datasets that you use:

@article{bejnordi2017camelyon16,
    title={Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer},
    author={Ehteshami Bejnordi, Babak and Veta, Mitko and Johannes van Diest, Paul and van Ginneken, Bram and Karssemeijer, Nico and Litjens, Geert and van der Laak, Jeroen A. W. M. and and the CAMELYON16 Consortium},
    journal={JAMA},
    year={2017},
    volume={318},
    number={22},
    pages={2199-2210},
    doi={10.1001/jama.2017.14585}
}
@article{bandi19camelyon17,
    title={From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge},
    author={Bándi, Péter and Geessink, Oscar and Manson, Quirine and Van Dijk, Marcory and Balkenhol, Maschenka and Hermsen, Meyke and Ehteshami Bejnordi, Babak and Lee, Byungjae and Paeng, Kyunghyun and Zhong, Aoxiao and Li, Quanzheng and Zanjani, Farhad Ghazvinian and Zinger, Svitlana and Fukuta, Keisuke and Komura, Daisuke and Ovtcharov, Vlado and Cheng, Shenghua and Zeng, Shaoqun and Thagaard, Jeppe and Dahl, Anders B. and Lin, Huangjing and Chen, Hao and Jacobsson, Ludwig and Hedlund, Martin and Çetin, Melih and Halıcı, Eren and Jackson, Hunter and Chen, Richard and Both, Fabian and Franke, Jörg and Küsters-Vandevelde, Heidi and Vreuls, Willem and Bult, Peter and van Ginneken, Bram and van der Laak, Jeroen and Litjens, Geert},
    journal={IEEE Transactions on Medical Imaging}, 
    year={2019},
    volume={38},
    number={2},
    pages={550-560},
    doi={10.1109/TMI.2018.2867350}
}
  • TCGA (Source: TCGA-UT, License: CC-BY-NC-SA 4.0)
@article{komura22tcga-ut,
    title={Universal encoding of pan-cancer histology by deep texture representations},
    author={Daisuke Komura and Akihiro Kawabe and Keisuke Fukuta and Kyohei Sano and Toshikazu Umezaki and Hirotomo Koda and Ryohei Suzuki and Ken Tominaga and Mieko Ochi and Hiroki Konishi and Fumiya Masakado and Noriyuki Saito and Yasuyoshi Sato and Takumi Onoyama and Shu Nishida and Genta Furuya and Hiroto Katoh and Hiroharu Yamashita and Kazuhiro Kakimi and Yasuyuki Seto and Tetsuo Ushiku and Masashi Fukayama and Shumpei Ishikawa},
    journal={Cell Reports},
    year={2022},
    volume={38},
    number={9},
    pages={110424},
    doi={10.1016/j.celrep.2022.110424}
}
@article{tolkach2023esca,
    title={Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study},
    author={Tolkach, Yuri and Wolgast, Lisa Marie and Damanakis, Alexander and Pryalukhin, Alexey and Schallenberg, Simon and Hulla, Wolfgang and Eich, Marie-Lisa and Schroeder, Wolfgang and Mukhopadhyay, Anirban and Fuchs, Moritz and others},
    journal={The Lancet Digital Health},
    year={2023},
    volume={5},
    number={5},
    pages={e265-e275},
    publisher={Elsevier}
}
Downloads last month
227

Collection including bifold-pathomics/PathoROB-tcga