Datasets:
sample_id
stringlengths 15
15
| population
stringclasses 7
values | region
stringclasses 5
values | is_SSA
bool 2
classes | is_reference_panel
bool 2
classes | sex
stringclasses 2
values | age
int64 18
80
| sbp
float64 90.2
218
| dbp
float64 60.1
129
| bp_category
stringclasses 4
values | lv_mass_index_g_m2
float64 40
161
| septal_thickness_mm
float64 6
17.8
| lvh_present
bool 2
classes | ecg_pattern
stringclasses 4
values |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CV_SAMPLE_00001
|
SSA_West
|
West
| true
| false
|
Male
| 54
| 150.612859
| 96.045835
|
stage2
| 124.229062
| 14.053322
| true
|
normal
|
CV_SAMPLE_00002
|
SSA_West
|
West
| true
| false
|
Male
| 36
| 118.532928
| 74.275218
|
normal
| 105.827484
| 8.023106
| false
|
normal
|
CV_SAMPLE_00003
|
SSA_West
|
West
| true
| false
|
Female
| 60
| 102.609772
| 72.618965
|
normal
| 83.513989
| 8.667179
| false
|
LVH
|
CV_SAMPLE_00004
|
SSA_West
|
West
| true
| false
|
Male
| 62
| 111.725588
| 65.933263
|
normal
| 99.165249
| 7.990908
| false
|
normal
|
CV_SAMPLE_00005
|
SSA_West
|
West
| true
| false
|
Male
| 25
| 105.042619
| 71.5949
|
normal
| 85.074304
| 6.642233
| false
|
normal
|
CV_SAMPLE_00006
|
SSA_West
|
West
| true
| false
|
Female
| 33
| 107.827108
| 66.935836
|
normal
| 69.206825
| 6.657952
| false
|
normal
|
CV_SAMPLE_00007
|
SSA_West
|
West
| true
| false
|
Male
| 52
| 148.1279
| 93.596696
|
stage1
| 118.884047
| 10.699883
| true
|
normal
|
CV_SAMPLE_00008
|
SSA_West
|
West
| true
| false
|
Female
| 46
| 123.246702
| 67.704848
|
elevated
| 85.544459
| 7.386223
| false
|
normal
|
CV_SAMPLE_00009
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 189.416423
| 97.438213
|
stage2
| 115.164695
| 11.680393
| true
|
T_wave_inversion
|
CV_SAMPLE_00010
|
SSA_West
|
West
| true
| false
|
Male
| 39
| 171.301202
| 106.019898
|
stage2
| 121.480787
| 9.814866
| true
|
normal
|
CV_SAMPLE_00011
|
SSA_West
|
West
| true
| false
|
Female
| 61
| 172.651163
| 97.258878
|
stage2
| 89.787502
| 12.80064
| false
|
normal
|
CV_SAMPLE_00012
|
SSA_West
|
West
| true
| false
|
Female
| 60
| 115.28733
| 74.636265
|
normal
| 80.007054
| 7.104603
| false
|
normal
|
CV_SAMPLE_00013
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 124.78094
| 75.271402
|
elevated
| 102.857403
| 7.95331
| true
|
normal
|
CV_SAMPLE_00014
|
SSA_West
|
West
| true
| false
|
Male
| 65
| 168.444898
| 93.94513
|
stage2
| 137.632126
| 14.067417
| true
|
LVH
|
CV_SAMPLE_00015
|
SSA_West
|
West
| true
| false
|
Male
| 56
| 118.327849
| 74.4997
|
normal
| 87.221955
| 7.234677
| false
|
normal
|
CV_SAMPLE_00016
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 107.8112
| 72.260255
|
normal
| 76.434791
| 10.391295
| false
|
normal
|
CV_SAMPLE_00017
|
SSA_West
|
West
| true
| false
|
Male
| 55
| 171.622566
| 105.684702
|
stage2
| 132.264812
| 13.14225
| true
|
T_wave_inversion
|
CV_SAMPLE_00018
|
SSA_West
|
West
| true
| false
|
Female
| 38
| 138.666207
| 88.049214
|
stage1
| 111.171506
| 9.05415
| true
|
normal
|
CV_SAMPLE_00019
|
SSA_West
|
West
| true
| false
|
Male
| 61
| 197.788537
| 123.086545
|
stage2
| 123.677108
| 12.779786
| true
|
T_wave_inversion
|
CV_SAMPLE_00020
|
SSA_West
|
West
| true
| false
|
Male
| 49
| 135.816806
| 90.957052
|
stage1
| 109.512783
| 7.718999
| false
|
normal
|
CV_SAMPLE_00021
|
SSA_West
|
West
| true
| false
|
Female
| 48
| 127.497604
| 79.534893
|
elevated
| 80.675928
| 10.312365
| false
|
normal
|
CV_SAMPLE_00022
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 119.947298
| 73.419148
|
normal
| 82.401222
| 11.15552
| false
|
normal
|
CV_SAMPLE_00023
|
SSA_West
|
West
| true
| false
|
Female
| 66
| 144.39
| 92.900278
|
stage1
| 99.058937
| 10.278739
| true
|
normal
|
CV_SAMPLE_00024
|
SSA_West
|
West
| true
| false
|
Male
| 48
| 166.459885
| 119.877592
|
stage2
| 136.751112
| 14.149826
| true
|
ST_elevation
|
CV_SAMPLE_00025
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 110.867697
| 72.318562
|
normal
| 85.722684
| 6.531835
| false
|
T_wave_inversion
|
CV_SAMPLE_00026
|
SSA_West
|
West
| true
| false
|
Female
| 45
| 149.760169
| 96.361784
|
stage1
| 113.459836
| 9.926186
| true
|
normal
|
CV_SAMPLE_00027
|
SSA_West
|
West
| true
| false
|
Male
| 57
| 145.528075
| 117.648288
|
stage2
| 115.254575
| 12.961968
| true
|
normal
|
CV_SAMPLE_00028
|
SSA_West
|
West
| true
| false
|
Male
| 55
| 139.303616
| 85.200727
|
stage1
| 106.99019
| 11.555156
| false
|
normal
|
CV_SAMPLE_00029
|
SSA_West
|
West
| true
| false
|
Female
| 55
| 103.608925
| 66.451643
|
normal
| 84.036362
| 6.083386
| false
|
normal
|
CV_SAMPLE_00030
|
SSA_West
|
West
| true
| false
|
Male
| 56
| 166.893413
| 107.422492
|
stage2
| 112.267577
| 10.159048
| false
|
normal
|
CV_SAMPLE_00031
|
SSA_West
|
West
| true
| false
|
Female
| 78
| 118.891315
| 68.646835
|
normal
| 88.58496
| 8.810769
| false
|
LVH
|
CV_SAMPLE_00032
|
SSA_West
|
West
| true
| false
|
Female
| 45
| 101.856044
| 72.072243
|
normal
| 98.056761
| 7.899233
| true
|
normal
|
CV_SAMPLE_00033
|
SSA_West
|
West
| true
| false
|
Male
| 43
| 141.517574
| 91.603025
|
stage2
| 122.315611
| 13.956935
| true
|
normal
|
CV_SAMPLE_00034
|
SSA_West
|
West
| true
| false
|
Male
| 39
| 125.349403
| 78.424339
|
elevated
| 111.740904
| 11.207779
| false
|
normal
|
CV_SAMPLE_00035
|
SSA_West
|
West
| true
| false
|
Male
| 58
| 141.229277
| 81.520383
|
stage1
| 112.662372
| 10.399705
| false
|
normal
|
CV_SAMPLE_00036
|
SSA_West
|
West
| true
| false
|
Male
| 65
| 166.446418
| 111.28489
|
stage2
| 107.525444
| 9.802737
| false
|
normal
|
CV_SAMPLE_00037
|
SSA_West
|
West
| true
| false
|
Male
| 49
| 144.850963
| 101.433766
|
stage2
| 110.178845
| 10.922066
| false
|
normal
|
CV_SAMPLE_00038
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 168.963715
| 105.925534
|
stage2
| 99.08989
| 13.508927
| true
|
normal
|
CV_SAMPLE_00039
|
SSA_West
|
West
| true
| false
|
Male
| 39
| 123.74537
| 76.105307
|
elevated
| 97.305942
| 11.425872
| false
|
normal
|
CV_SAMPLE_00040
|
SSA_West
|
West
| true
| false
|
Female
| 58
| 119.906355
| 69.002995
|
normal
| 65.454526
| 11.547433
| false
|
normal
|
CV_SAMPLE_00041
|
SSA_West
|
West
| true
| false
|
Male
| 60
| 137.558473
| 93.446206
|
stage1
| 109.895352
| 10.518849
| false
|
normal
|
CV_SAMPLE_00042
|
SSA_West
|
West
| true
| false
|
Male
| 57
| 147.735564
| 89.416819
|
stage1
| 104.011456
| 11.608261
| false
|
normal
|
CV_SAMPLE_00043
|
SSA_West
|
West
| true
| false
|
Male
| 41
| 163.367995
| 98.618203
|
stage2
| 108.765833
| 9.434171
| false
|
normal
|
CV_SAMPLE_00044
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 160.294686
| 121.952449
|
stage2
| 122.26475
| 14.653915
| true
|
normal
|
CV_SAMPLE_00045
|
SSA_West
|
West
| true
| false
|
Female
| 52
| 147.404903
| 93.315994
|
stage1
| 109.995944
| 7.553817
| true
|
normal
|
CV_SAMPLE_00046
|
SSA_West
|
West
| true
| false
|
Male
| 53
| 174.042581
| 95.933056
|
stage2
| 131.223382
| 10.836514
| true
|
normal
|
CV_SAMPLE_00047
|
SSA_West
|
West
| true
| false
|
Female
| 61
| 130.896011
| 88.072301
|
stage1
| 89.108759
| 8.861813
| false
|
ST_elevation
|
CV_SAMPLE_00048
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 133.993245
| 92.639725
|
stage1
| 73.892337
| 12.036474
| false
|
normal
|
CV_SAMPLE_00049
|
SSA_West
|
West
| true
| false
|
Male
| 59
| 134.778307
| 96.955279
|
stage1
| 74.562855
| 8.76371
| false
|
normal
|
CV_SAMPLE_00050
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 148.047369
| 84.609471
|
stage1
| 79.586149
| 11.11813
| false
|
normal
|
CV_SAMPLE_00051
|
SSA_West
|
West
| true
| false
|
Male
| 54
| 178.501722
| 125.91947
|
stage2
| 135.048491
| 10.349051
| true
|
normal
|
CV_SAMPLE_00052
|
SSA_West
|
West
| true
| false
|
Male
| 58
| 139.196757
| 92.674779
|
stage1
| 105.791108
| 10.239305
| false
|
normal
|
CV_SAMPLE_00053
|
SSA_West
|
West
| true
| false
|
Female
| 31
| 134.70088
| 80.134335
|
stage1
| 90.114697
| 8.807254
| false
|
normal
|
CV_SAMPLE_00054
|
SSA_West
|
West
| true
| false
|
Male
| 46
| 157.790599
| 106.474212
|
stage2
| 136.905252
| 12.709267
| true
|
normal
|
CV_SAMPLE_00055
|
SSA_West
|
West
| true
| false
|
Male
| 44
| 128.031858
| 78.23412
|
elevated
| 70.896862
| 9.66016
| false
|
normal
|
CV_SAMPLE_00056
|
SSA_West
|
West
| true
| false
|
Female
| 42
| 133.597819
| 81.400232
|
stage1
| 99.372141
| 9.67454
| true
|
normal
|
CV_SAMPLE_00057
|
SSA_West
|
West
| true
| false
|
Male
| 46
| 128.677766
| 78.020614
|
elevated
| 102.373196
| 9.637408
| false
|
normal
|
CV_SAMPLE_00058
|
SSA_West
|
West
| true
| false
|
Female
| 69
| 141.359726
| 92.350781
|
stage2
| 112.753819
| 14.350535
| true
|
LVH
|
CV_SAMPLE_00059
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 116.574369
| 71.203324
|
normal
| 57.492159
| 7.58307
| false
|
normal
|
CV_SAMPLE_00060
|
SSA_West
|
West
| true
| false
|
Female
| 63
| 138.686092
| 94.781744
|
stage1
| 77.549921
| 9.727039
| false
|
normal
|
CV_SAMPLE_00061
|
SSA_West
|
West
| true
| false
|
Female
| 28
| 147.394282
| 93.125459
|
stage1
| 90.614818
| 7.368895
| false
|
normal
|
CV_SAMPLE_00062
|
SSA_West
|
West
| true
| false
|
Female
| 46
| 111.744441
| 74.970726
|
normal
| 69.633715
| 11.257075
| false
|
T_wave_inversion
|
CV_SAMPLE_00063
|
SSA_West
|
West
| true
| false
|
Female
| 52
| 146.120099
| 119.214153
|
stage2
| 117.42763
| 10.587031
| true
|
normal
|
CV_SAMPLE_00064
|
SSA_West
|
West
| true
| false
|
Male
| 58
| 151.016817
| 101.405326
|
stage2
| 128.797717
| 10.348719
| true
|
LVH
|
CV_SAMPLE_00065
|
SSA_West
|
West
| true
| false
|
Male
| 59
| 127.33443
| 71.659065
|
elevated
| 81.398757
| 7.227178
| false
|
normal
|
CV_SAMPLE_00066
|
SSA_West
|
West
| true
| false
|
Female
| 60
| 118.647553
| 60.822119
|
normal
| 72.976327
| 6.874142
| false
|
normal
|
CV_SAMPLE_00067
|
SSA_West
|
West
| true
| false
|
Female
| 45
| 158.787535
| 92.550511
|
stage2
| 130.695773
| 10.074631
| true
|
normal
|
CV_SAMPLE_00068
|
SSA_West
|
West
| true
| false
|
Male
| 44
| 136.983674
| 83.888512
|
stage1
| 88.259798
| 8.962737
| false
|
normal
|
CV_SAMPLE_00069
|
SSA_West
|
West
| true
| false
|
Female
| 61
| 105.189235
| 70.606632
|
normal
| 67.453805
| 7.249242
| false
|
normal
|
CV_SAMPLE_00070
|
SSA_West
|
West
| true
| false
|
Male
| 48
| 131.575836
| 98.159554
|
stage1
| 109.597317
| 10.187971
| false
|
normal
|
CV_SAMPLE_00071
|
SSA_West
|
West
| true
| false
|
Female
| 33
| 149.717202
| 111.239686
|
stage2
| 111.851298
| 11.15692
| true
|
LVH
|
CV_SAMPLE_00072
|
SSA_West
|
West
| true
| false
|
Male
| 35
| 122.504334
| 68.074636
|
elevated
| 89.508057
| 8.482418
| false
|
normal
|
CV_SAMPLE_00073
|
SSA_West
|
West
| true
| false
|
Male
| 38
| 157.369668
| 94.160877
|
stage1
| 103.352467
| 9.912461
| false
|
LVH
|
CV_SAMPLE_00074
|
SSA_West
|
West
| true
| false
|
Male
| 56
| 140.717866
| 84.971523
|
stage1
| 110.103206
| 10.691771
| false
|
normal
|
CV_SAMPLE_00075
|
SSA_West
|
West
| true
| false
|
Male
| 52
| 111.233566
| 66.318832
|
normal
| 68.850284
| 6.873149
| false
|
normal
|
CV_SAMPLE_00076
|
SSA_West
|
West
| true
| false
|
Male
| 59
| 99.979481
| 76.191164
|
normal
| 90.228462
| 8.536249
| false
|
normal
|
CV_SAMPLE_00077
|
SSA_West
|
West
| true
| false
|
Male
| 44
| 110.540778
| 75.700405
|
normal
| 81.477262
| 9.953788
| false
|
normal
|
CV_SAMPLE_00078
|
SSA_West
|
West
| true
| false
|
Male
| 52
| 124.201523
| 79.771364
|
elevated
| 113.806737
| 7.864752
| false
|
normal
|
CV_SAMPLE_00079
|
SSA_West
|
West
| true
| false
|
Male
| 58
| 106.424676
| 66.387188
|
normal
| 64.584219
| 8.728366
| false
|
normal
|
CV_SAMPLE_00080
|
SSA_West
|
West
| true
| false
|
Male
| 46
| 157.394091
| 92.863065
|
stage2
| 113.431521
| 11.642137
| false
|
normal
|
CV_SAMPLE_00081
|
SSA_West
|
West
| true
| false
|
Male
| 56
| 125.547388
| 78.045986
|
elevated
| 84.324034
| 7.615654
| false
|
normal
|
CV_SAMPLE_00082
|
SSA_West
|
West
| true
| false
|
Male
| 41
| 119.624542
| 75.659895
|
normal
| 88.546993
| 8.509294
| false
|
normal
|
CV_SAMPLE_00083
|
SSA_West
|
West
| true
| false
|
Male
| 45
| 152.242424
| 91.343058
|
stage1
| 126.391811
| 11.859532
| true
|
T_wave_inversion
|
CV_SAMPLE_00084
|
SSA_West
|
West
| true
| false
|
Male
| 45
| 159.755134
| 106.115279
|
stage2
| 122.312087
| 11.852203
| true
|
normal
|
CV_SAMPLE_00085
|
SSA_West
|
West
| true
| false
|
Male
| 34
| 100.566596
| 71.581162
|
normal
| 62.875888
| 6.455541
| false
|
normal
|
CV_SAMPLE_00086
|
SSA_West
|
West
| true
| false
|
Male
| 56
| 155.302125
| 111.239851
|
stage2
| 141.248515
| 11.896159
| true
|
normal
|
CV_SAMPLE_00087
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 103.010736
| 68.687852
|
normal
| 80.054985
| 7.492623
| false
|
LVH
|
CV_SAMPLE_00088
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 127.757395
| 79.739142
|
elevated
| 61.035737
| 11.493892
| false
|
normal
|
CV_SAMPLE_00089
|
SSA_West
|
West
| true
| false
|
Female
| 56
| 180.369742
| 109.787005
|
stage2
| 113.27679
| 13.154055
| true
|
normal
|
CV_SAMPLE_00090
|
SSA_West
|
West
| true
| false
|
Female
| 56
| 179.421762
| 93.228582
|
stage2
| 98.02
| 12.117906
| true
|
T_wave_inversion
|
CV_SAMPLE_00091
|
SSA_West
|
West
| true
| false
|
Female
| 59
| 120.120077
| 66.900587
|
elevated
| 97.274952
| 9.525507
| true
|
normal
|
CV_SAMPLE_00092
|
SSA_West
|
West
| true
| false
|
Male
| 49
| 178.365265
| 103.034551
|
stage2
| 100.278054
| 10.522251
| false
|
LVH
|
CV_SAMPLE_00093
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 112.284885
| 76.969598
|
normal
| 87.07726
| 7.986747
| false
|
normal
|
CV_SAMPLE_00094
|
SSA_West
|
West
| true
| false
|
Female
| 49
| 125.757585
| 78.128825
|
elevated
| 70.927483
| 9.370753
| false
|
normal
|
CV_SAMPLE_00095
|
SSA_West
|
West
| true
| false
|
Female
| 28
| 108.399069
| 69.178943
|
normal
| 65.830217
| 11.006723
| false
|
normal
|
CV_SAMPLE_00096
|
SSA_West
|
West
| true
| false
|
Female
| 31
| 143.098374
| 96.120325
|
stage2
| 101.657488
| 14.15711
| true
|
normal
|
CV_SAMPLE_00097
|
SSA_West
|
West
| true
| false
|
Male
| 33
| 126.093693
| 79.719094
|
elevated
| 78.132247
| 6.497857
| false
|
normal
|
CV_SAMPLE_00098
|
SSA_West
|
West
| true
| false
|
Female
| 37
| 117.692058
| 60.610281
|
normal
| 69.634079
| 7.740388
| false
|
normal
|
CV_SAMPLE_00099
|
SSA_West
|
West
| true
| false
|
Female
| 55
| 122.387678
| 75.995048
|
elevated
| 99.933762
| 8.519951
| true
|
normal
|
CV_SAMPLE_00100
|
SSA_West
|
West
| true
| false
|
Male
| 38
| 139.804764
| 88.890021
|
stage1
| 112.774623
| 9.370228
| false
|
normal
|
SSA Cardiovascular Metrics Dataset (Multi-ancestry, Synthetic)
Dataset summary
This dataset provides a synthetic cardiovascular metrics cohort of 10,000 adults across multiple ancestry groups with a focus on sub-Saharan Africa (SSA). It includes:
- Blood pressure profiles – systolic/diastolic BP and hypertension categories.
- Left ventricular (LV) structure – LV mass index, septal wall thickness, LV hypertrophy (LVH) flag.
- ECG patterns – normal, LVH pattern, T-wave inversions, ST-segment elevation.
The design is informed by echocardiography reference values, SSA hypertension studies, and ECG morphology reviews, but all individuals and measurements are fully synthetic and non-identifiable.
Cohort design
Sample size and populations
Total N: 10,000 synthetic adults.
Populations:
SSA_West: 2,000SSA_East: 2,000SSA_Central: 1,500SSA_Southern: 1,500AAW(African American, admixed): 1,500EUR(European reference): 1,000EAS(East Asian reference): 500
Sex distribution:
Male: ~45%Female: ~55%
Age range: 18–80 years, with population-specific means and standard deviations tuned to resemble adult cardiovascular cohorts.
These population labels align with other Electric Sheep Africa datasets (SNP arrays, structural variation, body composition, pharmacogenomics) for multi-modal method development.
Cardiovascular metrics
Blood pressure
Variables:
sbp– systolic blood pressure (mmHg).dbp– diastolic blood pressure (mmHg).bp_category– categorical BP class:normalelevatedstage1hypertensionstage2hypertension
Category prevalences are set per population, with higher hypertension burden in SSA and AAW than in EUR/EAS, reflecting community-based SSA studies that report 30–40% hypertension prevalence in adults.
Target SBP/DBP means and SDs by category are loosely based on guideline thresholds and SSA BP profiles, for example:
normal: ~115/75 mmHg.elevated: ~125/80 mmHg.stage1: ~140/90 mmHg.stage2: ~160/100 mmHg.
Sampling enforces category-specific thresholds so BP values remain consistent with their labels.
Left ventricular structure
Variables:
lv_mass_index_g_m2– LV mass indexed to body surface area (g/m²).septal_thickness_mm– interventricular septal wall thickness (mm).lvh_present– boolean flag indicating LV hypertrophy.
Design anchors:
- Normal LV mass index around:
- ~70 g/m² in men.
- ~61 g/m² in women. (from 3D echocardiography reference values).
- LV mass index increases with higher BP categories (normal → elevated → stage1 → stage2).
- LVH thresholds approximate ASE/EACVI cutoffs:
- Men: LVMI ≥ 115 g/m².
- Women: LVMI ≥ 95 g/m².
Septal thickness is modeled with means increasing from ~8 mm in normotensive to ~12 mm in stage 2 hypertension, with bounds ensuring plausible values (~6–18 mm).
ECG patterns
Variables:
ecg_pattern– categorical:normalLVH(voltage/strain-like pattern)T_wave_inversionST_elevation
ECG patterns are tied to BP category:
- Normotensive individuals have predominantly
normalECGs with a small fraction of LVH/T-wave inversions and very rare ST elevation. - Stage 1 and stage 2 hypertensives have progressively higher LVH and T-wave inversion fractions, and modestly higher
ST_elevationprevalence, reflecting higher probability of structural heart disease and ischemia.
Design is guided qualitatively by ECG morphology reviews (e.g., StatPearls on T waves and STEMI) that emphasize:
- T-wave inversions can be benign or ischemic, but are relatively uncommon in healthy adults.
- ST-elevation patterns consistent with STEMI are rare in the general population but critical when present.
File and schema
cardiovascular_metrics_data.parquet / cardiovascular_metrics_data.csv
One row per synthetic individual, with:
Demographics / ancestry
sample_idpopulation–SSA_West,SSA_East,SSA_Central,SSA_Southern,AAW,EUR,EAS.region– SSA subregion orNon_SSA.is_SSA– boolean.is_reference_panel–Truefor AAW/EUR/EAS.sex–MaleorFemale.age– years (18–80).
Blood pressure
sbp– systolic BP (mmHg).dbp– diastolic BP (mmHg).bp_category– BP class as above.
LV structure
lv_mass_index_g_m2– LV mass index.septal_thickness_mm– septal thickness.lvh_present– LVH flag.
ECG
ecg_pattern–normal,LVH,T_wave_inversion, orST_elevation.
Generation
The dataset is generated using:
cardiovascular_metrics/scripts/generate_cardiovascular_metrics.py
with configuration in:
cardiovascular_metrics/configs/cardiovascular_metrics_config.yaml
and literature curated in:
cardiovascular_metrics/docs/LITERATURE_INVENTORY.csv
Key modeling steps:
- Sample table – ages and sexes per population drawn from truncated normal distributions.
- Blood pressure assignment – BP category sampled using population-specific prevalences, then SBP/DBP drawn from category-specific distributions and constrained by threshold ranges.
- LV structure – LV mass index and septal thickness drawn by sex and BP category; LVH flag set using sex-specific LVMI thresholds.
- ECG pattern – chosen stochastically from per-BP category pattern distributions, increasing LVH/ischemic patterns with higher BP stages.
Validation
Validation follows the GENOMICS Synthetic Data Playbook and is implemented in:
cardiovascular_metrics/scripts/validate_cardiovascular_metrics.py
Major checks include:
- C01–C02 – Sample size and population counts
- Confirm N = 10,000 and population counts close to configuration (±10% tolerance).
- C03 – BP category distributions by population
- Compare observed BP category proportions to configured targets for each population.
- C04 – BP values vs thresholds
- Quantify the fraction of individuals whose SBP/DBP lie outside the configured bounds for their BP category; require this to be very low.
- C05 – LV mass index means by sex and BP
- Check that LVMI means by sex and BP category align with configuration.
- C06 – ECG pattern distributions by BP
- Validate that pattern frequencies per BP category match configured expectations.
- C07 – Missingness in key variables
- Ensure negligible missingness across demographics, BP, LV metrics, and ECG pattern.
The validator writes a Markdown report:
cardiovascular_metrics/output/validation_report.md
For the released version, all checks complete with an overall status of PASS.
Intended use
This dataset is intended for:
- Methods development in cardiovascular risk modeling, echocardiography/ECG analytics, and multi-ancestry BP profiling.
- Teaching and demonstration of:
- Hypertension staging distributions across populations.
- Relationships between BP, LV mass, and LVH.
- ECG pattern variation with cardiovascular risk.
It is not suitable for:
- Clinical decision-making or patient care.
- Deriving real-world incidence/prevalence estimates.
- Individual-level inference.
All data are synthetic and non-identifiable.
Ethical considerations
- No real patient data are used.
- Population labels are for simulation realism and are not tied to specific countries or real-world cohorts.
- Analyses should be interpreted as methodological rather than epidemiological statements.
License
- License: CC BY-NC 4.0.
- Free for non-commercial research, method development, and teaching with attribution.
Citation
If you use this dataset, please cite:
Electric Sheep Africa. "SSA Cardiovascular Metrics Dataset (Multi-ancestry, Synthetic)." Hugging Face Datasets.
and consider citing relevant underlying cardiovascular and echocardiography literature used to guide the design (e.g., ASE/EACVI chamber quantification guidelines, LV mass index reference studies, SSA hypertension burden papers, and ECG morphology reviews).
- Downloads last month
- 24