Dataset Viewer
Auto-converted to Parquet Duplicate
cell_type
stringclasses
5 values
gene_id
stringlengths
11
15
CD4T
(Intercept)
CD4T
ENSG00000172543
CD4T
ENSG00000173114
CD4T
ENSG00000124256
CD4T
ENSG00000241990
CD4T
ENSG00000155366
CD4T
ENSG00000197448
CD4T
ENSG00000125384
CD4T
ENSG00000100300
CD4T
ENSG00000158856
CD4T
ENSG00000106952
CD4T
ENSG00000187514
CD4T
ENSG00000146674
CD4T
ENSG00000196154
CD4T
ENSG00000124766
CD4T
ENSG00000232021
CD4T
ENSG00000105472
CD4T
ENSG00000183918
CD4T
ENSG00000106355
CD4T
ENSG00000158813
CD4T
ENSG00000062582
CD4T
ENSG00000198888
CD4T
ENSG00000139537
CD4T
ENSG00000180875
CD4T
ENSG00000153179
CD4T
ENSG00000137441
CD4T
ENSG00000166405
CD4T
ENSG00000178966
CD4T
ENSG00000101230
CD4T
ENSG00000135535
CD4T
ENSG00000077454
CD4T
ENSG00000100450
CD4T
ENSG00000112242
CD4T
ENSG00000203896
CD4T
ENSG00000177425
CD4T
ENSG00000110934
CD4T
ENSG00000156136
CD4T
ENSG00000232859
CD4T
ENSG00000077232
CD4T
ENSG00000096996
CD4T
ENSG00000263417
CD4T
ENSG00000108590
CD4T
ENSG00000165389
CD4T
ENSG00000105374
CD4T
ENSG00000205336
CD4T
ENSG00000241553
CD4T
ENSG00000009780
CD4T
ENSG00000265808
CD4T
ENSG00000185905
CD4T
ENSG00000072135
CD4T
ENSG00000137752
CD4T
ENSG00000125629
CD4T
ENSG00000170310
CD4T
ENSG00000085563
CD4T
ENSG00000117054
CD4T
ENSG00000135318
CD4T
ENSG00000111863
CD4T
ENSG00000126264
CD4T
ENSG00000185220
CD4T
ENSG00000095002
CD4T
ENSG00000115523
CD4T
ENSG00000182117
CD4T
ENSG00000235576
CD4T
ENSG00000084073
CD4T
ENSG00000143436
CD4T
ENSG00000176083
CD4T
ENSG00000198832
CD4T
ENSG00000120837
CD4T
ENSG00000116489
CD4T
ENSG00000147457
CD4T
ENSG00000163421
CD4T
ENSG00000146540
CD4T
ENSG00000152443
CD4T
ENSG00000153130
CD4T
ENSG00000160593
CD4T
ENSG00000182247
CD4T
ENSG00000196591
CD4T
ENSG00000107317
CD4T
ENSG00000143443
CD4T
ENSG00000169242
CD4T
ENSG00000008952
CD4T
ENSG00000136286
CD4T
ENSG00000138640
CD4T
ENSG00000134255
CD4T
ENSG00000152558
CD4T
ENSG00000084733
CD4T
ENSG00000175634
CD4T
ENSG00000138764
CD4T
ENSG00000182484
CD4T
ENSG00000176928
CD4T
ENSG00000143401
CD4T
ENSG00000134717
CD4T
ENSG00000248487
CD4T
ENSG00000113558
CD4T
ENSG00000203710
CD4T
ENSG00000236287
CD4T
ENSG00000117519
CD4T
ENSG00000172725
CD4T
ENSG00000196776
CD4T
ENSG00000183691
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🧬 sc-ImmuAging – Human PBMC Single-Cell Aging Clock Dataset

This dataset includes curated feature selections from peripheral blood mononuclear cells (PBMCs) used to train aging clock models across five major immune cell types. It was derived from the sc-ImmuAging project to understand how aging affects the immune system at the single-cell level using machine learning models.


πŸ“¦ Dataset Contents

  • sc-ImmuAging.parquet β€” Long-format data containing gene features per immune cell type:
    • CD4 T cells
    • CD8 T cells
    • Monocytes
    • NK cells
    • B cells

πŸ’‘ Use Cases

  • 🧠 Aging Clock Development: Train regression models to predict biological age per cell type.
  • πŸ”¬ Immune System Aging Analysis: Study gene-level contributions to age-related changes across immune subsets.
  • 🧬 Biomarker Discovery: Identify robust transcriptomic signatures of aging in blood-derived cells.
  • πŸ›  Feature Selection Benchmarking: Compare machine learning models and feature selection strategies in scRNA-seq datasets.
  • πŸ“Š Multi-Omics Integration: Align transcriptomic aging features with epigenetic clocks or proteomics.

πŸ“– Citation

If you use this dataset, please cite the original study:

Dos Santos, Osorio et al. (2022).
"A single-cell transcriptomic atlas of the human immune system reveals age-related changes in PBMC composition and function."
Science Advances, 8(45):eabq3784.
https://doi.org/10.1126/sciadv.abq3784


🧬 Dataset Description

This dataset was extracted from the sc-ImmuAging study that built predictive aging clocks using PBMC single-cell RNA-seq profiles. The features represent selected gene markers associated with aging across five immune cell types. Each list was curated for machine learning model input.

Original Data Source:
GitHub Repository
Published Paper


πŸ™ Acknowledgments

  • Original authors of the sc-ImmuAging dataset and publication.
  • Curated and converted to parquet format by Iris Lee for ease of machine learning usage. ### πŸ§‘β€πŸ’» Team: MultiModalMillenials. Iris Lee (@iris8090)
  • Thanks to the open science community enabling downstream applications of single-cell data.
Downloads last month
7