The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: TypeError
Message: list_() takes at least 1 positional argument (0 given)
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
return cls.from_dict(from_yaml_inner(yaml_data))
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2027, in from_yaml_inner
return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2016, in from_yaml_inner
Value(obj["dtype"])
File "<string>", line 5, in __init__
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 540, in __post_init__
self.pa_type = string_to_arrow(self.dtype)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 150, in string_to_arrow
return pa.__dict__[datasets_dtype + "_"]()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/types.pxi", line 4942, in pyarrow.lib.list_
TypeError: list_() takes at least 1 positional argument (0 given)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Longevity Protein Structures Dataset
Quick Start
# Load the dataset index
from datasets import load_dataset
ds = load_dataset("longevity-genie/atomica_longevity_proteins")
# Or use Polars directly
import polars as pl
df = pl.read_parquet("hf://datasets/longevity-genie/atomica_longevity_proteins/atomica_index.parquet")
# Find KEAP1 structures
keap1 = df.filter(pl.col("gene_symbols").list.contains("KEAP1"))
print(f"Found {len(keap1)} KEAP1 structures")
Overview
This dataset contains comprehensive structural analysis of key longevity-related proteins using the ATOMICA deep learning model. The dataset includes 94 protein structures spanning five major protein families involved in oxidative stress response, pluripotency, and lipid metabolism pathways associated with aging and longevity.
Dataset Creation
Analysis Tool: ATOMICA - A pretrained deep learning model for protein structure interaction scoring
Model Architecture:
- Hidden size: 32
- Edge size: 32
- K-neighbors: 8
- Layers: 4
- Global message passing enabled
- Fragmentation method: PS_300
Processing Environment:
- Device: CUDA GPU
- Average GPU Memory per structure: ~2.0 GB
- Average processing time: ~44 seconds per structure
Protein Families Included
1. NRF2-KEAP1 System (Oxidative Stress Response)
- NRF2 (NFE2L2): 19 structures
- KEAP1: 47 structures
- Focus: KEAP1 mutations in Neoaves, SKN-1 lifespan effects in C. elegans
2. SOX2 (Pluripotency Factor)
- SOX2: 8 structures
- Focus: SuperSOX modifications for enhanced reprogramming
3. APOE (Lipid Metabolism & Alzheimer's Risk)
- APOE variants (E2/E3/E4): 9 structures
- Focus: Longevity associations and Alzheimer's disease risk factors
4. OCT4 (Reprogramming Factor)
- OCT4 (POU5F1): 4 structures
- Focus: OCT6 conversion into reprogramming factor, Yamanaka factors
Total Structures: 94 high-resolution protein structures
File Structure
Dataset Index (NEW!)
The dataset now includes atomica_index.parquet - a comprehensive queryable index of all structures:
import polars as pl
# Load the index
df = pl.read_parquet("atomica_index.parquet")
# Query structures by gene
keap1_structures = df.filter(pl.col("gene_symbols").list.contains("KEAP1"))
# Find structures with high resolution
high_res = df.filter(pl.col("critical_residues_count") > 100)
# Get all human structures
human = df.filter(pl.col("organisms").list.contains("Homo sapiens"))
Index Schema:
pdb_id: PDB identifier (uppercase)cif_path,metadata_path,summary_path,critical_residues_path,interact_scores_path,pymol_path: Relative file pathscritical_residues_count: Number of critical residues identifiedtotal_time_seconds,gpu_memory_mb_max: Processing statisticsmetadata_found: Whether PDB metadata was successfully resolvedtitle: Structure title from PDBuniprot_ids: List of UniProt identifiersorganisms: List of organism namestaxonomy_ids: List of NCBI taxonomy IDsgene_symbols: List of gene symbolsensembl_ids: List of Ensembl gene IDsstructures_json: Detailed structure information (JSON string)
The index file is automatically detected by Hugging Face and can be explored in the Dataset Viewer tab!
Per-Structure Files
For each PDB structure (e.g., 6ht5), the dataset contains:
dataset/
├── atomica_index.parquet # QUERYABLE INDEX (NEW!)
└── {pdb_id}/ # Per-structure directory
├── {pdb_id}.cif # Original structure file (mmCIF format)
├── {pdb_id}_metadata.json # PDB metadata (if available)
├── {pdb_id}_interact_scores.json # ATOMICA interaction scores
├── {pdb_id}_summary.json # Processing summary statistics
├── {pdb_id}_critical_residues.tsv # Ranked critical residues
└── {pdb_id}_pymol_commands.pml # PyMOL visualization script
File Descriptions
1. {pdb_id}.cif
- Format: mmCIF (Macromolecular Crystallographic Information File)
- Content: 3D atomic coordinates, experimental data, and metadata
- Source: RCSB Protein Data Bank
- Size: ~100-500 KB per structure
2. {pdb_id}_metadata.json
- Format: JSON
- Content: PDB metadata including:
- Structure resolution
- Experimental method (X-ray, NMR, Cryo-EM)
- Authors and publication info
- Organism source
- Note: May contain error if SSL certificate verification fails
3. {pdb_id}_interact_scores.json
- Format: JSON
- Content: ATOMICA deep learning predictions
id: Structure identifiercos_distances: Array of cosine distance scores (one per residue block)block_idx: Sequential indices for residue blocks (1-N)time_seconds: Processing timepeak_memory_mb: GPU memory usage
Score Interpretation:
- Scores range from 0 to 1 (typically 0.999+)
- Higher scores = more structurally critical residues
- Lower scores = potential mutation hotspots or flexibility regions
4. {pdb_id}_summary.json
- Format: JSON
- Content: Processing statistics
- Total processing time
- GPU memory usage (mean, max)
- Time per structure statistics
- Input/output file paths
- Device information
5. {pdb_id}_critical_residues.tsv
- Format: Tab-separated values (TSV)
- Content: Ranked list of structurally critical residues
- Rank (1-N)
- Residue name (3-letter code)
- Chain ID
- Position in sequence
- ATOMICA_SCORE (cosine distance)
- Importance Delta (deviation from mean)
Example: ``` Rank Residue Chain Position ATOMICA_SCORE Importance Delta
1 GLY171 E 171 0.999856 0.0144% 2 SER216 E 216 0.999867 0.0133% 3 ILE215 E 215 0.999875 0.0125%
### 6. `{pdb_id}_pymol_commands.pml`
- **Format**: PyMOL script
- **Content**: Commands for visualizing critical residues
- **Usage**:
```bash
pymol dataset/{pdb_id}.cif
@dataset/{pdb_id}_pymol_commands.pml
- Features: Color-coded residues by criticality score
ATOMICA Scores Explained
Cosine Distance Scoring
ATOMICA uses a graph neural network to predict residue-level interaction importance:
- Input: 3D protein structure (atomic coordinates)
- Processing: Graph representation with residues as nodes
- Output: Cosine distance scores per residue block
Score Ranges
0.9999+ (Critical): Essential structural residues
- Active site residues
- Binding interface residues
- Structural core residues
0.9998-0.9999 (Important): Functionally relevant residues
- Secondary binding sites
- Conformational switches
<0.9998 (Variable): Potential mutation sites
- Surface loops
- Flexible regions
- Potential engineering targets
Importance Delta
- Calculated as:
(max_score - residue_score) / max_score × 100% - Lower delta = more critical residue
- Top 10 residues typically have delta <0.02%
Use Cases
0. Query the Index (NEW!)
The atomica_index.parquet enables powerful filtering and analysis:
import polars as pl
# Load index
df = pl.read_parquet("atomica_index.parquet")
# Find all NRF2 structures
nrf2 = df.filter(pl.col("gene_symbols").list.contains("NFE2L2"))
# Get KEAP1-NRF2 complexes
complexes = df.filter(
pl.col("gene_symbols").list.contains("KEAP1") &
pl.col("gene_symbols").list.contains("NFE2L2")
)
# Find structures by UniProt ID
my_protein = df.filter(pl.col("uniprot_ids").list.contains("Q14145"))
# Get statistics
print(f"Total structures: {len(df)}")
print(f"Unique genes: {len(set(gene for genes in df['gene_symbols'] for gene in genes))}")
print(f"Organisms: {set(org for orgs in df['organisms'] for org in orgs)}")
1. Mutation Impact Prediction
Identify residues where mutations would likely destabilize the protein:
# Load critical residues
import pandas as pd
critical = pd.read_csv('dataset/6ht5_critical_residues.tsv', sep='\t')
# Top 10 most critical = avoid mutations
avoid_mutations = critical.head(10)
2. Protein Engineering
Target residues with lower scores for:
- Enhanced stability variants
- Altered binding specificity
- Improved expression
3. Drug Design
Identify binding pockets and interaction hotspots:
- Critical residues in binding interfaces
- Allosteric regulation sites
- Druggable pockets
4. Comparative Analysis
Compare residue criticality across:
- APOE variants (E2 vs E3 vs E4)
- NRF2-KEAP1 mutations in different species
- OCT4 vs OCT6 structural differences
5. MCP Server Integration (NEW!)
Use the atomica-mcp server for programmatic access:
# Install the MCP server
pip install atomica-mcp
# Use in Python
from atomica_mcp import AtomicaMCP
# Query structures by gene
results = mcp.atomica_search_by_gene("KEAP1", species="Homo sapiens")
# Get structure files for a PDB ID
files = mcp.atomica_get_structure_files("6ht5")
# Search by UniProt ID
structures = mcp.atomica_search_by_uniprot("Q14145")
The MCP server provides:
- Fast local index queries (instant)
- Automatic dataset download and management
- Integration with Claude Desktop and other AI tools
- External PDB/UniProt API fallback for comprehensive searches
Dataset Statistics
| Protein Family | Structures | Avg Resolution | Methods |
|---|---|---|---|
| NRF2 | 19 | 1.5-2.8 Å | X-ray, NMR |
| KEAP1 | 47 | 1.35-3.5 Å | X-ray, Cryo-EM |
| SOX2 | 8 | 2.3-5.1 Å | X-ray, NMR, Cryo-EM |
| APOE | 9 | 2.0-2.5 Å, NMR | X-ray, NMR |
| OCT4 | 4 | Cryo-EM | X-ray, Cryo-EM |
Total Dataset Size: ~40-50 MB (compressed)
Total Residues Analyzed: ~15,000-20,000
Data Quality
Structure Quality Metrics
- X-ray structures: 1.35-3.5 Å resolution
- NMR structures: Ensemble of 10-20 models
- Cryo-EM structures: 3.0-5.1 Å resolution
ATOMICA Processing Quality
- GPU Memory: Stable ~2 GB per structure
- Processing Time: Consistent ~44s per structure
- Score Convergence: All scores >0.998 (high confidence)
Citation
If you use this dataset, please cite:
ATOMICA Model:
ATOMICA: A deep learning model for protein structure analysis GitHub: https://github.com/longevity-genie/ATOMICAPDB Structures:
Berman, H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Research, 28: 235-242.Specific protein references: See individual PDB entries for citations
Technical Notes
Requirements for Reproducing Analysis
# Install ATOMICA
git clone https://github.com/longevity-genie/ATOMICA
cd ATOMICA
# Download PDB structures
uv run pdb download <pdb_id>
# Run analysis
uv run interact-score --input downloads/pdbs/<pdb_id>.cif
Known Limitations
- Metadata Retrieval: Some structures may have SSL certificate errors
- Resolution Dependent: Lower resolution structures (<3 Å) have more uncertainty
- NMR Structures: Multiple models may give variable scores
- Fragment Structures: Incomplete proteins analyzed as-is
Future Extensions
Potential additions to this dataset:
- SKN-1 structures from C. elegans (when available)
- OCT6 structures for comparative analysis
- Additional APOE variant structures
- Molecular dynamics trajectories
- Ligand-bound complexes
PDB Structures for Longevity-Related Proteins
NRF2 (NFE2L2) - Nuclear Factor Erythroid 2-Related Factor 2
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 2FLU | Human | KEAP1 complex | 1.50 Å | NRF2 peptide (69-84) with KEAP1, X-ray |
| 4IFL | Human | KEAP1 complex | 1.80 Å | NRF2 peptide with KEAP1 Kelch domain |
| 5WFV | Human | KEAP1 complex | 1.91 Å | NRF2 peptide (76-84) with KEAP1 |
| 6T7V | Human | KEAP1 complex | 2.60 Å | NRF2 peptide with KEAP1, X-ray |
| 7K28 | Human | KEAP1 complex | 2.15 Å | NRF2 peptide (77-84) |
| 7K29 | Human | KEAP1 complex | 2.20 Å | NRF2 peptide (76-84) |
| 7K2A | Human | KEAP1 complex | 1.90 Å | NRF2 peptide (76-83) |
| 7K2B | Human | KEAP1 complex | 2.31 Å | NRF2 peptide (77-83) |
| 7K2C | Human | KEAP1 complex | 2.11 Å | NRF2 peptide (77-82) |
| 7K2D | Human | KEAP1 complex | 2.21 Å | NRF2 peptide (77-82) |
| 7K2E | Human | KEAP1 complex | 2.03 Å | NRF2 peptide (77-82) |
| 7K2K | Human | KEAP1 complex | 1.98 Å | NRF2 peptide (77-82) |
| 7O7B | Human | Apo | NMR | Neh1 domain (445-523), solution structure |
| 7X5E | Human | MAFG complex | 2.30 Å | bZIP domain (452-560) with MAFG |
| 7X5F | Human | MAFG complex | 2.60 Å | bZIP domain (452-560) with MAFG |
| 7X5G | Human | MAFG complex | 2.30 Å | bZIP domain (452-560) with MAFG |
| 3ZGC | Human | KEAP1 complex | 2.20 Å | With KEAP1 Kelch domain |
| 8EJR | Human | KEAP1 complex | 2.08 Å | NRF2 peptide with KEAP1 |
| 8EJS | Human | KEAP1 complex | 2.82 Å | NRF2 peptide with KEAP1 |
KEAP1 - Kelch-like ECH-Associated Protein 1
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 6LRZ | Human | Apo | 1.54 Å | Very high resolution, residues 311-616 |
| 1ZGK | Human | Apo | 1.35 Å | Kelch domain (321-609), highest resolution |
| 6HWS | Human | Apo | 1.75 Å | Kelch domain (321-609) |
| 1U6D | Human | Apo | 1.85 Å | Kelch domain (321-609) |
| 2FLU | Human | NRF2 peptide | 1.50 Å | Complex with NRF2 (69-84) |
| 4IFL | Human | NRF2 peptide | 1.80 Å | Kelch domain with NRF2 |
| 5WFV | Human | NRF2 peptide | 1.91 Å | Kelch domain (320-612) |
| 7K28-7K2K | Human | NRF2 peptides | 1.98-2.31 Å | Series of NRF2 binding studies |
| 4CXI | Human | CDDO ligand | 2.35 Å | BTB domain (48-180) with inhibitor |
| 4CXJ | Human | CDDO ligand | 2.80 Å | BTB domain (48-180) |
| 4CXT | Human | Ligand | 2.66 Å | BTB domain (48-180) |
| 5DAD | Human | Apo | 2.61 Å | BTB domain (49-182) |
| 5DAF | Human | Ligand | 2.37 Å | BTB domain (49-182) |
| 5GIT | Human | Ligand | 2.19 Å | BTB domain (48-180) |
| 5NLB | Human | CUL3 complex | 3.45 Å | BACK domain (51-204) with CUL3 |
| 5F72 | Human | Peptide | 1.85 Å | Full Kelch domain (321-611) |
| 3VNG | Human | Peptide | 2.10 Å | Kelch domain (321-609) |
| 3VNH | Human | Peptide | 2.10 Å | Kelch domain (321-609) |
| 3ZGC | Human | NRF2 peptide | 2.20 Å | Kelch domain complex |
| 3ZGD | Human | Peptide | 1.98 Å | Kelch domain (321-609) |
| 4IFJ | Human | Peptide | 1.80 Å | Kelch domain (321-609) |
| 4IFN | Human | Peptide | 2.40 Å | Kelch domain (321-609) |
| 4IQK | Human | Peptide | 1.97 Å | Kelch domain (321-609) |
| 4IN4 | Human | Ligand | 2.59 Å | Kelch domain (321-609) |
| 4L7B | Human | Ligand | 2.41 Å | Kelch domain (321-609) |
| 4L7C | Human | Ligand | 2.40 Å | Kelch domain (321-609) |
| 4L7D | Human | Ligand | 2.25 Å | Kelch domain (321-609) |
| 4N1B | Human | Ligand | 2.55 Å | Kelch domain (321-609) |
| 4XMB | Human | Peptide | 2.43 Å | Kelch domain (321-609) |
| 5WFL | Human | Peptide | 1.93 Å | Kelch domain (312-624) |
| 5WG1 | Human | Peptide | 2.02 Å | Kelch domain (320-612) |
| 5WHL | Human | Peptide | 2.50 Å | Kelch domain (312-624) |
| 5WHO | Human | Peptide | 2.23 Å | Kelch domain (312-624) |
| 5WIY | Human | Peptide | 2.23 Å | Kelch domain (312-624) |
| 5X54 | Human | Peptide | 2.30 Å | Kelch domain (321-609) |
| 6FFM | Human | Ligand | 2.20 Å | BTB domain (48-180) |
| 6FMP | Human | Peptide | 2.92 Å | Kelch domain (321-609) |
| 6FMQ | Human | Peptide | 2.10 Å | Kelch domain (321-609) |
| 6ROG | Human | Peptide | 2.16 Å | Kelch domain (321-609) |
| 6SP1 | Human | Peptide | 2.57 Å | Kelch domain (321-609) |
| 6SP4 | Human | Peptide | 2.59 Å | Kelch domain (321-609) |
| 6T7Z | Human | Peptide | 2.00 Å | Kelch domain (321-609) |
| 6TG8 | Human | Peptide | 2.75 Å | Kelch domain (322-609) |
| 7EXI | Human | Apo | Multiple | Recent full-length BTB-BACK-Kelch |
| 7X4W | Human | Apo | Multiple | BTB domain structure |
| 7X4X | Human | Apo | Multiple | BTB domain structure |
SOX2 - Sex-Determining Region Y-Box 2
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 1O4X | Human | DNA | NMR | HMG domain (39-121), solution structure |
| 2LE4 | Human | Apo | NMR | HMG domain (39-118), solution structure |
| 6WX8 | Human | DNA complex | 2.30 Å | HMG domain (39-127), best resolution X-ray |
| 6WX7 | Human | DNA complex | 2.70 Å | HMG domain (39-127) with DNA |
| 6WX9 | Human | DNA complex | 2.80 Å | HMG domain (39-127) with DNA |
| 6T90 | Human | Complex | 3.05 Å | Cryo-EM structure (37-118) |
| 6YOV | Human | Complex | 3.42 Å | Cryo-EM structure (37-118) |
| 6T7B | Human | Complex | 5.10 Å | Cryo-EM structure (36-121) |
APOE - Apolipoprotein E (variants E2, E3, E4)
APOE2 Variant
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 1LE2 | Human | Apo | X-ray | APOE2 N-terminal domain, reduced receptor binding |
APOE3 Variant (Wild-type, neutral)
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 1LPE | Human | Apo | 2.50 Å | LDL receptor-binding domain, four-helix bundle |
| 1NFN | Human | Apo | X-ray | APOE3 N-terminal domain structure |
| 2L7B | Human | Apo | NMR | Full-length APOE3, solution structure |
APOE4 Variant (Alzheimer's risk factor)
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 1B68 | Human | Heparin octasaccharide | X-ray | APOE4 22K fragment (1-191), disease-relevant |
| 1LE4 | Human | Apo | 2.50 Å | APOE4 N-terminal, E112R mutation, altered function |
| 8AX8 | Human | Apo | X-ray | APOE4 N-terminal, aggregation-prone conformation |
Other APOE Structures
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 1OEF | Human | SDS micelle | NMR | C-terminal peptide (263-286), lipid binding |
| 1YA9 | Mouse | Apo | 2.09 Å | Mouse APOE N-terminal (wild-type) |
OCT4 (POU5F1) - Octamer-Binding Transcription Factor 4
| PDB ID | Species | Ligand/Complex | Resolution | Comments |
|---|---|---|---|---|
| 3L1P | Mouse | DNA | X-ray | Oct4 POU domain (131-282), reprogramming factor |
| 8G86 | Human | Nucleosome/nMatn1 DNA | Cryo-EM | OCT4 bound to chromatin, pioneer factor activity |
| 8G87 | Human | Nucleosome/nMatn1 DNA | Cryo-EM | Focused refinement of OCT4-nucleosome |
| 6HT5 | Human/Mouse | SOX2-UTF1-DNA | X-ray | Oct4-Sox2 complex on DNA (referenced) |
Notes and Research Context
NRF2-KEAP1 System
- Oxidative Stress Response: NRF2 is sequestered by KEAP1 under normal conditions
- KEAP1 Mutations in Neoaves: Structures show binding interface mutations
- Drug Development: Multiple inhibitor-bound KEAP1 structures available
- Key Interface: ETGE and DLG motifs of NRF2 bind to Kelch domain of KEAP1
SKN-1 in C. elegans
- No direct human homolog structures, but functionally similar to NRF2
- Studies show lifespan extension effects through oxidative stress pathways
SOX2 Modifications
- SuperSOX variants: Modifications that enhance reprogramming efficiency
- Structures show HMG box DNA-binding mechanism
- Works synergistically with OCT4 in pluripotency
APOE Variants and Longevity
- APOE2: Protective, associated with longevity (Cys112, Cys158)
- APOE3: Neutral variant (Cys112, Arg158)
- APOE4: Risk factor for Alzheimer's (Arg112, Arg158)
- Structural differences affect lipid binding and receptor interactions
OCT4-OCT6 Conversion
- OCT4 (POU5F1): Pluripotency factor, one of Yamanaka factors
- OCT6 (POU3F1): Neuronal POU factor
- Converting OCT6 to reprogramming function requires understanding POU domain specificity
- Limited OCT6 structures available; comparative modeling with OCT4 recommended
Resolution Quality Guide
- < 2.0 Å: Atomic detail, excellent for drug design
- 2.0-2.5 Å: High quality, suitable for most analyses
- 2.5-3.5 Å: Good quality, suitable for overall structure
- > 3.5 Å or NMR: Domain organization, dynamics studies
- Cryo-EM: Large complexes, native-like states
License
- PDB Structures: Public domain (RCSB PDB)
- ATOMICA Predictions: Check ATOMICA repository for license
- Dataset Compilation: [Your license here]
Contact
For questions about:
- ATOMICA model: See GitHub Issues
- Dataset: [Your contact information]
- PDB structures: RCSB PDB Help
Last Updated: October 2025
Dataset Version: 1.0
Total Structures: 94
Analyzed Using: ATOMICA v1.0
Data Sources: RCSB Protein Data Bank, UniProt, Literature searches
- Downloads last month
- 885