Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    TypeError
Message:      list_() takes at least 1 positional argument (0 given)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2027, in from_yaml_inner
                  return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
                                ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2016, in from_yaml_inner
                  Value(obj["dtype"])
                File "<string>", line 5, in __init__
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 540, in __post_init__
                  self.pa_type = string_to_arrow(self.dtype)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 150, in string_to_arrow
                  return pa.__dict__[datasets_dtype + "_"]()
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/types.pxi", line 4942, in pyarrow.lib.list_
              TypeError: list_() takes at least 1 positional argument (0 given)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Longevity Protein Structures Dataset

License: MIT Dataset Size ATOMICA

Quick Start

# Load the dataset index
from datasets import load_dataset
ds = load_dataset("longevity-genie/atomica_longevity_proteins")

# Or use Polars directly
import polars as pl
df = pl.read_parquet("hf://datasets/longevity-genie/atomica_longevity_proteins/atomica_index.parquet")

# Find KEAP1 structures
keap1 = df.filter(pl.col("gene_symbols").list.contains("KEAP1"))
print(f"Found {len(keap1)} KEAP1 structures")

Overview

This dataset contains comprehensive structural analysis of key longevity-related proteins using the ATOMICA deep learning model. The dataset includes 94 protein structures spanning five major protein families involved in oxidative stress response, pluripotency, and lipid metabolism pathways associated with aging and longevity.

Dataset Creation

Analysis Tool: ATOMICA - A pretrained deep learning model for protein structure interaction scoring
Model Architecture:

  • Hidden size: 32
  • Edge size: 32
  • K-neighbors: 8
  • Layers: 4
  • Global message passing enabled
  • Fragmentation method: PS_300

Processing Environment:

  • Device: CUDA GPU
  • Average GPU Memory per structure: ~2.0 GB
  • Average processing time: ~44 seconds per structure

Protein Families Included

1. NRF2-KEAP1 System (Oxidative Stress Response)

  • NRF2 (NFE2L2): 19 structures
  • KEAP1: 47 structures
  • Focus: KEAP1 mutations in Neoaves, SKN-1 lifespan effects in C. elegans

2. SOX2 (Pluripotency Factor)

  • SOX2: 8 structures
  • Focus: SuperSOX modifications for enhanced reprogramming

3. APOE (Lipid Metabolism & Alzheimer's Risk)

  • APOE variants (E2/E3/E4): 9 structures
  • Focus: Longevity associations and Alzheimer's disease risk factors

4. OCT4 (Reprogramming Factor)

  • OCT4 (POU5F1): 4 structures
  • Focus: OCT6 conversion into reprogramming factor, Yamanaka factors

Total Structures: 94 high-resolution protein structures

File Structure

Dataset Index (NEW!)

The dataset now includes atomica_index.parquet - a comprehensive queryable index of all structures:

import polars as pl

# Load the index
df = pl.read_parquet("atomica_index.parquet")

# Query structures by gene
keap1_structures = df.filter(pl.col("gene_symbols").list.contains("KEAP1"))

# Find structures with high resolution
high_res = df.filter(pl.col("critical_residues_count") > 100)

# Get all human structures
human = df.filter(pl.col("organisms").list.contains("Homo sapiens"))

Index Schema:

  • pdb_id: PDB identifier (uppercase)
  • cif_path, metadata_path, summary_path, critical_residues_path, interact_scores_path, pymol_path: Relative file paths
  • critical_residues_count: Number of critical residues identified
  • total_time_seconds, gpu_memory_mb_max: Processing statistics
  • metadata_found: Whether PDB metadata was successfully resolved
  • title: Structure title from PDB
  • uniprot_ids: List of UniProt identifiers
  • organisms: List of organism names
  • taxonomy_ids: List of NCBI taxonomy IDs
  • gene_symbols: List of gene symbols
  • ensembl_ids: List of Ensembl gene IDs
  • structures_json: Detailed structure information (JSON string)

The index file is automatically detected by Hugging Face and can be explored in the Dataset Viewer tab!

Per-Structure Files

For each PDB structure (e.g., 6ht5), the dataset contains:

dataset/
├── atomica_index.parquet                 # QUERYABLE INDEX (NEW!)
└── {pdb_id}/                              # Per-structure directory
    ├── {pdb_id}.cif                      # Original structure file (mmCIF format)
    ├── {pdb_id}_metadata.json            # PDB metadata (if available)
    ├── {pdb_id}_interact_scores.json     # ATOMICA interaction scores
    ├── {pdb_id}_summary.json             # Processing summary statistics
    ├── {pdb_id}_critical_residues.tsv    # Ranked critical residues
    └── {pdb_id}_pymol_commands.pml       # PyMOL visualization script

File Descriptions

1. {pdb_id}.cif

  • Format: mmCIF (Macromolecular Crystallographic Information File)
  • Content: 3D atomic coordinates, experimental data, and metadata
  • Source: RCSB Protein Data Bank
  • Size: ~100-500 KB per structure

2. {pdb_id}_metadata.json

  • Format: JSON
  • Content: PDB metadata including:
    • Structure resolution
    • Experimental method (X-ray, NMR, Cryo-EM)
    • Authors and publication info
    • Organism source
  • Note: May contain error if SSL certificate verification fails

3. {pdb_id}_interact_scores.json

  • Format: JSON
  • Content: ATOMICA deep learning predictions
    • id: Structure identifier
    • cos_distances: Array of cosine distance scores (one per residue block)
    • block_idx: Sequential indices for residue blocks (1-N)
    • time_seconds: Processing time
    • peak_memory_mb: GPU memory usage

Score Interpretation:

  • Scores range from 0 to 1 (typically 0.999+)
  • Higher scores = more structurally critical residues
  • Lower scores = potential mutation hotspots or flexibility regions

4. {pdb_id}_summary.json

  • Format: JSON
  • Content: Processing statistics
    • Total processing time
    • GPU memory usage (mean, max)
    • Time per structure statistics
    • Input/output file paths
    • Device information

5. {pdb_id}_critical_residues.tsv

  • Format: Tab-separated values (TSV)
  • Content: Ranked list of structurally critical residues
    • Rank (1-N)
    • Residue name (3-letter code)
    • Chain ID
    • Position in sequence
    • ATOMICA_SCORE (cosine distance)
    • Importance Delta (deviation from mean)

Example: ``` Rank Residue Chain Position ATOMICA_SCORE Importance Delta

1 GLY171 E 171 0.999856 0.0144% 2 SER216 E 216 0.999867 0.0133% 3 ILE215 E 215 0.999875 0.0125%


### 6. `{pdb_id}_pymol_commands.pml`
- **Format**: PyMOL script
- **Content**: Commands for visualizing critical residues
- **Usage**:
  ```bash
  pymol dataset/{pdb_id}.cif
  @dataset/{pdb_id}_pymol_commands.pml
  • Features: Color-coded residues by criticality score

ATOMICA Scores Explained

Cosine Distance Scoring

ATOMICA uses a graph neural network to predict residue-level interaction importance:

  1. Input: 3D protein structure (atomic coordinates)
  2. Processing: Graph representation with residues as nodes
  3. Output: Cosine distance scores per residue block

Score Ranges

  • 0.9999+ (Critical): Essential structural residues

    • Active site residues
    • Binding interface residues
    • Structural core residues
  • 0.9998-0.9999 (Important): Functionally relevant residues

    • Secondary binding sites
    • Conformational switches
  • <0.9998 (Variable): Potential mutation sites

    • Surface loops
    • Flexible regions
    • Potential engineering targets

Importance Delta

  • Calculated as: (max_score - residue_score) / max_score × 100%
  • Lower delta = more critical residue
  • Top 10 residues typically have delta <0.02%

Use Cases

0. Query the Index (NEW!)

The atomica_index.parquet enables powerful filtering and analysis:

import polars as pl

# Load index
df = pl.read_parquet("atomica_index.parquet")

# Find all NRF2 structures
nrf2 = df.filter(pl.col("gene_symbols").list.contains("NFE2L2"))

# Get KEAP1-NRF2 complexes
complexes = df.filter(
    pl.col("gene_symbols").list.contains("KEAP1") & 
    pl.col("gene_symbols").list.contains("NFE2L2")
)

# Find structures by UniProt ID
my_protein = df.filter(pl.col("uniprot_ids").list.contains("Q14145"))

# Get statistics
print(f"Total structures: {len(df)}")
print(f"Unique genes: {len(set(gene for genes in df['gene_symbols'] for gene in genes))}")
print(f"Organisms: {set(org for orgs in df['organisms'] for org in orgs)}")

1. Mutation Impact Prediction

Identify residues where mutations would likely destabilize the protein:

# Load critical residues
import pandas as pd
critical = pd.read_csv('dataset/6ht5_critical_residues.tsv', sep='\t')
# Top 10 most critical = avoid mutations
avoid_mutations = critical.head(10)

2. Protein Engineering

Target residues with lower scores for:

  • Enhanced stability variants
  • Altered binding specificity
  • Improved expression

3. Drug Design

Identify binding pockets and interaction hotspots:

  • Critical residues in binding interfaces
  • Allosteric regulation sites
  • Druggable pockets

4. Comparative Analysis

Compare residue criticality across:

  • APOE variants (E2 vs E3 vs E4)
  • NRF2-KEAP1 mutations in different species
  • OCT4 vs OCT6 structural differences

5. MCP Server Integration (NEW!)

Use the atomica-mcp server for programmatic access:

# Install the MCP server
pip install atomica-mcp

# Use in Python
from atomica_mcp import AtomicaMCP

# Query structures by gene
results = mcp.atomica_search_by_gene("KEAP1", species="Homo sapiens")

# Get structure files for a PDB ID
files = mcp.atomica_get_structure_files("6ht5")

# Search by UniProt ID
structures = mcp.atomica_search_by_uniprot("Q14145")

The MCP server provides:

  • Fast local index queries (instant)
  • Automatic dataset download and management
  • Integration with Claude Desktop and other AI tools
  • External PDB/UniProt API fallback for comprehensive searches

Dataset Statistics

Protein Family Structures Avg Resolution Methods
NRF2 19 1.5-2.8 Å X-ray, NMR
KEAP1 47 1.35-3.5 Å X-ray, Cryo-EM
SOX2 8 2.3-5.1 Å X-ray, NMR, Cryo-EM
APOE 9 2.0-2.5 Å, NMR X-ray, NMR
OCT4 4 Cryo-EM X-ray, Cryo-EM

Total Dataset Size: ~40-50 MB (compressed)
Total Residues Analyzed: ~15,000-20,000

Data Quality

Structure Quality Metrics

  • X-ray structures: 1.35-3.5 Å resolution
  • NMR structures: Ensemble of 10-20 models
  • Cryo-EM structures: 3.0-5.1 Å resolution

ATOMICA Processing Quality

  • GPU Memory: Stable ~2 GB per structure
  • Processing Time: Consistent ~44s per structure
  • Score Convergence: All scores >0.998 (high confidence)

Citation

If you use this dataset, please cite:

  1. ATOMICA Model:

    ATOMICA: A deep learning model for protein structure analysis
    GitHub: https://github.com/longevity-genie/ATOMICA
    
  2. PDB Structures:

    Berman, H.M. et al. (2000) The Protein Data Bank. 
    Nucleic Acids Research, 28: 235-242.
    
  3. Specific protein references: See individual PDB entries for citations

Technical Notes

Requirements for Reproducing Analysis

# Install ATOMICA
git clone https://github.com/longevity-genie/ATOMICA
cd ATOMICA

# Download PDB structures
uv run pdb download <pdb_id>

# Run analysis
uv run interact-score --input downloads/pdbs/<pdb_id>.cif

Known Limitations

  1. Metadata Retrieval: Some structures may have SSL certificate errors
  2. Resolution Dependent: Lower resolution structures (<3 Å) have more uncertainty
  3. NMR Structures: Multiple models may give variable scores
  4. Fragment Structures: Incomplete proteins analyzed as-is

Future Extensions

Potential additions to this dataset:

  • SKN-1 structures from C. elegans (when available)
  • OCT6 structures for comparative analysis
  • Additional APOE variant structures
  • Molecular dynamics trajectories
  • Ligand-bound complexes

PDB Structures for Longevity-Related Proteins

NRF2 (NFE2L2) - Nuclear Factor Erythroid 2-Related Factor 2

PDB ID Species Ligand/Complex Resolution Comments
2FLU Human KEAP1 complex 1.50 Å NRF2 peptide (69-84) with KEAP1, X-ray
4IFL Human KEAP1 complex 1.80 Å NRF2 peptide with KEAP1 Kelch domain
5WFV Human KEAP1 complex 1.91 Å NRF2 peptide (76-84) with KEAP1
6T7V Human KEAP1 complex 2.60 Å NRF2 peptide with KEAP1, X-ray
7K28 Human KEAP1 complex 2.15 Å NRF2 peptide (77-84)
7K29 Human KEAP1 complex 2.20 Å NRF2 peptide (76-84)
7K2A Human KEAP1 complex 1.90 Å NRF2 peptide (76-83)
7K2B Human KEAP1 complex 2.31 Å NRF2 peptide (77-83)
7K2C Human KEAP1 complex 2.11 Å NRF2 peptide (77-82)
7K2D Human KEAP1 complex 2.21 Å NRF2 peptide (77-82)
7K2E Human KEAP1 complex 2.03 Å NRF2 peptide (77-82)
7K2K Human KEAP1 complex 1.98 Å NRF2 peptide (77-82)
7O7B Human Apo NMR Neh1 domain (445-523), solution structure
7X5E Human MAFG complex 2.30 Å bZIP domain (452-560) with MAFG
7X5F Human MAFG complex 2.60 Å bZIP domain (452-560) with MAFG
7X5G Human MAFG complex 2.30 Å bZIP domain (452-560) with MAFG
3ZGC Human KEAP1 complex 2.20 Å With KEAP1 Kelch domain
8EJR Human KEAP1 complex 2.08 Å NRF2 peptide with KEAP1
8EJS Human KEAP1 complex 2.82 Å NRF2 peptide with KEAP1

KEAP1 - Kelch-like ECH-Associated Protein 1

PDB ID Species Ligand/Complex Resolution Comments
6LRZ Human Apo 1.54 Å Very high resolution, residues 311-616
1ZGK Human Apo 1.35 Å Kelch domain (321-609), highest resolution
6HWS Human Apo 1.75 Å Kelch domain (321-609)
1U6D Human Apo 1.85 Å Kelch domain (321-609)
2FLU Human NRF2 peptide 1.50 Å Complex with NRF2 (69-84)
4IFL Human NRF2 peptide 1.80 Å Kelch domain with NRF2
5WFV Human NRF2 peptide 1.91 Å Kelch domain (320-612)
7K28-7K2K Human NRF2 peptides 1.98-2.31 Å Series of NRF2 binding studies
4CXI Human CDDO ligand 2.35 Å BTB domain (48-180) with inhibitor
4CXJ Human CDDO ligand 2.80 Å BTB domain (48-180)
4CXT Human Ligand 2.66 Å BTB domain (48-180)
5DAD Human Apo 2.61 Å BTB domain (49-182)
5DAF Human Ligand 2.37 Å BTB domain (49-182)
5GIT Human Ligand 2.19 Å BTB domain (48-180)
5NLB Human CUL3 complex 3.45 Å BACK domain (51-204) with CUL3
5F72 Human Peptide 1.85 Å Full Kelch domain (321-611)
3VNG Human Peptide 2.10 Å Kelch domain (321-609)
3VNH Human Peptide 2.10 Å Kelch domain (321-609)
3ZGC Human NRF2 peptide 2.20 Å Kelch domain complex
3ZGD Human Peptide 1.98 Å Kelch domain (321-609)
4IFJ Human Peptide 1.80 Å Kelch domain (321-609)
4IFN Human Peptide 2.40 Å Kelch domain (321-609)
4IQK Human Peptide 1.97 Å Kelch domain (321-609)
4IN4 Human Ligand 2.59 Å Kelch domain (321-609)
4L7B Human Ligand 2.41 Å Kelch domain (321-609)
4L7C Human Ligand 2.40 Å Kelch domain (321-609)
4L7D Human Ligand 2.25 Å Kelch domain (321-609)
4N1B Human Ligand 2.55 Å Kelch domain (321-609)
4XMB Human Peptide 2.43 Å Kelch domain (321-609)
5WFL Human Peptide 1.93 Å Kelch domain (312-624)
5WG1 Human Peptide 2.02 Å Kelch domain (320-612)
5WHL Human Peptide 2.50 Å Kelch domain (312-624)
5WHO Human Peptide 2.23 Å Kelch domain (312-624)
5WIY Human Peptide 2.23 Å Kelch domain (312-624)
5X54 Human Peptide 2.30 Å Kelch domain (321-609)
6FFM Human Ligand 2.20 Å BTB domain (48-180)
6FMP Human Peptide 2.92 Å Kelch domain (321-609)
6FMQ Human Peptide 2.10 Å Kelch domain (321-609)
6ROG Human Peptide 2.16 Å Kelch domain (321-609)
6SP1 Human Peptide 2.57 Å Kelch domain (321-609)
6SP4 Human Peptide 2.59 Å Kelch domain (321-609)
6T7Z Human Peptide 2.00 Å Kelch domain (321-609)
6TG8 Human Peptide 2.75 Å Kelch domain (322-609)
7EXI Human Apo Multiple Recent full-length BTB-BACK-Kelch
7X4W Human Apo Multiple BTB domain structure
7X4X Human Apo Multiple BTB domain structure

SOX2 - Sex-Determining Region Y-Box 2

PDB ID Species Ligand/Complex Resolution Comments
1O4X Human DNA NMR HMG domain (39-121), solution structure
2LE4 Human Apo NMR HMG domain (39-118), solution structure
6WX8 Human DNA complex 2.30 Å HMG domain (39-127), best resolution X-ray
6WX7 Human DNA complex 2.70 Å HMG domain (39-127) with DNA
6WX9 Human DNA complex 2.80 Å HMG domain (39-127) with DNA
6T90 Human Complex 3.05 Å Cryo-EM structure (37-118)
6YOV Human Complex 3.42 Å Cryo-EM structure (37-118)
6T7B Human Complex 5.10 Å Cryo-EM structure (36-121)

APOE - Apolipoprotein E (variants E2, E3, E4)

APOE2 Variant

PDB ID Species Ligand/Complex Resolution Comments
1LE2 Human Apo X-ray APOE2 N-terminal domain, reduced receptor binding

APOE3 Variant (Wild-type, neutral)

PDB ID Species Ligand/Complex Resolution Comments
1LPE Human Apo 2.50 Å LDL receptor-binding domain, four-helix bundle
1NFN Human Apo X-ray APOE3 N-terminal domain structure
2L7B Human Apo NMR Full-length APOE3, solution structure

APOE4 Variant (Alzheimer's risk factor)

PDB ID Species Ligand/Complex Resolution Comments
1B68 Human Heparin octasaccharide X-ray APOE4 22K fragment (1-191), disease-relevant
1LE4 Human Apo 2.50 Å APOE4 N-terminal, E112R mutation, altered function
8AX8 Human Apo X-ray APOE4 N-terminal, aggregation-prone conformation

Other APOE Structures

PDB ID Species Ligand/Complex Resolution Comments
1OEF Human SDS micelle NMR C-terminal peptide (263-286), lipid binding
1YA9 Mouse Apo 2.09 Å Mouse APOE N-terminal (wild-type)

OCT4 (POU5F1) - Octamer-Binding Transcription Factor 4

PDB ID Species Ligand/Complex Resolution Comments
3L1P Mouse DNA X-ray Oct4 POU domain (131-282), reprogramming factor
8G86 Human Nucleosome/nMatn1 DNA Cryo-EM OCT4 bound to chromatin, pioneer factor activity
8G87 Human Nucleosome/nMatn1 DNA Cryo-EM Focused refinement of OCT4-nucleosome
6HT5 Human/Mouse SOX2-UTF1-DNA X-ray Oct4-Sox2 complex on DNA (referenced)

Notes and Research Context

NRF2-KEAP1 System

  • Oxidative Stress Response: NRF2 is sequestered by KEAP1 under normal conditions
  • KEAP1 Mutations in Neoaves: Structures show binding interface mutations
  • Drug Development: Multiple inhibitor-bound KEAP1 structures available
  • Key Interface: ETGE and DLG motifs of NRF2 bind to Kelch domain of KEAP1

SKN-1 in C. elegans

  • No direct human homolog structures, but functionally similar to NRF2
  • Studies show lifespan extension effects through oxidative stress pathways

SOX2 Modifications

  • SuperSOX variants: Modifications that enhance reprogramming efficiency
  • Structures show HMG box DNA-binding mechanism
  • Works synergistically with OCT4 in pluripotency

APOE Variants and Longevity

  • APOE2: Protective, associated with longevity (Cys112, Cys158)
  • APOE3: Neutral variant (Cys112, Arg158)
  • APOE4: Risk factor for Alzheimer's (Arg112, Arg158)
  • Structural differences affect lipid binding and receptor interactions

OCT4-OCT6 Conversion

  • OCT4 (POU5F1): Pluripotency factor, one of Yamanaka factors
  • OCT6 (POU3F1): Neuronal POU factor
  • Converting OCT6 to reprogramming function requires understanding POU domain specificity
  • Limited OCT6 structures available; comparative modeling with OCT4 recommended

Resolution Quality Guide

  • < 2.0 Å: Atomic detail, excellent for drug design
  • 2.0-2.5 Å: High quality, suitable for most analyses
  • 2.5-3.5 Å: Good quality, suitable for overall structure
  • > 3.5 Å or NMR: Domain organization, dynamics studies
  • Cryo-EM: Large complexes, native-like states

License

  • PDB Structures: Public domain (RCSB PDB)
  • ATOMICA Predictions: Check ATOMICA repository for license
  • Dataset Compilation: [Your license here]

Contact

For questions about:


Last Updated: October 2025
Dataset Version: 1.0
Total Structures: 94
Analyzed Using: ATOMICA v1.0 Data Sources: RCSB Protein Data Bank, UniProt, Literature searches

Downloads last month
885