Dataset Viewer
Auto-converted to Parquet Duplicate
id
int64
0
328k
repository_name
stringlengths
7
58
file_path
stringlengths
9
302
class_name
stringlengths
5
256
human_written_code
stringlengths
16
2.16M
class_skeleton
stringlengths
18
1.49M
โŒ€
total_program_units
int64
1
1.76k
total_doc_str
int64
0
771
AvgCountLine
float64
0
7.89k
AvgCountLineBlank
float64
0
297
AvgCountLineCode
float64
0
7.89k
AvgCountLineComment
float64
0
7.89k
AvgCyclomatic
float64
0
130
CommentToCodeRatio
float64
0
168
CountClassBase
float64
0
40
CountClassCoupled
float64
0
583
CountClassCoupledModified
float64
0
575
CountClassDerived
float64
0
5.35k
CountDeclInstanceMethod
float64
0
529
CountDeclInstanceVariable
float64
0
296
CountDeclMethod
float64
0
599
CountDeclMethodAll
float64
0
1.12k
CountLine
float64
1
40.4k
CountLineBlank
float64
0
8.16k
CountLineCode
float64
1
25.7k
CountLineCodeDecl
float64
1
8.15k
CountLineCodeExe
float64
0
24.2k
CountLineComment
float64
0
16.5k
CountStmt
float64
1
9.71k
CountStmtDecl
float64
1
8.15k
CountStmtExe
float64
0
9.69k
MaxCyclomatic
float64
0
759
MaxInheritanceTree
float64
0
16
MaxNesting
float64
0
34
SumCyclomatic
float64
0
2.9k
0
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/benchmark/benchmarks_entrypoint.py
benchmark.benchmarks_entrypoint.ImportModuleException
class ImportModuleException(Exception): pass
class ImportModuleException(Exception): pass
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
10
2
0
2
1
1
0
2
1
1
0
3
0
0
1
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/benchmark/benchmarks_entrypoint.py
benchmark.benchmarks_entrypoint.MetricsRecorder
import pandas as pd import os from datetime import datetime import uuid import logging import json class MetricsRecorder: def __init__(self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str, collect_csv_data: bool=True): self.conn = connection self.use_database = connection is not None if self.use_database: self.conn.autocommit = True self.logger = logger self.repository = repository self.branch = branch self.commit_id = commit_id self.commit_msg = commit_msg self.collect_csv_data = collect_csv_data if self.collect_csv_data: self.benchmarks_df = pd.DataFrame(columns=['benchmark_id', 'repository', 'branch', 'commit_id', 'commit_message', 'metadata', 'created_at']) self.device_measurements_df = pd.DataFrame(columns=['benchmark_id', 'cpu_util', 'mem_megabytes', 'gpu_util', 'gpu_mem_megabytes', 'time']) self.model_measurements_df = pd.DataFrame(columns=['benchmark_id', 'time', 'model_load_time', 'first_eager_forward_pass_time_secs', 'second_eager_forward_pass_time_secs', 'first_eager_generate_time_secs', 'second_eager_generate_time_secs', 'time_to_first_token_secs', 'time_to_second_token_secs', 'time_to_third_token_secs', 'time_to_next_token_mean_secs', 'first_compile_generate_time_secs', 'second_compile_generate_time_secs', 'third_compile_generate_time_secs', 'fourth_compile_generate_time_secs']) else: self.benchmarks_df = None self.device_measurements_df = None self.model_measurements_df = None def initialise_benchmark(self, metadata: dict[str, str]) -> str: """ Creates a new benchmark, returns the benchmark id (UUID) """ benchmark_id = str(uuid.uuid4()) if self.use_database: with self.conn.cursor() as cur: cur.execute('INSERT INTO benchmarks (benchmark_id, repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s, %s)', (benchmark_id, self.repository, self.branch, self.commit_id, self.commit_msg, metadata)) self.logger.debug(f'initialised benchmark #{benchmark_id}') if self.collect_csv_data: new_row = pd.DataFrame([{'benchmark_id': benchmark_id, 'repository': self.repository, 'branch': self.branch, 'commit_id': self.commit_id, 'commit_message': self.commit_msg, 'metadata': json.dumps(metadata), 'created_at': datetime.utcnow().isoformat()}]) self.benchmarks_df = pd.concat([self.benchmarks_df, new_row], ignore_index=True) mode_info = [] if self.use_database: mode_info.append('database') if self.collect_csv_data: mode_info.append('CSV') mode_str = ' + '.join(mode_info) if mode_info else 'no storage' self.logger.debug(f'initialised benchmark #{benchmark_id} ({mode_str} mode)') return benchmark_id def collect_device_measurements(self, benchmark_id: str, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes): """ Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function. """ if self.collect_csv_data: new_row = pd.DataFrame([{'benchmark_id': benchmark_id, 'cpu_util': cpu_util, 'mem_megabytes': mem_megabytes, 'gpu_util': gpu_util, 'gpu_mem_megabytes': gpu_mem_megabytes, 'time': datetime.utcnow().isoformat()}]) self.device_measurements_df = pd.concat([self.device_measurements_df, new_row], ignore_index=True) if self.use_database: with self.conn.cursor() as cur: cur.execute('INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)', (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes)) self.logger.debug(f'collected device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]') def collect_model_measurements(self, benchmark_id: str, measurements: dict[str, float]): if self.collect_csv_data: row_data = {'benchmark_id': benchmark_id, 'time': datetime.utcnow().isoformat()} row_data.update(measurements) new_row = pd.DataFrame([row_data]) self.model_measurements_df = pd.concat([self.model_measurements_df, new_row], ignore_index=True) if self.use_database: with self.conn.cursor() as cur: cur.execute('\n INSERT INTO model_measurements (\n benchmark_id,\n measurements\n ) VALUES (%s, %s)\n ', (benchmark_id, measurements)) self.logger.debug(f'collected model measurements for benchmark #{benchmark_id}: {measurements}') def export_to_csv(self, output_dir: str='benchmark_results'): """ Export all collected data to CSV files using pandas DataFrames """ if not self.collect_csv_data: self.logger.warning('CSV data collection is disabled - no CSV files will be generated') return if not os.path.exists(output_dir): os.makedirs(output_dir) self.logger.info(f'Created output directory: {output_dir}') timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') files_created = [] self._export_pandas_data(output_dir, timestamp, files_created) self.logger.info(f'CSV export complete! Created {len(files_created)} files in {output_dir}') def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list): """ Export CSV files using pandas DataFrames """ benchmarks_file = os.path.join(output_dir, f'benchmarks_{timestamp}.csv') self.benchmarks_df.to_csv(benchmarks_file, index=False) files_created.append(benchmarks_file) self.logger.info(f'Exported {len(self.benchmarks_df)} benchmark records to {benchmarks_file}') device_file = os.path.join(output_dir, f'device_measurements_{timestamp}.csv') self.device_measurements_df.to_csv(device_file, index=False) files_created.append(device_file) self.logger.info(f'Exported {len(self.device_measurements_df)} device measurement records to {device_file}') model_file = os.path.join(output_dir, f'model_measurements_{timestamp}.csv') self.model_measurements_df.to_csv(model_file, index=False) files_created.append(model_file) self.logger.info(f'Exported {len(self.model_measurements_df)} model measurement records to {model_file}') summary_file = os.path.join(output_dir, f'benchmark_summary_{timestamp}.csv') self._create_summary(summary_file) files_created.append(summary_file) def _create_summary(self, summary_file: str): """ Create a comprehensive summary CSV using pandas operations """ if len(self.benchmarks_df) == 0: summary_df = pd.DataFrame() summary_df.to_csv(summary_file, index=False) self.logger.info(f'Created empty benchmark summary at {summary_file}') return summary_df = self.benchmarks_df.copy() if len(self.model_measurements_df) > 0: model_df = self.model_measurements_df.drop(columns=['time'], errors='ignore') summary_df = summary_df.merge(model_df, on='benchmark_id', how='left') if len(self.device_measurements_df) > 0: device_agg = self.device_measurements_df.groupby('benchmark_id').agg({'cpu_util': ['mean', 'max', 'std', 'count'], 'mem_megabytes': ['mean', 'max', 'std'], 'gpu_util': ['mean', 'max', 'std'], 'gpu_mem_megabytes': ['mean', 'max', 'std']}).round(3) device_agg.columns = [f'{col[0]}_{col[1]}' for col in device_agg.columns] device_agg = device_agg.reset_index() if 'cpu_util_count' in device_agg.columns: device_agg = device_agg.rename(columns={'cpu_util_count': 'device_measurement_count'}) summary_df = summary_df.merge(device_agg, on='benchmark_id', how='left') summary_df.to_csv(summary_file, index=False) self.logger.info(f'Created comprehensive benchmark summary with {len(summary_df)} records at {summary_file}') def close(self): if self.use_database and self.conn: self.conn.close()
class MetricsRecorder: def __init__(self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str, collect_csv_data: bool=True): pass def initialise_benchmark(self, metadata: dict[str, str]) -> str: ''' Creates a new benchmark, returns the benchmark id (UUID) ''' pass def collect_device_measurements(self, benchmark_id: str, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes): ''' Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function. ''' pass def collect_model_measurements(self, benchmark_id: str, measurements: dict[str, float]): pass def export_to_csv(self, output_dir: str='benchmark_results'): ''' Export all collected data to CSV files using pandas DataFrames ''' pass def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list): ''' Export CSV files using pandas DataFrames ''' pass def _create_summary(self, summary_file: str): ''' Create a comprehensive summary CSV using pandas operations ''' pass def close(self): pass
9
5
10
0
8
2
1
0.23
0
4
0
0
5
5
5
5
54
4
43
15
37
10
24
12
18
1
0
1
5
2
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/configuration_my_new_model.py
configuration_my_new_model.MyNewModelConfig
from ...modeling_rope_utils import rope_config_validation from ...configuration_utils import PretrainedConfig class MyNewModelConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MyNewModel-7B. e.g. [meta-my_new_model/MyNewModel-2-7b-hf](https://huggingface.co/meta-my_new_model/MyNewModel-2-7b-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MyNewModel model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MyNewModelModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. MyNewModel 1 supports up to 2048 tokens, MyNewModel 2 up to 4096, CodeLlama up to 16384. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'my_new_model3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'my_new_model3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'my_new_model3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'my_new_model3'. Scaling factor applied to high frequency components of the RoPE attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. head_dim (`int`, *optional*): The attention head dimension. If None, it will default to hidden_size // num_attention_heads ```python >>> from transformers import MyNewModelModel, MyNewModelConfig >>> # Initializing a MyNewModel my_new_model-7b style configuration >>> configuration = MyNewModelConfig() >>> # Initializing a model from the my_new_model-7b style configuration >>> model = MyNewModelModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = 'my_new_model' keys_to_ignore_at_inference = ['past_key_values'] base_model_tp_plan = {'layers.*.self_attn.q_proj': 'colwise', 'layers.*.self_attn.k_proj': 'colwise', 'layers.*.self_attn.v_proj': 'colwise', 'layers.*.self_attn.o_proj': 'rowwise', 'layers.*.mlp.gate_proj': 'colwise', 'layers.*.mlp.up_proj': 'colwise', 'layers.*.mlp.down_proj': 'rowwise'} base_model_pp_plan = {'embed_tokens': (['input_ids'], ['inputs_embeds']), 'layers': (['hidden_states', 'attention_mask'], ['hidden_states']), 'norm': (['hidden_states'], ['hidden_states'])} def __init__(self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=True, head_dim=None, new_param=0, **kwargs): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads if self.rope_scaling is not None and 'type' in self.rope_scaling: self.rope_scaling['rope_type'] = self.rope_scaling['type'] rope_config_validation(self) self.new_param = new_param
class MyNewModelConfig(PretrainedConfig): ''' This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MyNewModel-7B. e.g. [meta-my_new_model/MyNewModel-2-7b-hf](https://huggingface.co/meta-my_new_model/MyNewModel-2-7b-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MyNewModel model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MyNewModelModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. MyNewModel 1 supports up to 2048 tokens, MyNewModel 2 up to 4096, CodeLlama up to 16384. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'my_new_model3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'my_new_model3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`list[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'my_new_model3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'my_new_model3'. Scaling factor applied to high frequency components of the RoPE attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. head_dim (`int`, *optional*): The attention head dimension. If None, it will default to hidden_size // num_attention_heads ```python >>> from transformers import MyNewModelModel, MyNewModelConfig >>> # Initializing a MyNewModel my_new_model-7b style configuration >>> configuration = MyNewModelConfig() >>> # Initializing a model from the my_new_model-7b style configuration >>> model = MyNewModelModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` ''' def __init__(self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=True, head_dim=None, new_param=0, **kwargs): pass
2
1
63
2
58
3
4
1.63
1
1
0
0
1
19
1
1
195
11
70
50
42
114
30
24
28
4
1
1
4
3
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/configuration_my_new_model2.py
configuration_my_new_model2.MyNewModel2Config
from ...modeling_rope_utils import rope_config_validation from ...configuration_utils import PretrainedConfig class MyNewModel2Config(PretrainedConfig): """ This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma-7B. e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GemmaModel`] ```python >>> from transformers import GemmaModel, GemmaConfig >>> # Initializing a Gemma gemma-7b style configuration >>> configuration = GemmaConfig() >>> # Initializing a model from the gemma-7b style configuration >>> model = GemmaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = 'my_new_model2' keys_to_ignore_at_inference = ['past_key_values'] base_model_tp_plan = {'layers.*.self_attn.q_proj': 'colwise', 'layers.*.self_attn.k_proj': 'colwise', 'layers.*.self_attn.v_proj': 'colwise', 'layers.*.self_attn.o_proj': 'rowwise', 'layers.*.mlp.gate_proj': 'colwise', 'layers.*.mlp.up_proj': 'colwise', 'layers.*.mlp.down_proj': 'rowwise'} base_model_pp_plan = {'embed_tokens': (['input_ids'], ['inputs_embeds']), 'layers': (['hidden_states', 'attention_mask'], ['hidden_states']), 'norm': (['hidden_states'], ['hidden_states'])} def __init__(self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, head_dim=None, **kwargs): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads if self.rope_scaling is not None and 'type' in self.rope_scaling: self.rope_scaling['rope_type'] = self.rope_scaling['type'] rope_config_validation(self) super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
class MyNewModel2Config(PretrainedConfig): ''' This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma-7B. e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GemmaModel`] ```python >>> from transformers import GemmaModel, GemmaConfig >>> # Initializing a Gemma gemma-7b style configuration >>> configuration = GemmaConfig() >>> # Initializing a model from the gemma-7b style configuration >>> model = GemmaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```''' def __init__(self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act='silu', max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, head_dim=None, **kwargs): pass
2
1
62
3
56
3
4
0.35
1
1
0
0
1
18
1
1
97
5
68
48
41
24
29
23
27
4
1
1
4
4
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/configuration_new_model.py
configuration_new_model.NewModelConfig
from ...configuration_utils import PretrainedConfig class NewModelConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`NewModelModel`]. It is used to instantiate an NewModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NewModel-7B. e.g. [google/new_model-7b](https://huggingface.co/google/new_model-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the NewModel model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NewModelModel`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The legacy activation function. It is overwritten by the `hidden_activation`. hidden_activation (`str` or `function`, *optional*): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import NewModelModel, NewModelConfig >>> # Initializing a NewModel new_model-7b style configuration >>> configuration = NewModelConfig() >>> # Initializing a model from the new_model-7b style configuration >>> model = NewModelModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = 'new_model' keys_to_ignore_at_inference = ['past_key_values'] base_model_tp_plan = {'layers.*.self_attn.q_proj': 'colwise', 'layers.*.self_attn.k_proj': 'colwise', 'layers.*.self_attn.v_proj': 'colwise', 'layers.*.self_attn.o_proj': 'rowwise', 'layers.*.mlp.gate_proj': 'colwise', 'layers.*.mlp.up_proj': 'colwise', 'layers.*.mlp.down_proj': 'rowwise'} base_model_pp_plan = {'embed_tokens': (['input_ids'], ['inputs_embeds']), 'layers': (['hidden_states', 'attention_mask'], ['hidden_states']), 'norm': (['hidden_states'], ['hidden_states'])} def __init__(self, vocab_size=256030, hidden_size=64, intermediate_size=90, num_hidden_layers=28, num_attention_heads=16, num_key_value_heads=16, head_dim=256, hidden_act='gelu_pytorch_tanh', hidden_activation=None, max_position_embeddings=1500, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, **kwargs): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.hidden_activation = hidden_activation self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout @property def num_heads(self): return self.num_attention_heads
class NewModelConfig(PretrainedConfig): ''' This is the configuration class to store the configuration of a [`NewModelModel`]. It is used to instantiate an NewModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NewModel-7B. e.g. [google/new_model-7b](https://huggingface.co/google/new_model-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the NewModel model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NewModelModel`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The legacy activation function. It is overwritten by the `hidden_activation`. hidden_activation (`str` or `function`, *optional*): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import NewModelModel, NewModelConfig >>> # Initializing a NewModel new_model-7b style configuration >>> configuration = NewModelConfig() >>> # Initializing a model from the new_model-7b style configuration >>> model = NewModelModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```''' def __init__(self, vocab_size=256030, hidden_size=64, intermediate_size=90, num_hidden_layers=28, num_attention_heads=16, num_key_value_heads=16, head_dim=256, hidden_act='gelu_pytorch_tanh', hidden_activation=None, max_position_embeddings=1500, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, **kwargs): pass @property def num_heads(self): pass
4
1
25
0
25
0
1
1.25
1
1
0
0
2
16
2
2
122
3
53
45
26
66
23
21
20
1
1
0
2
5
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/conftest.py
conftest.CustomOutputChecker
class CustomOutputChecker(OutputChecker): def check_output(self, want, got, optionflags): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, want, got, optionflags)
class CustomOutputChecker(OutputChecker): def check_output(self, want, got, optionflags): pass
2
0
4
0
4
0
2
0
1
0
0
0
1
0
1
1
5
0
5
2
3
0
5
2
3
2
1
1
2
6
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/.circleci/create_circleci_config.py
create_circleci_config.CircleCIJob
import copy from typing import Any, Optional from dataclasses import dataclass import os @dataclass class CircleCIJob: name: str additional_env: dict[str, Any] = None docker_image: list[dict[str, str]] = None install_steps: list[str] = None marker: Optional[str] = None parallelism: Optional[int] = 0 pytest_num_workers: int = 8 pytest_options: dict[str, Any] = None resource_class: Optional[str] = 'xlarge' tests_to_run: Optional[list[str]] = None num_test_files_per_worker: Optional[int] = 10 command_timeout: Optional[int] = None def __post_init__(self): if self.additional_env is None: self.additional_env = {} if self.docker_image is None: self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE) else: print(os.environ.get('GIT_COMMIT_MESSAGE')) if '[build-ci-image]' in os.environ.get('GIT_COMMIT_MESSAGE', '') or os.environ.get('GIT_COMMIT_MESSAGE', '') == 'dev-ci': self.docker_image[0]['image'] = f"{self.docker_image[0]['image']}:dev" print(f'Using {self.docker_image} docker image') if self.install_steps is None: self.install_steps = ['uv pip install .'] self.install_steps.append('uv pip install git+https://github.com/ydshieh/pytest.git@8.4.1-ydshieh') if self.pytest_options is None: self.pytest_options = {} if isinstance(self.tests_to_run, str): self.tests_to_run = [self.tests_to_run] else: test_file = os.path.join('test_preparation', f'{self.job_name}_test_list.txt') print('Looking for ', test_file) if os.path.exists(test_file): with open(test_file) as f: expanded_tests = f.read().strip().split('\n') self.tests_to_run = expanded_tests print('Found:', expanded_tests) else: self.tests_to_run = [] print('not Found') def to_dict(self): env = COMMON_ENV_VARIABLES.copy() env['RUN_FLAKY'] = os.environ.get('CIRCLE_PULL_REQUEST', '') == '' env.update(self.additional_env) job = {'docker': self.docker_image, 'environment': env} if self.resource_class is not None: job['resource_class'] = self.resource_class all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options} pytest_flags = [f'--{key}={value}' if value is not None or key in ['doctest-modules'] else f'-{key}' for key, value in all_options.items()] pytest_flags.append(f'--make-reports={self.name}' if 'examples' in self.name else f'--make-reports=tests_{self.name}') timeout_cmd = f'timeout {self.command_timeout} ' if self.command_timeout else '' marker_cmd = f"-m '{self.marker}'" if self.marker is not None else '' junit_flags = ' -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml' joined_flaky_patterns = '|'.join(FLAKY_TEST_FAILURE_PATTERNS) repeat_on_failure_flags = f"--reruns 5 --reruns-delay 2 --only-rerun '({joined_flaky_patterns})'" parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> ' steps = ['checkout', {'attach_workspace': {'at': 'test_preparation'}}, {'run': 'apt-get update && apt-get install -y curl'}, {'run': ' && '.join(self.install_steps)}, {'run': {'name': 'Download NLTK files', 'command': 'python -c "import nltk; nltk.download(\'punkt\', quiet=True)" '} if 'example' in self.name else 'echo Skipping'}, {'run': {'name': 'Show installed libraries and their size', 'command': 'du -h -d 1 "$(pip -V | cut -d \' \' -f 4 | sed \'s/pip//g\')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true'}}, {'run': {'name': 'Show installed libraries and their versions', 'command': 'pip list --format=freeze | tee installed.txt || true'}}, {'run': {'name': 'Show biggest libraries', 'command': 'dpkg-query --show --showformat=\'${Installed-Size}\t${Package}\n\' | sort -rh | head -25 | sort -h | awk \'{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}\' || true'}}, {'run': {'name': 'Create `test-results` directory', 'command': 'mkdir test-results'}}, {'run': {'name': 'Get files to test', 'command': f'curl -L -o {self.job_name}_test_list.txt <<pipeline.parameters.{self.job_name}_test_list>> --header "Circle-Token: $CIRCLE_TOKEN"' if self.name != 'pr_documentation_tests' else 'echo "Skipped"'}}, {'run': {'name': 'Split tests across parallel nodes: show current parallel tests', 'command': f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"""awk '{{printf "%s ", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"""}}, {'run': {'name': 'fetch hub objects before pytest', 'command': 'cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py'}}, {'run': {'name': 'Run tests', 'command': f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}}, {'run': {'name': 'Check for test crashes', 'when': 'always', 'command': 'if [ ! -f tests_output.txt ]; then\n echo "ERROR: tests_output.txt does not exist - tests may not have run properly"\n exit 1\n elif grep -q "crashed and worker restarting disabled" tests_output.txt; then\n echo "ERROR: Worker crash detected in test output"\n echo "Found: crashed and worker restarting disabled"\n exit 1\n else\n echo "Tests output file exists and no worker crashes detected"\n fi'}}, {'run': {'name': 'Expand to show skipped tests', 'when': 'always', 'command': 'python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip'}}, {'run': {'name': 'Failed tests: show reasons', 'when': 'always', 'command': 'python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail'}}, {'run': {'name': 'Errors', 'when': 'always', 'command': 'python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors'}}, {'store_test_results': {'path': 'test-results'}}, {'store_artifacts': {'path': 'test-results/junit.xml'}}, {'store_artifacts': {'path': 'reports'}}, {'store_artifacts': {'path': 'tests.txt'}}, {'store_artifacts': {'path': 'splitted_tests.txt'}}, {'store_artifacts': {'path': 'installed.txt'}}] if self.parallelism: job['parallelism'] = parallel job['steps'] = steps return job @property def job_name(self): return self.name if 'examples' in self.name or 'pipeline' in self.name or 'pr_documentation' in self.name else f'tests_{self.name}'
@dataclass class CircleCIJob: def __post_init__(self): pass def to_dict(self): pass @property def job_name(self): pass
6
0
32
1
30
1
7
0.05
0
1
0
0
3
0
3
3
113
5
103
28
98
5
57
26
53
10
0
3
20
7
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/.circleci/create_circleci_config.py
create_circleci_config.EmptyJob
import copy class EmptyJob: job_name = 'empty' def to_dict(self): steps = [{'run': 'ls -la'}] if self.job_name == 'collection_job': steps.extend(['checkout', {'run': 'pip install requests || true'}, {'run': 'while [[ $(curl --location --request GET "https://circleci.com/api/v2/workflow/$CIRCLE_WORKFLOW_ID/job" --header "Circle-Token: $CCI_TOKEN"| jq -r \'.items[]|select(.name != "collection_job")|.status\' | grep -c "running") -gt 0 ]]; do sleep 5; done || true'}, {'run': 'python utils/process_circleci_workflow_test_reports.py --workflow_id $CIRCLE_WORKFLOW_ID || true'}, {'store_artifacts': {'path': 'outputs'}}, {'run': 'echo "All required jobs have now completed"'}]) return {'docker': copy.deepcopy(DEFAULT_DOCKER_IMAGE), 'resource_class': 'small', 'steps': steps}
class EmptyJob: def to_dict(self): pass
2
0
19
1
18
0
2
0
0
0
0
0
1
0
1
1
22
2
20
4
18
0
7
4
5
2
0
1
2
8
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/image_processing_new_imgproc_model.py
image_processing_new_imgproc_model.ImgprocModelImageProcessor
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict import torch from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format import numpy as np from typing import Optional, Union from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_flat_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments class ImgprocModelImageProcessor(BaseImageProcessor): """ Constructs a IMGPROC_MODEL image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ['pixel_values'] def __init__(self, do_resize: bool=True, size: Optional[dict[str, int]]=None, resample: PILImageResampling=PILImageResampling.BICUBIC, do_rescale: bool=True, rescale_factor: Union[int, float]=1 / 255, do_normalize: bool=True, image_mean: Optional[Union[float, list[float]]]=None, image_std: Optional[Union[float, list[float]]]=None, do_convert_rgb: bool=True, **kwargs) -> None: super().__init__(**kwargs) size = size if size is not None else {'height': 384, 'width': 384} size = get_size_dict(size, default_to_square=True) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def resize(self, image: np.ndarray, size: dict[str, int], resample: PILImageResampling=PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if 'height' not in size or 'width' not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}') output_size = (size['height'], size['width']) return resize(image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs) @filter_out_non_signature_kwargs() def preprocess(self, images: ImageInput, do_resize: Optional[bool]=None, size: Optional[dict[str, int]]=None, resample: Optional[PILImageResampling]=None, do_rescale: Optional[bool]=None, rescale_factor: Optional[float]=None, do_normalize: Optional[bool]=None, image_mean: Optional[Union[float, list[float]]]=None, image_std: Optional[Union[float, list[float]]]=None, return_tensors: Optional[Union[str, TensorType]]=None, do_convert_rgb: Optional[bool]=None, data_format: ChannelDimension=ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]]=None) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = self.fetch_images(images) images = make_flat_list_of_images(images) if not valid_images(images): raise ValueError('Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, or torch.Tensor') validate_preprocess_arguments(do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once('It looks like you are trying to rescale already rescaled images. If the input images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again.') if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images] images = [to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images] encoded_outputs = BatchFeature(data={'pixel_values': images}, tensor_type=return_tensors) return encoded_outputs def new_image_processing_method(self, pixel_values: torch.FloatTensor): return pixel_values / 2
class ImgprocModelImageProcessor(BaseImageProcessor): ''' Constructs a IMGPROC_MODEL image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. ''' def __init__(self, do_resize: bool=True, size: Optional[dict[str, int]]=None, resample: PILImageResampling=PILImageResampling.BICUBIC, do_rescale: bool=True, rescale_factor: Union[int, float]=1 / 255, do_normalize: bool=True, image_mean: Optional[Union[float, list[float]]]=None, image_std: Optional[Union[float, list[float]]]=None, do_convert_rgb: bool=True, **kwargs) -> None: pass def resize(self, image: np.ndarray, size: dict[str, int], resample: PILImageResampling=PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray: ''' Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. ''' pass @filter_out_non_signature_kwargs() def preprocess(self, images: ImageInput, do_resize: Optional[bool]=None, size: Optional[dict[str, int]]=None, resample: Optional[PILImageResampling]=None, do_rescale: Optional[bool]=None, rescale_factor: Optional[float]=None, do_normalize: Optional[bool]=None, image_mean: Optional[Union[float, list[float]]]=None, image_std: Optional[Union[float, list[float]]]=None, return_tensors: Optional[Union[str, TensorType]]=None, do_convert_rgb: Optional[bool]=None, data_format: ChannelDimension=ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]]=None) -> PIL.Image.Image: ''' Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. ''' pass def new_image_processing_method(self, pixel_values: torch.FloatTensor): pass
6
3
53
4
30
18
6
0.85
1
6
0
0
4
9
4
4
251
23
123
53
82
105
54
17
49
17
1
1
24
9
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/legacy/pytorch-lightning/lightning_base.py
lightning_base.BaseTransformer
import os from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup from typing import Any import argparse import pytorch_lightning as pl from pathlib import Path from transformers import AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, is_torch_available class BaseTransformer(pl.LightningModule): def __init__(self, hparams: argparse.Namespace, num_labels=None, mode='base', config=None, tokenizer=None, model=None, **config_kwargs): """Initialize a model, tokenizer and config.""" super().__init__() self.save_hyperparameters(hparams) self.step_count = 0 self.output_dir = Path(self.hparams.output_dir) cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: self.config = AutoConfig.from_pretrained(self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **{'num_labels': num_labels} if num_labels is not None else {}, cache_dir=cache_dir, **config_kwargs) else: self.config: PretrainedConfig = config extra_model_params = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams, p, None): assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" setattr(self.config, p, getattr(self.hparams, p)) if tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained(self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=cache_dir) else: self.tokenizer: PreTrainedTokenizer = tokenizer self.model_type = MODEL_MODES[mode] if model is None: self.model = self.model_type.from_pretrained(self.hparams.model_name_or_path, from_tf=bool('.ckpt' in self.hparams.model_name_or_path), config=self.config, cache_dir=cache_dir) else: self.model = model def load_hf_checkpoint(self, *args, **kwargs): self.model = self.model_type.from_pretrained(*args, **kwargs) def get_lr_scheduler(self): get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] scheduler = get_schedule_func(self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()) scheduler = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def configure_optimizers(self): """Prepare optimizer and schedule (linear warmup and decay)""" model = self.model no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{'params': [p for n, p in model.named_parameters() if not any((nd in n for nd in no_decay))], 'weight_decay': self.hparams.weight_decay}, {'params': [p for n, p in model.named_parameters() if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}] if self.hparams.adafactor: optimizer = Adafactor(optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False) else: optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon) self.opt = optimizer scheduler = self.get_lr_scheduler() return ([optimizer], [scheduler]) def test_step(self, batch, batch_nb): return self.validation_step(batch, batch_nb) def test_epoch_end(self, outputs): return self.validation_end(outputs) def total_steps(self) -> int: """The number of total training steps that will be run. Used for lr scheduler purposes.""" num_devices = max(1, self.hparams.gpus) effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return self.dataset_size / effective_batch_size * self.hparams.max_epochs def setup(self, mode): if mode == 'test': self.dataset_size = len(self.test_dataloader().dataset) else: self.train_loader = self.get_dataloader('train', self.hparams.train_batch_size, shuffle=True) self.dataset_size = len(self.train_dataloader().dataset) def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool=False): raise NotImplementedError('You must implement this for your task') def train_dataloader(self): return self.train_loader def val_dataloader(self): return self.get_dataloader('dev', self.hparams.eval_batch_size, shuffle=False) def test_dataloader(self): return self.get_dataloader('test', self.hparams.eval_batch_size, shuffle=False) def _feature_file(self, mode): return os.path.join(self.hparams.data_dir, 'cached_{}_{}_{}'.format(mode, list(filter(None, self.hparams.model_name_or_path.split('/'))).pop(), str(self.hparams.max_seq_length))) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None: save_path = self.output_dir.joinpath('best_tfmr') self.model.config.save_step = self.step_count self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) @staticmethod def add_model_specific_args(parser, root_dir): parser.add_argument('--model_name_or_path', default=None, type=str, required=True, help='Path to pretrained model or model identifier from huggingface.co/models') parser.add_argument('--config_name', default='', type=str, help='Pretrained config name or path if not the same as model_name') parser.add_argument('--tokenizer_name', default=None, type=str, help='Pretrained tokenizer name or path if not the same as model_name') parser.add_argument('--cache_dir', default='', type=str, help='Where do you want to store the pre-trained models downloaded from huggingface.co') parser.add_argument('--encoder_layerdrop', type=float, help='Encoder layer dropout probability (Optional). Goes into model.config') parser.add_argument('--decoder_layerdrop', type=float, help='Decoder layer dropout probability (Optional). Goes into model.config') parser.add_argument('--dropout', type=float, help='Dropout probability (Optional). Goes into model.config') parser.add_argument('--attention_dropout', type=float, help='Attention dropout probability (Optional). Goes into model.config') parser.add_argument('--learning_rate', default=5e-05, type=float, help='The initial learning rate for Adam.') parser.add_argument('--lr_scheduler', default='linear', choices=arg_to_scheduler_choices, metavar=arg_to_scheduler_metavar, type=str, help='Learning rate scheduler') parser.add_argument('--weight_decay', default=0.0, type=float, help='Weight decay if we apply some.') parser.add_argument('--adam_epsilon', default=1e-08, type=float, help='Epsilon for Adam optimizer.') parser.add_argument('--warmup_steps', default=0, type=int, help='Linear warmup over warmup_steps.') parser.add_argument('--num_workers', default=4, type=int, help='kwarg passed to DataLoader') parser.add_argument('--num_train_epochs', dest='max_epochs', default=3, type=int) parser.add_argument('--train_batch_size', default=32, type=int) parser.add_argument('--eval_batch_size', default=32, type=int) parser.add_argument('--adafactor', action='store_true')
class BaseTransformer(pl.LightningModule): def __init__(self, hparams: argparse.Namespace, num_labels=None, mode='base', config=None, tokenizer=None, model=None, **config_kwargs): '''Initialize a model, tokenizer and config.''' pass def load_hf_checkpoint(self, *args, **kwargs): pass def get_lr_scheduler(self): pass def configure_optimizers(self): '''Prepare optimizer and schedule (linear warmup and decay)''' pass def test_step(self, batch, batch_nb): pass def test_epoch_end(self, outputs): pass def total_steps(self) -> int: '''The number of total training steps that will be run. Used for lr scheduler purposes.''' pass def setup(self, mode): pass def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool=False): pass def train_dataloader(self): pass def val_dataloader(self): pass def test_dataloader(self): pass def _feature_file(self, mode): pass @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None: pass @staticmethod def add_model_specific_args(parser, root_dir): pass
18
3
12
0
12
0
2
0.04
1
17
0
2
14
9
15
15
204
20
178
50
151
7
86
37
70
10
1
2
26
10
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/legacy/pytorch-lightning/lightning_base.py
lightning_base.LoggingCallback
import pytorch_lightning as pl import os from pytorch_lightning.utilities import rank_zero_info class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lr_scheduler = trainer.lr_schedulers[0]['scheduler'] lrs = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lrs) def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info('***** Validation results *****') metrics = trainer.callback_metrics for key in sorted(metrics): if key not in ['log', 'progress_bar']: rank_zero_info(f'{key} = {str(metrics[key])}\n') def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info('***** Test results *****') metrics = trainer.callback_metrics output_test_results_file = os.path.join(pl_module.hparams.output_dir, 'test_results.txt') with open(output_test_results_file, 'w') as writer: for key in sorted(metrics): if key not in ['log', 'progress_bar']: rank_zero_info(f'{key} = {str(metrics[key])}\n') writer.write(f'{key} = {str(metrics[key])}\n')
class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): pass def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): pass def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): pass
4
0
7
0
6
1
2
0.1
1
2
0
0
3
0
3
3
24
2
20
12
16
2
20
11
16
3
1
3
7
11
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_add_function.py
modeling_add_function.TestAttention
from ...utils.deprecation import deprecate_kwarg import torch from torch import nn from typing import Optional class TestAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://huggingface.co/papers/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: _ = apply_rotary_pos_emb(1, 1, 1, 1)
class TestAttention(nn.Module): ''' Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://huggingface.co/papers/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) ''' def __init__(self): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: pass
4
1
2
0
2
0
1
2.2
1
1
0
0
2
0
2
12
19
3
5
4
2
11
5
4
2
1
1
0
2
12
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertAttention
import torch from torch import nn from typing import Optional, Union from ...utils.deprecation import deprecate_kwarg from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer class DummyBertAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__() self.self = DUMMY_BERT_SELF_ATTENTION_CLASSES[config._attn_implementation](config, position_embedding_type=position_embedding_type, layer_idx=layer_idx) self.output = DummyBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads) self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] return outputs
class DummyBertAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): pass def prune_heads(self, heads): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: pass
5
0
15
1
14
1
1
0.07
1
5
1
0
3
3
3
13
49
4
43
20
30
3
22
11
18
2
1
1
4
13
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertEmbeddings
import torch from torch import nn from typing import Optional, Union class DummyBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False) self.register_buffer('token_type_ids', torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False) def forward(self, input_ids: Optional[torch.LongTensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, past_key_values_length: int=0) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length] if token_type_ids is None: if hasattr(self, 'token_type_ids'): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == 'absolute': position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class DummyBertEmbeddings(nn.Module): '''Construct the embeddings from word, position and token_type embeddings.''' def __init__(self, config): pass def forward(self, input_ids: Optional[torch.LongTensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, past_key_values_length: int=0) -> torch.Tensor: pass
3
1
29
3
23
3
4
0.15
1
3
0
0
2
6
2
12
62
8
47
23
37
7
34
16
31
7
1
2
8
14
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertEncoder
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from typing import Optional, Union from torch import nn from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions import torch class DummyBertEncoder(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() self.config = config self.layer = nn.ModuleList([DummyBertLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, encoder_attention_mask: Optional[torch.FloatTensor]=None, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=False, output_hidden_states: Optional[bool]=False, return_dict: Optional[bool]=True, cache_position: Optional[torch.Tensor]=None) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...') use_cache = False if use_cache and self.config.is_decoder and (past_key_values is None): past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config)) if use_cache and self.config.is_decoder and isinstance(past_key_values, tuple): logger.warning_once('Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. You should pass an instance of `EncoderDecoderCache` instead, e.g. `past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`.') past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple((v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None)) return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions)
class DummyBertEncoder(nn.Module): def __init__(self, config, layer_idx=None): pass def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, encoder_attention_mask: Optional[torch.FloatTensor]=None, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=False, output_hidden_states: Optional[bool]=False, return_dict: Optional[bool]=True, cache_position: Optional[torch.Tensor]=None) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: pass
3
0
45
4
41
0
9
0
1
7
1
0
2
3
2
12
91
8
83
26
68
0
35
14
32
17
1
3
18
15
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertIntermediate
import torch from torch import nn from ...activations import ACT2FN class DummyBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class DummyBertIntermediate(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: pass
3
0
6
0
6
0
2
0
1
3
0
0
2
2
2
12
13
1
12
5
9
0
11
5
8
2
1
1
3
16
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertLayer
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer import torch from ...modeling_layers import GradientCheckpointingLayer from typing import Optional, Union from ...utils.deprecation import deprecate_kwarg class DummyBertLayer(GradientCheckpointingLayer): def __init__(self, config, layer_idx=None): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = DummyBertAttention(config, layer_idx=layer_idx) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f'{self} should be used as a decoder model if cross attention is added') self.crossattention = DummyBertAttention(config, position_embedding_type='absolute', layer_idx=layer_idx) self.intermediate = DummyBertIntermediate(config) self.output = DummyBertOutput(config) @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, encoder_attention_mask: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: self_attention_outputs = self.attention(hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, past_key_values=past_key_values, cache_position=cache_position) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, 'crossattention'): raise ValueError(f'If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`') cross_attention_outputs = self.crossattention(attention_output, attention_mask=encoder_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, output_attentions=output_attentions, cache_position=cache_position) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] layer_output = apply_chunking_to_forward(self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class DummyBertLayer(GradientCheckpointingLayer): def __init__(self, config, layer_idx=None): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, encoder_attention_mask: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: pass def feed_forward_chunk(self, attention_output): pass
5
0
27
2
23
2
4
0.1
1
7
3
0
3
8
3
13
84
9
70
32
57
7
41
23
37
7
1
2
11
17
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertModel
from ...utils import auto_docstring, logging import torch from typing import Optional, Union from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache @auto_docstring(custom_intro='\n The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of\n cross-attention is added between the self-attention layers, following the architecture described in [Attention is\n all you need](https://huggingface.co/papers/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,\n Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.\n\n To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set\n to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and\n `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.\n ') class DummyBertModel(DummyBertPreTrainedModel): _no_split_modules = ['DummyBertEmbeddings', 'DummyBertLayer'] def __init__(self, config, add_pooling_layer=True): """ add_pooling_layer (bool, *optional*, defaults to `True`): Whether to add a pooling layer """ super().__init__(config) self.config = config self.embeddings = DummyBertEmbeddings(config) self.encoder = DummyBertEncoder(config) self.pooler = DummyBertPooler(config) if add_pooling_layer else None self.attn_implementation = config._attn_implementation self.position_embedding_type = config.position_embedding_type self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @auto_docstring def forward(self, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, past_key_values: Optional[list[torch.FloatTensor]]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, cache_position: Optional[torch.Tensor]=None) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds') batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[-2] if not isinstance(past_key_values, Cache) else past_key_values.get_seq_length() if token_type_ids is None: if hasattr(self.embeddings, 'token_type_ids'): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length) if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device) use_sdpa_attention_masks = self.attn_implementation == 'sdpa' and self.position_embedding_type == 'absolute' and (head_mask is None) and (not output_attentions) if use_sdpa_attention_masks and attention_mask.dim() == 2: if self.config.is_decoder: extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, embedding_output, past_key_values_length) else: extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, embedding_output.dtype, tgt_len=seq_length) else: extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder(embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions)
null
8
2
37
4
25
8
5
0.35
1
7
3
0
5
6
5
6
211
29
135
45
108
47
65
29
59
21
2
2
27
18
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertOutput
import torch from torch import nn class DummyBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class DummyBertOutput(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: pass
3
0
5
0
5
0
1
0
1
2
0
0
2
3
2
12
12
1
11
6
8
0
11
6
8
1
1
0
2
19
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertPooler
from torch import nn import torch class DummyBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class DummyBertPooler(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: pass
3
0
6
0
5
1
1
0.2
1
2
0
0
2
2
2
12
13
1
10
7
7
2
10
7
7
1
1
0
2
20
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertPreTrainedModel
from ...modeling_utils import PreTrainedModel from .configuration_dummy_bert import DummyBertConfig from ...utils import auto_docstring, logging from torch import nn @auto_docstring class DummyBertPreTrainedModel(PreTrainedModel): config: DummyBertConfig base_model_prefix = 'dummy_bert' supports_gradient_checkpointing = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, DummyBertLMPredictionHead): module.bias.data.zero_()
@auto_docstring class DummyBertPreTrainedModel(PreTrainedModel): def _init_weights(self, module): '''Initialize the weights''' pass
3
1
15
0
12
3
6
0.39
1
0
0
1
1
0
1
1
27
2
18
7
16
7
16
7
14
6
1
2
6
21
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertSdpaSelfAttention
from ...utils.deprecation import deprecate_kwarg from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from typing import Optional, Union import torch class DummyBertSdpaSelfAttention(DummyBertSelfAttention): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__(config, position_embedding_type=position_embedding_type, layer_idx=layer_idx) self.dropout_prob = config.attention_probs_dropout_prob @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: if self.position_embedding_type != 'absolute' or output_attentions or head_mask is not None: logger.warning_once('DummyBertSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.') return super().forward(hidden_states, attention_mask, head_mask, encoder_hidden_states, past_key_values, output_attentions, cache_position) bsz, tgt_len, _ = hidden_states.size() query_layer = self.query(hidden_states).view(bsz, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) is_updated = False is_cross_attention = encoder_hidden_states is not None current_states = encoder_hidden_states if is_cross_attention else hidden_states if past_key_values is not None: if isinstance(past_key_values, EncoderDecoderCache): is_updated = past_key_values.is_updated.get(self.layer_idx) if is_cross_attention: curr_past_key_value = past_key_values.cross_attention_cache else: curr_past_key_value = past_key_values.self_attention_cache else: curr_past_key_value = past_key_values current_states = encoder_hidden_states if is_cross_attention else hidden_states if is_cross_attention and past_key_values is not None and is_updated: key_layer = curr_past_key_value.layers[self.layer_idx].keys value_layer = curr_past_key_value.layers[self.layer_idx].values else: key_layer = self.key(current_states).view(bsz, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) value_layer = self.value(current_states).view(bsz, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) if past_key_values is not None: cache_position = cache_position if not is_cross_attention else None key_layer, value_layer = curr_past_key_value.update(key_layer, value_layer, self.layer_idx, {'cache_position': cache_position}) if is_cross_attention and isinstance(past_key_values, EncoderDecoderCache): past_key_values.is_updated[self.layer_idx] = True is_causal = self.is_decoder and (not is_cross_attention) and (attention_mask is None) and (tgt_len > 1) attn_output = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob if self.training else 0.0, is_causal=is_causal) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size) return (attn_output, None)
class DummyBertSdpaSelfAttention(DummyBertSelfAttention): def __init__(self, config, position_embedding_type=None, layer_idx=None): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: pass
4
0
48
6
34
9
6
0.28
1
3
0
0
2
2
2
15
99
12
68
22
56
19
35
13
32
11
2
2
12
22
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertSelfAttention
import math import torch from ...utils.deprecation import deprecate_kwarg from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from torch import nn from typing import Optional, Union class DummyBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and (not hasattr(config, 'embedding_size')): raise ValueError(f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})') self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr(config, 'position_embedding_type', 'absolute') if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query': self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder self.layer_idx = layer_idx @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: batch_size, seq_length, _ = hidden_states.shape query_layer = self.query(hidden_states) query_layer = query_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) is_updated = False is_cross_attention = encoder_hidden_states is not None if past_key_values is not None: if isinstance(past_key_values, EncoderDecoderCache): is_updated = past_key_values.is_updated.get(self.layer_idx) if is_cross_attention: curr_past_key_value = past_key_values.cross_attention_cache else: curr_past_key_value = past_key_values.self_attention_cache else: curr_past_key_value = past_key_values current_states = encoder_hidden_states if is_cross_attention else hidden_states if is_cross_attention and past_key_values is not None and is_updated: key_layer = curr_past_key_value.layers[self.layer_idx].keys value_layer = curr_past_key_value.layers[self.layer_idx].values else: key_layer = self.key(current_states) key_layer = key_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) value_layer = self.value(current_states) value_layer = value_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2) if past_key_values is not None: cache_position = cache_position if not is_cross_attention else None key_layer, value_layer = curr_past_key_value.update(key_layer, value_layer, self.layer_idx, {'cache_position': cache_position}) if is_cross_attention and isinstance(past_key_values, EncoderDecoderCache): past_key_values.is_updated[self.layer_idx] = True attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query': query_length, key_length = (query_layer.shape[2], key_layer.shape[2]) if past_key_values is not None: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(-1, 1) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) if self.position_embedding_type == 'relative_key': relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == 'relative_key_query': relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.functional.softmax(attention_scores, dim=-1) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return (context_layer, attention_probs)
class DummyBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): pass @deprecate_kwarg('past_key_value', new_name='past_key_values', version='4.58') def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor]=None, head_mask: Optional[torch.FloatTensor]=None, encoder_hidden_states: Optional[torch.FloatTensor]=None, past_key_values: Optional[Cache]=None, output_attentions: Optional[bool]=False, cache_position: Optional[torch.Tensor]=None) -> tuple[torch.Tensor]: pass
4
0
43
7
31
6
6
0.19
1
5
0
1
3
11
3
13
132
22
93
44
80
18
72
35
68
13
1
2
17
23
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_dummy_bert.py
modeling_dummy_bert.DummyBertSelfOutput
import torch from torch import nn class DummyBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class DummyBertSelfOutput(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: pass
3
0
5
0
5
0
1
0
1
2
0
0
2
3
2
12
12
1
11
6
8
0
11
6
8
1
1
0
2
24
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_from_uppercase_model.py
modeling_from_uppercase_model.FromUppercaseModelAttention
import torch from .configuration_from_uppercase_model import FromUppercaseModelTextConfig, FromUppercaseModelVisionConfig from torch import nn from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from typing import Callable, Optional, Union class FromUppercaseModelAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError(f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads}).') self.scale = self.head_dim ** (-0.5) self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) if self.config._attn_implementation == 'flash_attention_2': self.is_causal = causal_attention_mask is not None elif attention_mask is not None and causal_attention_mask is not None: attention_mask = attention_mask + causal_attention_mask elif causal_attention_mask is not None: attention_mask = causal_attention_mask attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != 'eager': attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface(self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, output_attentions=output_attentions) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return (attn_output, attn_weights)
class FromUppercaseModelAttention(nn.Module): '''Multi-headed attention from 'Attention Is All You Need' paper''' def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]): pass def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False) -> tuple[torch.Tensor, Optional[torch.Tensor]]: '''Input shape: Batch x Time x Channel''' pass
3
2
32
5
25
2
4
0.11
1
5
0
2
3
10
3
13
102
19
75
30
65
8
54
24
50
8
1
2
11
25
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_from_uppercase_model.py
modeling_from_uppercase_model.FromUppercaseModelEncoderLayer
from ...modeling_layers import GradientCheckpointingLayer from .configuration_from_uppercase_model import FromUppercaseModelTextConfig, FromUppercaseModelVisionConfig from torch import nn from typing import Callable, Optional, Union import torch class FromUppercaseModelEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]): super().__init__() self.embed_dim = config.hidden_size self.self_attn = FromUppercaseModelAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = FromUppercaseModelMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class FromUppercaseModelEncoderLayer(GradientCheckpointingLayer): def __init__(self, config: Union[FromUppercaseModelVisionConfig, FromUppercaseModelTextConfig]): pass def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> tuple[torch.FloatTensor]: ''' Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. ''' pass
3
1
23
3
16
5
2
0.31
1
4
1
0
2
5
2
12
48
6
32
17
23
10
21
11
18
2
1
1
3
26
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_from_uppercase_model.py
modeling_from_uppercase_model.FromUppercaseModelMLP
import torch from torch import nn from ...activations import ACT2FN class FromUppercaseModelMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class FromUppercaseModelMLP(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: pass
3
0
6
0
6
0
1
0
1
2
0
0
2
4
2
12
13
1
12
7
9
0
12
7
9
1
1
0
2
27
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionAttention
from torch import nn from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel import torch from typing import Callable, Optional, Union from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig class Multimodal2VisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError(f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads}).') self.scale = self.head_dim ** (-0.5) self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2) if self.config._attn_implementation == 'flash_attention_2': self.is_causal = causal_attention_mask is not None elif attention_mask is not None and causal_attention_mask is not None: attention_mask = attention_mask + causal_attention_mask elif causal_attention_mask is not None: attention_mask = causal_attention_mask attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != 'eager': attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface(self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, output_attentions=output_attentions) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return (attn_output, attn_weights)
class Multimodal2VisionAttention(nn.Module): '''Multi-headed attention from 'Attention Is All You Need' paper''' def __init__(self, config: Union[Multimodal2VisionConfig, Multimodal2TextConfig]): pass def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False) -> tuple[torch.Tensor, Optional[torch.Tensor]]: '''Input shape: Batch x Time x Channel''' pass
3
2
32
5
25
2
4
0.11
1
5
0
2
3
10
3
13
102
19
75
30
65
8
54
24
50
8
1
2
11
28
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionEmbeddings
from torch import nn import torch from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig from ...utils import auto_docstring, can_return_tuple, torch_int class Multimodal2VisionEmbeddings(nn.Module): def __init__(self, config: Multimodal2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d(in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer('position_ids', torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 position_embedding = self.position_embedding.weight.unsqueeze(0) num_positions = position_embedding.shape[1] - 1 if not torch.jit.is_tracing() and num_patches == num_positions and (height == width): return self.position_embedding(self.position_ids) class_pos_embed = position_embedding[:, :1] patch_pos_embed = position_embedding[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions ** 0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate(patch_pos_embed, size=(new_height, new_width), mode='bicubic', align_corners=False) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): raise ValueError(f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size}).") target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings
class Multimodal2VisionEmbeddings(nn.Module): def __init__(self, config: Multimodal2VisionConfig): pass def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: ''' This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 ''' pass def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: pass
4
1
26
5
19
3
2
0.16
1
4
0
0
3
9
3
13
81
16
57
27
53
9
43
27
39
3
1
1
6
29
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionEncoder
from typing import Callable, Optional, Union from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from torch import nn import torch class Multimodal2VisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Multimodal2VisionEncoderLayer`]. Args: config: Multimodal2VisionConfig """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList([Multimodal2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, inputs_embeds, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None) -> BaseModelOutput: """ Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer(hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
class Multimodal2VisionEncoder(nn.Module): ''' Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Multimodal2VisionEncoderLayer`]. Args: config: Multimodal2VisionConfig ''' def __init__(self, config): pass def forward(self, inputs_embeds, attention_mask: Optional[torch.Tensor]=None, causal_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None) -> BaseModelOutput: ''' Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' pass
3
2
43
5
25
13
7
0.61
1
7
1
0
2
3
2
12
95
13
51
19
40
31
27
11
24
12
1
2
13
30
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionEncoderLayer
import torch from ...modeling_layers import GradientCheckpointingLayer from typing import Callable, Optional, Union from torch import nn class Multimodal2VisionEncoderLayer(GradientCheckpointingLayer): def __init__(self, config): super().__init__() self.embed_dim = config.hidden_size self.self_attn = Multimodal2Attention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Multimodal2VisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class Multimodal2VisionEncoderLayer(GradientCheckpointingLayer): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> tuple[torch.FloatTensor]: ''' Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. ''' pass
3
1
23
3
16
5
2
0.31
1
4
1
0
2
5
2
12
48
6
32
17
23
10
21
11
18
2
1
1
3
31
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionMLP
from torch import nn from ...activations import ACT2FN import torch class Multimodal2VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class Multimodal2VisionMLP(nn.Module): def __init__(self, config): pass def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: pass
3
0
6
0
6
0
1
0
1
2
0
0
2
4
2
12
13
1
12
7
9
0
12
7
9
1
1
0
2
32
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionModel
from typing import Callable, Optional, Union from torch import nn import torch from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig from ...utils import auto_docstring, can_return_tuple, torch_int from transformers.utils import add_start_docstrings @add_start_docstrings('New doc', MULTIMODAL2_VISION_START_DOCSTRING) class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel): config: Multimodal2VisionConfig main_input_name = 'pixel_values' _no_split_modules = ['Multimodal2VisionEncoderLayer'] def __init__(self, config: Multimodal2VisionConfig): super().__init__(config) self.vision_model = Multimodal2VisionTransformer(config) self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @can_return_tuple @auto_docstring def forward(self, pixel_values: Optional[torch.FloatTensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, interpolate_pos_encoding: bool=False) -> BaseModelOutputWithPooling: """ Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Multimodal2VisionModel >>> model = Multimodal2VisionModel.from_pretrained("openai/multimodal2-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/multimodal2-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model(pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding)
@add_start_docstrings('New doc', MULTIMODAL2_VISION_START_DOCSTRING) class Multimodal2VisionModel(Multimodal2VisionPreTrainedModel): def __init__(self, config: Multimodal2VisionConfig): pass def get_input_embeddings(self) -> nn.Module: pass @can_return_tuple @auto_docstring def forward(self, pixel_values: Optional[torch.FloatTensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, interpolate_pos_encoding: bool=False) -> BaseModelOutputWithPooling: ''' Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Multimodal2VisionModel >>> model = Multimodal2VisionModel.from_pretrained("openai/multimodal2-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/multimodal2-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```''' pass
7
1
15
2
7
6
1
0.61
1
3
1
0
3
1
3
4
55
10
28
16
15
17
13
8
9
2
2
0
4
33
huggingface/pytorch-pretrained-BERT
huggingface_pytorch-pretrained-BERT/examples/modular-transformers/modeling_multimodal2.py
modeling_multimodal2.Multimodal2VisionPreTrainedModel
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from .configuration_multimodal2 import Multimodal2Config, Multimodal2TextConfig, Multimodal2VisionConfig from ...utils import auto_docstring, can_return_tuple, torch_int @auto_docstring class Multimodal2VisionPreTrainedModel(PreTrainedModel): config: Multimodal2Config base_model_prefix = 'multimodal2_vision' supports_gradient_checkpointing = True _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True _supports_attention_backend = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Multimodal2VisionMLP): pass
@auto_docstring class Multimodal2VisionPreTrainedModel(PreTrainedModel): def _init_weights(self, module): '''Initialize the weights''' pass
3
1
4
0
3
1
2
0.56
1
1
1
1
1
0
1
1
16
2
9
7
7
5
9
7
7
2
1
1
2
End of preview. Expand in Data Studio

๐Ÿ“˜ Data Dictionary for the Curated Class-level Dataset

Field Description
id A unique identifier for each data point, starting from 0.
repository_name Name of the GitHub repository from which the class was extracted.
file_path Full path to the file containing the class within the repository.
class_name Name of the class defined in the corresponding file.
human_written_code Full source code of the human-written class, including all docstrings.
class_skeleton Extracted skeleton of the class, including class and method signatures along with associated docstrings (if present).
total_program_units Total number of program units (i.e., classes and methods) within the class skeleton.
total_doc_str Number of program units in the class skeleton that contain associated docstrings.
AvgCountLine Average number of lines per class.
AvgCountLineBlank Average number of blank lines per class.
AvgCountLineCode Average number of code lines per class (excluding comments and blanks).
AvgCountLineComment Average number of comment lines per class.
AvgCyclomatic Average cyclomatic complexity across methods in the class.
CommentToCodeRatio Ratio of comment lines to code lines in the class.
CountClassBase Number of base classes (i.e., direct superclasses).
CountClassCoupled Number of other classes referenced (coupled) by this class.
CountClassCoupledModified Number of coupled classes after removing standard library dependencies.
CountClassDerived Number of classes that inherit from this class.
CountDeclInstanceMethod Number of instance methods declared in the class.
CountDeclInstanceVariable Number of instance variables declared in the class.
CountDeclMethod Number of methods declared in the class (excluding inherited ones).
CountDeclMethodAll Total number of declared methods, including inherited ones.
CountLine Total number of lines in the class.
CountLineBlank Number of blank lines in the class.
CountLineCode Number of executable code lines in the class.
CountLineCodeDecl Number of declaration lines in the class.
CountLineCodeExe Number of executable statement lines in the class.
CountLineComment Number of comment lines in the class.
CountStmt Total number of statements in the class.
CountStmtDecl Number of declaration statements in the class.
CountStmtExe Number of executable statements in the class.
MaxCyclomatic Maximum cyclomatic complexity among all methods in the class.
MaxInheritanceTree Maximum depth of the class in the inheritance hierarchy.
MaxNesting Maximum level of nested control structures in the class.
SumCyclomatic Sum of cyclomatic complexity across all methods in the class.

If you use this dataset, please cite:

@article{rahman2025large,
  title={A Large-scale Class-level Benchmark Dataset for Code Generation with LLMs},
  author={Rahman, Musfiqur and Khatoonabadi, SayedHassan and Shihab, Emad},
  journal={arXiv preprint arXiv:2504.15564},
  year={2025}
}
Downloads last month
61