Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}).
This happened while the csv dataset builder was generating data using
hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Unnamed: 0: int64
time__train_x: double
time__val_x: double
time__test_x: double
dataset_name: string
CatBoost_Accuracy__test: double
CatBoost_AUC__test: double
CatBoost_F1__test: double
CatBoost_Log Loss__test: double
CatBoost__runtime: double
time__train_y: double
time__val_y: double
time__test_y: double
TabPFNs3000_Accuracy__test: double
TabPFNs3000_AUC__test: double
TabPFNs3000_F1__test: double
Log Loss__test: double
TabPFNs3000__runtime: double
Classes: int64
Features: int64
Samples: int64
Delta: double
CatBoost__runtime_cumul: double
TabPFNs3000__runtime_cumul: double
_ft_Accuracy__test: double
_pt100_Accuracy__test: double
_pt100-pca_Accuracy__test: double
_pt100-prop_Accuracy__test: double
_pt100-rand_Accuracy__test: double
_pt100-uniform_bptt_128_Accuracy__test: double
_pt1000_Accuracy__test: double
_pt1000-10ens-randinit-avg-top2_Accuracy__test: double
_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test: double
_pt1000-uniform_bptt_128_Accuracy__test: double
_zs-32_Accuracy__test: double
_zs-ica-32_ica_Accuracy__test: double
_zs-isomap-32_isomap_Accuracy__test: double
_zs-mutual_information-32_mutual_information_Accuracy__test: double
_zs-pca_white-32_pca_white_Accuracy__test: double
_zs-random-32_random_Accuracy__test: double
_zs-random-32_rdq_3000_random_Accuracy__test: double
_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test: double
_zs-ica-32_rdq_3000_ica_Accuracy__test: double
_zs-isomap-32_rdq_3000_isomap_Accuracy__test: double
_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test: double
_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test: double
_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test: double
_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test: double
_zs-random-32_bptt_128_random_Accuracy__test: double
_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test: double
_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test: double
_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test: double
TuneTables_Accuracy__test: double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 8892
to
{'Unnamed: 0': Value(dtype='int64', id=None), 'time__train_x': Value(dtype='float64', id=None), 'time__val_x': Value(dtype='float64', id=None), 'time__test_x': Value(dtype='float64', id=None), 'dataset_name': Value(dtype='string', id=None), 'CatBoost_Accuracy__test': Value(dtype='float64', id=None), 'CatBoost_AUC__test': Value(dtype='float64', id=None), 'CatBoost_F1__test': Value(dtype='float64', id=None), 'CatBoost_Log Loss__test': Value(dtype='float64', id=None), 'CatBoost__runtime': Value(dtype='float64', id=None), 'time__train_y': Value(dtype='float64', id=None), 'time__val_y': Value(dtype='float64', id=None), 'time__test_y': Value(dtype='float64', id=None), 'TabPFNs3000_Accuracy__test': Value(dtype='float64', id=None), 'TabPFNs3000_AUC__test': Value(dtype='float64', id=None), 'TabPFNs3000_F1__test': Value(dtype='float64', id=None), 'Log Loss__test': Value(dtype='float64', id=None), 'TabPFNs3000__runtime': Value(dtype='float64', id=None), 'Classes': Value(dtype='int64', id=None), 'Features': Value(dtype='int64', id=None), 'Samples': Value(dtype='int64', id=None), 'Delta': Value(dtype='float64', id=None), 'CatBoost__runtime_cumul': Value(dtype='float64', id=None), 'TabPFNs3000__runtime_cumul': Value(dtype='float64', id=None), '_ft_AUC__test': Value(dtype='float64', id=None), '_pt100_AUC__test': Value(dtype='float64', id=None), '_pt100-pca_AUC__test': Value(dtype='float64', id=None), '_pt100-prop_AUC__test': Value(dtype='float64', id=None), '_pt100-rand_AUC__test': Value(dt
...
ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_random_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_rdq_3000_random_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_zs-ica-32_rdq_3000_ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_rdq_3000_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_rdq_3000_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_bptt_128_random_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test': Value(dtype='float64', id=None), 'TuneTables_AUC__test': Value(dtype='float64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}).
This happened while the csv dataset builder was generating data using
hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | time__train_x
float64 | time__val_x
float64 | time__test_x
float64 | dataset_name
string | CatBoost_Accuracy__test
float64 | CatBoost_AUC__test
float64 | CatBoost_F1__test
float64 | CatBoost_Log Loss__test
float64 | CatBoost__runtime
float64 | time__train_y
float64 | time__val_y
float64 | time__test_y
float64 | TabPFNs3000_Accuracy__test
float64 | TabPFNs3000_AUC__test
float64 | TabPFNs3000_F1__test
float64 | Log Loss__test
float64 | TabPFNs3000__runtime
float64 | Classes
int64 | Features
int64 | Samples
int64 | Delta
float64 | CatBoost__runtime_cumul
float64 | TabPFNs3000__runtime_cumul
float64 | _ft_AUC__test
float64 | _pt100_AUC__test
float64 | _pt100-pca_AUC__test
float64 | _pt100-prop_AUC__test
float64 | _pt100-rand_AUC__test
float64 | _pt100-uniform_bptt_128_AUC__test
float64 | _pt1000_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test
float64 | _pt1000-uniform_bptt_128_AUC__test
float64 | _zs-32_AUC__test
float64 | _zs-ica-32_ica_AUC__test
float64 | _zs-isomap-32_isomap_AUC__test
float64 | _zs-mutual_information-32_mutual_information_AUC__test
float64 | _zs-pca_white-32_pca_white_AUC__test
float64 | _zs-random-32_random_AUC__test
float64 | _zs-random-32_rdq_3000_random_AUC__test
float64 | _zs-sparse_random_projection-32_sparse_random_projection_AUC__test
float64 | _zs-ica-32_rdq_3000_ica_AUC__test
float64 | _zs-isomap-32_rdq_3000_isomap_AUC__test
float64 | _zs-mutual_information-32_rdq_3000_mutual_information_AUC__test
float64 | _zs-pca_white-32_rdq_3000_pca_white_AUC__test
float64 | _zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test
float64 | _pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test
float64 | _zs-random-32_bptt_128_random_AUC__test
float64 | _pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test
float64 | _pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test
float64 | TuneTables_AUC__test
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
| 5.470622
| 0.308169
| 0.269775
|
openml__Agrawal1__146093
| 0.95
| 0.992252
| 0.95028
| 0.101591
| 6.048565
| 0.025716
| 216.104408
| 216.100852
| 0.946
| 0.991382
| 0.94613
| 0.118413
| 432.230976
| 2
| 9
| 1,000,000
| 0.004
| 142.218803
| 5,158.457872
| 0.973
| 0.976
| 0.976
| 0.976
| 0.976
| 0.992
| 0.992
| 0
| 0
| 0.992
| 0.99
| 0.99
| 0.99
| 0.99
| 0.99
| 0.99
| 0.992
| 0.99
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 6.712468
| 0.333047
| 0.279522
|
openml__BNG(labor)__2137
| 0.971
| 0.995435
| 0.9709
| 0.078912
| 7.325036
| 0.040458
| 229.750833
| 230.023553
| 0.938
| 0.982161
| 0.93836
| 0.15832
| 459.814844
| 2
| 16
| 1,000,000
| 0.033
| 226.240902
| 5,517.778131
| 0.978
| 0.994
| 0
| 0
| 0
| 0.993
| 0.993
| 0
| 0
| 0.993
| 0.977
| 0.977
| 0.977
| 0.977
| 0.977
| 0.977
| 0.982
| 0.977
| 0.982
| 0.982
| 0.982
| 0.982
| 0.982
| 0
| 0
| 0
| 0
| 0
| 0
|
2
| 1.588888
| 0.0934
| 0.089485
|
openml__BNG(vote)__212
| 0.975
| 0.996548
| 0.975359
| 0.069077
| 1.771773
| 0.01816
| 32.898037
| 32.942842
| 0.968
| 0.994736
| 0.967958
| 0.08944
| 65.859038
| 2
| 16
| 131,072
| 0.007
| 42.335094
| 1,975.77114
| 0.993
| 0.996
| 0
| 0
| 0
| 0.996
| 0.996
| 0
| 0
| 0.996
| 0.993
| 0.993
| 0.993
| 0.993
| 0.993
| 0.993
| 0.994
| 0.993
| 0.994
| 0.994
| 0.994
| 0.994
| 0.994
| 0
| 0
| 0
| 0
| 0
| 0
|
3
| 7.746181
| 0.024661
| 0.039858
|
openml__Bioresponse__9910
| 0.803
| 0.878566
| 0.802667
| 0.441356
| 7.8107
| 15.971731
| 2.510121
| 2.535231
| 0.819
| 0.885325
| 0.818667
| 0.426595
| 21.017083
| 2
| 1,776
| 3,751
| -0.016
| 112.880729
| 637.68252
| 0.818
| 0.824
| 0
| 0
| 0
| 0.818
| 0.812
| 0
| 0
| 0.82
| 0.523
| 0.831
| 0.74
| 0.857
| 0.835
| 0.523
| 0.523
| 0.824
| 0.843
| 0.778
| 0.867
| 0.851
| 0.842
| 0
| 0
| 0
| 0
| 0
| 0.871
|
4
| 3.756384
| 0.20875
| 0.17901
|
openml__Click_prediction_small__7294
| 0.842
| 0.74119
| 0.842075
| 0.393111
| 4.144144
| 0.004192
| 205.156692
| 205.236468
| 0.834
| 0.660425
| 0.83419
| 0.438609
| 410.397352
| 2
| 11
| 1,997,410
| 0.008
| 84.526018
| 10,420.932465
| 0.595
| 0.658
| 0
| 0
| 0
| 0.668
| 0.667
| 0
| 0
| 0.674
| 0.656
| 0.656
| 0.656
| 0.656
| 0.656
| 0.656
| 0.664
| 0.656
| 0.664
| 0.664
| 0.664
| 0.664
| 0.664
| 0
| 0
| 0
| 0
| 0
| 0
|
5
| 7.002172
| 0.165818
| 0.166777
|
openml__airlines__189354
| 0.664
| 0.715663
| 0.663842
| 0.610232
| 7.334767
| 0.107882
| 46.354915
| 46.322323
| 0.602
| 0.627777
| 0.601505
| 0.662777
| 92.785119
| 2
| 7
| 539,383
| 0.062
| 154.948461
| 2,601.905863
| 0.622
| 0.663
| 0
| 0
| 0
| 0.697
| 0.685
| 0
| 0
| 0.687
| 0.613
| 0.613
| 0.613
| 0.613
| 0.613
| 0.613
| 0.62
| 0.613
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
6
| 32.919919
| 1.06518
| 1.028028
|
openml__albert__189356
| 0.702
| 0.772683
| 0.701651
| 0.570534
| 35.013126
| 0.290836
| 61.830542
| 61.859957
| 0.637
| 0.686705
| 0.637146
| 0.642012
| 123.981335
| 2
| 78
| 425,240
| 0.065
| 1,077.832536
| 2,363.267322
| 0.64
| 0.696
| 0
| 0
| 0
| 0.704
| 0.691
| 0
| 0
| 0.703
| 0.679
| 0.679
| 0.679
| 0.679
| 0.679
| 0.679
| 0.691
| 0.679
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
7
| 2.096973
| 0.004232
| 0.003759
|
openml__balance-scale__11
| 0.871
| 0.92697
| 0.876643
| 0.315156
| 2.104964
| 0.003427
| 0.483712
| 0.480451
| 0.984
| 0.998659
| 0.984106
| 0.037652
| 0.967589
| 3
| 4
| 625
| -0.113
| 52.771632
| 28.858381
| 0.992
| 0.985
| 0
| 0
| 0
| 0.975
| 0.99
| 0.984
| 0.971
| 0.987
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0.98
| 0
| 0
| 0
| 0
| 1
|
8
| 0.524348
| 0.002498
| 0.001858
|
openml__blood-transfusion-service-center__10101
| 0.76
| 0.683723
| 0.76
| 0.529754
| 0.528704
| 0.0027
| 0.411178
| 0.408556
| 0.8
| 0.742203
| 0.8
| 0.48331
| 0.822434
| 2
| 4
| 748
| -0.04
| 24.005331
| 24.855342
| 0.774
| 0.636
| 0
| 0
| 0
| 0.711
| 0.749
| 0
| 0
| 0.753
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0.775
| 0
| 0
| 0
| 0
| 0
| 0.774
|
9
| 0.683357
| 0.002084
| 0.003628
|
openml__breast-cancer__145799
| 0.724
| 0.572222
| 0.724138
| 0.623272
| 0.689069
| 0.003648
| 0.491073
| 0.489
| 0.724
| 0.683333
| 0.724138
| 0.607276
| 0.983721
| 2
| 9
| 286
| 0
| 36.982686
| 28.809068
| 0.586
| 0.651
| 0
| 0
| 0
| 0.653
| 0.63
| 0
| 0
| 0.499
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.722
| 0.679
| 0
| 0
| 0
| 0
| 0.724
|
10
| 7.534318
| 0.122489
| 0.088212
|
openml__christine__168908
| 0.747
| 0.80579
| 0.747232
| 0.53844
| 7.745018
| 17.262028
| 2.645428
| 2.649614
| 0.718
| 0.803461
| 0.717712
| 0.543561
| 22.557071
| 2
| 1,636
| 5,418
| 0.029
| 331.16304
| 665.780806
| 0.754
| 0.776
| 0
| 0
| 0
| 0.819
| 0.764
| 0
| 0
| 0.795
| 0.65
| 0.761
| 0.719
| 0.803
| 0.766
| 0.65
| 0.646
| 0.735
| 0.788
| 0.747
| 0.821
| 0.791
| 0.751
| 0
| 0
| 0
| 0
| 0
| 0.827
|
11
| 0.710183
| 0.003037
| 0.001993
|
openml__climate-model-simulation-crashes__146819
| 0.931
| 0.919959
| 0.930864
| 0.181723
| 0.715213
| 0.003153
| 0.962894
| 0.960936
| 0.963
| 0.995918
| 0.962963
| 0.095939
| 1.926983
| 2
| 18
| 540
| -0.032
| 24.901495
| 58.653851
| 0.923
| 0.82
| 0
| 0
| 0
| 0.942
| 0.863
| 0
| 0
| 0.86
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0.908
| 0
| 0
| 0
| 0
| 0
| 0.912
|
12
| 1.767558
| 0.00417
| 0.003884
|
openml__cmc__23
| 0.541
| 0.724065
| 0.539462
| 0.905065
| 1.775612
| 0.007683
| 1.481638
| 1.517026
| 0.612
| 0.801547
| 0.610603
| 0.8145
| 3.006348
| 3
| 9
| 1,473
| -0.071
| 78.094024
| 90.992666
| 0.721
| 0.714
| 0
| 0
| 0
| 0.704
| 0.726
| 0.474
| 0.468
| 0.715
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.725
| 0.722
| 0
| 0.722
| 0.709
| 0
| 0.731
|
13
| 3.11665
| 0.007943
| 0.008792
|
openml__colic__27
| 0.88
| 0.913657
| 0.88003
| 0.327921
| 3.133385
| 0.006265
| 1.039177
| 0.295073
| 0.878
| 0.925725
| 0.878378
| 0.339482
| 1.340514
| 2
| 22
| 368
| 0.002
| 218.034728
| 39.318812
| 0.919
| 0.913
| 0
| 0
| 0
| 0.896
| 0.918
| 0
| 0
| 0.916
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.932
| 0.912
| 0
| 0
| 0
| 0
| 0.93
|
14
| 16.109806
| 0.166454
| 0.075367
|
openml__connect-4__146195
| 0.821
| 0.871428
| 0.793513
| 0.473594
| 16.351627
| 0.078216
| 11.57487
| 11.56509
| 0.674
| 0.632796
| 0.561727
| 0.798451
| 23.218176
| 3
| 42
| 67,557
| 0.147
| 203.916567
| 696.121908
| 0.416
| 0.564
| 0
| 0
| 0
| 0.901
| 0.898
| 0
| 0
| 0.892
| 0.639
| 0.639
| 0.639
| 0.639
| 0.639
| 0.639
| 0.671
| 0.639
| 0.671
| 0.671
| 0.671
| 0.671
| 0.671
| 0
| 0
| 0
| 0
| 0
| 0
|
15
| 2.200719
| 0.00686
| 0.006669
|
openml__cylinder-bands__14954
| 0.787
| 0.875877
| 0.787037
| 0.443283
| 2.214247
| 0.00864
| 1.239279
| 0.138438
| 0.796
| 0.87798
| 0.796296
| 0.426672
| 1.386357
| 2
| 37
| 540
| -0.009
| 93.963842
| 40.877432
| 0.933
| 0.923
| 0
| 0
| 0
| 0.864
| 0.929
| 0.911
| 0
| 0.888
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0.938
| 0
| 0
| 0
| 0
| 0
| 0.936
|
16
| 12.705649
| 0.025386
| 0.024051
|
openml__dilbert__168909
| 0.962
| 0.998074
| 0.962014
| 0.189144
| 12.755086
| 20.246264
| 2.638321
| 2.643936
| 0.926
| 0.99487
| 0.926029
| 0.207929
| 25.52852
| 5
| 2,000
| 10,000
| 0.036
| 808.730207
| 761.177293
| 0.972
| 0.998
| 0.654
| 0.655
| 0.394
| 0.999
| 0.99
| 0
| 0
| 0.995
| 0.444
| 0.976
| 0.981
| 0.977
| 0.977
| 0.444
| 0.415
| 0.975
| 0.986
| 0.988
| 0.99
| 0.985
| 0.987
| 0
| 0
| 0
| 0
| 0
| 0
|
17
| 1.061346
| 0.002149
| 0.001866
|
openml__dresses-sales__125920
| 0.54
| 0.533662
| 0.54
| 0.737212
| 1.065361
| 0.004738
| 0.677673
| 0.674113
| 0.6
| 0.518883
| 0.6
| 0.680896
| 1.356524
| 2
| 12
| 500
| -0.06
| 40.149266
| 40.880028
| 0.474
| 0.535
| 0
| 0
| 0
| 0.611
| 0.476
| 0
| 0
| 0.41
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0.575
| 0
| 0
| 0
| 0
| 0
| 0.571
|
18
| 1.213773
| 0.004095
| 0.001866
|
openml__ecoli__145977
| 0.939
| 0.986417
| 0.940892
| 0.473745
| 1.219734
| 0.003157
| 0.520286
| 0.517488
| 0.727
| 0.933968
| 0.722274
| 0.808689
| 1.040931
| 8
| 7
| 336
| 0.212
| 73.058134
| 30.157485
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.934
|
19
| 0.785582
| 0.009653
| 0.009447
|
openml__eeg-eye-state__14951
| 0.892
| 0.959227
| 0.891856
| 0.290974
| 0.804682
| 0.009589
| 2.881329
| 2.88532
| 0.937
| 0.985335
| 0.93725
| 0.163974
| 5.776238
| 2
| 14
| 14,980
| -0.045
| 27.734729
| 177.537891
| 0.606
| 0.653
| 0
| 0
| 0
| 0.673
| 0.743
| 0
| 0
| 0.704
| 0.974
| 0.974
| 0.974
| 0.974
| 0.974
| 0.974
| 0.985
| 0.974
| 0.985
| 0.985
| 0.985
| 0.985
| 0.985
| 0
| 0
| 0
| 0
| 0
| 0
|
20
| 2.590795
| 0.002214
| 0.003144
|
openml__elevators__3711
| 0.892
| 0.942216
| 0.891566
| 0.267698
| 2.596153
| 0.011596
| 3.048264
| 3.024167
| 0.895
| 0.954868
| 0.895181
| 0.235062
| 6.084026
| 2
| 18
| 16,599
| -0.003
| 175.790243
| 186.239942
| 0.938
| 0.942
| 0
| 0
| 0
| 0.945
| 0.943
| 0
| 0
| 0.942
| 0.934
| 0.934
| 0.934
| 0.934
| 0.934
| 0.934
| 0.942
| 0.934
| 0.942
| 0.942
| 0.942
| 0.942
| 0.942
| 0
| 0
| 0
| 0
| 0
| 0.311
|
21
| 3.637687
| 0.010284
| 0.010785
|
openml__har__14970
| 0.978
| 0.99967
| 0.97765
| 0.061473
| 3.658756
| 6.869467
| 2.669442
| 2.666021
| 0.962
| 0.998168
| 0.962104
| 0.103502
| 12.204929
| 6
| 561
| 10,299
| 0.016
| 302.201547
| 370.311629
| 0.996
| 0.998
| 0
| 0
| 0
| 0.999
| 0.999
| 0
| 0
| 0.999
| 0.693
| 0.997
| 0.993
| 0.995
| 0.996
| 0.693
| 0.668
| 0.996
| 0.998
| 0.994
| 0.996
| 0.997
| 0.998
| 0
| 0
| 0
| 0
| 0
| 0
|
22
| 0.506032
| 0.000921
| 0.000765
|
openml__heart-c__48
| 0.839
| 0.901681
| 0.83871
| 0.384873
| 0.507718
| 0.007016
| 0.747218
| 0.573552
| 0.839
| 0.945378
| 0.83871
| 0.3051
| 1.327786
| 2
| 13
| 303
| 0
| 20.763378
| 39.833576
| 0.968
| 0.958
| 0
| 0
| 0
| 0.912
| 0.94
| 0.934
| 0.945
| 0.922
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.965
| 0.951
| 0
| 0
| 0
| 0
| 0.965
|
23
| 1.646659
| 0.008068
| 0.010839
|
openml__higgs__146606
| 0.714
| 0.789788
| 0.714227
| 0.550703
| 1.665566
| 0.029006
| 15.545551
| 15.544792
| 0.665
| 0.718481
| 0.664559
| 0.616014
| 31.119349
| 2
| 28
| 98,050
| 0.049
| 80.328152
| 931.453608
| 0.683
| 0.751
| 0
| 0
| 0
| 0.781
| 0.774
| 0
| 0
| 0.771
| 0.679
| 0.679
| 0.679
| 0.679
| 0.679
| 0.679
| 0.716
| 0.679
| 0.716
| 0.716
| 0.716
| 0.716
| 0.716
| 0
| 0
| 0
| 0
| 0.745
| 0
|
24
| 1.4285
| 0.001914
| 0.001344
|
openml__kc1__3917
| 0.848
| 0.782772
| 0.848341
| 0.370562
| 1.431757
| 0.003998
| 2.802546
| 2.804048
| 0.848
| 0.83345
| 0.848341
| 0.343852
| 5.610592
| 2
| 21
| 2,109
| 0
| 48.689536
| 168.44471
| 0.777
| 0.765
| 0
| 0
| 0
| 0.811
| 0.781
| 0
| 0
| 0.796
| 0.816
| 0.816
| 0.816
| 0.816
| 0.816
| 0.816
| 0.816
| 0.816
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.832
|
25
| 11.804756
| 0.565834
| 0.627261
|
openml__poker-hand__9890
| 0.946
| 0.904151
| 0.940036
| 0.294164
| 12.99785
| 0.204482
| 99.702475
| 100.086905
| 0.538
| 0.526818
| 0.460421
| 0.978269
| 199.993863
| 10
| 10
| 1,025,009
| 0.408
| 5,331.215826
| 2,422.621082
| 0.398
| 0.621
| 0
| 0
| 0
| 0.658
| 0.662
| 0
| 0
| 0.665
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
26
| 22.897829
| 0.044062
| 0.041597
|
openml__riccardo__168338
| 0.995
| 0.999323
| 0.9945
| 0.067689
| 22.983487
| 41.653156
| 2.850444
| 2.859816
| 0.955
| 0.994027
| 0.9545
| 0.236308
| 47.363416
| 2
| 4,296
| 20,000
| 0.04
| 692.07756
| 1,395.120139
| 0.921
| 0.99
| 0
| 0
| 0
| 0.995
| 0.996
| 0
| 0
| 0.996
| 0.491
| 0.899
| 0.953
| 0.899
| 0.913
| 0.491
| 0.494
| 0.888
| 0.98
| 0.982
| 0.979
| 0.984
| 0.973
| 0
| 0
| 0
| 0
| 0
| 0
|
27
| 21.521006
| 0.064051
| 0.064182
|
openml__robert__168332
| 0.455
| 0.863807
| 0.452383
| 1.550218
| 21.649238
| 82.247738
| 2.572722
| 2.570836
| 0.246
| 0.732318
| 0.21993
| 2.035677
| 87.391296
| 10
| 7,200
| 10,000
| 0.209
| 598.664213
| 963.968666
| 0.78
| 0.803
| 0
| 0
| 0
| 0.825
| 0.806
| 0
| 0
| 0.806
| 0.562
| 0.79
| 0.726
| 0.705
| 0.79
| 0.562
| 0.562
| 0.759
| 0.816
| 0.744
| 0.712
| 0.815
| 0.782
| 0
| 0
| 0
| 0
| 0
| 0
|
28
| 34.986799
| 0.100713
| 0.091736
|
openml__volkert__168331
| 0.67
| 0.923648
| 0.659887
| 0.956851
| 35.179248
| 3.614879
| 5.871648
| 5.867252
| 0.569
| 0.861787
| 0.511192
| 1.237312
| 15.353779
| 10
| 180
| 58,310
| 0.101
| 229.927867
| 458.743352
| 0.531
| 0.904
| 0
| 0
| 0
| 0.927
| 0.921
| 0
| 0
| 0.919
| 0.46
| 0.835
| 0
| 0.849
| 0.838
| 0.46
| 0.447
| 0.852
| 0.864
| 0
| 0.87
| 0.866
| 0.879
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 5.470622
| 0.308169
| 0.269775
|
openml__Agrawal1__146093
| 0.95
| 0.992252
| 0.95028
| 0.101591
| 6.048565
| 0.025716
| 216.104408
| 216.100852
| 0.946
| 0.991382
| 0.94613
| 0.118413
| 432.230976
| 2
| 9
| 1,000,000
| 0.004
| 142.218803
| 5,158.457872
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1
| 6.712468
| 0.333047
| 0.279522
|
openml__BNG(labor)__2137
| 0.971
| 0.995435
| 0.9709
| 0.078912
| 7.325036
| 0.040458
| 229.750833
| 230.023553
| 0.938
| 0.982161
| 0.93836
| 0.15832
| 459.814844
| 2
| 16
| 1,000,000
| 0.033
| 226.240902
| 5,517.778131
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2
| 1.588888
| 0.0934
| 0.089485
|
openml__BNG(vote)__212
| 0.975
| 0.996548
| 0.975359
| 0.069077
| 1.771773
| 0.01816
| 32.898037
| 32.942842
| 0.968
| 0.994736
| 0.967958
| 0.08944
| 65.859038
| 2
| 16
| 131,072
| 0.007
| 42.335094
| 1,975.77114
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
3
| 7.746181
| 0.024661
| 0.039858
|
openml__Bioresponse__9910
| 0.803
| 0.878566
| 0.802667
| 0.441356
| 7.8107
| 15.971731
| 2.510121
| 2.535231
| 0.819
| 0.885325
| 0.818667
| 0.426595
| 21.017083
| 2
| 1,776
| 3,751
| -0.016
| 112.880729
| 637.68252
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
4
| 3.756384
| 0.20875
| 0.17901
|
openml__Click_prediction_small__7294
| 0.842
| 0.74119
| 0.842075
| 0.393111
| 4.144144
| 0.004192
| 205.156692
| 205.236468
| 0.834
| 0.660425
| 0.83419
| 0.438609
| 410.397352
| 2
| 11
| 1,997,410
| 0.008
| 84.526018
| 10,420.932465
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
5
| 7.002172
| 0.165818
| 0.166777
|
openml__airlines__189354
| 0.664
| 0.715663
| 0.663842
| 0.610232
| 7.334767
| 0.107882
| 46.354915
| 46.322323
| 0.602
| 0.627777
| 0.601505
| 0.662777
| 92.785119
| 2
| 7
| 539,383
| 0.062
| 154.948461
| 2,601.905863
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
6
| 32.919919
| 1.06518
| 1.028028
|
openml__albert__189356
| 0.702
| 0.772683
| 0.701651
| 0.570534
| 35.013126
| 0.290836
| 61.830542
| 61.859957
| 0.637
| 0.686705
| 0.637146
| 0.642012
| 123.981335
| 2
| 78
| 425,240
| 0.065
| 1,077.832536
| 2,363.267322
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
7
| 2.096973
| 0.004232
| 0.003759
|
openml__balance-scale__11
| 0.871
| 0.92697
| 0.876643
| 0.315156
| 2.104964
| 0.003427
| 0.483712
| 0.480451
| 0.984
| 0.998659
| 0.984106
| 0.037652
| 0.967589
| 3
| 4
| 625
| -0.113
| 52.771632
| 28.858381
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
8
| 0.524348
| 0.002498
| 0.001858
|
openml__blood-transfusion-service-center__10101
| 0.76
| 0.683723
| 0.76
| 0.529754
| 0.528704
| 0.0027
| 0.411178
| 0.408556
| 0.8
| 0.742203
| 0.8
| 0.48331
| 0.822434
| 2
| 4
| 748
| -0.04
| 24.005331
| 24.855342
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
9
| 0.683357
| 0.002084
| 0.003628
|
openml__breast-cancer__145799
| 0.724
| 0.572222
| 0.724138
| 0.623272
| 0.689069
| 0.003648
| 0.491073
| 0.489
| 0.724
| 0.683333
| 0.724138
| 0.607276
| 0.983721
| 2
| 9
| 286
| 0
| 36.982686
| 28.809068
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
10
| 7.534318
| 0.122489
| 0.088212
|
openml__christine__168908
| 0.747
| 0.80579
| 0.747232
| 0.53844
| 7.745018
| 17.262028
| 2.645428
| 2.649614
| 0.718
| 0.803461
| 0.717712
| 0.543561
| 22.557071
| 2
| 1,636
| 5,418
| 0.029
| 331.16304
| 665.780806
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
11
| 0.710183
| 0.003037
| 0.001993
|
openml__climate-model-simulation-crashes__146819
| 0.931
| 0.919959
| 0.930864
| 0.181723
| 0.715213
| 0.003153
| 0.962894
| 0.960936
| 0.963
| 0.995918
| 0.962963
| 0.095939
| 1.926983
| 2
| 18
| 540
| -0.032
| 24.901495
| 58.653851
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
12
| 1.767558
| 0.00417
| 0.003884
|
openml__cmc__23
| 0.541
| 0.724065
| 0.539462
| 0.905065
| 1.775612
| 0.007683
| 1.481638
| 1.517026
| 0.612
| 0.801547
| 0.610603
| 0.8145
| 3.006348
| 3
| 9
| 1,473
| -0.071
| 78.094024
| 90.992666
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
13
| 3.11665
| 0.007943
| 0.008792
|
openml__colic__27
| 0.88
| 0.913657
| 0.88003
| 0.327921
| 3.133385
| 0.006265
| 1.039177
| 0.295073
| 0.878
| 0.925725
| 0.878378
| 0.339482
| 1.340514
| 2
| 22
| 368
| 0.002
| 218.034728
| 39.318812
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
14
| 16.109806
| 0.166454
| 0.075367
|
openml__connect-4__146195
| 0.821
| 0.871428
| 0.793513
| 0.473594
| 16.351627
| 0.078216
| 11.57487
| 11.56509
| 0.674
| 0.632796
| 0.561727
| 0.798451
| 23.218176
| 3
| 42
| 67,557
| 0.147
| 203.916567
| 696.121908
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
15
| 2.200719
| 0.00686
| 0.006669
|
openml__cylinder-bands__14954
| 0.787
| 0.875877
| 0.787037
| 0.443283
| 2.214247
| 0.00864
| 1.239279
| 0.138438
| 0.796
| 0.87798
| 0.796296
| 0.426672
| 1.386357
| 2
| 37
| 540
| -0.009
| 93.963842
| 40.877432
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
16
| 12.705649
| 0.025386
| 0.024051
|
openml__dilbert__168909
| 0.962
| 0.998074
| 0.962014
| 0.189144
| 12.755086
| 20.246264
| 2.638321
| 2.643936
| 0.926
| 0.99487
| 0.926029
| 0.207929
| 25.52852
| 5
| 2,000
| 10,000
| 0.036
| 808.730207
| 761.177293
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
17
| 1.061346
| 0.002149
| 0.001866
|
openml__dresses-sales__125920
| 0.54
| 0.533662
| 0.54
| 0.737212
| 1.065361
| 0.004738
| 0.677673
| 0.674113
| 0.6
| 0.518883
| 0.6
| 0.680896
| 1.356524
| 2
| 12
| 500
| -0.06
| 40.149266
| 40.880028
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
18
| 1.213773
| 0.004095
| 0.001866
|
openml__ecoli__145977
| 0.939
| 0.986417
| 0.940892
| 0.473745
| 1.219734
| 0.003157
| 0.520286
| 0.517488
| 0.727
| 0.933968
| 0.722274
| 0.808689
| 1.040931
| 8
| 7
| 336
| 0.212
| 73.058134
| 30.157485
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
19
| 0.785582
| 0.009653
| 0.009447
|
openml__eeg-eye-state__14951
| 0.892
| 0.959227
| 0.891856
| 0.290974
| 0.804682
| 0.009589
| 2.881329
| 2.88532
| 0.937
| 0.985335
| 0.93725
| 0.163974
| 5.776238
| 2
| 14
| 14,980
| -0.045
| 27.734729
| 177.537891
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
20
| 2.590795
| 0.002214
| 0.003144
|
openml__elevators__3711
| 0.892
| 0.942216
| 0.891566
| 0.267698
| 2.596153
| 0.011596
| 3.048264
| 3.024167
| 0.895
| 0.954868
| 0.895181
| 0.235062
| 6.084026
| 2
| 18
| 16,599
| -0.003
| 175.790243
| 186.239942
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
21
| 3.637687
| 0.010284
| 0.010785
|
openml__har__14970
| 0.978
| 0.99967
| 0.97765
| 0.061473
| 3.658756
| 6.869467
| 2.669442
| 2.666021
| 0.962
| 0.998168
| 0.962104
| 0.103502
| 12.204929
| 6
| 561
| 10,299
| 0.016
| 302.201547
| 370.311629
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
22
| 0.506032
| 0.000921
| 0.000765
|
openml__heart-c__48
| 0.839
| 0.901681
| 0.83871
| 0.384873
| 0.507718
| 0.007016
| 0.747218
| 0.573552
| 0.839
| 0.945378
| 0.83871
| 0.3051
| 1.327786
| 2
| 13
| 303
| 0
| 20.763378
| 39.833576
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
23
| 1.646659
| 0.008068
| 0.010839
|
openml__higgs__146606
| 0.714
| 0.789788
| 0.714227
| 0.550703
| 1.665566
| 0.029006
| 15.545551
| 15.544792
| 0.665
| 0.718481
| 0.664559
| 0.616014
| 31.119349
| 2
| 28
| 98,050
| 0.049
| 80.328152
| 931.453608
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
24
| 1.4285
| 0.001914
| 0.001344
|
openml__kc1__3917
| 0.848
| 0.782772
| 0.848341
| 0.370562
| 1.431757
| 0.003998
| 2.802546
| 2.804048
| 0.848
| 0.83345
| 0.848341
| 0.343852
| 5.610592
| 2
| 21
| 2,109
| 0
| 48.689536
| 168.44471
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
25
| 11.804756
| 0.565834
| 0.627261
|
openml__poker-hand__9890
| 0.946
| 0.904151
| 0.940036
| 0.294164
| 12.99785
| 0.204482
| 99.702475
| 100.086905
| 0.538
| 0.526818
| 0.460421
| 0.978269
| 199.993863
| 10
| 10
| 1,025,009
| 0.408
| 5,331.215826
| 2,422.621082
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
26
| 22.897829
| 0.044062
| 0.041597
|
openml__riccardo__168338
| 0.995
| 0.999323
| 0.9945
| 0.067689
| 22.983487
| 41.653156
| 2.850444
| 2.859816
| 0.955
| 0.994027
| 0.9545
| 0.236308
| 47.363416
| 2
| 4,296
| 20,000
| 0.04
| 692.07756
| 1,395.120139
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
27
| 21.521006
| 0.064051
| 0.064182
|
openml__robert__168332
| 0.455
| 0.863807
| 0.452383
| 1.550218
| 21.649238
| 82.247738
| 2.572722
| 2.570836
| 0.246
| 0.732318
| 0.21993
| 2.035677
| 87.391296
| 10
| 7,200
| 10,000
| 0.209
| 598.664213
| 963.968666
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
28
| 34.986799
| 0.100713
| 0.091736
|
openml__volkert__168331
| 0.67
| 0.923648
| 0.659887
| 0.956851
| 35.179248
| 3.614879
| 5.871648
| 5.867252
| 0.569
| 0.861787
| 0.511192
| 1.237312
| 15.353779
| 10
| 180
| 58,310
| 0.101
| 229.927867
| 458.743352
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
0
| 5.470622
| 0.308169
| 0.269775
|
openml__Agrawal1__146093
| 0.95
| 0.992252
| 0.95028
| 0.101591
| 6.048565
| 0.025716
| 216.104408
| 216.100852
| 0.946
| 0.991382
| 0.94613
| 0.118413
| 432.230976
| 2
| 9
| 1,000,000
| 0.004
| 142.218803
| 5,158.457872
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1
| 6.712468
| 0.333047
| 0.279522
|
openml__BNG(labor)__2137
| 0.971
| 0.995435
| 0.9709
| 0.078912
| 7.325036
| 0.040458
| 229.750833
| 230.023553
| 0.938
| 0.982161
| 0.93836
| 0.15832
| 459.814844
| 2
| 16
| 1,000,000
| 0.033
| 226.240902
| 5,517.778131
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2
| 1.588888
| 0.0934
| 0.089485
|
openml__BNG(vote)__212
| 0.975
| 0.996548
| 0.975359
| 0.069077
| 1.771773
| 0.01816
| 32.898037
| 32.942842
| 0.968
| 0.994736
| 0.967958
| 0.08944
| 65.859038
| 2
| 16
| 131,072
| 0.007
| 42.335094
| 1,975.77114
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
3
| 7.746181
| 0.024661
| 0.039858
|
openml__Bioresponse__9910
| 0.803
| 0.878566
| 0.802667
| 0.441356
| 7.8107
| 15.971731
| 2.510121
| 2.535231
| 0.819
| 0.885325
| 0.818667
| 0.426595
| 21.017083
| 2
| 1,776
| 3,751
| -0.016
| 112.880729
| 637.68252
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
4
| 3.756384
| 0.20875
| 0.17901
|
openml__Click_prediction_small__7294
| 0.842
| 0.74119
| 0.842075
| 0.393111
| 4.144144
| 0.004192
| 205.156692
| 205.236468
| 0.834
| 0.660425
| 0.83419
| 0.438609
| 410.397352
| 2
| 11
| 1,997,410
| 0.008
| 84.526018
| 10,420.932465
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
5
| 7.002172
| 0.165818
| 0.166777
|
openml__airlines__189354
| 0.664
| 0.715663
| 0.663842
| 0.610232
| 7.334767
| 0.107882
| 46.354915
| 46.322323
| 0.602
| 0.627777
| 0.601505
| 0.662777
| 92.785119
| 2
| 7
| 539,383
| 0.062
| 154.948461
| 2,601.905863
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
6
| 32.919919
| 1.06518
| 1.028028
|
openml__albert__189356
| 0.702
| 0.772683
| 0.701651
| 0.570534
| 35.013126
| 0.290836
| 61.830542
| 61.859957
| 0.637
| 0.686705
| 0.637146
| 0.642012
| 123.981335
| 2
| 78
| 425,240
| 0.065
| 1,077.832536
| 2,363.267322
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
7
| 2.096973
| 0.004232
| 0.003759
|
openml__balance-scale__11
| 0.871
| 0.92697
| 0.876643
| 0.315156
| 2.104964
| 0.003427
| 0.483712
| 0.480451
| 0.984
| 0.998659
| 0.984106
| 0.037652
| 0.967589
| 3
| 4
| 625
| -0.113
| 52.771632
| 28.858381
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
8
| 0.524348
| 0.002498
| 0.001858
|
openml__blood-transfusion-service-center__10101
| 0.76
| 0.683723
| 0.76
| 0.529754
| 0.528704
| 0.0027
| 0.411178
| 0.408556
| 0.8
| 0.742203
| 0.8
| 0.48331
| 0.822434
| 2
| 4
| 748
| -0.04
| 24.005331
| 24.855342
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
9
| 0.683357
| 0.002084
| 0.003628
|
openml__breast-cancer__145799
| 0.724
| 0.572222
| 0.724138
| 0.623272
| 0.689069
| 0.003648
| 0.491073
| 0.489
| 0.724
| 0.683333
| 0.724138
| 0.607276
| 0.983721
| 2
| 9
| 286
| 0
| 36.982686
| 28.809068
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
10
| 7.534318
| 0.122489
| 0.088212
|
openml__christine__168908
| 0.747
| 0.80579
| 0.747232
| 0.53844
| 7.745018
| 17.262028
| 2.645428
| 2.649614
| 0.718
| 0.803461
| 0.717712
| 0.543561
| 22.557071
| 2
| 1,636
| 5,418
| 0.029
| 331.16304
| 665.780806
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
11
| 0.710183
| 0.003037
| 0.001993
|
openml__climate-model-simulation-crashes__146819
| 0.931
| 0.919959
| 0.930864
| 0.181723
| 0.715213
| 0.003153
| 0.962894
| 0.960936
| 0.963
| 0.995918
| 0.962963
| 0.095939
| 1.926983
| 2
| 18
| 540
| -0.032
| 24.901495
| 58.653851
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
12
| 1.767558
| 0.00417
| 0.003884
|
openml__cmc__23
| 0.541
| 0.724065
| 0.539462
| 0.905065
| 1.775612
| 0.007683
| 1.481638
| 1.517026
| 0.612
| 0.801547
| 0.610603
| 0.8145
| 3.006348
| 3
| 9
| 1,473
| -0.071
| 78.094024
| 90.992666
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
13
| 3.11665
| 0.007943
| 0.008792
|
openml__colic__27
| 0.88
| 0.913657
| 0.88003
| 0.327921
| 3.133385
| 0.006265
| 1.039177
| 0.295073
| 0.878
| 0.925725
| 0.878378
| 0.339482
| 1.340514
| 2
| 22
| 368
| 0.002
| 218.034728
| 39.318812
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
14
| 16.109806
| 0.166454
| 0.075367
|
openml__connect-4__146195
| 0.821
| 0.871428
| 0.793513
| 0.473594
| 16.351627
| 0.078216
| 11.57487
| 11.56509
| 0.674
| 0.632796
| 0.561727
| 0.798451
| 23.218176
| 3
| 42
| 67,557
| 0.147
| 203.916567
| 696.121908
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
15
| 2.200719
| 0.00686
| 0.006669
|
openml__cylinder-bands__14954
| 0.787
| 0.875877
| 0.787037
| 0.443283
| 2.214247
| 0.00864
| 1.239279
| 0.138438
| 0.796
| 0.87798
| 0.796296
| 0.426672
| 1.386357
| 2
| 37
| 540
| -0.009
| 93.963842
| 40.877432
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
16
| 12.705649
| 0.025386
| 0.024051
|
openml__dilbert__168909
| 0.962
| 0.998074
| 0.962014
| 0.189144
| 12.755086
| 20.246264
| 2.638321
| 2.643936
| 0.926
| 0.99487
| 0.926029
| 0.207929
| 25.52852
| 5
| 2,000
| 10,000
| 0.036
| 808.730207
| 761.177293
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
17
| 1.061346
| 0.002149
| 0.001866
|
openml__dresses-sales__125920
| 0.54
| 0.533662
| 0.54
| 0.737212
| 1.065361
| 0.004738
| 0.677673
| 0.674113
| 0.6
| 0.518883
| 0.6
| 0.680896
| 1.356524
| 2
| 12
| 500
| -0.06
| 40.149266
| 40.880028
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
18
| 1.213773
| 0.004095
| 0.001866
|
openml__ecoli__145977
| 0.939
| 0.986417
| 0.940892
| 0.473745
| 1.219734
| 0.003157
| 0.520286
| 0.517488
| 0.727
| 0.933968
| 0.722274
| 0.808689
| 1.040931
| 8
| 7
| 336
| 0.212
| 73.058134
| 30.157485
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
19
| 0.785582
| 0.009653
| 0.009447
|
openml__eeg-eye-state__14951
| 0.892
| 0.959227
| 0.891856
| 0.290974
| 0.804682
| 0.009589
| 2.881329
| 2.88532
| 0.937
| 0.985335
| 0.93725
| 0.163974
| 5.776238
| 2
| 14
| 14,980
| -0.045
| 27.734729
| 177.537891
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
20
| 2.590795
| 0.002214
| 0.003144
|
openml__elevators__3711
| 0.892
| 0.942216
| 0.891566
| 0.267698
| 2.596153
| 0.011596
| 3.048264
| 3.024167
| 0.895
| 0.954868
| 0.895181
| 0.235062
| 6.084026
| 2
| 18
| 16,599
| -0.003
| 175.790243
| 186.239942
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
21
| 3.637687
| 0.010284
| 0.010785
|
openml__har__14970
| 0.978
| 0.99967
| 0.97765
| 0.061473
| 3.658756
| 6.869467
| 2.669442
| 2.666021
| 0.962
| 0.998168
| 0.962104
| 0.103502
| 12.204929
| 6
| 561
| 10,299
| 0.016
| 302.201547
| 370.311629
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
22
| 0.506032
| 0.000921
| 0.000765
|
openml__heart-c__48
| 0.839
| 0.901681
| 0.83871
| 0.384873
| 0.507718
| 0.007016
| 0.747218
| 0.573552
| 0.839
| 0.945378
| 0.83871
| 0.3051
| 1.327786
| 2
| 13
| 303
| 0
| 20.763378
| 39.833576
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
23
| 1.646659
| 0.008068
| 0.010839
|
openml__higgs__146606
| 0.714
| 0.789788
| 0.714227
| 0.550703
| 1.665566
| 0.029006
| 15.545551
| 15.544792
| 0.665
| 0.718481
| 0.664559
| 0.616014
| 31.119349
| 2
| 28
| 98,050
| 0.049
| 80.328152
| 931.453608
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
24
| 1.4285
| 0.001914
| 0.001344
|
openml__kc1__3917
| 0.848
| 0.782772
| 0.848341
| 0.370562
| 1.431757
| 0.003998
| 2.802546
| 2.804048
| 0.848
| 0.83345
| 0.848341
| 0.343852
| 5.610592
| 2
| 21
| 2,109
| 0
| 48.689536
| 168.44471
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
25
| 11.804756
| 0.565834
| 0.627261
|
openml__poker-hand__9890
| 0.946
| 0.904151
| 0.940036
| 0.294164
| 12.99785
| 0.204482
| 99.702475
| 100.086905
| 0.538
| 0.526818
| 0.460421
| 0.978269
| 199.993863
| 10
| 10
| 1,025,009
| 0.408
| 5,331.215826
| 2,422.621082
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
26
| 22.897829
| 0.044062
| 0.041597
|
openml__riccardo__168338
| 0.995
| 0.999323
| 0.9945
| 0.067689
| 22.983487
| 41.653156
| 2.850444
| 2.859816
| 0.955
| 0.994027
| 0.9545
| 0.236308
| 47.363416
| 2
| 4,296
| 20,000
| 0.04
| 692.07756
| 1,395.120139
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
27
| 21.521006
| 0.064051
| 0.064182
|
openml__robert__168332
| 0.455
| 0.863807
| 0.452383
| 1.550218
| 21.649238
| 82.247738
| 2.572722
| 2.570836
| 0.246
| 0.732318
| 0.21993
| 2.035677
| 87.391296
| 10
| 7,200
| 10,000
| 0.209
| 598.664213
| 963.968666
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
28
| 34.986799
| 0.100713
| 0.091736
|
openml__volkert__168331
| 0.67
| 0.923648
| 0.659887
| 0.956851
| 35.179248
| 3.614879
| 5.871648
| 5.867252
| 0.569
| 0.861787
| 0.511192
| 1.237312
| 15.353779
| 10
| 180
| 58,310
| 0.101
| 229.927867
| 458.743352
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
0
| 5.470622
| 0.308169
| 0.269775
|
openml__Agrawal1__146093
| 0.95
| 0.992252
| 0.95028
| 0.101591
| 6.048565
| 0.025716
| 216.104408
| 216.100852
| 0.946
| 0.991382
| 0.94613
| 0.118413
| 432.230976
| 2
| 9
| 1,000,000
| 0.004
| 142.218803
| 5,158.457872
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1
| 6.712468
| 0.333047
| 0.279522
|
openml__BNG(labor)__2137
| 0.971
| 0.995435
| 0.9709
| 0.078912
| 7.325036
| 0.040458
| 229.750833
| 230.023553
| 0.938
| 0.982161
| 0.93836
| 0.15832
| 459.814844
| 2
| 16
| 1,000,000
| 0.033
| 226.240902
| 5,517.778131
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2
| 1.588888
| 0.0934
| 0.089485
|
openml__BNG(vote)__212
| 0.975
| 0.996548
| 0.975359
| 0.069077
| 1.771773
| 0.01816
| 32.898037
| 32.942842
| 0.968
| 0.994736
| 0.967958
| 0.08944
| 65.859038
| 2
| 16
| 131,072
| 0.007
| 42.335094
| 1,975.77114
| null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
End of preview.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
This repository contains the extended raw results for the TuneTables paper.
These results, and the associated metadata, are in TabZilla format; see https://github.com/naszilla/tabzilla for more explanation.
Directory Structure
tabzilla_metadata: contains the performance results for most baseline methods reported in our paper (classification only)
excelformer: contains the performance results for the excelformer baseline method
regression: contains the baseline results for regression
datasets_used: descriptions of the datasets used in the paper, including OpenML IDs
TuneTables-Hard Results: 03-2024-tt-hard-main-plotting-data
TabZilla Results: 05-2024-tabzilla-main-plotting-data
If you find this repository useful, please consider citing our paper.
@misc{feuer2024tunetablescontextoptimizationscalable,
title={TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks},
author={Benjamin Feuer and Robin Tibor Schirrmeister and Valeriia Cherepanova and Chinmay Hegde and Frank Hutter and Micah Goldblum and Niv Cohen and Colin White},
year={2024},
eprint={2402.11137},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2402.11137},
}
- Downloads last month
- 57