Datasets:

Modalities:
Image
Formats:
parquet
Size:
< 1K
ArXiv:
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
4.1k
4.1k
depth
unknown
normals
unknown
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYpLCB(...TRUNCATED)
"k05VTVBZAQB2AHsnZGVzY3InOiAnPGYyJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDIwNDgsIDQwOTYsIDM(...TRUNCATED)
End of preview. Expand in Data Studio

🗃️ Pano-Infinigen Dataset

Github Website arXiv Hugging Face Spaces License

Pano-Infinigen is a synthetic dataset of high-resolution panoramic images in ERP, featuring perfectly aligned RGB, Depth, and Surface Normals. This dataset was generated using a modified Infinigen framework to support wide-angle panoramic geometry.

It serves as the primary training data for PaGeR, a single-step diffusion model for zero-shot panoramic depth and normal estimation.

Dataset Summary

  • Content: Synthetic indoor and outdoor scenes.
  • Modality: RGB (PNG), Depth (binary .npy), Surface Normals (binary .npy).
  • Projection: Equirectangular (ERP).
  • Use Case: Training and evaluating monocular panoramic depth and normal estimation models.

Data Structure

The dataset is split into two configurations: indoor and outdoor. Each contains train, validation, and test splits.

Feature Type Description
image PIL.Image 8-bit RGB Panoramic Image.
depth binary float16 NumPy array. Range: [0, 75] meters.
normals binary float16 NumPy array. Range: [-1, 1].

How to Use

Since depth and normals are stored as binary blobs to preserve precision (float16), you need to use io.BytesIO to load them back into NumPy.

import io
import numpy as np
from datasets import load_dataset

# Load the indoor training split
ds = load_dataset("prs-eth/Pano-Infinigen", name="indoor", split="train")

sample = ds[0]

# 1. Get RGB Image
rgb = sample["image"]

# 2. Convert Binary Depth to NumPy (float16, 0-75m)
depth = np.load(io.BytesIO(sample["depth"]))

# 3. Convert Binary Normals to NumPy (float16, -1 to 1)
normals = np.load(io.BytesIO(sample["normals"]))
Downloads last month
26

Paper for prs-eth/Pano-Infinigen