eternis_router_encoder_sft_5Sep

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1954
  • Mse: 0.1954
  • Mae: 0.1976
  • Vector Accuracy: 0.2235
  • Complexity Accuracy: 0.8013
  • Accuracy Accuracy: 0.9885
  • Completeness Accuracy: 0.9928
  • Clarity Accuracy: 0.997
  • Relevance Accuracy: 0.9978
  • Model Accuracy: 0.2898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Mse Mae Vector Accuracy Complexity Accuracy Accuracy Accuracy Completeness Accuracy Clarity Accuracy Relevance Accuracy Model Accuracy
0.425 0.2857 250 0.2167 0.2167 0.2256 0.164 0.7642 0.9885 0.9928 0.997 0.9978 0.2157
0.4162 0.5714 500 0.2129 0.2129 0.2096 0.2405 0.7745 0.9885 0.9928 0.997 0.9978 0.3235
0.3955 0.8571 750 0.2135 0.2135 0.2140 0.1708 0.782 0.9885 0.9928 0.997 0.9978 0.246
0.3864 1.1429 1000 0.2014 0.2014 0.2046 0.195 0.8035 0.9885 0.9928 0.997 0.9978 0.254
0.4043 1.4286 1250 0.2029 0.2029 0.2086 0.1893 0.806 0.9885 0.9928 0.997 0.9978 0.2507
0.3942 1.7143 1500 0.2046 0.2046 0.2022 0.233 0.804 0.9885 0.9928 0.997 0.9978 0.2935
0.3952 2.0 1750 0.2103 0.2103 0.2196 0.1762 0.721 0.9885 0.9928 0.997 0.9978 0.2622
0.3929 2.2857 2000 0.2011 0.2011 0.2014 0.2305 0.788 0.9885 0.9928 0.997 0.9978 0.3023
0.3921 2.5714 2250 0.1986 0.1986 0.2019 0.2258 0.7778 0.9885 0.9928 0.997 0.9978 0.3045
0.3924 2.8571 2500 0.1981 0.1981 0.1980 0.235 0.8043 0.9885 0.9928 0.997 0.9978 0.2988
0.3819 3.1429 2750 0.2035 0.2035 0.2084 0.218 0.7638 0.9885 0.9928 0.997 0.9978 0.294
0.3874 3.4286 3000 0.1970 0.1970 0.1963 0.2233 0.8073 0.9885 0.9928 0.997 0.9978 0.286
0.3934 3.7143 3250 0.1994 0.1994 0.2079 0.184 0.786 0.9885 0.9928 0.997 0.9978 0.2487
0.3813 4.0 3500 0.1985 0.1985 0.1942 0.245 0.8005 0.9885 0.9928 0.997 0.9978 0.314
0.3939 4.2857 3750 0.1986 0.1986 0.2017 0.1905 0.8033 0.9885 0.9928 0.997 0.9978 0.2507
0.3985 4.5714 4000 0.1956 0.1956 0.1993 0.2062 0.797 0.9885 0.9928 0.997 0.9978 0.273
0.378 4.8571 4250 0.1960 0.1960 0.1991 0.227 0.7887 0.9885 0.9928 0.997 0.9978 0.2983
0.3853 5.1429 4500 0.1957 0.1957 0.1982 0.2122 0.803 0.9885 0.9928 0.997 0.9978 0.2747
0.3727 5.4286 4750 0.1955 0.1955 0.1989 0.2122 0.8025 0.9885 0.9928 0.997 0.9978 0.2745
0.3826 5.7143 5000 0.1956 0.1956 0.1975 0.2278 0.8007 0.9885 0.9928 0.997 0.9978 0.2945
0.3746 6.0 5250 0.1954 0.1954 0.1976 0.2235 0.8013 0.9885 0.9928 0.997 0.9978 0.2898

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for eternis/eternis_router_encoder_sft_5Sep

Finetuned
(1012)
this model

Evaluation results