eternis_router_encoder_sft_5Sep
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1954
- Mse: 0.1954
- Mae: 0.1976
- Vector Accuracy: 0.2235
- Complexity Accuracy: 0.8013
- Accuracy Accuracy: 0.9885
- Completeness Accuracy: 0.9928
- Clarity Accuracy: 0.997
- Relevance Accuracy: 0.9978
- Model Accuracy: 0.2898
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 6
Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Vector Accuracy | Complexity Accuracy | Accuracy Accuracy | Completeness Accuracy | Clarity Accuracy | Relevance Accuracy | Model Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.425 | 0.2857 | 250 | 0.2167 | 0.2167 | 0.2256 | 0.164 | 0.7642 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2157 |
| 0.4162 | 0.5714 | 500 | 0.2129 | 0.2129 | 0.2096 | 0.2405 | 0.7745 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.3235 |
| 0.3955 | 0.8571 | 750 | 0.2135 | 0.2135 | 0.2140 | 0.1708 | 0.782 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.246 |
| 0.3864 | 1.1429 | 1000 | 0.2014 | 0.2014 | 0.2046 | 0.195 | 0.8035 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.254 |
| 0.4043 | 1.4286 | 1250 | 0.2029 | 0.2029 | 0.2086 | 0.1893 | 0.806 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2507 |
| 0.3942 | 1.7143 | 1500 | 0.2046 | 0.2046 | 0.2022 | 0.233 | 0.804 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2935 |
| 0.3952 | 2.0 | 1750 | 0.2103 | 0.2103 | 0.2196 | 0.1762 | 0.721 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2622 |
| 0.3929 | 2.2857 | 2000 | 0.2011 | 0.2011 | 0.2014 | 0.2305 | 0.788 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.3023 |
| 0.3921 | 2.5714 | 2250 | 0.1986 | 0.1986 | 0.2019 | 0.2258 | 0.7778 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.3045 |
| 0.3924 | 2.8571 | 2500 | 0.1981 | 0.1981 | 0.1980 | 0.235 | 0.8043 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2988 |
| 0.3819 | 3.1429 | 2750 | 0.2035 | 0.2035 | 0.2084 | 0.218 | 0.7638 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.294 |
| 0.3874 | 3.4286 | 3000 | 0.1970 | 0.1970 | 0.1963 | 0.2233 | 0.8073 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.286 |
| 0.3934 | 3.7143 | 3250 | 0.1994 | 0.1994 | 0.2079 | 0.184 | 0.786 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2487 |
| 0.3813 | 4.0 | 3500 | 0.1985 | 0.1985 | 0.1942 | 0.245 | 0.8005 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.314 |
| 0.3939 | 4.2857 | 3750 | 0.1986 | 0.1986 | 0.2017 | 0.1905 | 0.8033 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2507 |
| 0.3985 | 4.5714 | 4000 | 0.1956 | 0.1956 | 0.1993 | 0.2062 | 0.797 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.273 |
| 0.378 | 4.8571 | 4250 | 0.1960 | 0.1960 | 0.1991 | 0.227 | 0.7887 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2983 |
| 0.3853 | 5.1429 | 4500 | 0.1957 | 0.1957 | 0.1982 | 0.2122 | 0.803 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2747 |
| 0.3727 | 5.4286 | 4750 | 0.1955 | 0.1955 | 0.1989 | 0.2122 | 0.8025 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2745 |
| 0.3826 | 5.7143 | 5000 | 0.1956 | 0.1956 | 0.1975 | 0.2278 | 0.8007 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2945 |
| 0.3746 | 6.0 | 5250 | 0.1954 | 0.1954 | 0.1976 | 0.2235 | 0.8013 | 0.9885 | 0.9928 | 0.997 | 0.9978 | 0.2898 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for eternis/eternis_router_encoder_sft_5Sep
Base model
answerdotai/ModernBERT-base