Outdated code, bboxes were scaled incorrectly
#5
by
danielbogdoll
- opened
README.md
CHANGED
|
@@ -51,23 +51,12 @@ inputs = processor(text=texts, images=image, return_tensors="pt")
|
|
| 51 |
with torch.no_grad():
|
| 52 |
outputs = model(**inputs)
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
|
| 57 |
-
def get_preprocessed_image(pixel_values):
|
| 58 |
-
pixel_values = pixel_values.squeeze().numpy()
|
| 59 |
-
unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
|
| 60 |
-
unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
|
| 61 |
-
unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
|
| 62 |
-
unnormalized_image = Image.fromarray(unnormalized_image)
|
| 63 |
-
return unnormalized_image
|
| 64 |
-
|
| 65 |
-
unnormalized_image = get_preprocessed_image(inputs.pixel_values)
|
| 66 |
-
|
| 67 |
-
target_sizes = torch.Tensor([unnormalized_image.size[::-1]])
|
| 68 |
# Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
|
| 69 |
results = processor.post_process_object_detection(
|
| 70 |
-
outputs=outputs, threshold=0.2, target_sizes=
|
| 71 |
)
|
| 72 |
|
| 73 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
|
@@ -77,6 +66,20 @@ boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["l
|
|
| 77 |
for box, score, label in zip(boxes, scores, labels):
|
| 78 |
box = [round(i, 2) for i in box.tolist()]
|
| 79 |
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
```
|
| 81 |
|
| 82 |
|
|
|
|
| 51 |
with torch.no_grad():
|
| 52 |
outputs = model(**inputs)
|
| 53 |
|
| 54 |
+
# Get original image size
|
| 55 |
+
original_size = torch.Tensor([image.size[::-1]])
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
|
| 58 |
results = processor.post_process_object_detection(
|
| 59 |
+
outputs=outputs, threshold=0.2, target_sizes=original_size
|
| 60 |
)
|
| 61 |
|
| 62 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
|
|
|
| 66 |
for box, score, label in zip(boxes, scores, labels):
|
| 67 |
box = [round(i, 2) for i in box.tolist()]
|
| 68 |
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
| 69 |
+
|
| 70 |
+
# Draw each box on the image
|
| 71 |
+
draw = ImageDraw.Draw(image)
|
| 72 |
+
|
| 73 |
+
for box, score, label in zip(boxes, scores, labels):
|
| 74 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 75 |
+
draw.rectangle(box, outline="red", width=2)
|
| 76 |
+
draw.text(
|
| 77 |
+
(box[0], box[1]),
|
| 78 |
+
f"{text[label]}: {round(score.item(), 3)}",
|
| 79 |
+
fill="red",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
image.show()
|
| 83 |
```
|
| 84 |
|
| 85 |
|