Jais-2: The Next Generation of Arabic Frontier LLMs
Model Overview
Jais-2-70B-Chat is a high-capacity bilingual Arabic–English language model developed by MBZUAI, Inception, and Cerebras. Jais-2-70B-Chat Model is trained from scratch on Arabic and English data and is powered by a custom Arabic-centric vocabulary, it efficiently captures Modern Standard Arabic, regional dialects, and mixed Arabic–English code-switching. The model is openly available under a Apache 2.0 license and also deployed as a fast, production-ready chat experience running on Cerebras hardware. Visit the Jais-2 Web App.
Key Technical Specifications
- Model Developers: MBZUAI, Inception, Cerebras.
- Languages: Arabic (MSA & dialects) and English
- Architecture: Transformer-based, Decoder-only architecture with multi-head self-attention.
- Parameters: 70 Billion
- Context Length: 8,192
- Vocabulary Size: 150,272
- Training Infrastructure: Optimized for Cerebras CS-2 and Condor Galaxy clusters
- Key Design Choices: Rotary Position Embeddings (RoPE), Squared-ReLU activation, custom μP parameterization, and 8:1 filter-to-hidden size ratio.
How to Use the Model
Using Transformers
1. Clone the Jais 2–compatible Transformers fork
# Pending PR merge to the official package
git clone --branch jais2 --single-branch \
https://github.com/inceptionai-abudhabi/transformers.git
cd transformers
uv pip install -e .
2. Load and Inference on the Model
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
model_name = "inceptionai/Jais-2-70B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
# Example Arabic prompt
system_prompt = "أجب باللغة العربية بطريقة رسمية وواضحة."
user_input = "ما هي عاصمة الإمارات؟"
# Apply chat template (always)
chat_text = tokenizer.apply_chat_template(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
],
tokenize=False,
add_generation_prompt=True
)
# Tokenize and generate
inputs = tokenizer(chat_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=8192, temperature=0)
# Decode and print
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
#عاصمة الإمارات العربية المتحدة هي أبوظبي.
Using vLLM
1. Clone the Jais 2–compatible vLLM fork
# Pending PR merge to the official package
git clone --branch jais2 --single-branch \
https://github.com/inceptionai-abudhabi/vllm.git
cd vllm
uv pip install -e . # If you install vllm after transformers, please re-install transformers again from this branch: https://github.com/inceptionai-abudhabi/transformers.git
2. Load and Inference on the Model
from vllm import LLM, SamplingParams
# Load model and tokenizer
model_name = "inceptionai/Jais-2-70B-Chat"
llm = LLM(model=model_name, tensor_parallel_size=1)
tokenizer = llm.get_tokenizer()
# Example Arabic prompt
system_prompt = "أجب باللغة العربية بطريقة رسمية وواضحة."
user_input = "ما هي عاصمة الإمارات؟"
# Apply chat template (always)
chat_text = tokenizer.apply_chat_template(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
],
tokenize=False,
add_generation_prompt=True
)
# Run generation
sampling_params = SamplingParams(max_tokens=8192, temperature=0)
outputs = llm.generate([chat_text], sampling_params)
#Print output
print(outputs[0].outputs[0].text)
#عاصمة الإمارات العربية المتحدة هي أبوظبي.
Or serve through command line (CLI)
vllm serve inceptionai/Jais-2-70B-Chat \
--served-model-name inceptionai/Jais-2-70B-Chat-Local --dtype bfloat16 \
--tensor-parallel-size 2 --max-model-len 8192 --max-num-seqs 256 \
--host 0.0.0.0 --port 8042 --api-key "Optional"
Evaluation
Performance Overview
We evaluate Jais-2-70B across two key benchmarks that capture both instruction following and generative Arabic ability: IFEval (English and Arabic) and AraGen-12-24 (3C3H).
IFEval Results (Strict 0-shot)
| Model Name | En-Strict-Prompt-lvl | En-Strict-Instruction-lvl | Ar-Strict-Prompt-lvl | Ar-Strict-Instruction-lvl |
|---|---|---|---|---|
| Qwen2.5-72B-Instruct | 83.53 | 88.51 | 67.33 | 74.05 |
| Llama-3.3-70B-Instruct | 88.20 | 92.10 | 58.17 | 63.13 |
| Jais-2-70B (ours) | 70.78 | 78.93 | 66.58 | 74.53 |
AraGen-12-24 (3C3H) Results
| Model Name | 3C3H Score (%) | Correctness | Completeness | Conciseness | Helpfulness | Honesty | Harmlessness |
|---|---|---|---|---|---|---|---|
| Qwen2.5-72B-Instruct | 62.58 | 71.92 | 71.80 | 19.06 | 69.86 | 70.94 | 71.92 |
| Llama-3.3-70B-Instruct | 61.29 | 68.58 | 65.11 | 34.50 | 63.50 | 67.47 | 68.58 |
| Jais-2-70B (ours) | 70.71 | 80.53 | 79.09 | 25.48 | 78.43 | 80.23 | 80.53 |
Overall, our results show that:
- Jais-2-70B delivers competitive Arabic and English instruction-following performance across IFEval metrics.
- Jais-2-70B achieves the highest scores across nearly all AraGen metrics, outperforming Qwen2.5-72B and Llama-3.3-70B on Arabic generative tasks.
Intended Use
Target Audiences
- Academics: Researchers focusing on Arabic NLP, multilingual modeling, or cultural alignment
- Businesses: Companies targeting Arabic-speaking markets
- Developers and ML Engineers: Integrating Arabic language capabilities into applications and workflows
Appropriate Use Cases
Research:
- Natural language understanding and generation tasks
- Conducting interpretability or cross-lingual alignment analyses
- Investigating Arabic linguistic or cultural patterns
Commercial Use:
- Building chat assistants for Arabic-speaking audiences
- Performing sentiment and market analysis in regional contexts
- Summarizing or processing bilingual Arabic–English documents
- Creating culturally resonant Arabic marketing and entertainment content for regional audiences
Inappropriate Use Cases
Harmful or Malicious Use:
- Producing hate speech, extremist content, or discriminatory language
- Creating or spreading misinformation or deceptive content
- Engaging in or promoting illegal activities
Sensitive Information:
- Handling or generating personal, confidential, or sensitive information
- Attempting to infer, reconstruct, or guess sensitive information about individuals or organizations
Language Limitations:
- Applications requiring strong performance outside Arabic or English languages
High-Stakes Decisions:
- Making medical, legal, financial, or safety-critical decisions without human oversight
Citation
If you find our work helpful, please give us a cite.
@techreport{jais2_2025,
title = {Jais 2: {A} Family of {A}rabic-Centric Open Large Language Models},
author = {
Anwar, Mohamed and
Freihat, Abdelhakim and
Ibrahim, George and
Awad, Mostafa and
Sadallah, Abdelrahman Atef Mohamed Ali and
Gosal, Gurpreet and
Ramakrishnan, Gokul and
Hestness, Joel and
Mishra, Biswajit and
Chandran, Sarath and
Frikha, Ahmed and
Goffinet, Etienne and
Maiti, Abhishek and
El Filali, Ali and
Al Barri, Sarah and
Ghosh, Samujjwal and
Pal, Rahul and
Mullah, Parvez and
Shukla, Awantika and
Siddiki, Sajid and
Kamboj, Samta and
Pandit, Onkar and
Sahu, Sunil and
El Badawy, Abelrahman and
Mohamed, Amr and
Chamma, Ahmad and
Dufraisse, Evan and
Bounhar, Abdelaziz and
Bouch, Dani and
Abdine, Hadi and
Shang, Guokan and
Koto, Fajri and
Wang, Yuxia and
Xie, Zhuohan and
Mekky, Ali and
Elbadry, Rania Hossam Elmohamady and
Ahmad, Sarfraz and
Ahsan, Momina and
El-Herraoui, Omar Emad Mohamed and
Orel, Daniil and
Iqbal, Hasan and
Elzeky, Kareem Mohamed Naguib Abdelmohsen Fahmy and
Abassy, Mervat and
Ali, Kareem and
Eletter, Saadeldine and
Atif, Farah and
Mukhituly, Nurdaulet and
Li, Haonan and
Han, Xudong and
Singh, Aaryamonvikram and
Quraishi, Zain and
Sengupta, Neha and
Murray, Larry and
Sheinin, Avraham and
Vassilieva, Natalia and
Ren, Hector and
Liu, Zhengzhong and
Vazirgiannis, Michalis and
Nakov, Preslav
},
institution = {IFM},
type = {Technical Report},
year = {2025},
month = dec,
day = {09},
}
- Downloads last month
- -