layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6937
  • Answer: {'precision': 0.6911447084233261, 'recall': 0.7911001236093943, 'f1': 0.7377521613832853, 'number': 809}
  • Header: {'precision': 0.2653061224489796, 'recall': 0.3277310924369748, 'f1': 0.29323308270676696, 'number': 119}
  • Question: {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065}
  • Overall Precision: 0.7090
  • Overall Recall: 0.7812
  • Overall F1: 0.7434
  • Overall Accuracy: 0.8085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7582 1.0 10 1.5548 {'precision': 0.027379400260756193, 'recall': 0.02595797280593325, 'f1': 0.0266497461928934, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.29232995658465993, 'recall': 0.18967136150234742, 'f1': 0.23006833712984054, 'number': 1065} 0.1529 0.1119 0.1292 0.3743
1.4081 2.0 20 1.1899 {'precision': 0.21573604060913706, 'recall': 0.21013597033374537, 'f1': 0.2128991859737007, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5147410358565737, 'recall': 0.6065727699530516, 'f1': 0.5568965517241379, 'number': 1065} 0.3994 0.4094 0.4044 0.6099
1.0527 3.0 30 0.8851 {'precision': 0.5023419203747073, 'recall': 0.5302843016069221, 'f1': 0.5159350571256766, 'number': 809} {'precision': 0.02564102564102564, 'recall': 0.008403361344537815, 'f1': 0.012658227848101267, 'number': 119} {'precision': 0.610410094637224, 'recall': 0.7267605633802817, 'f1': 0.6635233604800685, 'number': 1065} 0.5571 0.6041 0.5797 0.7406
0.7951 4.0 40 0.7518 {'precision': 0.619914346895075, 'recall': 0.715698393077874, 'f1': 0.6643717728055079, 'number': 809} {'precision': 0.17142857142857143, 'recall': 0.10084033613445378, 'f1': 0.12698412698412698, 'number': 119} {'precision': 0.6454901960784314, 'recall': 0.7727699530516432, 'f1': 0.7034188034188034, 'number': 1065} 0.6204 0.7095 0.6620 0.7752
0.6448 5.0 50 0.7019 {'precision': 0.6666666666666666, 'recall': 0.7292954264524104, 'f1': 0.6965761511216056, 'number': 809} {'precision': 0.25842696629213485, 'recall': 0.19327731092436976, 'f1': 0.22115384615384615, 'number': 119} {'precision': 0.6956521739130435, 'recall': 0.8112676056338028, 'f1': 0.7490247074122236, 'number': 1065} 0.6665 0.7411 0.7018 0.7875
0.5557 6.0 60 0.6785 {'precision': 0.6462793068297655, 'recall': 0.7836835599505563, 'f1': 0.7083798882681563, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.2184873949579832, 'f1': 0.2639593908629441, 'number': 119} {'precision': 0.7567324955116697, 'recall': 0.7915492957746478, 'f1': 0.7737494263423588, 'number': 1065} 0.6917 0.7541 0.7216 0.8008
0.4907 7.0 70 0.6526 {'precision': 0.6879659211927582, 'recall': 0.7985166872682324, 'f1': 0.7391304347826088, 'number': 809} {'precision': 0.29245283018867924, 'recall': 0.2605042016806723, 'f1': 0.27555555555555555, 'number': 119} {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065} 0.7104 0.7817 0.7444 0.8060
0.4323 8.0 80 0.6535 {'precision': 0.6698113207547169, 'recall': 0.7898640296662547, 'f1': 0.7249007373794668, 'number': 809} {'precision': 0.2542372881355932, 'recall': 0.25210084033613445, 'f1': 0.25316455696202533, 'number': 119} {'precision': 0.7631806395851339, 'recall': 0.8291079812206573, 'f1': 0.7947794779477948, 'number': 1065} 0.6963 0.7787 0.7352 0.8080
0.3857 9.0 90 0.6589 {'precision': 0.6790648246546227, 'recall': 0.7898640296662547, 'f1': 0.7302857142857142, 'number': 809} {'precision': 0.24427480916030533, 'recall': 0.2689075630252101, 'f1': 0.256, 'number': 119} {'precision': 0.7683566433566433, 'recall': 0.8253521126760563, 'f1': 0.7958352195563604, 'number': 1065} 0.6995 0.7777 0.7365 0.8069
0.3669 10.0 100 0.6754 {'precision': 0.6898803046789989, 'recall': 0.7836835599505563, 'f1': 0.7337962962962964, 'number': 809} {'precision': 0.2413793103448276, 'recall': 0.29411764705882354, 'f1': 0.26515151515151514, 'number': 119} {'precision': 0.7688219663418955, 'recall': 0.8150234741784037, 'f1': 0.7912488605287148, 'number': 1065} 0.7009 0.7712 0.7344 0.8078
0.3173 11.0 110 0.6832 {'precision': 0.6913319238900634, 'recall': 0.8084054388133498, 'f1': 0.7452991452991453, 'number': 809} {'precision': 0.26618705035971224, 'recall': 0.31092436974789917, 'f1': 0.2868217054263566, 'number': 119} {'precision': 0.7753496503496503, 'recall': 0.8328638497652582, 'f1': 0.8030783159800814, 'number': 1065} 0.7079 0.7918 0.7475 0.8040
0.2996 12.0 120 0.6900 {'precision': 0.6995614035087719, 'recall': 0.788627935723115, 'f1': 0.7414294015107497, 'number': 809} {'precision': 0.2605633802816901, 'recall': 0.31092436974789917, 'f1': 0.2835249042145594, 'number': 119} {'precision': 0.7830357142857143, 'recall': 0.8234741784037559, 'f1': 0.802745995423341, 'number': 1065} 0.7139 0.7787 0.7449 0.8066
0.2928 13.0 130 0.6954 {'precision': 0.6995661605206074, 'recall': 0.7972805933250927, 'f1': 0.7452339688041594, 'number': 809} {'precision': 0.2534246575342466, 'recall': 0.31092436974789917, 'f1': 0.2792452830188679, 'number': 119} {'precision': 0.7707786526684165, 'recall': 0.8272300469483568, 'f1': 0.7980072463768116, 'number': 1065} 0.7069 0.7842 0.7436 0.8033
0.2658 14.0 140 0.6914 {'precision': 0.6937229437229437, 'recall': 0.792336217552534, 'f1': 0.7397576457010964, 'number': 809} {'precision': 0.273972602739726, 'recall': 0.33613445378151263, 'f1': 0.3018867924528302, 'number': 119} {'precision': 0.7839285714285714, 'recall': 0.8244131455399061, 'f1': 0.8036613272311213, 'number': 1065} 0.7119 0.7822 0.7454 0.8091
0.2673 15.0 150 0.6937 {'precision': 0.6911447084233261, 'recall': 0.7911001236093943, 'f1': 0.7377521613832853, 'number': 809} {'precision': 0.2653061224489796, 'recall': 0.3277310924369748, 'f1': 0.29323308270676696, 'number': 119} {'precision': 0.7818343722172751, 'recall': 0.8244131455399061, 'f1': 0.8025594149908593, 'number': 1065} 0.7090 0.7812 0.7434 0.8085

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.9.1+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for lucent517/layoutlm-funsd

Finetuned
(184)
this model