Dental Impression Classifier
This model classifies dental impressions into three categories:
- Good
- Acceptable
- Unacceptable
Model Details
- Architecture: EfficientNet-B0
- Framework: PyTorch
- Input: 224x224 RGB images
- Classes: 3 (Good, Acceptable, Unacceptable)
Usage
import torch
from PIL import Image
from torchvision import transforms
import json
# Load model config
with open('model_config.json', 'r') as f:
config = json.load(f)
# Load model
model = torch.jit.load('dental_classifier.pt')
model.eval()
# Prepare image
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Make prediction
image = Image.open('your_image.jpg').convert('RGB')
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(image_tensor)
probabilities = torch.softmax(outputs, dim=1)
confidence, predicted = torch.max(probabilities, 1)
predicted_class = config['class_names'][predicted.item()]
print(f"Prediction: {predicted_class}, Confidence: {confidence.item():.2%}")