TeleQnA-Qwen2.5-7B-Instruct (Fine-Tuned)

This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the TeleQnA dataset. It achieves State-of-the-Art (SOTA) performance on the TeleQnA benchmark, outperforming GPT-4.

Paper Replicated: TeleQnA: A Benchmark Dataset to Assess Large Language Models Telecommunications Knowledge (arXiv:2310.15051)

πŸ† Performance

Evaluated on the full TeleQnA validation set (N=1000):

Model Overall Accuracy Lexicon Standards Specs Standards Overview Research Pubs Research Overview
This Model 76.80% 95.00% 67.02% 75.00% 79.21% 77.88%
GPT-4 74.00% ~87% 64% ~70% ~80% ~78%
GPT-3.5 67.00% - - - - -

Key Result: This specialized 7B model beats GPT-4 in overall accuracy (+2.8%) and significantly outperforms it in domain-specific terminology (Lexicon +8%) and technical standards (Standards Specs +3%).

πŸ’» Usage

To use this model, you need to load the adapter and the base model.

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

base_model_name = "Qwen/Qwen2.5-7B-Instruct"
adapter_name = "nraptisss/teleqna-qwen2.5-7b-finetune"

# 1. Load Base Model
model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True
)

# 2. Load Adapter
model = PeftModel.from_pretrained(model, adapter_name)
model.eval()

# 3. Inference
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)

question = "What is the primary advantage of using coordinated beamforming in Wi-Fi 8?"
options = "option 1: Improved security\noption 2: Increased coverage\noption 3: Reduced interference\noption 4: Lower latency"

prompt = f"<|im_start|>user\n{question}\n\n{options}<|im_end|>\n<|im_start|>assistant\nAnswer:"

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=50)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

πŸ› οΈ Training Details

  • Dataset: TeleQnA (~10,000 Telecom MCQs)
  • Method: QLoRA (4-bit quantization)
  • Rank (r): 64
  • Alpha: 16
  • Epochs: 1
  • Hardware: Single NVIDIA RTX 6000 Ada

πŸ“š Citation

If you use this model, please cite the original TeleQnA paper:

@article{teleqna2023,
  title={TeleQnA: A Benchmark Dataset to Assess Large Language Models Telecommunications Knowledge},
  author={Ali Maatouk et al.},
  journal={arXiv preprint arXiv:2310.15051},
  year={2023}
}
Downloads last month
26
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for nraptisss/teleqna-qwen2.5-7b-finetune

Base model

Qwen/Qwen2.5-7B
Adapter
(775)
this model

Evaluation results