FunctionGemma Domain Classifier
Fine-tuned FunctionGemma-270M for multi-domain query classification using LoRA.
Model Details
- Base Model: google/functiongemma-270m-it
- Model Size: 270M parameters (540MB)
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Trainable Parameters: ~7.6M (2.75%)
- Training Time: 23.3 minutes
- Hardware: GPU (memory optimized for <5GB VRAM)
Performance
Accuracy: 95.51%
F1 Score (Weighted): 0.96
F1 Score (Macro): 0.88
Training Loss: 0.3
Supported Domains (17)
- ambiguous
- api_generation
- business
- coding
- creative_content
- data_analysis
- education
- general_knowledge
- geography
- history
- law
- literature
- mathematics
- medicine
- science
- sensitive
- technology
Use Cases
- Query Routing: Route user queries to specialized models/services
- Content Classification: Categorize text by domain
- Multi-domain Detection: Identify queries spanning multiple domains
- Intent Analysis: Understand query context and domain
Quick Start
Installation
pip install transformers peft torch
Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import json
# Load model
base_model = AutoModelForCausalLM.from_pretrained(
"google/functiongemma-270m-it",
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "ovinduG/functiongemma-domain-classifier")
tokenizer = AutoTokenizer.from_pretrained("ovinduG/functiongemma-domain-classifier")
# Classify a query
def classify(text):
# Define function schema
function_def = {
"type": "function",
"function": {
"name": "classify_query_domain",
"description": "Classify query into domains",
"parameters": {
"type": "object",
"properties": {
"primary_domain": {"type": "string"},
"primary_confidence": {"type": "number"},
"is_multi_domain": {"type": "boolean"},
"secondary_domains": {"type": "array"}
}
}
}
}
messages = [
{"role": "developer", "content": "You are a model that can do function calling"},
{"role": "user", "content": text}
]
inputs = tokenizer.apply_chat_template(
messages,
tools=[function_def],
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=False,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(
outputs[0][inputs["input_ids"].shape[-1]:],
skip_special_tokens=True
)
# Parse function call
if "{" in response:
start = response.find("{")")
end = response.rfind("}") + 1
return json.loads(response[start:end])
return {"error": "Failed to parse response"}
# Example
result = classify("Write a Python function to calculate fibonacci numbers")
print(json.dumps(result, indent=2))
Example Output
{
"primary_domain": "coding",
"primary_confidence": 0.95,
"is_multi_domain": false,
"secondary_domains": []
}
Multi-Domain Example
result = classify("Build an ML model to predict customer churn and create REST API endpoints")
print(json.dumps(result, indent=2))
{
"primary_domain": "data_analysis",
"primary_confidence": 0.85,
"is_multi_domain": true,
"secondary_domains": [
{
"domain": "api_generation",
"confidence": 0.75
}
]
}
Training Details
Dataset
- Total Samples: 5,046
- Training Samples: 3,666
- Validation Samples: 690
- Test Samples: 690
- Multi-domain Queries: 546 (10.8%)
Training Configuration
# LoRA Configuration
r = 32
lora_alpha = 64
lora_dropout = 0.05
target_modules = ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']
# Training Configuration
num_epochs = 5
batch_size = 4
gradient_accumulation_steps = 8
learning_rate = 0.0003
max_length = 1024
optimizer = "adamw_8bit" # Memory optimized
Memory Optimization
This model was trained with memory optimizations to run on GPUs with <5GB VRAM:
- 8-bit Optimizer: Reduces optimizer memory by 50%
- Gradient Checkpointing: Trades compute for memory
- Smaller Batches: 4 samples per batch with gradient accumulation
- Shorter Sequences: 1024 tokens max (vs 2048)
Total VRAM Usage: ~4GB (vs ~40GB without optimization)
Performance by Domain
| Domain | Precision | Recall | F1-Score | Support |
|---|---|---|---|---|
| ambiguous | 0.98 | 1.00 | 0.99 | 45 |
| api_generation | 0.98 | 1.00 | 0.99 | 45 |
| business | 0.98 | 0.93 | 0.95 | 44 |
| coding | 0.98 | 0.96 | 0.97 | 48 |
| creative_content | 0.90 | 1.00 | 0.95 | 45 |
| data_analysis | 0.96 | 0.98 | 0.97 | 46 |
| education | 0.98 | 0.96 | 0.97 | 45 |
| general_knowledge | 0.76 | 0.84 | 0.80 | 45 |
| law | 0.98 | 0.94 | 0.96 | 49 |
| literature | 1.00 | 0.93 | 0.97 | 45 |
| mathematics | 1.00 | 1.00 | 1.00 | 47 |
| medicine | 0.98 | 0.89 | 0.93 | 46 |
| science | 1.00 | 0.98 | 0.99 | 47 |
| sensitive | 0.92 | 1.00 | 0.96 | 45 |
| technology | 1.00 | 0.93 | 0.97 | 46 |
Overall Accuracy: 95.51%
Advantages
- โ Tiny Size: 270M parameters (14x smaller than Phi-3)
- โ Fast Inference: 0.3s on CPU, 0.08s on GPU
- โ Low Memory: Runs on 4GB VRAM
- โ High Accuracy: 95.51% (competitive with larger models)
- โ Multi-domain: Detects queries spanning multiple domains
- โ Function Calling: Built-in structured output
- โ Mobile-Ready: Can deploy on smartphones
Limitations
- Trained on English queries only
- Performance varies by domain (see table above)
- May struggle with highly ambiguous queries
- Limited to 17 pre-defined domains
Base Model
- Base model:
google/functiongemma - Model family: Gemma
- Model owner: Google LLC
- Fine-tuning task: Domain classification
Acknowledgement & Attribution
This model is built upon Googleโs FunctionGemma. Use of this model is subject to the Gemma Terms of Use and the Gemma Prohibited Use Policy:
- Gemma Terms of Use (March 24, 2025):
https://ai.google.dev/gemma/terms - Gemma Prohibited Use Policy (February 21, 2024):
https://ai.google.dev/gemma/prohibited_use_policy
Users must comply with these policies when using, modifying, or distributing this model or its derivatives.
License
This model follows the same terms as Googleโs Gemma models. Please review the above links for full license and usage restrictions.
Recommended Hugging Face Metadata
license: gemma
base_model: google/functiongemma
tags:
- text-classification
- domain-classification
- gemma
- functiongemma
Model tree for ovinduG/functiongemma-domain-classifier
Base model
google/functiongemma-270m-it