FunctionGemma Domain Classifier

Fine-tuned FunctionGemma-270M for multi-domain query classification using LoRA.

Model Details

  • Base Model: google/functiongemma-270m-it
  • Model Size: 270M parameters (540MB)
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Trainable Parameters: ~7.6M (2.75%)
  • Training Time: 23.3 minutes
  • Hardware: GPU (memory optimized for <5GB VRAM)

Performance

Accuracy: 95.51%
F1 Score (Weighted): 0.96
F1 Score (Macro): 0.88
Training Loss: 0.3

Supported Domains (17)

  1. ambiguous
  2. api_generation
  3. business
  4. coding
  5. creative_content
  6. data_analysis
  7. education
  8. general_knowledge
  9. geography
  10. history
  11. law
  12. literature
  13. mathematics
  14. medicine
  15. science
  16. sensitive
  17. technology

Use Cases

  • Query Routing: Route user queries to specialized models/services
  • Content Classification: Categorize text by domain
  • Multi-domain Detection: Identify queries spanning multiple domains
  • Intent Analysis: Understand query context and domain

Quick Start

Installation

pip install transformers peft torch

Inference

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import json

# Load model
base_model = AutoModelForCausalLM.from_pretrained(
    "google/functiongemma-270m-it",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "ovinduG/functiongemma-domain-classifier")
tokenizer = AutoTokenizer.from_pretrained("ovinduG/functiongemma-domain-classifier")

# Classify a query
def classify(text):
    # Define function schema
    function_def = {
        "type": "function",
        "function": {
            "name": "classify_query_domain",
            "description": "Classify query into domains",
            "parameters": {
                "type": "object",
                "properties": {
                    "primary_domain": {"type": "string"},
                    "primary_confidence": {"type": "number"},
                    "is_multi_domain": {"type": "boolean"},
                    "secondary_domains": {"type": "array"}
                }
            }
        }
    }
    
    messages = [
        {"role": "developer", "content": "You are a model that can do function calling"},
        {"role": "user", "content": text}
    ]
    
    inputs = tokenizer.apply_chat_template(
        messages,
        tools=[function_def],
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt"
    ).to(model.device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=150,
            do_sample=False,
            pad_token_id=tokenizer.eos_token_id
        )
    
    response = tokenizer.decode(
        outputs[0][inputs["input_ids"].shape[-1]:],
        skip_special_tokens=True
    )
    
    # Parse function call
    if "{" in response:
        start = response.find("{")")
        end = response.rfind("}") + 1
        return json.loads(response[start:end])
    
    return {"error": "Failed to parse response"}

# Example
result = classify("Write a Python function to calculate fibonacci numbers")
print(json.dumps(result, indent=2))

Example Output

{
  "primary_domain": "coding",
  "primary_confidence": 0.95,
  "is_multi_domain": false,
  "secondary_domains": []
}

Multi-Domain Example

result = classify("Build an ML model to predict customer churn and create REST API endpoints")
print(json.dumps(result, indent=2))
{
  "primary_domain": "data_analysis",
  "primary_confidence": 0.85,
  "is_multi_domain": true,
  "secondary_domains": [
    {
      "domain": "api_generation",
      "confidence": 0.75
    }
  ]
}

Training Details

Dataset

  • Total Samples: 5,046
  • Training Samples: 3,666
  • Validation Samples: 690
  • Test Samples: 690
  • Multi-domain Queries: 546 (10.8%)

Training Configuration

# LoRA Configuration
r = 32
lora_alpha = 64
lora_dropout = 0.05
target_modules = ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']

# Training Configuration  
num_epochs = 5
batch_size = 4
gradient_accumulation_steps = 8
learning_rate = 0.0003
max_length = 1024
optimizer = "adamw_8bit"  # Memory optimized

Memory Optimization

This model was trained with memory optimizations to run on GPUs with <5GB VRAM:

  • 8-bit Optimizer: Reduces optimizer memory by 50%
  • Gradient Checkpointing: Trades compute for memory
  • Smaller Batches: 4 samples per batch with gradient accumulation
  • Shorter Sequences: 1024 tokens max (vs 2048)

Total VRAM Usage: ~4GB (vs ~40GB without optimization)

Performance by Domain

Domain Precision Recall F1-Score Support
ambiguous 0.98 1.00 0.99 45
api_generation 0.98 1.00 0.99 45
business 0.98 0.93 0.95 44
coding 0.98 0.96 0.97 48
creative_content 0.90 1.00 0.95 45
data_analysis 0.96 0.98 0.97 46
education 0.98 0.96 0.97 45
general_knowledge 0.76 0.84 0.80 45
law 0.98 0.94 0.96 49
literature 1.00 0.93 0.97 45
mathematics 1.00 1.00 1.00 47
medicine 0.98 0.89 0.93 46
science 1.00 0.98 0.99 47
sensitive 0.92 1.00 0.96 45
technology 1.00 0.93 0.97 46

Overall Accuracy: 95.51%

Advantages

  • โœ… Tiny Size: 270M parameters (14x smaller than Phi-3)
  • โœ… Fast Inference: 0.3s on CPU, 0.08s on GPU
  • โœ… Low Memory: Runs on 4GB VRAM
  • โœ… High Accuracy: 95.51% (competitive with larger models)
  • โœ… Multi-domain: Detects queries spanning multiple domains
  • โœ… Function Calling: Built-in structured output
  • โœ… Mobile-Ready: Can deploy on smartphones

Limitations

  • Trained on English queries only
  • Performance varies by domain (see table above)
  • May struggle with highly ambiguous queries
  • Limited to 17 pre-defined domains

Base Model

  • Base model: google/functiongemma
  • Model family: Gemma
  • Model owner: Google LLC
  • Fine-tuning task: Domain classification

Acknowledgement & Attribution

This model is built upon Googleโ€™s FunctionGemma. Use of this model is subject to the Gemma Terms of Use and the Gemma Prohibited Use Policy:

Users must comply with these policies when using, modifying, or distributing this model or its derivatives.

License

This model follows the same terms as Googleโ€™s Gemma models. Please review the above links for full license and usage restrictions.

Recommended Hugging Face Metadata

license: gemma
base_model: google/functiongemma
tags:
  - text-classification
  - domain-classification
  - gemma
  - functiongemma
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ovinduG/functiongemma-domain-classifier

Adapter
(6)
this model

Space using ovinduG/functiongemma-domain-classifier 1