|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- SilpaCS/Augmented_alzheimer |
|
|
language: |
|
|
- en |
|
|
base_model: |
|
|
- google/siglip2-base-patch16-224 |
|
|
pipeline_tag: image-classification |
|
|
library_name: transformers |
|
|
tags: |
|
|
- Alzheimer |
|
|
- Stage-Classifier |
|
|
- SigLIP2 |
|
|
--- |
|
|
|
|
|
 |
|
|
|
|
|
# **Alzheimer-Stage-Classifier** |
|
|
|
|
|
> **Alzheimer-Stage-Classifier** is a multi-class image classification model based on `google/siglip2-base-patch16-224`, designed to identify stages of Alzheimer’s disease from medical imaging data. This tool can assist in **clinical decision support**, **early diagnosis**, and **disease progression tracking**. |
|
|
|
|
|
```py |
|
|
Classification Report: |
|
|
precision recall f1-score support |
|
|
|
|
|
MildDemented 0.9634 0.9860 0.9746 8960 |
|
|
ModerateDemented 1.0000 1.0000 1.0000 6464 |
|
|
NonDemented 0.8920 0.8910 0.8915 9600 |
|
|
VeryMildDemented 0.8904 0.8704 0.8803 8960 |
|
|
|
|
|
accuracy 0.9314 33984 |
|
|
macro avg 0.9364 0.9369 0.9366 33984 |
|
|
weighted avg 0.9309 0.9314 0.9311 33984 |
|
|
``` |
|
|
|
|
|
|
|
|
 |
|
|
|
|
|
--- |
|
|
|
|
|
## **Label Classes** |
|
|
|
|
|
The model classifies input images into the following stages of Alzheimer’s disease: |
|
|
|
|
|
``` |
|
|
0: MildDemented |
|
|
1: ModerateDemented |
|
|
2: NonDemented |
|
|
3: VeryMildDemented |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## **Installation** |
|
|
|
|
|
```bash |
|
|
pip install transformers torch pillow gradio |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## **Example Inference Code** |
|
|
|
|
|
```python |
|
|
import gradio as gr |
|
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
# Load model and processor |
|
|
model_name = "prithivMLmods/Alzheimer-Stage-Classifier" |
|
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
|
|
# ID to label mapping |
|
|
id2label = { |
|
|
"0": "MildDemented", |
|
|
"1": "ModerateDemented", |
|
|
"2": "NonDemented", |
|
|
"3": "VeryMildDemented" |
|
|
} |
|
|
|
|
|
def classify_alzheimer_stage(image): |
|
|
image = Image.fromarray(image).convert("RGB") |
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
|
|
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
return prediction |
|
|
|
|
|
# Gradio Interface |
|
|
iface = gr.Interface( |
|
|
fn=classify_alzheimer_stage, |
|
|
inputs=gr.Image(type="numpy"), |
|
|
outputs=gr.Label(num_top_classes=4, label="Alzheimer Stage"), |
|
|
title="Alzheimer-Stage-Classifier", |
|
|
description="Upload a brain scan image to classify the stage of Alzheimer's: NonDemented, VeryMildDemented, MildDemented, or ModerateDemented." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.launch() |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## **Applications** |
|
|
|
|
|
* **Early Alzheimer’s Screening** |
|
|
* **Clinical Diagnosis Support** |
|
|
* **Longitudinal Study & Disease Monitoring** |
|
|
* **Research on Cognitive Decline** |